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Abstract. In early 2000’s, Rivest [112] and Micali [2] introduced the notion of tran-
sitive signature, which allows a third party with public key to generate a valid sig-
nature for a composed edge (v;,v¢), from the signatures for two edges (v;,v;) and
(vj,vk). Since then, a number of works, including [2I3I4I5l6]), have been devoted
on transitive signatures. Most of them address the undirected transitive signature
problem, and the directed transitive signature is still an open problem. S. Hohen-
berger [4] even showed that a directed transitive signature implies a complex math-
ematical group, whose existence is still unknown. Recently, a few directed transi-
tive signature schemes [[7L8]] on directed trees are proposed. The drawbacks of these
schemes include: the size of composed signature increases linearly with the number
of nested applications of composition and the creating history of composed edge
is not hidden properly. This paper presents a RSA-Accumulator [9] based scheme
DTTS—a Directed-Tree-Transitive Signature scheme, to address these issues. Like
previous works [[7U8], DTTS is designed only for directed trees, however, it features
with constant (composed) signature size and privacy-preserving property. We prove
that DTTS is transitively unforgeable under adaptive chosen message attack in the
standard model.

Keywords. Homomorphic Signature, Transitive Signature, Directed Transitive
Signature, Redactable Signature, Privacy-Preserving

1. Introduction

In 2000, Rivest [[1]] introduced the notion of homomorphic signatures (formalized in [ 10}
11] etc.) and proposed an open problem on the existence of directed transitive signatures.
Later, Micali and Rivest [2] proposed the first undirected transitive signature scheme, and
raised the directed transitive signature as open problem again and officially. A transitive
signature scheme aims to authenticate the transitive closure of a dynamically growing
graph [[7]. The scheme works in this way: a signer has a pair of public/private signing key,
and is able to sign a new vertex or edge when it is generated at any time. Unlike standard
digital signature, the transitive signature scheme supports a transitive property. That is,

LA full version is available at Cryptology ePrint Archive https://eprint.iacr.org/2009/209


https://eprint.iacr.org/2009/209

J. Xuetal /

given the signatures o; ; and o of edges (v;,v;) and (v;,vx) respectively, anyone can
produce a signature o; , for composed edge (v;, v¢) using the public key only, where v;,v;,
and vy are vertices, and (v;,v;),(vj,vk) are edges in a graph. If the graph is undirected,
such scheme is called undirected transitive signature scheme; if the graph is directed, it
is called directed transitive signature scheme. This paper attempts to attack the directed
transitive signature problem in a restricted but meaningful setting: (1) The graph is a
rooted directed tree (arborescence); (2) When composing two signatures of two adjacent
edges, the second signature must be provided by the original signer.

Since Rivest’s talk in 2000, a number of undirected transitive signature schemes [ 23|
Sl641213]] have been proposed. However, the directed transitive signature is still an open
problem [448], although some plausible directed transitive signature schemes [1447.8]
on restricted directed graphs, like directed tree, have been proposed. Y. Xun et al. [[15]
pointed out that Kuwakado-Tanaka transitive signature scheme [14] on directed trees is
insecure under chosen message attack by proposing a forgery attack. Y. Xun [7]] also
proposed a transitive signature scheme RSADTS on directed trees , but the (composed)
signature size is not constant. G. Neven [8] pointed out that it would be much easier to
construct a directed transitive signature scheme (on directed tree) if the signature size is
allowed to grow linearly, and gave a simple scheme as a demonstration. So far, to our
knowledge, there is no known transitive signature scheme on directed trees, which is
provably secure and has constant signature size. Table [I| and Table 2| compare various
transitive signature schemes appeared in literatures with DTTS proposed in this paper,
from different aspects.

Scheme Signing cost Verification cost | Composi-tion Signature size Compos-ed Supported
cost Signature Graph
size
DLTS [2] 2 stand. sigs. 2 exp. | 2 stand. verifs 1 | 2addsinZ, 2 stand. sigs 2 | constant undirected graph
inG exp.in G points in G 2 points
inZg
RSATS-1 [2 2 stand. sigs. 2 | 2 stand. verifs 1 | O(|n|?) ops 2 stand. sigs. 3 | constant undirected graph
RSA encs RSA enc. points in Z;
FactTS-1 [6 2 stand. sigs | 2 stand. verifs O(\n\z) ops 2 stand. sigs 3 | constant undirected graph
O(|nf?) ops O(|nf?) ops points in Z;,
GapTS-1 (6] 2 stand. sigs 2 exp. | 2 stand. verifs 1 0(\n\2) ops 2 stand. sigs. 3 | constant undirected graph
inG Sadn points in G
RSADTS 2 stand. sigs 2 stand. verifs < |M| ops 2 stand. sigs increase directed tree
7] 1 exp. in (¢) 1 exp. in (¢) 2 points in (¢)
1 label &;; <M
DTTS < 2 stand. sigs 2 stand. verifs 1 exp. in Z; 2 stand. sigs. constant directed tree
(This paper) 2 exp. in Z; 2 exp. in Z;, 37 points in Z; (Arborescence)

Table 1. Performance comparison among transitive signature schemes([6l7]]). {: The left labels in a signature
can be reduced using a hash function (See Section ).

