
Tweakable Enciphering Schemes Using Only the Encryption

Function of a Block Cipher

Palash Sarkar

Applied Statistics Unit
Indian Statistical Institute
203, B.T. Road, Kolkata

India 700108.
email: palash@isical.ac.in

Abstract. A new construction of block cipher based tweakable enciphering schemes (TES) is described.
The major improvement over existing TES is that the construction uses only the encryption function
of the underlying block cipher. Consequently, this leads to substantial savings in the size of hardware
implementation of TES applications such as disk encryption. This improvement is achieved without
loss in efficiency of encryption and decryption compared to the best previously known schemes.
Keywords: modes of operations, tweakable encryption, strong pseudorandom permuta-

tion, disk encryption.

1 Introduction

Modes of operations of a block cipher are important from both a practical and a theoretical point
of view. From a practical viewpoint, for a block cipher to be useful for a particular application,
one needs to deploy it in an appropriate mode of operation. In this paper, we consider modes
of operations for constructing length preserving strong pseudo-random permutation (SPRP) on
variable and arbitrary length strings. Additionally, the construction should support a tweak, which
provides flexibility in applications. Such a primitive is called a tweakable enciphering scheme (TES).

The known constructions of TESs can be broadly divided into two types: encrypt-mix-encrypt
type [5, 6, 3, 19] and the hash-encrypt-hash type [11, 12, 21, 2, 4, 18]. The first type uses a block
cipher while the second type additionally requires a finite field multiplier. The feature common to
all previous constructions is that they require both the encryption and the decryption functions of
the underlying block cipher.

This paper describes new hash-encrypt-hash type of TES constructions. The major innovation
of the current work is that the decryption function of the block cipher is not required. Let us clarify
what we mean by this. Each block cipher has an encryption and a decryption function. Similarly,
a TES also has an encryption and a decryption algorithm. We describe TES constructions whose
both encryption and decryption algorithms can be constructed using only the encryption function
of the underlying block cipher.

This is achieved without loss in efficiency compared to the best previously known schemes [18].
From a practical point of view this is significant, since the decryption function of the block cipher
need not be implemented. The major application of TES is disk encryption where the implemen-
tation of TES is done in hardware which typically resides just above the disk controller. Thus, for
disk encryption application the new constructions lead to substantial savings in hardware.

1.1 Previous and Related Works

The first construction of an SPRP from a pseudo-random function (PRF) is due to Luby and
Rackoff [9] which uses an n-bit to n-bit PRF to construct a 2n-bit SPRP. A long line of research

([10, 15, 16, 7] and other papers) has refined and polished the construction and currently several
variants are known. Naor and Reingold [14, 13] described a construction of SPRP using a block
cipher. The notion of tweakable block cipher was introduced in [8]. Halevi and Rogaway [5] provided
the first construction of a TES from a block cipher. As mentioned earlier, subsequent research has
yielded several constructions of TES from a block cipher.

2 Construction

We follow the notation used in [18].

Choice of finite field. Let IF = GF (2n) be the finite field of 2n elements. The addition operation
over IF will be denoted by ⊕. Elements of IF can also be considered to be n-bit strings.

XOR-universal hash function. Let h : K × IFm → IF be a function such that for X,X′ ∈ IFm,

X 6= X′ and for any γ ∈ IF, Prτ [hτ (X) ⊕ hτ (X
′) = γ] ≤ ǫ, where hτ (X)

∆
= h(τ,X) and the

probability is over uniform random choice of τ . Such an h is called an ǫ-almost XOR universal hash
function. Note that ǫ could depend on m (correspondingly, we write ǫm) and indeed does so in the
examples below.

1. Usual polynomial hashing is quite well known, where

hτ (X1, . . . ,Xm) = τPolyτ (X1, . . . ,Xm)
∆
= τ

(

τm−1X1 ⊕ · · · ⊕ τXm−1 ⊕ Xm

)

.

Using Horner’s rule Polyτ (X1, . . . ,Xm) can be evaluated using m multiplications and is m/2n-
almost XOR universal.

2. A faster option is to use a class of polynomials introduced by Bernstein [1] based on earlier
work by Rabin and Winograd [17] which we call the BRW polynomials. For the exact definition
of these polynomials see [1]. Here we note that

hτ (X1, . . . ,Xm) = τBRW(X1, . . . ,Xm)

is 2m/2n-almost XOR universal and BRWτ (X1, . . . ,Xm) can be evaluated using ⌊m/2⌋ multi-
plications (assuming that τ, τ2, τ4, . . . are pre-computed and available).

The number of multiplications required by BRW is half that required by Poly; on the other hand,
the processing of Poly can be made faster by using a pre-computed multiplication table for τ , while
this cannot be done for BRW. Other XOR universal hash functions such as those defined in [20]
can also be used with our construction.

XOR Universal Function from a Linear Map. Let φ : IF × {0, . . . , 2n − 2} → IF be a map
such that for 0 ≤ i < j ≤ 2n − 2, and for any element γ ∈ IF, Prβ[φβ(i) ⊕ φβ(j) = γ] = 1/2n

where φβ(i)
∆
= φ(β, i). A simple implementation of such a map is φβ(i) = αiβ, where α is a

primitive element of IF. Using a tower field representation of IF it is possible to obtain a faster
implementation of φ (see [19]).

