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Abstract

In this paper we propose an efficient multivariate public key cryptosystem based on per-
mutation p-polynomials over finite fields. We first characterize a class of permutation p-
polynomials over finite fields Fqm and then construct a trapdoor function using this class of
permutation p-polynomials. The complexity of encryption in our public key cryptosystem
is O(m3) multiplication which is equivalent to other multivariate public key cryptosystems.
However the decryption is much faster than other multivariate public key cryptosystems.
In decryption we need O(m2) left cyclic shifts and O(m2) xor operations.
Keywords: Public Key Cryptography, Multivariate Cryptography, Permutation Polyno-
mials, Linearized Polynomials

1 Introduction

Public key cryptography is used in e-commerce for authentication and secure communication.
The most widely used cryptosystems RSA and ECC (elliptic curve cryptosystems) are based
on the problem of integer factorization and discrete logarithm respectively. Improvements
in factorization algorithm and computation power demands larger bit size in RSA key. At
present the recommended key size is of 1024 bits which may have to be increased to 4096
bits by 2015 [1]. Larger key size makes RSA less efficient for practical applications. ECC are
more efficient as compared to RSA, but its shortest signature is of 320 bits which is still long
for many applications [2]. Although RSA and ECC have these drawbacks, they are still not
broken. But in 1999 Peter Shor [4] discovered a polynomial time algorithm for integer fac-
torization and computation of discrete logarithm on quantum computers. Thus once we have
quantum computers the cryptosystems based on these problems can no longer be considered
secure. So there is a strong motivation to develop public key cryptosystems based on problems
which are secure on both conventional and quantum computers. Multivariate cryptography
can be a possible option applicable to both conventional and quantum computers (see [9]). In
multivariate cryptography the public key cryptosystems are based on the problem of solving
system of nonlinear equations which is proven to be NP-complete. MIC*, the first practical
public key cryptosystem based on this problem was proposed in 1988 by T. Matsumoto and
H. Imai (see [12]). The MIC* cryptosystem was based on the idea of hiding a monomial x2l+1
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by two invertible affine transformations. This cryptosystem was more efficient than RSA and
ECC. Unfortunately this cryptosystem was broken by Patarin in 1995[13]. In 1996 [14] Patarin
gave a generalization of MIC* cryptosystem called HFE. However in HFE the secret key com-
putation was not as efficient as in the original MIC* cryptosystem. The basic instance of
HFE was broken in 1999[16]. The attack uses a simple fact that every homogeneous quadratic
multivariate polynomial has a matrix representation. Using this representation a highly over
defined system of equations can be obtained which can be solved by a new technique called
relinearization [16]. Other possible attacks on the HFE scheme can be found in [17], [18] and
[19]. Patarin [15] investigated whether it is possible to repair MIC* with the same kind of easy
secret key computations. He designed some cryptosystems known as Dragons with multivariate
polynomials of total degree 3 or 4 in public key (instead of 2) with enhanced security and with
efficiency comparable to MIC*. In Dragon cryptosystems the public key was of mixed type
of total degree 3 which is quadratic in plaintext variables and linear in ciphertext variables.
However Patarin found [15] that Dragon scheme with one hidden monomial is insecure.

A public key scheme based on the composition of tame transformation methods (TTM)
was proposed in 1999[23]. This scheme has been broken in 2000[24], where the cryptanalysis is
reduced to an instance of the Min-Rank problem that can be solved within a reasonable time.
In 2004 Ding [20] proposed a perturbed variant of MIC* cryptosystem called PMI. The PMI
system attempts to increase the complexity of the secret key computations in order to increase
security, using a system of r arbitrary quadratic equations over Fq with the assumption that
r << n, where n is the bitsize. The PMI Cryptosystem was broken by Fouque, Granboulan
and Stern [21]. The trick of the attack on PMI is to use differential cryptanalysis to reduce
the PMI system to the MIC* system. A cryptosystem called Medium Field Equation (MFE)
was proposed in 2006[25] and was broken by Ding in 2007[26] using high order linearization
equation attack. For a detailed introduction of multivariate public key cryptography, we refer
the interested readers to [9]. An interesting introduction of hidden monomial cryptosystems
can be found in reference[10].