In RSADTS, each edge (i, j) is associated with a random number 7; ; as the label.
Given two adjacent edges (i, j) and (j,k) and their signatures, anyone with public key
can produce a signature for the composed edge (i,k), whose label is the integer product
rij X rjx. If we apply the transitive property recursively, the length of the label of the
newly composed edge increases linearly with the depth of the recursion. Furthermore, the
integer multiplication reveals some information about the creating history of the newly
composed edge: if the original random numbers chosen by the signer are small, then
adversaries could factorize the integer product; otherwise the bit-length of the product
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may reveal significant information about the number of multiplications, which implies
the length of the path used to create the composed edge.

The directed transitive signature scheme DTTS on directed tree proposed in this
paper, is inspired by the relation between transitive signature and redactable signature
(Chang et al. [16]]), and is different from previous schemes at least in these aspects: (1)
It is provably secure under adaptive chosen message attack; (2) The length of signature
of a composed edge is constant; (3) The creating history of a composed edge is hidden
properly; (4) The directed tree supported by DTTS is slightly more restricted (precisely,
every vertex has at most one incoming edge) than that of RSADTS (See Section [2)); (5)
When the transitive property is applied repeatedly on a path, for example path i; — i —
i3 — i4, the order of nested applications is predetermined. That is, compose a signature

Sct A ptions for Provable Security Privacy Preserving How to | Persis-tent
grow? Vertex?
DLTS [2 Security of standard signature scheme; Hard- | Perfect, Transparent Arbitrarily No
ness of discrete logarithm in prime order
group
RSATS-1 [2] Security of standard signature scheme; RSA | Perfect, Transparent Arbitrarily No

is secure against one-more-inversion attack

FactTS-1 [6] Security of standard signature scheme; Hard- | Perfect, Transparent Arbitrarily No
ness of factoring

GapTS-1 [6] Security of standard signature scheme; One- | Perfect, Transparent Arbitrarily No
more gap Diffie-Hellman assumption

RSADTS [7] Security of standard signature scheme; RSA | No (due to integer multi- | From a single | No

Inversion Problem in a Cyclic Group is hard | plication) source
DTTS (This | Security of standard signature scheme; | Computational,Non- From a single | Yes
paper) Strong RSA Problem is hard Transparent source

Table 2. All of these schemes are transitive unforgeable under adaptive chosen-message attack in standard
model [6]. Section|3.3.1|introduces the concept of “persistent vertex”.

for (i, i3) first from signatures of edge (i,i») and edge (i2,i3), then compose a signature
for (i1,i4) from signatures of edge (i1,i3) and edge (i3,i4). This is because, in DTTS,
Comp requires the second edge is original, i.e. signed directly by the original signer.
Note that the last difference does not restrict the power of transitive property of DTTS.
Instead, this difference can be treated as a feature, and can be utilized to provide the
signer with control on composition (See Section for details).

1.1. Contributions of this paper

Directed transitive signature is a hard open problem. We attack this problem from a dif-
ferent angle in a simplified but meaningful setting: (1) The graph is a directed tree (ar-
borescence); (2) When composing two signatures of two adjacent edges, the second sig-
nature must not be a composed signature itself. The contributions of this paper include:

1. We present DTTS, a directed transitive signature scheme on directed trees with
constant signature size (Section [3.1)).

2. We prove that DTTS is transitively unforgeable under adaptive chosen message
attack in standard model, and the creating history of composed signature is hid-

den properly (Section 3.2).
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2. Definitions

Notations. LetN={1,2,3,4,5,...} be the set of integers. The notation x «— a denotes

that x is assigned a value a, and x & § denotes that x is randomly selected from the set S.
Let Prime be the set of all odd prime numbers.

Graph. Let G = (V,E) be a simple directed graph with a set V of nodes (or vertices)
vi’s and a set E of directed edges. In this paper, we focus on directed trees. Note that
there exist different definitions of directed tree in the literature: (1)A directed tree is a
directed graph that would be a (undirected) tree if ignoring the direction of edges; (2)A
directed tree (or Arborescence) is a directed graph, where edges are all directed away
from a particular vertex. The second definition is slightly more restricted than the first
one. In this paper, we adopt the second definition for directed tree and the term “directed
tree” refers to arborescence by default. Notice that Y. Xun [7] adopted the first definition
of directed tree and G. Neven [8]] adopted the second definition.

A transitive closure of a directed graph G = (V,E), is a directed graph, denoted as
G = (V,E), where (v;,v j) € E if and only if there is a directed path from vertex v; to
vertex v; in graph G.