A new hash function. Let hτ : ∪i≥1IF
i → IF be a XOR universal hash function, such that for

X,X′ ∈ IFm with X 6= X′, Prτ [hτ (X) = hτ (X′)] ≤ ǫm. Define Υτ : ∪i≥3IF
i → IF2 as follows

Υτ (X1,X2,X3, . . . ,Xm) = (X1 ⊕ Z,X2 ⊕ Z) (1)

where Z = hτ (X3, . . . ,Xm). It is not difficult to show that for X = (X1, . . . ,Xm) 6= (X ′
1, . . . ,X

′
m) =

X′, Prτ [Υτ (X) = Υτ (X
′)] ≤ ǫm−2.

2

Encryption function of a block cipher. Let EK : {0, 1}n → {0, 1}n be the encryption function
of a block cipher. The key K is from a suitable key space and there is no restriction on this key
space. Importantly, we do not require the decryption function, i.e., the inverse of EK . In the security
proof we assume EK to be a PRF. The invertibility of EK is not required in either the construction
or the proof.

Definition of the basic modes of operations.

ECB: ECBK(X1, . . . ,Xm) = (EK(X1), . . . , EK(Xm)).

MCtr: for β, S ∈ GF (2n), define MCtrK,β,S(X1, . . . ,Xm) = ECBK(S1, . . . , Sm) ⊕ (X1, . . . ,Xm),
where Si = φβ(i − 1) ⊕ S.

OFB: for S ∈ GF (2n), define OFBK,S(X1, . . . ,Xm) = (X1, . . . ,Xm) ⊕ (S1, . . . , Sm),
where Si = Ei

K(S), i.e., S1 = EK(S) and Si = EK(Si−1).

The tweakable enciphering scheme will be defined using either the modified counter mode or the
OFB mode. The description of the algorithm is given in a unified manner using the notation
ModeK,β1,S(X1, . . . ,Xm). The definition of this notation is given below.

Counter: ModeK,β1,S(X1, . . . ,Xm) = MCtrK,β1,S(X1, . . . ,Xm).

OFB: ModeK,β1,S(X1, . . . ,Xm) = OFBK,S(X1, . . . ,Xm). The quantity β1 is not used.

Parsing. Let the length of the plaintext or the ciphertext be ℓ bits. Write ℓ = (m− 1)n+ r, where
1 ≤ r ≤ n. There are a total of m blocks X1, . . . ,Xm, with X1, . . . ,Xm−1 being full blocks and the
length of the last block is r which is a possible partial block. We require ℓ > 2n so that m ≥ 3.

Notation.

Firstr(Z): the most significant r bits of the n-bit binary string Z.

padi(Z): append i zero bits to the string Z.

dropi(Z): drop i zero bits from the end of the string Z.

The details of the encryption and the decryption algorithms for the tweakable enciphering
scheme are shown in Table 1. The required definition of the Feistel structure is shown in Table 2
while the definition of the hashing keys is shown in Table 3.

The notation TES[Mode,Hash,KeyDef] denotes the tweakable enciphering scheme obtained by
plugging in the appropriate mode, the hash function h and the suitable key definition. For example
TES[MCtr,BRW,KeyDef3] denotes the tweakable enciphering scheme obtained by using the modified
counter mode, the BRW polynomials for h and KeyDef3 for the key definition.

2.1 Intuition behind the construction

The basic idea is quite simple. The hash function Υ hashes the message to produce the input to
the Feistel layer. So, for distinct messages, the inputs to the Feistel layer are distinct. The 4-round
Feistel layer constructs a strong pseudo-random permutation. The XOR of the input and the output
of the Feistel layer is used to form the initialization vector for the mode of operation.

In previous constructions based on the counter (or the OFB) mode, the XOR of the input and
output of only the first block was used to initialize the counter mode. (This technique was first used
in [21] and later followed in [2, 18].) Since a single block is involved, inverting this block requires
the decryption function of the block cipher.

3

Table 1. Encryption and decryption algorithms. The block cipher key is K; and the hash key is (τ, τ ′, β1, β2).
Definitions of τ, β1 and β2 are given in Table 3. Let K = (K, τ, τ ′, β1, β2).

P
2

P
3

P
m

C
2

C
1

C
3

C
m

P
1

A21A

1B B2

M2

1M

Inverse Hash

Feistel
Layer Mode

Hash ...

...

M

Algorithm EncryptT
K

(P1, . . . , Pm)
1. Mm = padn−r(Pm);
2. (A1, A2) = Υτ (P1, . . . , Pm−1, Mm)⊕ (β1, β1);
3. (B1, B2) = FeistelK,τ ′(A1, A2);
4. M1 = A1 ⊕B1; M2 = A2 ⊕B2; M = M1 ⊕M2;
5. (C3, . . . , Cm−1, Dm)

= ModeK,β1,M (P3, . . . , Pm−1, Mm);
6. Cm = dropn−r(Dm); Um = padn−r(Cm);
7. (C1, C2) = Υτ (B1, B2, C3, . . . , Cm−1, Um) ⊕(β2, β2);
return (C1, . . . , Cm).

Algorithm DecryptT
K

(P1, . . . , Pm)
1. Um = padn−r(Cm);
2. (B1, B2) = Υτ (C1, . . . , Cm−1, Um)⊕ (β2, β2);
3. (A1, A2) = Feistel−1

K,τ ′(B1, B2);

4. M1 = A1 ⊕B1; M2 = A2 ⊕B2; M = M1 ⊕M2;
5. (P3, . . . , Pm−1, Vm)

= ModeK,β1,M (C3, . . . , Cm−1, Um);
6. Pm = dropn−r(Vm); Mm = padn−r(Pm);
7. (P1, P2) = Υτ (A1, A2, P3, . . . , Pm−1, Mm) ⊕(β1, β1);
return (P1, . . . , Pm).

