
A Simple and Generic Construction of Authenticated

Encryption With Associated Data

Palash Sarkar

Applied Statistics Unit
Indian Statistical Institute
203, B.T. Road, Kolkata

India 700108.
email: palash@isical.ac.in

Abstract. We revisit the problem of constructing a protocol for performing authenticated encryption
with associated data (AEAD). A technique is described which combines a collision resistant hash func-
tion with a protocol for authenticated encryption (AE). The technique is both simple and generic and
does not require any additional key material beyond that of the AE protocol. Concrete instantiations
are shown where a 256-bit hash function is combined with some known single-pass AE protocols em-
ploying either 128-bit or 256-bit block ciphers. This results in possible efficiency improvement in the
processing of the header.
Keywords: authenticated encryption with associated data, collision resistant hash function, generic
construction.

1 Introduction

An authenticated encryption (AE) protocol combines privacy and authentication. The clas-
sical method of achieving this with a block cipher is to use two passes over the message –
the first pass encrypts the data while the second pass generates the authentication tag. The
cost per message block is approximately two block cipher calls.

The formal definition of AE as an integrated cryptographic primitive was independently
introduced in [7] and [1]. Around the same time, there was a search for a single pass AE
protocol, i.e., an algorithm which makes a single pass over the data and simultaneously
achieves both privacy and authentication. The first construction of single-pass AE protocols
was due to Jutla [6]. Independent work proposed by Gligor and Donescu [5] also described
single-pass AE protocols. Jutla’s work was refined and polished by Rogaway [13] to obtain
OCB. Later, based on the work of Liskov, Rivest and Wagner [8], Rogaway [11] introduced
an efficient family of tweakable block ciphers (TBC) and several modes of operations based
on this family. In particular, the OCB protocol of [13] was refined to obtain OCB1 protocol
in [11]. The OCB1 protocol is currently called the OCB protocol [9] and a patent on this
algorithm is held by Rogaway [9]. Rogaway’s approach to modes of operations via tweakable
block ciphers was extended and generalized by Chakraborty and Sarkar in [3]. In particular,
it was shown that OCB (as given in [11]) is a special case of a family of single-pass AE
protocols all of which have similar efficiencies.

From the point of applications, AE is not really sufficient, as has been argued in [10]. Very
often, along with the message, there is an associated data (or header) which is required to be
authenticated but not encrypted. An example is IP packets. Apart from the actual message,
such a packet has a header which, among other things, provide information regarding the
source and destination of the packet. The header cannot be encrypted as otherwise it will

not be possible for a router to read it. On the other hand, the header certainly needs to
be authenticated to prevent fraudulent packets. The solution is to include authentication
information for the header, but not actually encrypt it.

As mentioned in [10], the usual practitioners solution is to combine an encryption scheme
along with a message authentication code (MAC) algorithm – encrypt the message M ,
prepend the header H and then obtain a MAC for the entire string. This approach necessarily
requires two passes over the data.

Rogaway [10] was the first to treat the problem of associated data as a cryptographic
primitive in its own right. He introduced the notion of authenticated encryption with as-
sociated data (AEAD). In [10], it was eloquently argued that naive solutions to combine a
single pass AE protocol to achieve AEAD is inherently problematic. The task of designing
an efficient AEAD protocol has subtleties and should be tackled as an independent problem.

Two methods for generically achieving AEAD is described in [10]. The first method builds
on a suggestion called nonce stealing (attributed to Cam-Winget and Walker in [10]) and
has limited applicability since the associated data in this case can only be a few bytes. The
second method, called ciphertext translation, works with arbitrary length associated data.
The basic idea is to use an AE protocol with a key K to generate an intermediate CT; use
a pseudo-random function (PRF) with another key K ′ to process the associated data H to
obtain ∆; and the final ciphertext is obtained by XORing ∆ into the last |∆| bits of CT.

This generic approach of ciphertext translation requires the use of two independent keys
K and K ′. However, for the special case of OCB (as given in [13]) and the parallel message
authentication algorithm PMAC [2], it was shown in [10], that a single key is sufficient. The
proof of this result is quite long and complex. The later work [11], shows how the notion
of tweakable block cipher can be used to simplify the proof of the ciphertext translation
construction as applied to the versions of OCB and PMAC given in [11]. This construction
also holds for the generalization given in [3].

Our Contributions. In this work, we revisit the problem of constructing an AEAD
protocol. We describe a simple and generic construction of an AEAD protocol from an AE
protocol and a collision resistant hash function. This is done in two simple steps.