Designing secure and efficient multivariate public key cryptosystem continues to be a chal-
lenging area of research in recent years. In this paper we present a new method for designing
efficient multivariate public key cryptosystem by overcoming all the known attacks. We are
using permutation p-polynomials to construct a non-linear trapdoor function. Like Dragon
cryptosystems the public key in our cryptosystem is of mixed type but it is possible to reduce
the public key size by writing it as two sets of quadratic multivariate polynomials [15]. In our
cryptosystem the decryption is possible by using only O(m2) left cyclic shifts and O(m2) xor
operations and this results in much faster decryption. The complexity of encryption is equiv-
alent to other multivariate public key cryptosystems that is O(m3) multiplications, where m

is the bit size. The outline of our paper is as follows. In section 2 we give preliminaries and in
section 3 we characterize a class of permutation p-polynomials. Then in section 4 we present
our cryptosystem. In section 5 we give the security analysis of our cryptosystem and in section
6 we discuss the efficiency of our cryptosystem. We compare our cryptosystem with HFE in
section 7.Finally we conclude in section 8.
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2 Preliminaries

Let q be a prime power and let Fq denote the finite field of order q. We will denote an extension
of Fq of degree m by Fqm . An element ϑ ∈ Fqm is said to be normal over Fq if the elements
ϑ, ϑq, . . . , ϑqm−1

form a basis of Fqm over Fq. In that case the set B = {ϑ, ϑq, . . . , ϑqm−1} is
called a normal basis of Fqm over Fq. Any element x of Fqm can be expressed as x =

∑m−1
i=0 xiϑ

qi

where xi ∈ Fq. Thus Fqm can be identified by Fm
q , the set of all m-tuples over Fq, and x ∈ Fqm

can be written as (x0, x1, . . . xm−1). If we take the normal basis representation of finite field
Fqm over Fq, then the operation x 7→ xq is (xm−1, x0, . . . , xm−2) which is just one left cyclic
shift of (x0, x1, . . . , xm−1). Hence the cost of exponentiating by q is negligible. From now on
we will take normal basis representation of finite field Fqm over Fq with respect to normal basis
B. When q = 2, we define the weight of x as the number of 1’s in (x0, x1, . . . , xm−1), and
denote it by w(x).

A polynomial f over Fq is called a permutation polynomial of Fq if the polynomial f induces
a one-one map on Fq onto itself. Permutation polynomials have been a subject of study for
almost one and a half century see [6], [7] and Chapter 7 of [8]. A polynomial L(x) ∈ Fqm [x] is
called a p- polynomial or linearized polynomial over Fq if

L(x) =
k∑

i=0

αix
qi

. (1)

The p-polynomial L(x) satisfies the following: L(β + γ) = L(β) + L(γ) and L(aβ) = aL(β)
for all β, γ ∈ Fqm and a ∈ Fq. Thus, L : x 7→ L(x) is a linear operator of the vector space Fqm

over Fq. Consequently, L(x) is a permutation polynomial of Fqm if and only if 0 is the only
root of L(x) in Fqm .

Corresponding to an element α = (α0, α1, . . . , αm−1) of the finite field Fqm , we define a
p-polynomial Lα(x) on Fqm as

Lα(x) =
m−1∑
i=0

αix
qi

. (2)

It is known that each function on Fqm is given by a unique polynomial of degree at most qm−1
(see chapter 7 of [8]). Since the polynomial Lα(x) is of degree at most qm − 1, the distinct
polynomials Lα(x) are all distinct as functions on Fqm .

Definition 2.1 Suppose α = (α0, α1, . . . , αm−1) and β = (β0, β1, . . . , βm−1), αi, βi ∈ Fq, are
two elements of finite fields Fqm. We define the convolution α ∗ β of α and β by

α ∗ β = (γ0, γ1, . . . , γm−1)

where

γk =
m−1∑
i=0

αi mod mβ(k−i) mod m.

Suppose Lα ◦Lβ denotes the composition of linearized polynomials Lα and Lβ . Then it can be
easily verified that Lα ◦Lβ = Lα∗β . Therefore we can conclude that the linearized polynomials

3



Lα(x) form a semigroup with identity. Let L(m) denote the group of all invertible linearized
polynomials Lα(x) over Fqm . In section 3, we will identify L(m) with an appropriate subgroup
of the general linear group GL(m, Fq). Moreover we will characterize elements of L(m) for
certain values of m and thereby show that the groups L(m) are quite large.