Directed Transitive Signature Scheme. A directed transitive signature scheme DTS =
(TKG, TSign, TVf, Comp) is specified by four polynomial-time algorithms, and the func-
tionality is as follows [617]]:

e The randomized key generation algorithm TKG takes as input 1%, where k is the
security parameter, and returns a pair of keys (¢pk,tsk), where ¢ pk is the public
key and sk is the private key.

e The signing algorithm TSign could be randomized or/and stateful. TSign takes
the private key tsk, two vertices v; and v, and returns a value called an original
signature of the edge (v;,v;) relative to zsk. If stateful, it maintains a state which
it updates upon each invocation.

e The deterministic verification algorithm TVf, given tpk, two vertices v;,v; and
a candidate signature o, returns either TRUE or FALSE. We say that o is a valid
signature of edge (v;,v;) relative to tsk, if the output is TRUE.

e The deterministic composition algorithm Comp takes as input ¢ pk, two directed
edges (v;,v;) and (v;,v¢) and two signatures o; ; and o, and returns either a
composed signature o; of the composed edge (v;,v¢), or L to indicate failure.

An edge e is called original edge if e € E, or composed edge if e € E—E.All original
edges are signed by the signer using TSign and 7sk, and all composed edges could be
indirectly signed by anyone using Comp and 7 pk.

Two different views of Transitive Signatures. ~ Transitive signatures are originally de-
signed to authenticate a transitively closed graph in an economic way, i.e. sign as least as
possible number of vertices and edges to authenticate a transitively closed graph. Viewed
from another angle, transitive signatures are actually redactable signatures on growing
graph (Figure[T). The redaction operation can be implemented straightforwardly just us-
ing the composition operation Comp.
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(a) Transitive Closure (b) Redaction

Figure 1. This graph illustrates the two different views of transitive property. In Subfigure (a), composed edges
represented by dashed lines are signed indirectly by applying composition operation Comp. In this graph of
10 vertices and 29 edges, 9 original edges are signed directly using TSign, and the signatures of the other 20
composed edges (dashed line) can be saved due to transitive property. In Subfigure (b), a vertex represented by
the dashed circle is redacted from the graph, and the edges connecting its parent and children are created and
signed by applying Comp.

Correctness, Security and Privacy. ~ We slightly modify the definitions of correctness
and security of (directed) transitive signature scheme in [[6/7] to adapt for DTTS. We also
formalize the definition of privacy of transitive signatures when viewed as redactable
signatures.

Experiment 1 defines Expf,‘?{éﬁ% for correctness of DTS and Experiment 2 defines
dtu—cma ’

Expprs 7 for security of DTS. Explc)%'gf} outputs TRUE, if all queries made by .7 are
legitimate, and .7 can make a TSign query or Comp query which can cause TSign or
Comp to generate an invalid signature. The experiment Expff%; & outputs 1 if and only
if # succeeds in producing a forgery. The advantage of .# in its adaptive chosen message

attack on DTS is defined as
Advists 5 (k) = Pr [ Expits 57 () = 1

where k € N and the probability is taken over all random choices made in the experiment
Expirps 2. Experiment 3 defines Expfjye”, which is used to define privacy preserving

property for transitive signatures when viewed as redactable signatures.

Definition 1 (Correctness). A transitive signature scheme DTS = (TKG, TSign,

TVf,Comp) is correct, if for any (computationally unbounded) algorithm <f and every
keN,

Pr [Exppissy = TRUE| = 0.

Definition 2 (Security). A transitive signature scheme DTS = (TKG, TSign,
TVf,Comp) is transitively unforgeable under adaptive chosen message attack, if the
function Advg‘Tuif;a (k) is negligible in k for any adversary % whose running time is
polynomial in k.

Definition 3 (Privacy). A transitive signature scheme DTS = (TKG, TSign,
TVf,Comp) is non-transparently and computationally privacy-preserving (respectively,
transparently and computationally privacy-preserving), if for any £ > 1 (respectively,
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Experiment 1 ExpS35ct defines correctness of transitive signature scheme
(TKG, TSign, TVf, Comp) for directed tree.

DTS =

1: (tpk,tsk) — TKG(1%)

2: S < 0; Legit < TRUE; NotOK < FALSE

3: Run 7 with its oracles until it halts, replying to its oracle queries as follows:
4: if o/ makes TSign query on (v;,v;) then

5: ifv,-:Vj \Y (v,-,v_,-) € E then

6: Legit < FALSE

7

8

else
: Let o be the output of TSign oracle
9: S(*SU{(VI',V]',G)}
10: if TVf[pk(Vi,Vj,O') =FALSE then
11: NotOK < TRUE

12: if o/ makes Comp query on v;,v;, v, G; j, O x then

13:if (vj,») is not an original edge V v;,v;, v are not all distinct V (v;,v;,0;;) €S V (vj,v,05%) €S

then
14: Legit < FALSE
15:  else
16: Let o; 4 be the output of Comp oracle
17: if Oj i = 1 then
18: Legit < FALSE
19: else
20: SFSU{(V,‘,Vk.,O'i‘k)}
21: if TVf,pk (vi, vk, 0; %) = FALSE then
22: NotOK < TRUE

23: When ¢/ halts, output (Legit A NotOK) and halts

Experiment 2 Expf)t]ﬂg G2 defines security of transitive signature scheme
(TKG, TSign, TVf, Comp) for directed tree.