Table 2. A four-round Feistel construction required in Figure 1. Note that if the two input blocks are swapped then
decryption can be done using the encryption module (as is usual for Feistel construction).

A1

H1

G1

F2 G2

H2

B1

A2

B2

h

h

E

E

K

K

F1

FeistelK,τ ′(A1, A2)
1. H1 = hτ ′(A1);
2. F1 = H1 ⊕A2;
3. F2 = A1 ⊕EK(F1);
4. B2 = F1 ⊕ EK(F2);
5. H2 = hτ ′(B2);
6. B1 = H2 ⊕ F2;
return (B1, B2).

Feistel−1
K,τ ′(B1, B2)

1. H2 = hτ ′(B2);
2. F2 = B1 ⊕H2;
3. F1 = B2 ⊕ EK(F2);
4. A1 = F2 ⊕ EK(F1);
5. H1 = hτ ′(A1);
6. A2 = H1 ⊕ F1;
return (A1, A2).

Table 3. Different definitions of the hashing keys τ , τ ′, β1 and β2. Here T is an n-bit tweak and ℓ is the length of
the message (or ciphertext) in bits. The block cipher key K is chosen uniformly at random from the appropriate key
space. Also, in KeyDef2 and KeyDef3, τ and τ ′ are chosen uniformly at random from {0, 1}n.

KeyDef1 KeyDef2 KeyDef3

BC key: K BC key: K; hash keys: τ, τ ′ BC key: K; hash keys: τ, τ ′

1. γ = EK(T);
2. β1 = EK(γ ⊕ binn(ℓ));
3. β2 = φβ1(1);
4. τ = γ;
5. τ ′ = EK(φβ1(2)).

1. γ = EK(T);
2. β1 = EK(γ ⊕ binn(ℓ));
3. β2 = φβ1(1).

1. β1 = EK(T);
2. β2 = φβ1(1).

Table 4. Performance of the new modes of operations. We assume that there are m (full or partial) blocks.

KeyDef1 KeyDef2 KeyDef3

keys 1[BK] 1[BK]+2[AK] 1[BK]+2[AK]

BC calls m + 3 m + 2 m + 1

Poly BRW

mults. 2(m− 1) 4 + 2⌊(m− 2)/2⌋

4

We have modified this idea to separate the processing into two parts – the first two blocks
and the rest of the message. An invertible map on the first two blocks is created using the Feistel
structure. This involves only the encryption function of the block cipher and due to the propery of
the Feistel structure, during decryption also, only the encryption function is required. At the same
time, we should mention that even though the idea is simple, it takes a bit of effort to work out
the polished form and the exact details of the construction and the proof.

Note that the hash key used in the Feistel structure is different from the hash key used outside
this structure, even though the basic XOR-universal hash function h is the same in both cases.
Using a single key would have been more convenient, but, then the probability computation in
Lemma 2 that we perform later would not go through. This fact forced us to use separate and
independent keys.

Alternative structures. The Feistel structure that we have used makes two multiplications and
two block cipher calls. There are several other Feistel based constructions with different costs all
of which convert an n-bit to n-bit PRF to a 2n-bit SPRP. Conceptually, it is possible to use these
structures to replace the Feistel structure that we use; however, one has to be careful with the actual
details. Our choice of the particular Feistel structure was based upon simplicity and efficiency.

2.2 Avoiding Decryption: Inefficient Approaches

From a conceptual point of view, there is a generic idea to avoid using the decryption function of
the block cipher. As mentioned earlier, Feistel based constructions convert an n-bit to n-bit PRF
to a 2n-bit SPRP. Given such an SPRP, previously known constructions can be used to obtain
TESs. Any such TES would not require the decryption function of the block cipher. However,
such a conversion would also be inefficient. For the encrypt-mix-encrypt type conversions, the cost
would be between 4[BC] to 2[BC]+2[M] per block, where [BC] is a block cipher call and [M] is
a multiplication over GF (2n). On the other hand, the hash-encrypt-hash type constructions will
require 2n-bit multiplications which is about 3 n-bit multiplications, leading to a cost of about
1[BC]+1.5[M] per block.

2.3 Efficiency and Comparison

Performance of the new constructions is given in Table 4. For BRW polynomials, the efficiency comes
to about 1[BC]+1[M] per block, which is comparable to the best previously known efficiency [18].
The main advantage of the new constructions is that the decryption function of the block function is
not required at all. This is an advantage for hardware implementation, since it results in substantial
savings in the size of the hardware. One of the main application of TES is disk encryption and
the implementation is typically in hardware. For this application, the new construction offers a
significant advantage.

The only restriction is that the message length must be greater than 2n bits while in the
previous constructions the length was required to be at least n bits. There is no upper bound on
the length and messages of varying lengths including partial blocks can be handled quite efficiently.
The restriction of more than 2n bits on the message length is not a concern for disk encryption and
other practical applications.

The other drawback compared to the best previously known constructions [18] is that if the
key of the TES is only the block cipher key, then an extra block cipher invocation is required to
produce the key for the hash function in the Feistel structure (KeyDef1); otherwise an extra n-bit

5

key is required (KeyDef2 and KeyDef3). We consider this to be a minor trade-off compared to the
fact that it is not required to implement the decryption module at all.