3 Characterization of the group L(m), for m = 2k

A characterization of a linearized polynomial to be a permutation was given by Dickson [3],
which is as follows:

Theorem 3.1 [3] The linearized polynomial

L(x) =
m−1∑
s=0

csx
qs ∈ Fqm [x]

is a permutation polynomial of Fqm if and only if∣∣∣∣∣∣∣∣∣∣∣

c0 cq
m−1 cq2

m−2 · · · cqm−1

1

c1 cq
0 cq2

m−1 · · · cqm−1

2
...

...
...

. . .
...

cm−1 cq
m−2 cq2

m−3 · · · cqm−1

0

∣∣∣∣∣∣∣∣∣∣∣
6= 0. (3)

An m×m matrix A over a field F is said to be circulant if it has the form

A =


a0 am−1 am−2 · · · a1

a1 a0 am−1 · · · a2

...
...

...
. . .

...
am−1 am−2 am−3 · · · a0

 . (4)

Let ek denote the kth column of the identity matrix I and R be the matrix (e2, e3, . . . , em, e1)
obtained by a permutation of columns of I. Clearly m is the least positive integer such that
Rm = I. Let a denote the vector (a0, a1, . . . , am−1)T and A the circulant matrix as in equation
(4). Then we have

A = (a,Ra,R2a, . . . , Rm−1a) (5)

= a0I + a1R + a2R
2 + . . . + am−1R

m−1. (6)

We will denote the circulant matrix A by cir(a0, a1, . . . ,

am−1). The product of any two circulant matrices A and B, where A = cir(a0, a1, a2, . . . , am−1)
and B = cir(b0, b1, b2, . . . , bm−1) is again circulant:

AB = cir(d0, d1, d2, . . . , dm−1),

where dk =
m−1∑
i=0

ai(mod m)bk−i(mod m). (7)

It is known that the inverse of a nonsingular circulant matrix is circulant (see [5]). Thus the
nonsingular circulant matrices over a field F form a subgroup of the general linear group of F.
In view of equation (5), we note that this group is abelian. We denote this group by C(F,m).
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Lemma 3.1 For m ≥ 1, the groups C(Fq,m) and L(m) are isomorphic.

Proof. We define a mapping φ : L(m) → C(Fq,m) as follows:

φ(Lα) = cir(α0, α1, . . . , αm−1)

where α = (α0, α1, . . . , αm−1). Since αi ∈ F2 in Theorem 3.1, the determinant in (3) is that of
the circulant matrix cir(α0, α1, . . . , αm−1). Thus Lα is invertible if and only if cir(α0, α1, . . . , αm−1)
is nonsingular. In other words, φ is a bijection. It follows from equation (7) that φ is a group
homomorphism.

Proposition 3.1 If m = 2k for some k ≥ 0, then the polynomial Lα(x) is a permutation of
Fqm if and only if w(α) is odd.

Proof. Let α =
∑m−1

i=0 αiq
i. If w(α) is even, then Lα(x) has 0 and 1 as roots, and therefore is

not a permutation. Next suppose that w(α) is odd. Then

cir(α0, α1, α2, . . . , αm−1)2
k

= (α0I + α1R + α2R
2, . . . + αm−1R

m−1)2
k

= α0I + α1R
2k

+ α2(R2k
)2 + . . . + αm−1(R2k

)m−1

= α0I + α1I + α2I + . . . + α2k−1I = I.

This implies that cir(α0, α1, . . . , αm−1) is invertible and therefore in view of Lemma 3.1, Lα(x)
is a permutation polynomial.

In the proof of above proposition we are taking q = 2, the proof is same for any q of the
form ps, s ≥ 1 and m = pk . In that case the condition ‘w(α) is odd’ will be replaced by∑m−1

i=0 αi 6= 0 in Fq.

Corollary 3.1 Let Fqm is a finite field, with m = 2k, k ≥ 0. Let Lj
α(x) denote the jth times

composition of Lα(x) with itself. If weight of α is odd, then the inverse polynomial of Lα(x) is
L2k−1

α (x).

Proof. The result follows by noting that
(cir(α0, α1, . . . , αm−1))2

k
= I.

Lemma 3.1 implies, in particular, that the group L(m) is abelian. Since there are 2m−1

different α with odd weight, L(m) has order 2m−1 when m = 2k. For q = 2, the converse of
proposition 3.1 is true and can be seen in the following proposition.