DTS =

1: (tpk,tsk) <+ TKG(1%)

2: S < 0; Legit < TRUE

3: Run .# with its oracles until it halts, replying to its oracle queries as follows:

4: if % makes TSign query on (v;,v;) then

5: ifv,':v]‘ \Y (Vl‘,Vj)GEthel‘l

6: Legit < FALSE

7:  else

8: Let o be the output of TSign oracle

9: SFSU{(V,‘,V./,G)}

10: if .# makes Comp query on v;,v;, v, 0; j, 0}« then

11:if (vj,v) is not an original edge V v;,v;, v, are not all distinct V (v;,v;,0;;) €S V (vj, v, 0jx) €S
then

12: Legit < FALSE

13:  else

14: Let o;; be the output of Comp oracle

15: S(—SU{(V,’,V;ﬁG,'_k)}

16: Forger .7, with access to 7pk and S, outputs (V',u',6”): (V',u',6") « F (tpk,S).
17: Let E < {(vi,vj) | 3(vi,vj,0) € S}V ={v | 3u,(u,v) €E V (v,u) € E}

18: Let graph G = (V,E) and its transitive closure G = (V,E)

19: if Legit = FALSE V (v/,u') € E V TVf(V/,u/, ') = FALSE then

20:  Return 0

21: else

22:  Return 1
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£ >0), Xy and X, (respectively, Xo) are computationally indistinguishable (w.r.t. k), where
X1,Xy are defined as follow

1. Run TKG to generate public/private key: (tpk,tsk) + TKG(1%).
2. Randomly generate vy, V.
3. Forany c > 0,

privacy

X, < Exppyrs (tpk,tsk,c,vo,v1)

Remark

1. DTS is statistically privacy-preserving, if “computationally indistinguishable” is
replaced with “statistically indistinguishable” in Definition

2. DTS is perfectly privacy-preserving, if “computationally indistinguishable” is
replaced with “identical” in Definition 3]

3. If DTS is transparently privacy-preserving, then given an authenticated graph
signed by DTS, any adversary (computationally bounded if DTS is computation-
ally privacy-preserving) cannot distinguish original signatures from composed
signatures. If DTS is non-transparently privacy-preserving, then given an authen-
ticated graph signed by DTS, any adversary may be able to distinguish original
signatures from composed signatures, but could not obtain any information about
the creating history of a composed signature.

privacy

Experiment 3 Exppys ~ outputs a composed signature for edge (vo,v1) by composing a path of length
(€4 1) recursively.

1:
: Generate random vertex u;, 0 < i < £+ 1, and let ug = vy, upy 1 = vi.
. Set the state of TSign to a random state.

A A i Y

Input: (¢pk,tsk,l,vo,v1)

for j« 0;j<{;j<+ j+1do
Make TSign query on (uj,u;1) against tsk and obtain the signature o j.
for j«2;j<{+1;j« j+1do
Make Comp query on ug,u;_1,uj, 0o j—1,0j—1,; against  pk and obtain signature oy ;

: Return 6y ¢ 1.

3. DTTS: Transitive Signature on Directed Tree

3.1. The scheme

Let SDS = (SKG,SSign,SVf) be a standard signature scheme (For example, the signa-
ture scheme proposed by Goldwasser et al [[L7]). We define the directed transitive signa-
ture scheme DTTS = (TKG, TSign, TVf, Comp) as follows.

TKG(1¥).  The key generation algorithm TKG taking 1¥ as input, runs as follows:

1. Run SKG(1¥) to generate a key pair (spk, ssk).
2. Choose a RSA modulus n = pg, such that p=2p’'+1,g=24'+1, p,q,p’ and ¢’
are all prime, and |p| = |¢|. Let Carmichael function A (n) = lcm(p— 1,4 —1).
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Choose an element g from Z;, such that the multiplicative order of g modulo 7 is
p'. Let (g) denote the subgroup of Z generated by g. Let & denote the set of all
odd primes in Z,y, i.e. & = Z,y NPrime.

Output ¢ pk = (spk,n) as the public key and tsk = (ssk,A(n), p’,g) as the private
key.