The first step extends an AE protocol which can handle fixed length nonces to AE
protocol which can handle variable length nonces. We denote by AE+, a protocol which can
handle variable length nonces. The idea of this extension is simple. Given a nonce N for
AE+, we use a collision resistant hash function h to obtain a nonce L = h(N) for the AE
protocol. Then invoke the encryption or decryption algorithm of the AE protocol with L and
the message or ciphertext as required. The idea of the proof is also simple. Assuming h() to
be collision resistant ensures that if the Ns are distinct, then so are the Ls. Consequently,
AE+ is secure if AE is secure.

The second step is even more simple and constructs an AEAD protocol from AE+. Ba-
sically, given nonce N and header H for the AEAD protocol, concatenate the two to obtain
H||N which is used as the nonce for AE+. The freshness of N ensures the freshness of H||N .
Consequently, if AE+ is secure, then so is the constructed AEAD.

For the first step to work, we need the size of the digest of h() to be equal to the size
of the nonces used in the AE protocol. Our proposal for concrete instantiation of h() is to
use a hash function with a 256-bit digest such as SHA-256 [14]. This works fine when we

combine with an AE protocol which handles 256-bit nonces. Examples are protocols given
in [3] which use 256-bit block ciphers.

There is a problem, however, when we wish to use AES-128. OCB [11] and the AE
protocols in [3] have the limitation that the nonce size is equal to the block length of the
underlying block cipher. So, if we use AES-128, then the size of nonces in these protocols
will be 128 bits. Consequently, we cannot directly combine these AE protocols with a 256-bit
hash function to obtain an AEAD protocol.

The way around this problem is to define a variant of the protocols in [3] (which includes
OCB) so that they handle 2n-bit nonces even when used with n-bit block ciphers. We show
that starting from a tweakable block cipher, such a variant is rather easy to define. As a
result, we obtain AE protocols which use AES-128 and can handle 256-bit nonces. Such AE
protocols can be combined with a 256-bit hash function using our technique to obtain an
AEAD protocol.

As mentioned earlier, the technique of combining a hash function and an AE protocol to
obtain an AEAD protocol is both simple and generic. There are several further advantages.

1. A collision resistant hash function does not require a secret key. Hence, the key for the
AEAD protocol consists only of the key for the AE protocol. In contrast, [10] required a
complicated proof to ensure that a single key can be used to combine OCB and PMAC
to obtain an AEAD protocol.

2. In our proposal, the header is hashed, while in the technique of ciphertext translation
used in [10, 11], the header is processed using a PRF which is in turn built using a block
cipher. Consequently, whenever the hashing speed is faster than the block cipher speed,
the processing of the header in our construction will be faster than the processing in
ciphertext translation.

To summarize, we believe that our work provides a simple, generic and efficient solution to
an important cryptographic problem.

2 Preliminaries

The definition of AE and AEAD protocols and their security definitions are based on [10,
11].

A block cipher is a map E : K × {0, 1}n → {0, 1}n, where K is a finite non-empty set
called the key space and for all K ∈ K, E(K, ·) = EK(·) is a permutation of {0, 1}n. Perm(n)

denotes the set of all permutations of {0, 1}n. The notation π
$← Perm(n) denotes the choice

of a random permutation on n bits.
An adversary is a probabilistic algorithm with possible access to encryption and/or de-

cryption oracles. The notation AO1,O2 ⇒ 1 denotes the event that an adversary A outputs
1 after interacting with the oracles O1 and O2. We will assume that an adversary does not
ask a query for which it can easily obtain the answer. Thus, it never repeats a query; does
not ask for the decryption of a ciphertext which it has previously received as an output
of an encryption query; and neither does it ask for the encryption of a plaintext which it
has previously received as output of a decryption query. The notation Adv(A) denotes the
advantage of an adversary A. The definitions of various advantages are as follows.

Definition 1. Let EK(·) be a block cipher and let A be an adversary. We define the following
advantages.

Advprp
E (A) = Prob[K

$← K : AEK(·) ⇒ 1]− Prob[π
$← Perm(n) : Aπ(·) ⇒ 1].

Adv±prp
E (A) = Prob[K

$← K : AEK(·),DK(·) ⇒ 1]− Prob[π
$← Perm(n) : Aπ(·),π−1(·) ⇒ 1].

Here D denotes the inverse of E and the probability is over random choices of K as well as
random bits of the adversary A.

The extension of these advantages to resource bounded advantages are done in the usual
manner: Advxxx

Π (R) = supA{Advxxx
Π (A)} over all adversaries A that use resources at

most R. The resources of interest are the number of queries q made by the adversary, the
total number σn of n-bit blocks provided by the adversary in all its queries and the running
time t.

2.1 Authenticated Encryption

An AE protocol consists of two deterministic algorithms – an encryption and a decryption
algorithm. The encryption algorithm AE.Enc takes as input a triple (K, N, M) where K ∈ K
is a secret key, N ∈ N is a nonce and M ∈ M is a message to be encrypted. It returns a
pair (C, tag) as output, where C ∈ C and tag is a string of fixed length τ . We will have C to
be equal to the message spaceM. Further, efficient AE algorithms have |M | = |C|.