3 Security

We consider information theoretic security and hence without loss of generality the adversary A
is considered to be a deterministic algorithm. See [5] for other notions of security and the relation
between computational and information theoretic security.

An adversary A interacts with the encryption and the decryption oracles of the tweakable
enciphering scheme and finally outputs either 0 or 1. Oracles are written as superscripts. The
encryption oracle Π takes as input (T, P), where T is an n-bit string and P is a string of length
greater than 2n and returns C which is of length equal to that of P . Similarly, the decryption oracle
Π−1 takes as input (T,C) and returns P . The notation AΠ,Π−1

⇒ 1 denotes the event that the
adversary A, interacts with the oracles Π and Π−1, and finally outputs the bit 1.

Pointless queries: We assume that an adversary never repeats a query, i.e., it does not ask the
encryption oracle with a particular value of (T, P) more than once and neither does it ask the
decryption oracle with a particular value of (T,C) more than once. Furthermore, an adversary
never queries its deciphering oracle with (T,C) if it got C in response to an encipher query (T, P)
for some P . Similarly, the adversary never queries its enciphering oracle with (T, P) if it got P
as a response to a decipher query of (T,C) for some C. These queries are called pointless as the
adversary knows what it would get as responses to such queries.

We consider an adversary’s advantage in distinguishing a tweakable enciphering scheme from an
oracle which simply returns random bit strings. This advantage is defined in the following manner.

Adv±rnd
Π

(A) = Pr
[

AΠ,Π−1
⇒ 1

]

− Pr
[

A$(.,.),$(.,.) ⇒ 1
]

where $(.,M) returns random bits of length |M |.

The query complexity σn of an adversary is defined to be the total number of n-bit blocks it
provides in all its encryption and decryption queries. This includes the plaintext and ciphertext
blocks as well as the n-bit tweak. By Adv(σn) (with suitable sub and super-scripts) we denote the
maximum advantage of any adversary with query complexity σn.

Theorem 1. Fix n and σn to be positive integers. Suppose that an adversary uses a total of σn

blocks in all its queries, where each block is an n-bit string. Then

Adv±rnd
Π

(σn) ≤
14σ2

n

2n
(2)

Here Π is TES[Mode,Hash,KeyDef] with Mode, Hash and KeyDef being instantiated by any of the

constructions described in Section 2.

The proof of Theorem 1 is described in the next two subsections.

3.1 Internal Variables

A variable ty is used to indicate whether a call to Π or Π−1 is made. If the call is to Π, then
ty = enc otherwise, ty = dec.

6

There are two block cipher calls in the Feistel structure and (m − 2) block cipher calls in
the “mode of operation” part. Denote the inputs and outputs of the Feistel calls by F1, F2 and
G1, G2 respectively and denote the inputs and outputs of the other (m−2) calls by F3, . . . , Fm and
G3, . . . , Gm respectively.

In addition to these, several encryption calls are made in the key definition part. Define

J0 = T ;J1 = γ ⊕ binn(ℓ);J2 = φβ1(2);L0 = γ;L1 = β1;L2 = τ ′.

The quantities F1, . . . , Fm and G1, . . . , Gm can be expressed in terms of the plaintext and
ciphertext blocks. We show how this can be done.

The variables F1, F2 and G1, G2.

F1 = hτ ′(A1) ⊕ A2; F2 = B1 ⊕ hτ ′(B2);
G1 = A1 ⊕ F2 = A1 ⊕ B1 ⊕ hτ ′(B2); G2 = B2 ⊕ F1 = B2 ⊕ A2 ⊕ hτ ′(A1);

where Mm = padn−r(Pm), Um = padn−r(Cm) and

A1 = β1 ⊕ P1 ⊕ hτ (P3, . . . , Pm−1,Mm); A2 = β1 ⊕ P2 ⊕ hτ (P3, . . . , Pm−1,Mm);
B1 = β2 ⊕ C1 ⊕ hτ (C3, . . . , Cm−1, Um); B2 = β2 ⊕ C2 ⊕ hτ (C3, . . . , Cm−1, Um).

The variables F3, . . . , Fm and G3, . . . , Gm. For both the modified counter and the OFB modes,
the expressions for G3, . . . , Gm are same but the expressions for F3, . . . , Fm depend on the actual
mode that is used. First we provide the expressions for the Gj ’s and then the expressions for the
Fi’s.

Gi = Pi ⊕ Ci for 3 ≤ i ≤ m − 1;

Gm =

{

Dm ⊕ (Pm||0n−r) if ty = enc;
Vm ⊕ (Cm||0n−r) if ty = dec;

}

for i = m.

Note that the first r bits of Gm is Pm ⊕Cm irrespective of whether ty is enc or dec. For 3 ≤ i ≤ m,
the Fi’s are defined as follows.

MCtr: Fi = M ⊕ φβ1(i − 3) = A1 ⊕ A2 ⊕ B1 ⊕ B2 ⊕ φβ1(i − 3).
OFB: F3 = M and for 4 ≤ i ≤ m, Fi = Pi−1 ⊕ Ci−1.

Below we prove some results on the probability of certain kinds of collisions.

Lemma 1. Let τ ′ and β1 be chosen independently and uniformly at random from IF. For any

(P1, . . . , Pm−1,Mm) and (C1, . . . , Cm−1, Um), Prτ,β1[F1 = F2] = 1/2n−1.