TSign,g(vi,vj).  The signing algorithm TSign maintains a state (V,E,L,IT,A,X):

V C {0,1}* is a set of queried nodes;

E CV xV isaset of directed edges;

The function L : V — & x 7} assigns to each node v € V a public label L(v),
which consists of a prime (called left label, denoted as L (v)) from &2 and an
element (called right label, denoted as Lg(v)) from Z} (L(v) = (L (v),Le(v)));
The set I records all prime numbers chosen in the signing process;

The function A : E — Z; assigns to each edge (vi,v;) € E alabel §; j;

The function £ : V — {0,1}* assigns to each node v € V a standard signature
2(v).

Initially, all of V, E and II are empty sets. When invoked on input v;,v; (v; # v;) and tsk,
the signing algorithm TSign runs as follows:

1.

Case 1: v;,v; €V, i.e. neither vertex v; or vertex v; is signed.

(a) Choose r; randomly from &2 —I1: r; Er_n Update IT: IT + ITU{r;}.

(b) The left label L (v;) of v; is: Ly (v;) < r;. The right label Lgp(v;) of v; is:
Ly (vi) < g modn.

(c) Choose r; randomly from & —1II: r; &z Update IT: IT - ITU {r; }.

(d) The left label L (v;) of v; is: Ly (v;) < rj. The right label Ly (v;) of v; is:
L,%(Vj) + Ly(v;)"7 mod n.

(e) X(vi) < SSignygy (vi,ri, Lz (vi)); Z(vj) < SSigngg (vj, 7, Lap(v))).

(f) The certificate of v; is: C(v;) < (vi,ri, Lz (vi),X(v;)). The certificate of v; is:
Cvj) = (vj,rjsLa(v)), E(v)))

(2) The label of the edge (v;,v;) is: A(v;,v;) < g.

Case 2: v; € V,v; €V, ie. vertex v; is signed already but vertex v; is not signed
yet.

(a) Let the certificate of v; be C(v;) = (vi,ri, L (vi),L(v;)), where r; = L (v;).

(b) Randomly choose r; from & —1I1: r; So_1 Update IT: T < ITU {r; }.

(c) Theleftlabel Ly (vj) of vjis: Ly (vj) < r;. Theright label of v;is Lo (v;)
Ly (vi)"7 mod n.

(d) The certificate of vertex v; is C(v;) < (vj,rj,Lz(v;),Z(v;)), where £(v;) -
SSigng (v, rjs L (v))-

(e) The label of the edge (v;,v;) is: A(v;,v;) L,%v(v,')’lf mod n.

. Case 3: v; € V,v; €V, ie. vertex v; is signed already but vertex v; is not signed

yet.
(a) Let the certificate of v;be C(v;) = (vj,rj,Lz(v;),Z(vj)), where rj =L ¢ (v;).
(b) Randomly choose r; from & —II: r; S 1 Update IT: IT + ITU {r;}.
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(c) The left label Lo (v;) of v; is: L (v;) < r;. The right label of v; is: Ly (v;) <
1

Lz(v;)" modn.

(d) The certificate of vertex v; is: C(v;) < (vi,ri,Lep(vi),E(v;)), where L(v;)
SSigngg (vi, i, Loz (V).

(e) The label of the edge (v;,v;) is: A(vi,vj) < Lg(v,')’li mod 7.

For all cases, update V and E: V < V U {v;,v;},E < EU{(vi,vj)}, and output
(C(vi),C(vj),A(vi,v;)) as the signature of (v;,v;).

TVf,pk(vi,vj,0;;).  The verification algorithm TVf, when revoked on input ¢ pk, nodes
vi,v; and a candidate signature o; ; on directed edge (v;,v;), runs as follows:

1. Parse 0; j as (C;,Cj, 8; ;). Parse C; as (vi, ri,Ly ;,0;)) and parse Cj as (vj,7;,Lg j,0)).

2. If Sstpk((v,',r,',Lg’,-LG,-) = FALSE or Sstpk((Vj,rj,Lg.j),O'j) = FALSE, then
reject.

3. Acceptif &' =Lg,; (mod n).

Compy i (Vi,vj,Vk, 0ij, 0j k).  The composition algorithm Comp, when invoked on in-
put ¢ pk, nodes v;, v, vy, and two signatures o;,; and 0 x, runs as follows:

1. Parse O, j as (Ci,Cj,S,"j) and Ojk as (C;7Ck75j,k).

2. If Cj and C} are different, output L and abort.

3. Parse C;,Cj,Cy as (vi,ri,Ly,;,0i),(vj,rj, L, j,0;) and (v, 7%, Lg i, Of) respec-
tively.

4. If SVf‘vpk((Via ri,L%,'), G,') = FALSE or SVfSpk((Vj, rj,L%,j), Gj) = FALSE or
SVf gk (i, 7k Loz i) Ok ) = FALSE, output L and abort.

5. If Lyp(vj)* # Lgp(vk) mod n, output L and abo

6. Compute & < &, mod n.

7. Output (C;,Cy, 8 x) as the signature of edge (vi, vg).

Figure 2] shows the left and right labels associated with every vertex v;.
Remarks.