The nonce is not considered to be part of the ciphertext, though it is required for decryp-
tion. The only requirement on the nonce is that it should not be repeated. The decryption
algorithm AE.Dec takes as input a tuple (K, N, C, tag) and either returns bad or returns M ,
where M is such that (C, tag) = AE.Enc(K, N, M). We will write AE.EncK(N, M) instead of
AE.Enc(K, N, M) and AE.DecK(N, C, tag) instead of AE.Dec(K, N, C, tag).

The security of an authenticated encryption protocol consists of two parts – privacy and
authenticity. The adversary is given access to the encryption oracle and is assumed to be
nonce respecting, i.e., it does not repeat a nonce in its queries to the oracle. We assume that
the output of the encryption oracle EK(·, ·) consists of the concatenation of the ciphertext C
and tag.

Following Rogaway [11], the privacy of a encryption scheme Π = (K, E ,D) against a
nonce respecting adversary A is defined in the sense of “indistinguishability from random
strings” in the following manner:

Advpriv
Π (A) = Prob[K

$← K : AEK(·,·) ⇒ 1]− Prob[A$(·,·) ⇒ 1]

where $(·, ·) is an oracle that takes (N, M) as input and returns |M | + τ random bits as
output.

For defining authenticity, the adversary is said to successfully forge if it outputs a pair
(N, C, tag) which is valid and (C, tag) was not the result of any prior (N, M) query. Formally,

Advauth
Π (A) = Prob[K

$← K : AE(·,·) forges].

Fixed and variable length nonces. Based on the length of the nonces, we distinguish
between two kinds of AE protocols.

1. AE with fixed length nonces, i.e., N = {0, 1}m where m is a fixed integer.
2. AE with variable length nonces, i.e., the length of the nonces can vary.

In both cases, the restriction that nonces cannot be repeated still has to hold. We will use
AE to denote the first kind of protocol, while we will use AE+ to denote the second kind of
protocol.

2.2 Authenticated Encryption With Associated Data

An AEAD protocol consists of two deterministic algorithms. The encryption algorithm is
AEAD.EncK(N, H, M), where K is the secret key, N is a nonce, H is a header and M
is a message to be encrypted. The algorithm returns (C, tag). The decryption algorithm
AEAD.DecK(N, H, C, tag) returns either bad or the proper message M . The goal of an AEAD
protocol is to encrypt the message M but to authenticate both the message and the header.
In particular, the header is authenticated but not encrypted. Thus, the header can be publicly
read but any alteration to it will be detected during decryption.

The security notion of an AEAD protocol is an extension of the security notion of an
AE protocol. As before this consists of privacy and authenticity. The adversary is given
access to the encryption oracle and is assumed to be nonce respecting, i.e., it does not repeat
a nonce in its queries to the oracle. Following Rogaway [11], the privacy of a encryption
scheme Π = (K, E ,D) against a nonce respecting adversary A is defined in the sense of
“indistinguishability from random strings” in the following manner:

Advpriv
Π (A) = Prob[K

$← K : AEK(·,·,·) ⇒ 1]− Prob[A$(·,·,·) ⇒ 1]

where $(·, ·, ·) is an oracle that takes (N, H, M) as input and returns |M | + τ random bits
as output. For defining authenticity, the adversary is said to successfully forge if it outputs
a pair (N, H, C, tag) which is valid and (C, tag) was not the result of any prior (N, H, M)
query. Formally,

Advauth
Π (A) = Prob[K

$← K : AE(·,·,·) forges].

2.3 Parameters of an Adversary

An adversary for either an AE or an AEAD protocol makes a few oracle queries, runs for a
certain amount of time and has a definite advantage. By an (ε, q, t)-adversary A attacking
the privacy of an AE protocol, we mean that A makes at most q oracle queries, runs for
time t and that Advpriv

Π (A) ≤ ε. Similar notation will be used for an adversary attacking the
authenticity of an AE protocol as also for adversaries attacking the privacy and authenticity
of an AEAD protocol.

Quantification over adversaries is done in the usual manner to obtain resource bounded
definitions of the different advantages. For example, if Π is an AE protocol, then Advpriv

Π (q, t)
denotes the supremum of advantages over all adversaries A attacking the privacy of the AE
protocol and running in time at most t and making at most q oracle queries.

2.4 Collision Resistant Hash Function

A collision resistant hash function h : {0, 1}∗ → {0, 1}m is a deterministic algorithm that
takes as input an arbitrary length binary string and returns as output a binary string of
length m.

Intuitively, the security requirement is that it should be infeasible for an adversary to
find two strings x 6= x′ such that h(x) = h(x′). Following Stinson [15] and Rogaway [12], we
formalize an adversary A’s advantage in finding collision in the following manner.