Proof. A1 = β1 ⊕ rest and B2 = β2 ⊕ rest1, where rest and rest1 are independent of both β1 and β2.
So, A1 = B2 holds if and only if β1 ⊕ β2 = rest⊕ rest1. Since β2 = φβ1(1), by the XOR universality
of φ, the last equation holds with probability at most 1/2n. In other words, Pr[A1 = B2] ≤ 1/2n.

Pr[F1 = F2] = Pr
τ ′,β1

[hτ ′(A1) ⊕ A2 = hτ ′(B2) ⊕ B1]

= Pr
τ ′,β1

[(hτ ′(A1) ⊕ A2 = hτ ′(B2) ⊕ B1) ∧ ((A1 = B2) ∨ (A1 6= B2))]

= Pr
τ ′,β1

[(hτ ′(A1) ⊕ A2 = hτ ′(B2) ⊕ B1) |(A1 = B2)] Pr
β1

[A1 = B2]

+ Pr
τ ′,β1

[(hτ ′(A1) ⊕ A2 = hτ ′(B2) ⊕ B1) |(A1 6= B2)] Pr
β1

[A1 6= B2]

≤ Pr
β1

[A1 = B2] + Pr
τ ′

[(hτ ′(A1) ⊕ A2 = hτ ′(B2) ⊕ B1) |(A1 6= B2))]

≤
2

2n
.

7

The last inequality follows from the XOR-universal property of h. ⊓⊔

Lemma 2. Suppose that τ and τ ′ are chosen independently and uniformly at random from IF.

1. If (P1, . . . , Pm−1,Mm) 6= (P ′
1, . . . , P

′
m−1,M

′
m), then Prτ,τ ′ [F1 = F ′

1] ≤ ǫm−2 + 1/2n.

2. If (C1, . . . , Cm−1, Um) 6= (U ′
1, . . . , U

′
m−1, U

′
m), then Prτ,τ ′ [F2 = F ′

2] ≤ ǫm−2 + 1/2n.

Proof. We prove the first item, the proof of the other one being similar. F1 = hτ ′(A1) ⊕ A2 and
F ′

1 = hτ ′(A′
1) ⊕ A′

2. Suppose that (P3, . . . , Pm−1,Mm) = (P ′
3, . . . , P

′
m−1,M

′
m). Then (P1, P2) 6=

(P ′
1, P

′
2). If P1 = P ′

1 (and so, P2 6= P ′
2), then A1 = A′

1. P2 6= P ′
2 implies A2 6= A′

2 whereby we have
F1 6= F ′

1. If P2 = P ′
2 (and so, P1 6= P ′

1), then A2 = A′
2. P1 6= P ′

1 implies A1 6= A′
1 whereby F1 = F ′

1

implies hτ (A1) = hτ (A′
1). Since A1 6= A′

1, by the XOR-universality of h, the last condition holds
with probability 1/2n.

Suppose now that (P3, . . . , Pm−1,Mm) 6= (P ′
3, . . . , P

′
m−1,M

′
m). By the XOR-universality of h,

Prτ [A1 = A′
1] ≤ ǫm−2. Also, note that A1, A2, A

′
1 and A′

2 are independent of τ ′.

Pr
τ,τ ′

[F1 = F ′
1] = Pr

τ,τ ′

[hτ ′(A1) ⊕ A2 = hτ ′(A′
1) ⊕ A′

2]

≤ Pr
τ

[A1 = A′
1] + Pr

τ ′

[hτ ′(A1) ⊕ A2 = hτ ′(A′
1) ⊕ A′

2|(A1 6= A′
1)]

≤ ǫm−2 +
1

2n
.

The last relation holds due to the XOR-universality of h. ⊓⊔

3.2 Collision Analysis

The adversary makes a total of q queries of possibly different lengths. We use the superscript (s) to
denote quantities corresponding to the s-th query. For example, the length is ℓ(s); the number of

blocks is m(s); the tweak is T (s); the plaintext blocks are P
(s)
1 , . . . , P

(s)

m(s) and the ciphertext blocks

are C
(s)
1 , . . . , C

(s)

m(s) . Similarly, we denote the internal variables.

A query can be either an encryption or a decryption query. The variable ty(s) denotes the type of
the query, i.e., if the query is an encryption query, then ty(s) = enc, and if the query is a decryption
query, then ty(s) = dec.

The responses to the queries are as follows.

Encryption query: (ty(s) = enc, T (s), P
(s)
1 , . . . , P

(s)

m(s)−1
, P

(s)

m(s)),

where ℓ(s) = (m(s) − 1)n + r(s) and |P
(s)

m(s) | = r(s).

1. Choose C
(s)
1 , . . . , C

(s)

m(s)−1
,D

(s)

m(s) independently and uniformly at random from {0, 1}n.

2. Set C
(s)

m(s) = Firstr(s)(D
(s)

m(s)).

3. Return (C
(s)
1 , . . . , C

(s)

m(s)−1
, C

(s)

m(s)).

Decryption query: (ty(s) = dec, T (s), C
(s)
1 , . . . , C

(s)

m(s)−1
, C

(s)

m(s)),

where ℓ(s) = (m(s) − 1)n + r(s) and |C
(s)

m(s) | = r(s).

1. Choose P
(s)
1 , . . . , P

(s)

m(s)−1
, U

(s)

m(s) independently and uniformly at random from {0, 1}n.

2. Set P
(s)

m(s) = Firstr(s)(U
(s)

m(s)).