Proposition 3.2 Let the integer m be such that Lα(x),
α = (α0, α1, . . . , αm−1), is a permutation polynomial over Fqm whenever w(α) is odd. Then
m = 2k for some k ≥ 0.

Proof. Since Lα(x) is not a permutation polynomial when w(α) is even, we have 2m−1 as the
order of L(m) and therefore that of C(F2,m).
Now R = (e2, e3, . . . , em, e1) is an element of C(F2,m) of order m. Thus m divides 2m−1 and
has the required form.
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Lemma 3.2 Fqm is finite field and α, β are two elements of Fqm. Let α = (α0, α1, α2, . . . , αm−1)
and β = (β0, β1, β2, . . . , βm−1) then we have Lα(β) = Lβ(α).

Proof. The proof of this lemma is consequence of the fact that
cir(α0, α1, . . . , αm−1)(β0, β1, . . . , βm−1)T = cir(β0, β1, . . . , βm−1)(α0, α1, . . . ,

αm−1)T and Lα(β) = cir(α0, α1, . . . , αm−1)(β0, β1, . . . , βm−1)T.

Proposition 3.3 Suppose α = (α0, α1, . . . , αm−1) is an element of Fqm over Fq. Then α is
normal element of Fqm over Fq if and only if Lα(x) is a permutation polynomial of Fqm.

Proof. Suppose α is normal element of Fqm over Fq. Then for all y ∈ Fqm there exist x ∈ Fqm

such that y = Lx(α) or y = Lα(x). This implies Lα(x) is a permutation of Fqm . Conversely
suppose that Lα(x) is permutation of Fqm . Then Lα(x) = Lx(α) = y has a unique solution for
all y ∈ Fqm . This implies that α is a normal element Fqm over Fq.

Thus we see that there is a one-one correspondence between normal elements of Fqm over Fq

and the linear permutation polynomials of the form Lα(x). Using the above proposition we
can easily count the normal elements of Fqm over Fq.

Corollary 3.2 Let Fqm is a finite field, with m = pk, k ≥ 0. Then total number of normal
elements of Fqm over Fq is qm−qm−1, that is for m = 2k, q = 2 the number of normal elements
are 2m−1.

Suppose α is normal element of Fqm over Fq and f ∈ L(m), then it can be easily verified
that f(α) is also normal element. Thus in view of proposition 3.3, we can state the following
corollary:

Corollary 3.3 Suppose for α ∈ Fqm, Lα(x) is permutation polynomial of Fqm and f ∈ L(m)
is any arbitrary element, then Lf(α)(x) is also a permutation polynomial of Fqm.

4 Public key Cryptosystem

In this section we present our multivariate public key cryptosystem using results from the
previous section. Our cryptosystem will work in any arbitrary finite field Fqm , m = pk. But
for practical view point we need only q = 2, so we will assume that q = 2 and m = 2k. To
obtain the quadratic polynomials we use the convolution of bits. We have seen that convolution
of binary bits is equivalent to the composition of corresponding p-polynomials. We know that
composition of two permutation p-polynomial is a permutation p-polynomial so the convolution
of two odd weight binary strings is an odd weight binary string. For x ∈ Fqm , (x)t denotes
the t times convolution of x with itself. The set of all odd weight element of Fm

q is denoted by
OFm

q . To describe our cryptosystem systematically we need the next two lemmas.

Lemma 4.1 Suppose x = (x0, x1, . . . , xm−1) is an element of Fm
q . If (x)t = (h0, h1, . . . , hm−1),

then hi are non-linear functions of xi of degree w(t), where w(t) denotes the Hamming weight
of t.
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Proof: Since x2
i = xi and by definition of convolution, the bits of (x)2 are linear function of

xi and it can be verified easily that if (x)2 = (c0, c1, . . . , cm−1), then c2i+1 = 0 and c2i = xi +
xm/2+i. By definition of convolution the bits of (x)3 will be quadratic multivariate polynomials.
This implies that if G = (g0, g1, . . . , gm−1) and gi are non linear polynomials of degree d and
suppose (G)2

l
= (g

′
0, g

′
1, . . . , g

′
m−1) and (g

′′
0 , g

′′
1 , . . . , g

′′
m−1) denotes the value of (G)2

l+1, where
l ≥ 1 then the degrees of g

′
i and g

′′
i are d and d + 1 respectively. This proves the lemma.