Advh(A) = Prob[(x, x′)⇐ A : x 6= x′ and h(x) = h(x′)].

The adversary is allowed to be probabilistic and the probability in the above advantage is
computed over the random choices made by the adversary. By an (ε, t)-adversary A attacking
the collision resistance of a hash function h we will mean that the runtime of A is at most t
and that Advh(A) ≤ ε.

3 Constructions

3.1 From AE to AE+

We construct an AE+ protocol from an AE protocol and a collision resistant hash function
h : {0, 1}∗ → {0, 1}m, where m is the size of nonces in the AE protocol. Figure 1 shows the
encryption and decryption algorithms.

Fig. 1. Encryption and Decryption using AE+.

AE+.EncK(N, M)
1. L = h(N);
2. return AE.EncK(L, M).

AE+.DecK(N, C, tag)
1. L = h(N);
2. return AE.DecK(L, C, tag).

The security reduction for the above protocol is easy. The basic idea is to build an
adversary B for AE from an adversary A for AE+. Intuitively, adversary A can choose to
attack AE+ in two ways – either by finding a collision for h() or by attacking AE. Since
we assume that it is difficult to find a collision for h(), any successful attack on AE+ with
high probability leads to an attack on AE. Below we formalize this argument separately for
privacy and authentication.

Our formalization is based on Rogaway’s approach in [12] (the unkeyed, concrete C2-
form). The crux of this formalization is to parameterize the theorem statement with explicit
mention of adversaries. Usual theorem statements of security results are stated in terms of
resource bounded notions of advantages, i.e., relations are obtained between the supremum
(over all adversaries with specific resource bounds) of the advantages of the different com-
ponents. Such an approach creates formalistic problems when talking about unkeyed hash
functions. The simplifying idea, then, is to explicitly relate advantages of adversaries for
different components. See [12] for further justification and details of this approach.

Theorem 1. The privacy and the authenticity of the AE+ shown in Figure 1 are stated as
follows.

Privacy. Let A be an (ε, q, t)-adversary attacking the privacy of the AE+ protocol. Then it
is possible to construct an (ε1, q, t1)-adversary B attacking the privacy of the AE protocol
and an (ε2, t1)-adversary C attacking the collision resistance of h, such that

ε =
ε1

1− ε2

≈ (1 + ε2)ε1.

Authenticity. Let A be an (ε, q, t)-adversary attacking the authenticity of the AE+ protocol.
Then it is possible to construct an (ε1, q, t1)-adversary B attacking the authenticity of the AE
protocol and an (ε2, t1)-adversary C attacking the collision resistance of h, such that

ε =
1

1− ε2

(
ε1 −

ε2

2τ

)
≈ (1 + ε2)

(
ε1 −

ε

2τ

)
.

In the above t1 = t + t′, where t′ is the sum of the following times.

– Time for evaluating h on the variable length nonces of the q queries made by A.

– Time for oracle calls to the AE protocol.

– Time for insertion and search in a list (maintained as a height balanced binary tree) to
determine a possible collision.

– The overhead time for bookkeeping. This time is proportional to the total length (in bits)
of all the queries.

Proof : The two proofs are described separately.

Privacy: A and B’s advantages are the probabilities of distinguishing the outputs of the
corresponding protocol from random strings. Adversary A has access to an oracle O1. This
oracle is either the real oracle, i.e., the output of the AE+ protocol or an oracle which simply
returns random strings. A makes queries to the oracle in an adaptive manner and finally
outputs a bit. We have

Advpriv

AE+(A) = Prob[AO1 ⇒ 1|O1 is real]− Prob[AO1 ⇒ 1|O1 is random]

The construction of B from A is described as follows. B has access to its own oracle O2

which is either real (i.e., returns the output of AE protocol) or random (i.e., returns random
strings). B operates by simulating A’s queries. The queries submitted by A are of the form
(Ni, Mi) for i = 1, . . . , q. If A ever submits a query (Ni, Mi) such that there is a j < i, with
Ni 6= Nj and h(Ni) = h(Nj), then B outputs a random bit and aborts. This means that A
has found a collision for h and hence B cannot use A to attack the AE protocol. In this case,
the best strategy for B is to output a random bit and abort. Denote by Coll the event that
there is a collision for h(). If the i-th query does not give rise to a collision, then B computes
Li = h(Ni) and submits (Li, Mi) to its oracle O2. Whatever it gets, it returns to A. Finally,
B outputs whatever A outputs. Note that O1 is real if and only if O2 is real.

The above also describes the construction of C from A. C is almost the same as B, except
that if a collision is found, then C reports it; and if at the end, no collision has been found,
then C reports failure. Thus, the advantage Adv(C) of C is equal to Prob[Coll].

Assuming that the oracles are real we compute.