3. Return (P
(s)
1 , . . . , P

(s)

m(s)−1
, P

(s)

m(s)).

8

For either encrypt or decrypt query, the internal variables in the key definitions are chosen as in

Table 5. Note that J
(s)
0 = T (s), J

(s)
1 = γ(s) ⊕ binn(ℓ(s)), J

(s)
2 = φ

β
(s)
1

(2); and L
(s)
0 = γ(s), L

(s)
1 = β

(s)
1 ,

L
(s)
2 = τ ′(s). Also, the internal variables F

(s)
1 , . . . , F

(s)

m(s) and G
(s)
1 , . . . , G

(s)

m(s) are defined from the
Pi’s and the Cj ’s as in Section 3.1.

Let D and R be two sets of random variables where D (resp R) is the collection of all random
variables which occur as an input to (resp. output of) an encryption. These sets are defined as
shown in Table 5.

We define Coll(D) to be the event that two distinct random variables in D take the same value
which we call a collision. Similarly, we define the event Coll(R) and Coll = Coll(D) ∨ Coll(R).
Further, Coll denotes the event that there is no collision. For any adversary A, we clearly have

Pr[AΠ,Π−1
⇒ 1|Coll] = Pr[A$,$ ⇒ 1].

In other words, if Coll does not occur, then in the real game, i.e. during the interaction with Π,Π−1,
the adversary gets independent and uniform random strings as responses which is the same as it
would get while interacting with oracles that return independent and uniform random strings.

Pr[AΠ,Π−1
⇒ 1] = Pr[(AΠ,Π−1

⇒ 1) ∧ (Coll ∨ Coll)]

= Pr[(AΠ,Π−1
⇒ 1)|Coll] Pr[Coll] + Pr[(AΠ,Π−1

⇒ 1)|Coll] Pr[Coll]

≤ Pr[Coll] + Pr[AΠ,Π−1
⇒ 1|Coll]

= Pr[Coll] + Pr[A$,$ ⇒ 1].

This gives AdvΠ(A) = Pr[AΠ,Π−1
⇒ 1] − Pr[A$,$ ⇒ 1] ≤ Pr[Coll]. We next show that for any

adversary with query complexity σ, Pr[Coll] ≤ 14σ2/2n which in turn would show that AdvΠ(σ) ≤
14σ2/2n and so would complete the proof of Theorem 1.

The actual collision analysis to upper bound Pr[Coll(D)] depends on the key definition and the
mode of operation. We perform this task for KeyDef1 and the modified counter mode of opera-
tion. Analysis of the other cases are similar. Consider the s-th and the r-th query. There are two
possibilities.

s = r. In this case, we need to consider collision between the following pairs.

(J
(s)
i , J

(s)
j), 0 ≤ i < j ≤ 2; (F

(s)
i , F

(s)
j), 1 ≤ i < j ≤ m; (J

(s)
i , F

(s)
j), 0 ≤ i ≤ 2, 1 ≤ j ≤ m.

From the definition of the Ji’s and Table 5 it is easy to see that Pr[J
(s)
i = J

(s)
j] = 1/2n and

Pr[J
(s)
i = F

(s)
j] = 1/2n. If ty(s) = enc, then C

(s)
1 is chosen uniformly at random. F

(s)
1 is independent

of C1, while F
(s)
2 can be written as C

(s)
1 ⊕ X, where X is independent of C

(s)
1 . So, Pr[F

(s)
1 =

F
(s)
2] = 1/2n. Similarly, if ty(s) = dec, then P

(s)
1 is chosen uniformly at random and we again have

Pr[F
(s)
1 = F

(s)
2] = 1/2n. For 3 ≤ i < j ≤ m, F

(s)
i and F

(s)
j are distinct. Further, Pr[F

(s)
1 = F

(s)
i] for

i ≥ 3 can easily be seen to be 1/2n and similarly for Pr[F
(s)
2 = F

(s)
i].

s 6= r. In this case, we need to consider collision between the following pairs.

(J
(s)
i , J

(r)
j), 0 ≤ i, j ≤ 2; (F

(s)
i , F

(r)
j), 1 ≤ i, j ≤ m;

(J
(s)
i , F

(r)
j), 0 ≤ i ≤ 2, 1 ≤ j ≤ m; (F

(s)
i , J

(r)
j), 1 ≤ i ≤ m, 0 ≤ j ≤ 2.

9

Table 5. Definition of the internal random variables in the key definition and the updation of the sets D and R for
the s-th query. Initially, D = R = ∅. In RAND2-Sub1 and RAND3-Sub3, τ is chosen uniformly at random at the start
of RAND2 and does not change during the game.

RAND2-Sub1(Ts, ℓs) RAND2-Sub2(Ts, ℓs) RAND3-Sub3(Ts)

if T (s) = T (r) for some r < s
then

τ (s) = τ (r);

if ℓ(s) = ℓ(r)

then β
(s)
1 = β

(r)
1 ; τ ′(s) = τ ′(r);

else

β
(s)
1

$
← {0, 1}n; τ ′(s) $

← {0, 1}n;

D = D ∪ {τ (s) ⊕ bin(ℓ(s)), φ
β
(s)
1

(2)};

R = R∪ {β
(s)
1 , τ ′(s)};

endif

else

τ (s) $
← {0, 1}n; β

(s)
1

$
← {0, 1}n; τ ′(s) $

← {0, 1}n;

D = D ∪ {T (s), τ (s) ⊕ binn(ℓ(s)), φ
β
(s)
1

(2)};