Lemma 4.2 The function defined by h(x) = (x)t, where t is co-prime to m is a bijection from
OFm

q to OFm
q itself.

Proof. Since t and m are co-prime, there exist integers r and k such that t.k = 1+r.m. Suppose
y = h(x) = (x)t, this implies that Ly = L(x)t = Lt

x or Lk
y = Lrm+1

x . But by proposition 3.1
we know (Lx)m = Lϑ, where Lϑ is the identity mapping. Thus we have Lx = Lk

y = L(y)k or
x = (y)k. This proves the lemma.

4.1 Public Key Generation

Consider a message of m − 1 bit string (x0, x1, . . . , xm−2), where m is of the form 2k. We
adjoin an additional bit xm−1 to make the weight odd. After decryption one can just ignore
the last bit xm−1. So we can assume that message X = (x0, x1, . . . , xm−1) is an m bit odd
weight element of the finite field F2m . Suppose Lα, Lβ, Lγ and Lδ, Lη are elements of the
group L(m) and Lξ, Lζ are elements of the group L(2m). Let π1,π2, π3, π4 and π5 be random
permutations of {0, 1, 2, . . . ,m−1}, and π6, π7 be random permutations of {0, 1, 2, . . . , 2m−1}.
Now compute T

′
1 = Lα ◦ π1, T

′
2 = Lβ ◦ π2, T

′
3 = Lγ ◦ π3, T

′
4 = Lδ ◦ π4, T

′
5 = Lη ◦ π5,

T
′
6 = Lξ ◦ π6 and T

′
7 = Lζ ◦ π7, where Lα′ ◦ πi denotes the composition of  Lα′ and the

permutation πi, for 1 ≤ i ≤ 7 and α′ ∈ {α, β, γ, δ, η, ξ, ζ}. Now define the affine transformation
Tr(X) = T

′
r(X) + σr for 1 ≤ r ≤ 7 where σr for 1 ≤ r ≤ 5 is an even weight element of

F2m and σ6, σ7 are even weight element of F22m . Note that if X is an odd weight element of
finite field F2m , then T

′
r(X) and Tr(X) are also odd weight element of F2m . Thus Tr(X) is a

bijection of OF2m . Now compute X
′

= T1 (X), X
′′

= T2 (X). Again compute T3

(
(X

′
)2 ∗X

′′
)

and T4

(
X

′ ∗X
′′
)

+ T5

(
(X

′
)2 ∗X

′′
)

. Suppose the quadratic polynomials fi and fm+i denote

the ith bits of T3

(
(X

′
)2 ∗X

′′
)

and T4

(
X

′ ∗X
′′
)

+T5

(
(X

′
)2 ∗X

′′
)

respectively in the normal

basis representation. Suppose ϑ
′

is the normal element of finite fields F22m and B
′

denotes
the normal basis of F22m over F2 corresponding to the normal element ϑ

′
. Now consider the

2m bits (f0, f1, . . . , f2m−1) as an element of F22m corresponding to the basis B
′
. Ciphertext

Y = (y0, y1, . . . , y2m−1) is an element of odd weight in F22m . Suppose Z = T6 (Y ). Suppose
λ and σ are elements of F22m of even and odd weight respectively. Then by lemma 4.2 the
function λ+σ∗(Z)2m−1 is a bijection of OF22m . The relation between plaintext and ciphertext
is:

T7 (f0, f1, . . . , f2m−1) = λ + σ ∗ (Z)2m−1

i.e., F (X) = λ + σ ∗ [T6(Y )]2m−1 (8)
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From equation 8 and using corollary 3.1 and using the fact that convolution operation is
distributive over addition in finite fields, that is, a ∗ (b + c) = a ∗ b + a ∗ c for a, b, c ∈ F22m ,
Alice has the following relation between the plaintext and ciphertext:

T7 (f0, f1, . . . , f2m−1) ∗ Z + λ ∗ Z + σ = 0 (9)

Equation 9 gives the 2m polynomial equations of total degree 3 in variables {x0, x1, . . . , xm−1;
y0, y1, . . . , y2m−1} but only of degree 1 in variables yi. Thus we get 2m equations of the form∑

aijkxixjyk +
∑

bijxiyj +
∑

cijxixj +
∑

dkyk

+
∑

ekxk + fl (10)