1. DTTS assumes Case 1 of TSign will occur only once — when the very first edge
is queried and signed. Except the first edge, any newly queried edge must have
one adjacent node signed and the other unsigned yet. This implies that the graph
grows from the first signed vertex.

2. As long as the graph G = (V,E) is a tree, the case that v;,v; € V, i.e. both v; and
v; are queried before, should never occur during the execution of TSign.

3. Let v be the first node being signed and rg be the prime number (left label) as-
sociated with the root, i.e. ro = L ¢ (vp). DTTS maintains the following invariant
for the directed tree signed by the signer:

e For any node v; ¢, such that there is a directed path (vo,v;1,vi2,...,vi¢), then
the right label of v; ¢ is Lz (vi¢) = g"0"i1"r2"it mod n, where r; ; is the prime
number (left label) associated with node v; j, i.e. r; j = L (vi ;).

2This means the Comp algorithm requires that the second edge (v j,vk) is an original edge, i.e. signed by the
signer, instead of edge generated by composing a path.
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Figure 2. This figure shows the left label L & (v) and right label Ly (v) associated with every vertex v. Note
this graph grows from the vertex represented by the dark circle.
e For any node u; ¢, such that there is a directed path (u;¢,u;s—1,...,ui1,v0),
-1 - -1
then the right label of u; ¢ is Ly (u;¢) = g'it "2 = "it=1 mod n, where r; ; is
the prime number (left label) associated with node v; j, i.e. r; j = Lo (vi ).

4. When composing edges (v;,v;) and (vj,vx), Comp assumes that (v;,vi) is an
original edge which is signed by the signer. This implies that the order of recur-
sive applications of Comp on a path is predetermined. This feature allows the
signer to have some control on the composition (See Section [3.3.1).

5. There is a way to distinguish original edge, which is signed by the signer, from
composed edge, which is signed by applying Comp. That is, (v;,v;) € E is origi-
nal, if L (vi)'"7 = Ly (v;) mod n; otherwise, it is composed.

3.2. Security and Privacy

Theorem 1. DTTS = (TKG, TSign, TVf, Comp) as defined in Sectionis transitively
unforgeable under adaptive chosen message attack, assuming the standard signature
scheme SDS = (SKG, SSign, SVf) is unforgeable under adaptive chosen message attack
and the Strong RSA problem is difficult.

The proof is given in Appendix

Assumption 1. Let n = pq,p =2p' +1 and g = 24" + 1, where p,q,p',q are distinct
primes, and |p| = |q|. Let G,y be a cyclic multiplicative subgroup with order p', of 7.
Let g € Z,, be a generator of G,. The following two random distributions X and Y are
computationally indistinguishable,

® Randomly and independently choose a,b from Z,, N Prime, X < g®* modn,
® Randomly and independently choose c, from Z,y NPrime, Y <— g mod n.

Note Assumption[l)is implied by Decisional Diffie-Hellman assumption in the cyclic sub-
group of Z.
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Theorem 2. DTTS = (TKG, TSign, TVf, Comp) is non-transparently and computation-
ally privacy-preserving, under Assumption

The proof of Theorem2]is similar to the proof of Theorem 3 in Chang et al. [18].
3.3. Variances

In this subsection, we give some variant schemes based on DTTS using different tech-
niques. Note that these techniques can be combined together.

3.3.1. Control on Redaction

In some applications, it could be very desirable to make some particular vertex persistent,
so that no one, except the signer, can redact a persistent vertex from a signed graph. For
example, in the hierarchy of chain of command, some particular person should never be
crossed.

DTTS allows the signer to have control on which vertices are persistent and which
are not (Figure [3). To add a non-persistent vertex, just follow the scheme described in
Section[3.1] To add a persistent vertex v; (for example, the vertex represented by the dark
circle in Figure[3), the signer adds a dummy vertex u (for example, the vertex represented
by the dashed circle in Figure[3(a)) as v;’s only child (so any child of v; actually becomes
the child of ), and then redacts this dummy vertex u using Comp algorithm.

Oy

(a) The signing process (b) The resulting graph

Figure 3. This graph illustrates how to make a vertex (represented by the dark circle) persistent. In Subfigure
(a), to make the vertex represented by the dark circle persistent, we introduce a dummy vertex, which is repre-
sented by the dashed circle. In Subfigure (b), dashed edges connecting the persistent vertex and its children are
signed indirectly using Comp, so Comp cannot take these edges as the second input.