Prob[BO2 ⇒ 1] = Prob[(BO2 ⇒ 1) ∧ (Coll ∨ Coll)]

= Prob[(BO2 ⇒ 1) ∧ (Coll)] + Prob[(BO2 ⇒ 1) ∧ (Coll)]

= Prob[(BO2 ⇒ 1)|Coll]Prob[Coll] + Prob[(BO2 ⇒ 1)|Coll]Prob[Coll]

=
1

2
Prob[Coll] + Prob[AO1 ⇒ 1]Prob[Coll].

Exactly the same computation will hold assuming both the oracles to be random. Adv(B) is
the difference Prob[BO2 ⇒ 1|O2 is real]−Prob[BO2 ⇒ 1|O2 is random] and similarly Adv(A)
is the difference Prob[AO1 ⇒ 1|O1 is real]− Prob[AO1 ⇒ 1|O1 is random]. Thus, we have

Adv(B) = (1− Prob[Coll])Adv(A) = (1−Adv(C))Adv(A).

Rearranging we obtain the desired relation between the different advantages. The runtime
of B (and C) can be easily verified.

Authenticity: The idea of the proof is similar to the above. The technical difference is
in the behaviour of the adversaries A and B. In this case, the adversaries are given an
encryption oracle instantiated by a secret key. They can submit queries to the oracle and
receive answers. The queries of A are of the form (Ni, Mi), for i = 1, . . . , q and the answers
it receives are of the form (Ci, tagi). The queries of B and the answers it receives are similar;
the only difference being that in case of B nonces are strings of length m, whereas in case
of A nonces are strings of variable lengths.

The simulation of the queries of A by B is similar to the case of privacy. Suppose that the
encryption queries of A are (Ni, Mi, tagi), 1 ≤ i ≤ q, and the forgery attempt is (N, C, tag).
In this case, we say that the event Coll happens if either for distinct i, j, h(Ni) = h(Nj);
or, there is some i such that h(Ni) = h(N). Note that here Coll also covers the forgery
attempt. In case of Coll, B chooses a “new” (L, C) pair and a random tag and outputs
(L, C, tag) as its own forgery. If Coll does not happen, and A outputs (N, C, tag), then B
outputs (h(N), C, tag). The collision finding adversary C is easily seen to be similar to B;
reporting a collision if one is found; or reporting failure at the end. Then, as in the case of
privacy, the advantage Adv(C) of C is equal to Prob[Coll].

Let SuccA (resp. SuccB) be the event that A (resp. B) is successful in its forgery attempt.
Then, Adv(A) = Prob[SuccA] and Adv(B) = Prob[SuccB]. We have Prob[SuccB|Coll] = 1/2τ .
This is because, in the event of Coll, the tag is chosen randomly and the probability that it
equals the correct tag is 1/2τ . Now proceeding as in the case of privacy, we obtain

Prob[SuccB] =
Prob[Coll]

2τ
+ Prob[SuccA]Prob[Coll].

The rest is similar to that in the case of privacy. ut

3.2 From AE+ to AEAD

The conversion from AE+ to AEAD is also very simple. The encryption and decryption
algorithms are shown in Figure 2. Note that though we concatenate in the order H||N , the

Fig. 2. Encryption and Decryption using AEAD.

AEAD.EncK(N, H, M)
return AE+.EncK(H||N, M).

AEAD.DecK(N, H, C, tag)
return AE+.DecK(H||N, C, tag).

concatenation N ||H will have the same security. Our reason for choosing the first option is
that this may provide some additional efficiency benefits as described later.

The security of AEAD from that of AE+ is immediate. In the AEAD protocol, N does
not repeat. Consequently, the string H||N in the AE+ protocol also does not repeat. Hence,
if the AE+ protocol is secure, then so is the AEAD protocol. The idea is to show that if there
is an adversary A for AEAD, then one can construct an adversary B for AE+. The details
are easy to check. We briefly mention the case of forging query. A behaves in the following
manner – it adaptively makes some encryption queries and then finally makes one forging
query. The i-th encryption query is of the form (Ni, Hi, Mi) and in return it expects a proper
(Ci, tagi). Adversary B obtains (Ci, tagi) by querying its own oracle with (Hi||Ni, Mi). It
then returns (Ci, tagi) to A. Consider the tuple Γi = (Ni, Hi, Mi, tagi) associated with the
i-th encryption query.

The forging query by A is of the form (N, H, M, tag) and it must not be equal to Γi for
any i. Clearly, then (N ||H, M, tag) is not equal to (Ni||Hi, Mi, tag) for any i and B outputs
(N ||H, M, tag) as its own forgery attempt. By the construction of the protocol it is clear
that B is successful if A is successful. Based on this discussion, we state the following result.

Theorem 2.