Terms aijklxixjyk and bijlxiyj and dkyk always will be there, others terms may not be there.
The equation 10 is of degree three, so in one equation of the form 10, there will be O(m3) terms
and we have 2m equations, so total size will be of O(m4), which is large. But it is possible to
reduce the size of polynomial equations shown in 10 up to O(m3) by writing it as a two sets of
public polynomials containing only quadratic terms (without changing the security since this
can be done in polynomial time) see [15]. Thus the public key will be two sets of 2m quadratic
equations of the form:

∑
gkyk +

∑
bijxiyj +

∑
dkyk +

∑
ekxk + fl

where
gk =

∑
hijkxixj

The results in section 3 are true for any arbitrary prime power number q so the public key size
can be further reduced by taking m which is not too large (for example m=32) and q which is
not too small.

4.2 Secret Key

The linear transformations (T1, T2, T3, T4, T5, T6, T7) and finite fields elements (λ, σ) are the
required secret keys.

4.3 Encryption

If Bob wants to send a message M = (x0, x1, . . . , xm−1) to Alice, he substitutes the plain-
text vector in the public key and solves the resulting linear equations for the ciphertext
Y = (y0, y1, . . . , y2m−1). Bob will get a unique ciphertext because our encryption function
is injective. Given a ciphertext Y , the public equations are nonlinear in xi. It follows from
equation 8 that our encryption function is:

E(X) = Y = T−1
6

[ (
(F (X) + λ) ∗ (σ)2m−1

)2m−1
]
,

where F (X) = T7(f0, f1, . . . , f2m−1).
(note that ((t)2m−1)2m−1 = t in F2m .)
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Theorem 4.1 The encryption function E is well defined and bijective from OF2m to E(OF2m),
where E(OF2m) denotes the set of all imaged elements of OF22m.

Proof. Suppose X1, X2 ∈ OF2m . It is easy to verify that X1 = X2 implies E(X1) = E(X2).
Now we assume that E(X1) = E(X2) that is
T−1

6

[ (
(F (X1) + λ) ∗ (σ)2m−1

)2m−1
]

= T−1
6

[ (
(F (X2) + λ) ∗ (σ)2m−1

)2m−1
]

i.e.,
(
(F (X1) + λ) ∗ (σ)2m−1

)2m−1 =
(
(F (X2) + λ) ∗ (σ)2m−1

)2m−1.
Note that (F (X1) + λ) ∗ (σ)2m−1 and (F (X2) + λ) ∗ (σ)2m−1 are elements of OF22m , so by
lemma 4.2 we have

(F (X1) + λ) ∗ (σ)2m−1 = (F (X2) + λ) ∗ (σ)2m−1

Now taking the convolution both sides by σ and noting that (σ)2m = ϑ′, the identity of
convolution. We have

F (X1) = F (X2)

i.e, T3

(
(X

′
1)2 ∗X

′′
1

)
= T3

(
(X

′
1)2 ∗X

′′
1

)
and T4

(
X

′
1 ∗X

′′
1

)
+ T5

(
(X

′
1)2 ∗X

′′
1

)
= T4

(
X

′
2 ∗X

′′
2

)
+ T5

(
(X

′
2)2 ∗X

′′
2

)
. From these two relations we have

(X
′
1)2 ∗X

′′
1 = (X

′
2)2 ∗X

′′
2

and
X

′
1 ∗X

′′
1 = X

′
2 ∗X

′′
2

that is
X

′
1 ∗ (X

′
2 ∗X

′′
2 ) = X

′
2 ∗ (X

′
2 ∗X

′′
2 )

which implies
X

′
1 = X

′
2 =⇒ X1 = X2.

4.4 Decryption

To recover the original message M from the ciphertext Y = (y0, y1, . . . , y2m−1) Alice uses her
private key (T1, T2, T3, T4, T5, T6, T7, λ, σ) and the relation 8. First she computes Z = T6 (Y ).
To compute (Z)2m−1 efficiently she takes the linearized polynomial corresponding to Z and
takes an element of group L(m) and its inverse, say Lα and L−1

α , and then repeatedly computes
LZ(α), L2

Z(α), . . . , L2m−1
Z (α). Note that L2m−1

Z (α) = L(Z)2m−1(α). But by lemma 3.2, we
have, L(Z)2m−1(α) = Lα((Z)2m−1). Thus (Z)2m−1 = L−1

α

(
L2m−1

Z (α)
)
. Thus computation of

convolution of finite field elements can be done using only left cyclic shifts and xor operations
and therefore it is very efficient. From now onwards we will be using this efficient technique
to compute convolution. Now Alice computes Z

′
= λ + σ ∗ (Z)2m−1 and then ∆ = T−1

7 (Z
′
).