3.3.2. Reduce the signature size using hashing

Similar as in Bellare et al. [6], we could reduce the signature size via hashing. Let A(+)
be a division intractable hash function as defined in Gennaro et al. [19]. By defining
Lo (vi) = h(v;), we could remove r; from the certification C(v) of the vertex v. However,
we cannot eliminate the right label of a vertex using the same technique. Indeed, the
value of the right label of a vertex relies on the path from the very first signed vertex to
itself. This makes DTTS a naturally stateful signing algorithm. We cannot convert DTTS
to a stateless signing algorithm using the technique introduced in Bellare et al. [6].
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4. AOP-DTS: Authenticate all Ordered Pairs

In this section, we present a directed transitive signature scheme AOP-DTS on generic
directed tree, which allows the composition operation Comp to access some state variable
(precisely, o) maintained by the signer TSign. _ B

Let G = (V,E) represent the directed graph, and G = (V,E) represent the tran-
sitive closure of G. Note G keeps changing, so does G. Let RSS = (RKG, RSign,
RVf, Redact, Union) be a redactable signature scheme on sets of objects, which supports
the following two features

e Union: Given signatures of two sets S and S5, one can produce the signature for
set S1 US, using public key only. Precisely, the output of Union (S}, 01,S52,0,) is
a valid signature for the set S; U S5.

e Set Difference (or Redaction): Given a signature of a set S, one can produce the
signature for set S — A for any set A using public key only. More precisely, the
output of Redact(S, 0,A) is a valid signature of the set S — A.

Johnson et al. [10] gave an example of such redactable signature scheme (Sig in Section
5 of [10]).

Scheme AOP-DTS works in this way: (1) Sign E using RSS to obtain the signature
0; (2) Once a new edge (v;,v;) is added, sign {(v;,v;)} using RSS, and update V,E,
E and its signature ¢; (3) From signature ¢ and graph G, anyone can produce a valid
signature for any edge e € E. The details are as follows.

1. KG(1%): Run RKG(1¥) to generate a key pair (pk, sk). Output (pk, sk).

2. TSigny(vi,v;): The signing algorithm TSign maintains a state (V,E,E,o),
where V is a set of queried vertices, E CV x V is  a set of directed edges, E is the
transitive closure of E, and o is the signature of E under RSS w.r.t. sk.

(a) Let A be an empty set. For any u,v € V, if (u,v;) € E, then add (u,v;j) into A;
if (vj,v) € E, then add (v;,v) into A; if both (u,v;) € E and (vj,v) € E, then
add (u,v) into A.
(b) Sign the set A: 64 < RSigngy(A).
(c) Update state: 0 +— Unionpk(g, 0,A,04); V< VU{vi,v; s E<— EU{(vi,vj)};
E « EUA.
(d) The signature of edge (v;,v;) is: 0; j <= RSigng ({(vi,v))}).
3. TVf,i(vi,vj,s): Return RV i ({(vi,v))},5).
4. Comp (vi,vj, G,E): Here & and E are state variables maintained by TSign.

(@) If (vi,vj) & E, output | and abort.
(b) s < Redact,«(E,0,E — {v;,v;}). Output s.

Note E can be generated from the graph G, which is public. So the only necessary state
variable that Comp need access, is o, which is the signature of the set £ and of constant
size.

Theorem 3. AOP-DTS is transitively unforgeable under adaptive chosen message at-
tack, assuming RSS is unforgeable under adaptive chosen message attack.

Theorem 4. AOP-DTS is transparently and perfectly privacy-preserving.
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5. Conclusion

In this paper, we gave the first directed transitive signature scheme DTTS on directed
trees, which is inspired by the relationship between transitive signatures and redactable
signatures. Unlike previous schemes, DTTS features with constant signature size and
privacy preserving property. We proved that DTTS is transitively unforgeable and non-
transparently privacy-preserving under reasonable assumptions. In summary, we solved
the open problem of directed transitive signature in a relaxed setting, although in general
the directed transitive signature remains open problem.
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A. Proof of Theorem

Proof. Suppose there exists an adversary .% against DTTS, which outputs a forgery with
non-negligible probability. We are going to construct an algorithm .27, which attempts to
solve the Strong RSA problem, based on .%. The Strong RSA problem is as follows:

Let n = pq be a RSA modulus. Given a random element s from a cyclic subgroup (g) of Z;,
find x,e € Z;, such that x* =s mod n and e # 1.

Let k be the security parameter. Suppose the size of the graph generated by .7, i.e.
number of vertices, is at most ¢(k). Because ./ does not know the factorization of #, it
can not compute g% mod n for general r € Z;;. We need a trick to simulate the signing
algorithm TSign. Let & : N — &2 be a hash function which maps integers to primes in P.
Let P = {h(1),h(2),h(3),...,h(2¢(k))}. &/ maintains a state variable ¢, which records
the number of remaining primes and is initialized to (k).