Advpriv

AEAD(q, t) = Advpriv

AE+(q, t1) and Advauth
AEAD(q, t) = Advauth

AE+(q, t).

Here t1 = t + t′, where t′ is the bookkeeping time which is proportional to the total length (in
bits) of all the queries made by the adversary for the AEAD protocol.

3.3 AEAD From AE

Combining the two constructions given above one obtains an AEAD protocol from an AE
protocol and a collision resistant hash function. Basically, for each encryption request con-
sisting of (N, H, M), where N is a nonce of length n, H is an arbitrary length header and
M is a message, first concatenate N and H, then hash N ||H to obtain L and invoke the AE
protocol on (L, M). The obtained output (C, tag) is defined to be the output of the AEAD
protocol on input (N, H, M).

In short,

AEAD.EncK(N, H, M) = AE.EncK(h(H||N), M) and
AEAD.DecK(N, H, C, tag) = AE.DecK(h(H||N), C, tag).

}
(1)

4 Issues

4.1 Generic Construction and Single Key

The construction of AEAD described in this paper is simple and generic. In particular, it
can be instantiated with any collision resistant hash function and an AE protocol. The only

restriction is that the output of the hash function must have the same length as that of
nonces used in the underlying the AE protocol.

The AEAD protocol uses a single key which is the same as the key of the AE protocol.
Many AE protocols are known which use a single key that is same as the secret key of
the underlying protocol. Thus, for all such protocols, the secret key of the resulting AEAD
protocol is the same as the secret key of the underlying block cipher.

The previous generic constructions due to Rogaway [10] require two keys. This is due
to the fact that encryption is done using one key and the header is processed to obtain a
MAC using another key. For the security proof, these keys are required to be independent.
Rogaway [10] shows that it is possible to build single key AEAD from the AE protocol OCB
and the MAC algorithm PMAC. In this situation, the entire construction is treated as a
single algorithm and the security proof is long and complicated.

In contrast, our construction avoids the use of the second key by hashing the nonce-
header combination to obtain a nonce for the AE protocol. This makes it possible to use
our algorithm with any AE protocol and not just OCB. From a practical point of view this
increases a designers flexibility in choice of algorithms.

4.2 Efficiency and Online Computation

The described AEAD protocol is quite efficient in that it adds minimal overhead to the
underlying AE protocol. The only extra computation is that of hashing the header-nonce
combination. This requires a single pass over the data stream consisting of header-nonce.
Since the header is to be authenticated, a one time processing of the header is the minimum
computation that one would expect.

The other issue is that of online processing. The header can be processed “on-the-fly”,
i.e., successive header blocks are hashed as they become available and once processed are
not required to be stored. The entire AEAD algorithm can be processed on-the-fly if the
underlying AE algorithm supports this behaviour.

4.3 Pre-Computation

For some applications, it may happen that the header remains unchanged for a particular
session. For each message in the session a new nonce is generated and the message is en-
crypted with the session header and the nonce. For such applications it will be advantageous
to process the header once and use the result for all the messages. In our AEAD protocol,
this can be done by hashing (a suitable initial part of) the header H to obtain an inter-
mediate hash δ. Suppose the nonces used in the session are N1, N2, . . . The nonces for the
AE protocol are obtained by hashing δ||N1, δ||N2, The results are the same as hashing
H||N1, H||N2, Since δ is reused the repetitive hashing of δ can be avoided.

4.4 Performance

In our approach, the header is hashed while in ciphertext translation [10, 11], the header is
processed using a block cipher based PRF. Usually, hashing a string is faster than applying
a PRF to it. So, our proposal is expected to be faster than the suggestion in [10, 11].

There is another possible advantage. Suppose the header is some public information such
as an IP address. Several users may share the same IP address. However, the secret keys of
the different users will not be the same. In our proposal, the common header will be hashed
once and the same hash value will be used by the different users. On the other hand, if a
PRF is used to process the header, then each user will necessarily have to perform separate
processing of the header.

5 Instantiating the AEAD Protocol

We propose that the function h() be instantiated by an “off-the-shelf” hash function like
SHA-256 [14]. The size of the digest is then 256 bits. Consequently, to build the AEAD
protocol, we need an AE protocol whose nonces are 256 bits.

The AE protocols in [11, 3] can handle n-bit nonces when used with n-bit block ciphers.
So, if used with AES-128, these AE protocols cannot be directly combined with SHA-256.
Next, we describe a variant of these protocols so that they can handle 2n-bit nonces when
used with an n-bit block cipher.

5.1 Tweakable Block Cipher and Authenticated Encryption

Rogaway [11] introduced the XE and XEX construction of tweakable block ciphers. This was
generalized in [3] to a ring R, where R can be instantiated by either ZZ2n or GF (2n). These
constructions extend a block cipher EK : {0, 1}n → {0, 1}n to a tweakable block cipher whose
tweak space is {0, 1}n × {1, 2, . . . , 2n − 2}.