Suppose ∆ = (δ0, δ1, . . . , δ2m−1), ∆1 = (δ0, δ1, . . . , δm−1), ∆2 = (δm, δm+1, . . . , δ2m−1). Now
Alice has T3

(
(X

′
)2 ∗X

′′
)

= ∆1 and ∆2 = T4

(
X

′ ∗X
′′
)

+ T5

(
(X

′
)2 ∗X

′′
)

. Now she

computes X
′ ∗X

′′
= T−1

4

(
∆2 + T5

(
T−1

3 (∆1)
))

and (X
′
)2∗X

′′
= T−1

3 (∆1) Now Alice does the
following computations, she computes LX′∗X′′ (α) and L(X′ )2∗X′′ (α). Suppose θ = LX′∗X′′ (α).
Now Alice takes the linearized polynomial corresponding to θ that is Lθ and computes the
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inverse of Lθ. By corollary 3.1 we know that L−1
θ = Lm−1

θ and we can compute Lm−1
θ very

efficiently by the procedure described above using only left cyclic shifts and xor operations on
bits. Now we have L(X′ )2∗X′′ (α) = LX′ (θ) and by lemma 3.2 we have LX′ (θ) = Lθ(X

′
). Now

Alice computes X
′

= L−1
θ (Lθ(X

′
)) and X = T−1

1 (X
′
) is the required secret message.

5 The Security of the proposed Cryptosystem

In this section we discuss the security of the proposed cryptosystem. In general it is very
difficult to prove the security of a public key cryptosystem [31], [32]. For example if the public
modulus of RSA is decomposed into its prime factors then the RSA is broken. However it is
not proved that breaking RSA is equivalent to factoring its modulus, see [33]. In this section
we will give some security arguments and evidence that our cryptosystem is secure. Most
of the multivariate public key cryptosystems use the structure t(f(s(x))), where t and s are
secret invertible linear transformation and f(x) is a quadratic non linear function. Hiding
f(x) by two linear transformations is not working very effectively (see the attack of Kipnis
and Shamir on HFE [16]). We are using a different structure and we will prove that our struc-
ture is more secure than the t(f(s(x))) structure. In our cryptosystem the function f(x) is
(x ∗x ∗x, x ∗x + x ∗x ∗x) so t(f(s(x))) = t (s(x) ∗ s(x) ∗ s(x), s(x) ∗ s(x) + s(x) ∗ s(x) ∗ s(x)).
We are taking simpler case, suppose we are not using the transformations T3, T4 and T5

then in our structure, will be T7 (F1(X), F2(X)), where F1(X) = T1(x) ∗ T1(x) ∗ T2(x)and
F2(X) = T1(x) ∗ T2(x) + T1(x) ∗ T1(x) ∗ T2(x). It is clear that if T1 = T2 then our structure
will be equivalent to t(f(s(x))). Thus if it is possible to attack our structure then it is also
possible to attack t(f(s(x))) structure. This proves that our structure is more secure than
the commonly used structure, that is t(f(s(x))), in multivariate cryptography. Moreover our
quadratic part of plaintext is hidden because in our cryptosystem the public polynomials are
the m bit representation of F (X) ∗ Z + λ ∗ Z + σ where F (X) = T7(f0, f1, . . . , f2m−1) and
Z = T6(Y ). From F (X) ∗ Z + λ ∗ Z + σ it is not possible to compute either F (X), Z, λ and
σ because F (X) ∗ Z is equivalent to the composition of corresponding p-polynomials and in
general it is very difficult to decompose the composition of two functions. We are using affine
transformations, so the bitwise representation of F (X) ∗ Z will give the terms of the form
dkyk + ck also. So it is not possible to find λ and σ from the public key. Here we discuss some
known attacks developed for multivariate cryptosystems and we will show that those attacks
are not applicable to our cryptosystem. The attacks discussed in this section are Grobner basis,
univariate polynomial representation, Linearization, Relinearization, XL and FXL algorithms.