Algorithm &7 (n) runs as follow:

1. g+ (ereP’ mod n)

2. Let k be the bit length of n.

3. Generate key (spk,ssk) for SDS by running the key generating algorithm
SKG(1*) of SDS. tpk < (spk,n).

4. Run .

5. To answering TSign query from .%, simulate signing algorithm TSign, with the
following modifications:

e v is the first vertex signed. For i-th vertex v;, generate the associated random
number r; using the hash function A: if v; is an ancestor of vy, then r; < h(i),
otherwise r; «— h(i+ £(k)). Note r; = h(1).

e In Case 2 of TSign: Let path = (vi,vi2,Vi3,...,Vim—1,vi) be the undirected
path connecting vi and v;, and 71,7 2,7;3,...,7iu—1,7; be the prime numbers
associated to the vertices along the path in the order respectively. Let set R =
{ri,ri2,ri3,...,rim—1}. Note r; ¢ R. There are only two cases

* (Vim—1,vi) € E. Compute &; ; as follows

1
0i,j < Lyp(vi)ii modn=Lgyp(Vim-1).

% (vi,vim—1) € E. This implies path is a directed path pointing from v; to v;.
"
So Lgp(vi) = g"'i2"i3~"im=1  mod n, and R C P and r; € P— R. Compute J; ;

as follows

1 r| [repr I ;
0 j =Lgp(vi)ii = g'illrer” = g'illrer” = g reP=R=Ui}" mod n.

e In Case 3 of TSign: v; ¢ E,v; € E. This implies there is a directed path v; —
Vi2 = Vj3—...—=Vju_1 — Vi fromv;tovy. Letr;,rja,...,7ju1,71 be the
prime numbers associated to v;,v;2,...,V; 1,V Tespectively, and set R3 =

1
{rj‘g, .. .,rj_,m_l,rl}. Note rj,r; ¢ Ry and R3 C P. L@(Vj) = LQ(Vl)H'"ERf =

rillrepr
s e’ mod n. So
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1
8 j=La(v)™i =" rerks~lr2rs} 7 modn

and Lg(v;) = 6" mod n.
e To answering Comp query from .#, simulate composite algorithm Comp with
no modifications.

=)}

. Receive output (v;,vj,0) from .Z.

7. Let E| denote the event that (v;,v;, o) is a successful forgery. Suppose E| occurs.
Let r,, be the root vertex. Let path Py = (v, = v;2 =V 3)... = V1 4—1 — V1) and
path P; = (v, = vj2 = Vv;3... = vjp_1,Vv;) be the two directed path from v,, to
vy and v; respectively. Let Ry = {r, | vy # v, A vyisinpath P} Rj = {r, | vy #
Vw A vy isin path P;}. We have

Lyp(vy) = sleP-21" mod n, and Ly (v;) = Ly 5" modn. (1)

Parse ¢ as (C;,C}, 8; ;) and parse C; as (v;,r},Lg ;,0;) and C; as (vj,r},L,o,aj,O'J’.).
Let E; denote event that r; = rj Arj = r} ALz (vj) = Ly, ;. Suppose E; occurs.
Lete=riand z=[l,ep-g, " [Trer,—(rj} 7 Find a, B using Extended Euclidean
algorithm, such that

ae+Bz=1. )

8. Output (x,e), where x = 5,.{3 ;5% modnande=r.

Then we show that <7 solves the strong RSA problem, given E| and E;, i.e.
Pr[x*=s modnAe#1|Ej,E] is high.

With overwhelming high probability, there exists rjfl such that r; r;l =1 mod ¢(n).
So with overwhelming high probability

; -1 R, T AT .
8/ =Lap(v;) = st " Theri ) od e & =s" modn.

We have r; € R;, because vertex v; is not contained in path P;, otherwise, (v;,v;) € E ,
which is contradicted with the event E;. If v; is an ancestor of v;, then r; € Ry and
ri € P— Ry; if v; is not an ancestor of vy, then r; & P. So we always have r; ¢ P — Ry, and
rifz=Tl,ep-r, " [Trer;—{r;j r- Hence e = r; tz and GCD(e,z) = 1. We can always find
o and 8 which satisfy Equation Eq[2]

e B .\
x=(6;;s mod n
= 51/3; 5% modn
=P 5% modn

= s%tBz modn

=5 modn.

It is obvious that the odd prime number e # 1.
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Pr[x*=s modnAe#1|E],E,] is overwhelming high probability.

By our assumption, SDS is unforgeable under adaptive chosen message attack, as a
result, Pr[—FE;] = 1 — Pr[E>] is negligible; % is a successful forger against DTTS, as a
result, Pr[E1] is non-negligible. Hence,

Prix*=s modnAe#1]=Prix*=s modnAe#1|E,Ey)PrlE||Pr[E;]

is non-negligible.

That means the probabilistic polynomial algorithm .o/’ solves the Strong RSA prob-
lem with non-negligible probability, which is contradicted with our assumption that
Strong RSA problem is hard. Therefore, we have proved that the hypothesis that there ex-
ists such successful forger .% is wrong, i.e. DTTS is unforgeable under adaptive chosen
message attack.
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