Here we show that it is easy to modify the construction to obtain a tweakable block cipher
whose tweak space is {0, 1}2n×{1, 2, . . . , 2n− 2}. In other words, a tweak consists of 2 n-bit
blocks and a positive integer less than 2n− 1. (We note that the construction easily extends
to handle t n-bit blocks, where t ≥ 2 is a fixed integer.) Let T = (N, l) be a tweak, where
N = (N1, N2) and N1, N2 are n-bit blocks. We define a TBC Ẽ : K × T × {0, 1}n → {0, 1}n
where T = {0, 1}2n×{1, 2, . . . , 2n−2}. As is usual, we write ẼN,l

K to denote Ẽ(K, (N, l), M).

XE Construction: ẼN,l
K = EK(M + ∆).

XEX Construction. ẼN,l
K = EK(M + ∆)−∆.

In the above, ∆ = fl(N) and N = EK(EK(N1) + N2). The operations + and − are over the
ring R. The only difference from the construction in [3] is in the definition of N . In [3], N
is an n-bit block and N is defined to be EK(N); here N is a 2n-bit block (N1, N2) and N
is defined to be EK(EK(N1) + N2). This difference, however, does not cause any problem in
the security analysis of the XE and the XEX construction given in Theorem 1 of [3].

Rogaway [11] showed how to construct an AE protocol from the TBC he defined in [11].
In [3], it was shown that essentially the same construction also holds for the general class
of TBC defined in [3]. The TBC is in turn instantiated using a block cipher using the XEX
construction used in [3], i.e., with N to be an n-bit string. The same construction holds when
N is a 2n-bit string as in the XEX construction mentioned above.

We briefly describe encryption/decryption methods of the AE protocol and identify two
variants depending on whether the nonce is an n-bit string or a 2n-bit string. This description
is based on [3] which is a generalization of [11].

Suppose the input is a nonce N and message M1, . . . ,Mm−1, Mm, where Mm is a possible
partial block and the other Mis are n-bit blocks. The output is C1, . . . , Cm−1, Cm and a τ -bit
tag tag, where |Cm| = |Mm| and the other Cis are n-bit blocks. Then

Ci = EK(Mi + ∆i,0)−∆i,0 1 ≤ i ≤ m− 1;
Cm = Mm + Lastl(Pad);
tag = Lastτ (EK(sum + ∆m,1)−∆m,1).

 (2)

Here, as before the operations + and − are over R and the definitions of the various terms
are as follows.

1. l = |Mm| = |Cm|,
2. Pad = EK(binn(l) + ∆m,0)−∆m,0,
3. sum = (M1 + · · ·+ Mm−1) + ((0n−l||Cm)− Pad),
4. ∆i,b = fφ(i,b)(N),
5. φ(i, b) is an injective map from {1, 2, . . . , 2n/2} × {0, 1} → {1, 2, . . . , 2n − 2}.,
6. Lastl(x) returns the l least significant bits of a binary string x of length ≥ l and
7. binn(l) is the n-bit binary representation of the integer l with 0 ≤ l ≤ 2n − 1.

Equation (2) describes the encryption algorithm. The decryption algorithm is easily obtained
from this description – given (C1, . . . , Cm−1, Cm) and tag, obtain M1, . . . ,Mm−1, Mm, re-
generate the tag and compare with the given tag.

The only thing we have not specified so far is how to obtain N from N . Doing this gives
rise to the two variants, which we call AE1 and AE2.

1. If the nonce N is an n-bit, then N = EK(N) and the resulting algorithm is called AE1.
2. On the other hand, if the nonce N = (N1, N2) is a 2n-bit string, then N = EK(N2 +

EK(N1)) and the resulting algorithm is called AE2.

AE1 is the algorithm given in [3], while AE2 is the extension to 2n-bit nonces that we have
introduced here.

OCB. Rogaway [11] defined OCB which can be seen as a special case of AE1 by the following
instantiation. (The manner in which sum is generated is slightly different from that of [11].)
R is taken to be GF (2n) and ∆i,b = (1 + x)bxiN , where the multiplication is done modulo a
primitive polynomial τ(x) of degree n over GF (2). In fact, the field GF (2n) is also realised
using this τ(x). The definition of ∆i,b implicitly defines φ(i, b) to be the map i + Lb, where
L is the discrete log of (1 + x) to base x in GF (2n) realised using τ(x). This has been called
the technique of linear separation in [3]. The value of L should be sufficiently “large” and
for n = 128, Rogaway [11] computes this value using MAPLE for the specific τ(x) given in
the paper. However, for n = 256, the value of L is not given for any τ(x). In fact, computing
discrete logarithm over GF (2256) is not easy.