R = R ∪ {τ (s), β
(s)
1 , τ ′(s)};

endif;

β
(s)
2 = φ

β
(s)
1

(1).

if T (s) = T (r) for some r < s
then

γ(s) = γ(r);

if ℓ(s) = ℓ(r)

then β
(s)
1 = β

(r)
1 ;

else

β
(s)
1

$
← {0, 1}n;

D = D ∪ {γ(s) ⊕ bin(ℓ(s))};

R = R∪ {β
(s)
1 };

endif

else

γ(s) $
← {0, 1}n;

D = D ∪ {T (s)}; R = R∪ {γ(s)};

β
(s)
1

$
← {0, 1}n;

D = D ∪ {γ(s) ⊕ bin(ℓ(s))};

R = R∪ {β(s)
1 };

endif;

β
(s)
2 = φ

β
(s)
1

(1).

if T (s) = T (r) for some r < s

then β
(s)
1 = β

(r)
1 ;

else

β
(s)
1

$
← {0, 1}n;

D = D ∪ {T (s)};

R = R ∪ {β(s)
1 };

endif;

β
(s)
2 = φ

β
(s)
1

(1).

D = D ∪ {F (s)
1 , . . . , F

(s)

m(s)}; R = D ∪ {G(s)
1 , . . . , G

(s)

m(s)}

If T (s) = T (r), then J
(s)
0 = J

(r)
0 , but J

(s)
0 is not put in D. Similarly, for J

(s)
1 and J

(s)
2 . Thus, there are

no trivial collisions in D and also similarly for R. The analysis of collisions of the type (F
(s)
i , F

(r)
j)

is non-trivial, the other types of collisions can be easily seen to hold with probability at most 1/2n.

First note that if (T (s), ℓ(s)) 6= (T (r), ℓ(r)), then β
(s)
1 , τ ′(s), β

(r)
1 and τ ′(r) are independent and

uniform random n-bit strings from which it is possible to argue that Pr[F
(s)
i = F

(r)
j] = 1/2n.

So we consider the situation when (T (s), ℓ(s)) = (T (r), ℓ(r)). In this case, we have τ (s) = τ (r) =

τ (say), β
(s)
1 = β

(r)
1 = β1 (say) and τ ′(s) = τ ′(r) = τ ′ (say). Also, since (T (s), ℓ(s)) = (T (r), ℓ(r)),

if ty(s) = enc then (P
(s)
1 . . . , P

(s)

m(s)) 6= (P
(r)
1 , . . . , P

(r)

m(r)); and if ty(s) = dec then (C
(s)
1 , . . . , C

(s)

m(s)) 6=

(C
(r)
1 , . . . , C

(r)

m(r)). We consider different cases.

(F
(s)
1 , F

(r)
1), (F

(s)
2 , F

(r)
2): if at least one (say the s-th one) is a decrypt query, then using the

randomness of P
(s)
2 it follows that Pr[F

(s)
1 = F

(r)
1] = 1/2n. Suppose that both are encrypt queries.

Since (P
(s)
1 . . . , P

(s)

m(s)) 6= (P
(r)
1 , . . . , P

(r)

m(r)), using Lemma 2, we have Pr[F
(s)
1 = F

(r)
1] = ǫm−2 + 1/2n.

The collision analysis for the pair (F
(s)
2 , F

(r)
2) is similar.

(F
(s)
1 , F

(r)
2), (F

(s)
2 , F

(r)
1): Using Lemma 1, Pr[F

(s)
1 = F

(r)
2] = Pr[F

(r)
1 = F

(s)
2] = 1/2n−1.

(F
(s)
1 , F

(r)
i), (F

(s)
2 , F

(r)
i), i ≥ 3: let X = P

(r)
1 ⊕ P

(r)
2 ⊕ C

(r)
1 ⊕ C

(r)
2 and note that F

(r)
i = X ⊕ rest

and F
(s)
1 = A

(s)
2 ⊕ hτ (A

(s)
1) where X is independent of both rest and F

(s)
1 . Irrespective of whether

the r-th query is an encryption or a decryption query, we have X to be a uniformly distributed

random variable and so Pr[F
(s)
1 = F

(r)
i] = 1/2n. Similarly for the pair (F

(s)
2 , F

(r)
i).

10

(F
(s)
i , F

(r)
j) with 3 ≤ i, j ≤ m: in this case, M (s) and M (r) are independent and uniform random

quantities so that Pr[F
(s)
i = F

(r)
j] = 1/2n.

To summarize, if (T (s), ℓ(s)) = (T (r), ℓ(r)) then the collision probability of pairs of the type

(F
(s)
1 , F

(r)
1), (F

(s)
2 , F

(r)
2) is at most ǫm−2+1/2n; collision probability of pairs of the type (F

(s)
1 , F

(r)
2),

(F
(s)
2 , F

(r)
1) is at most 1/2n−1; and for all other possible pairs in D, the collision probability is at

most 1/2n. Suppose that there are qi queries having mi blocks, 1 ≤ i ≤ t, where q = q1 + · · · + qt

and the number of elements in D is at most
∑t

i=1 qi(mi + 2) = σ + q where σ =
∑t

i=1 qi(mi + 1).