Other AE protocols. Other AE1 protocols having efficiency similar to that of OCB were
described in [3]. It was shown that R can be instantiated as both ZZ2n and as GF (2n).
We mention one instantiation; for the other instantiations, refer to [3]. Let R be GF (2n)
and ∆i,b = x2i+bN . This technique has been called interleaved separation and unlike linear
separation does not require the computation of discrete logarithm over GF (2n). So, for
example, this method easily specifies an AE protocol for 256-bit block ciphers.

5.2 Building AEAD Protocols

We consider combination with the AE protocols described in Section 5.1. Two variants are
described in 5.1 – AE1 and AE2. Both use an n-bit block cipher, but AE1 uses n-bit nonces
while AE2 uses 2n-bit nonces.

Combining with a 128-bit block cipher. Suppose that we wish to use AES-128 [4] as
the block cipher. Then, we combine h() with AE2, where AE2 is instantiated with AES-128.

Combining with a 256-bit block cipher. If we wish to use a 256-bit block cipher (possibly
Rijndael-256), then we combine h() with AE1, where AE1 is instantiated with the desired
block cipher.

In both cases, we obtain a secure AEAD protocol where the security is based on both
the underlying block cipher and the hash function.

6 Conclusion

In this work, we have described a generic method of combining a collision resistant hash
function with an AE protocol to obtain an AEAD protocol. We showed how this can be used
with single-pass AE protocols such as OCB [11] and its generalizations [3] both for 128-bit
and 256-bit block ciphers. Our technique is simple and does not require any key material
beyond that of the AE protocol. Further, processing of the header is expected to be faster
in the new proposal compared to that in the technique of ciphertext translation.

References

1. Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Relations among notions and analysis of
the generic composition paradigm. In Tatsuaki Okamoto, editor, ASIACRYPT, volume 1976 of Lecture Notes in
Computer Science, pages 531–545. Springer, 2000.

2. John Black and Phillip Rogaway. A block-cipher mode of operation for parallelizable message authentication.
In Lars R. Knudsen, editor, EUROCRYPT, volume 2332 of Lecture Notes in Computer Science, pages 384–397.
Springer, 2002.

3. Debrup Chakraborty and Palash Sarkar. A general construction of tweakable block ciphers and different modes
of operations. IEEE Transactions on Information Theory, 54(5):1991–2006, 2008.

4. Joan Daemen and Vincent Rijmen. The design of Rijndael: AES – The Advanced Encryption Standard (Infor-
mation Security and Cryptography). Springer, Heidelberg, 2002.

5. Virgil D. Gligor and Pompiliu Donescu. Fast encryption and authentication: XCBC encryption and XECB
authentication modes. In Mitsuru Matsui, editor, FSE, volume 2355 of Lecture Notes in Computer Science,
pages 92–108. Springer, 2001.

6. Charanjit S. Jutla. Encryption modes with almost free message integrity. In Birgit Pfitzmann, editor, EURO-
CRYPT, volume 2045 of Lecture Notes in Computer Science, pages 529–544. Springer, 2001.

7. Jonathan Katz and Moti Yung. Complete characterization of security notions for probabilistic private-key en-
cryption. In STOC, pages 245–254, 2000.

8. Moses Liskov, Ronald L. Rivest, and David Wagner. Tweakable block ciphers. In Moti Yung, editor, CRYPTO,
volume 2442 of Lecture Notes in Computer Science, pages 31–46. Springer, 2002.

9. Phillip Rogaway. OCB Mode. http://www.cs.ucdavis.edu/ rogaway/ocb/.
10. Phillip Rogaway. Authenticated-encryption with associated-data. In Vijayalakshmi Atluri, editor, ACM Confer-

ence on Computer and Communications Security, pages 98–107. ACM, 2002.
11. Phillip Rogaway. Efficient instantiations of tweakable blockciphers and refinements to modes OCB and PMAC. In

Pil Joong Lee, editor, ASIACRYPT, volume 3329 of Lecture Notes in Computer Science, pages 16–31. Springer,
2004.

12. Phillip Rogaway. Formalizing human ignorance. In Phong Q. Nguyen, editor, VIETCRYPT, volume 4341 of
Lecture Notes in Computer Science, pages 211–228. Springer, 2006.

13. Phillip Rogaway, Mihir Bellare, and John Black. OCB: A block-cipher mode of operation for efficient authenti-
cated encryption. ACM Trans. Inf. Syst. Secur., 6(3):365–403, 2003.

14. Secure Hash Standard. Federal Information Processing Standard Publication 180-2. U.S. Depart-
ment of Commerce, National Institute of Standards and Technology(NIST), 2002. Available at
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf.

15. Douglas R. Stinson. Some observations on the theory of cryptographic hash functions. Des. Codes Cryptography,
38(2):259–277, 2006.