The number of pairs of the type (F
(s)
1 , F

(r)
1), (F

(s)
2 , F

(r)
2) in D is at most

∑t
i=1 qi(qi − 1); and

the number of pairs of the type (F
(s)
1 , F

(r)
2), (F

(s)
2 , F

(r)
1) is also

∑t
i=1 qi(qi − 1). So, the maximum

probability of a collision in D is

t
∑

i=1

i

(

1

2n
ǫmi−2

)

qi(qi − 1) +
1

2n−1

t
∑

i=1

qi(qi − 1) +
1

2n

(

σ + q

2

)

≤
7σ2

2n
.

In the above we have assumed that ǫm ≤ 2m/2n so that ǫmi−2 + 1/2n < 2mi/2
n. This corre-

sponds to the bound for BRW polynomials which is weaker than the bound for Poly (ǫm ≤ m/2n).
Consequently, the constant 7 holds for both hash functions.

A similar analysis for the random variables in R shows that the probability of Coll(R), i.e., the
probability of a collision in R is also upper bounded by 7σ2/2n. So, the probability of Coll, i.e., the
probability of a collision in either D or R is at most 14σ2/2n. ⊓⊔

Note. The constant 14 can be reduced by a more careful analysis of the inequalities. Since 14 itself
is a small enough constant we did not perform this analysis.

References

1. Daniel J. Bernstein. Polynomial evaluation and message authentication, 2007. http://cr.yp.to/papers.html#

pema.
2. Debrup Chakraborty and Palash Sarkar. HCH: A new tweakable enciphering scheme using the hash-counter-hash

approach. IEEE Transactions on Information Theory, 54(4):1683–1699, 2008.

3. Shai Halevi. EME*: Extending EME to handle arbitrary-length messages with associated data. In Anne Canteaut
and Kapalee Viswanathan, editors, INDOCRYPT, volume 3348 of Lecture Notes in Computer Science, pages 315–
327. Springer, 2004.

4. Shai Halevi. Invertible universal hashing and the TET encryption mode. In Alfred Menezes, editor, CRYPTO,
volume 4622 of Lecture Notes in Computer Science, pages 412–429. Springer, 2007.

5. Shai Halevi and Phillip Rogaway. A tweakable enciphering mode. In Dan Boneh, editor, CRYPTO, volume 2729
of Lecture Notes in Computer Science, pages 482–499. Springer, 2003.

6. Shai Halevi and Phillip Rogaway. A parallelizable enciphering mode. In Tatsuaki Okamoto, editor, CT-RSA,
volume 2964 of Lecture Notes in Computer Science, pages 292–304. Springer, 2004.

7. Tetsu Iwata and Kaoru Kurosawa. How to construct super-pseudorandom permutations with short keys. IEICE

Transactions, 90-A(1):2–13, 2007.
8. Moses Liskov, Ronald L. Rivest, and David Wagner. Tweakable block ciphers. In Moti Yung, editor, CRYPTO,

volume 2442 of Lecture Notes in Computer Science, pages 31–46. Springer, 2002.
9. Michael Luby and Charles Rackoff. How to construct pseudorandom permutations from pseudorandom functions.

SIAM J. Comput., 17(2):373–386, 1988.
10. Stefan Lucks. Faster Luby-Rackoff ciphers. In Dieter Gollmann, editor, FSE, volume 1039 of Lecture Notes in

Computer Science, pages 189–203. Springer, 1996.
11. David A. McGrew and Scott R. Fluhrer. The extended codebook (XCB) mode of operation. Cryptology ePrint

Archive, Report 2004/278, 2004. http://eprint.iacr.org/.
12. David A. McGrew and Scott R. Fluhrer. The security of the extended codebook (XCB) mode of operation. In

Selected Areas in Cryptography, Lecture Notes in Computer Science. Springer, 2007. To appear.

11

13. Moni Naor and Omer Reingold. A pseudo-random encryption mode. Manuscript available from www.wisdom.

weizmann.ac.il/~naor.
14. Moni Naor and Omer Reingold. On the construction of pseudorandom permutations: Luby-Rackoff revisited. J.

Cryptology, 12(1):29–66, 1999.
15. Jacques Patarin. How to construct pseudorandom and super pseudorandom permutations from one single pseu-

dorandom function. In EUROCRYPT, pages 256–266, 1992.
16. Sarvar Patel, Zulfikar Ramzan, and Ganapathy S. Sundaram. Luby-Rackoff ciphers: Why XOR is not so exclusive.

In Kaisa Nyberg and Howard M. Heys, editors, Selected Areas in Cryptography, volume 2595 of Lecture Notes in

Computer Science, pages 271–290. Springer, 2002.
17. Michael O. Rabin and Shmuel Winograd. Fast evaluation of polynomials by rational preparation. Communications

on Pure and Applied Mathematics, 25:433–458, 1972.
18. Palash Sarkar. Efficient tweakable enciphering schemes from (block-wise) universal hash functions). IEEE

Transactions on Information Theory. to appear.
19. Palash Sarkar. A general mixing strategy for the ECB-Mix-ECB mode of operation. Inf. Process. Lett.,

109(2):121–123, 2008.
20. Palash Sarkar. A new universal hash function and other cryptographic algorithms suitable for resource constrained

devices. Cryptology ePrint Archive, Report 2008/216, 2008. http://eprint.iacr.org/.
21. Peng Wang, Dengguo Feng, and Wenling Wu. HCTR: A variable-input-length enciphering mode. In Dengguo

Feng, Dongdai Lin, and Moti Yung, editors, CISC, volume 3822 of Lecture Notes in Computer Science, pages
175–188. Springer, 2005.

12