5.1 Linearization Equation Attacks

Let F = {f0, f1, . . . , fm−1} be any set of m polynomials in Fq[x0, x1, . . . , xm−1]. A linearization
equation for F is any polynomial in Fq[x0, x1, . . . , xm−1 : y0, y1, . . . , ym−1] of the form

m−1∑
i=0

m−1∑
j=0

aijlxiyj +
m−1∑
i=0

bilxi +
m−1∑
j=0

cjlyj + dl (11)
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where l = 0, 1, . . . ,m− 1.
This attack was first successfully applied by Patarin in [13] to break the Matsumoto-Imai
cryptosystem C∗ [12]. The idea of Patarin was to notice that if a function is defined as
F : x → xqi+1, then a relation between plaintext (x0, x1, . . . , xm−1) and ciphertext (y0, y1, . . . ,

ym−1) of the form shown in equations (11) can be established, where aij , bi, cj and dl are
unknown coefficients. By taking at least (m + 1)2 different plaintext and ciphertext pairs a
linear system of equations can be established and solved. We are not taking any function
of the form xqi+1. Moreover in our cryptosystem the plaintext and ciphertext are connected
by the relation (8) and T6, λ and σ are secrets. So in our case it is not possible to obtain
a relation of the form (11). However, somebody can try to find a relation which is linear in
xi and nonlinear in yj . We will prove that this line of attack is not possible as the degree
of the inverse function is very high. From the relation (8) we have (f0, f1, . . . , f2m−1) =
T−1

7 (Z
′
). Note that Z

′
= λ + σ ∗ (Z)2m−1 and Z = T6 (Y ) so T−1

7 (Z
′
) will give w(2m − 1)

degree non-linear polynomials in ciphertext variables. Suppose T−1
7 (Z

′
) = (Z0, Z1, . . . , Z2m−1).

Then we have the following relations between plaintext and ciphertext T3

(
X

′ ∗X
′ ∗X

′′
)

=

(Z0, Z1, . . . , Zm−1) and T4

(
X

′ ∗X
′′
)

+ T5

(
X

′ ∗X
′ ∗X

′′
)

= (Zm, Zm+1, . . . , Z2m−1). Using
these two relations one can get the following relation between the plaintext and ciphertext:

X
′ ∗ T−1

4 ◦ T5

(
Z

′
)

+ T−1
4 (Zm, Zm+1, . . . , Z2m−1) = Z

′′
(12)

here X
′

= T1 (X) and Z
′′

= T−1
3 (Z0, Z − 1, . . . , Zm−1) and T1, T2, T3, T4, T5, T6 are unknown

linear transformations. Note that the relation (12) is of total degree w(2m− 1) + 1, w(2m− 1)
degree in ciphertext and one degree in plaintext. Most crucially the degree of relation (12) is
not constant but function of m. Thus to attack the cryptosystem we need Gaussisn reduction
on O

(
mw(2m−1)+1

)
terms which is impractical for bit size greater than or equal to 64 because

for m = 64, w(2m− 1) + 1 = 8.

5.2 Attacks with Differential Cryptanalysis

Differential cryptanalysis has been successfully used earlier to attack the symmetric cryptosys-
tem. In recent years differential cryptanalysis has emerged as a powerful tool to attack the
multivariate public key cryptosystems too. In 2005 [21] Fouque, Granboulan and Stern used
differential cryptanalysis to attack the multivariate cryptosystems. The key point of this at-
tack is that in case of quadratic polynomials the differential of public key is a linear map and
its kernel or its rank can be analyzed to get some information on the secret key. For any
multivariate quadratic function G : Fn

q → Fm
q the differential operator between any two points

x, k ∈ Fn
q can be expressed as LG,kG(x + k) − G(x) − G(k) + G(0) and in fact that operator

is a bilinear function. By knowing the public key of a given multivariate quadratic scheme
and by knowing the information about the nonlinear part (xqi+1) they showed that for certain
parameters it is possible to recover the kernel of LG,k. This attack was successfully applied
on Ding’s cryptosystem [20] and afterwards using the same technique Dubois, Fouque, Shamir
and Sterm in 2007 [27] have completely broken all versions of the SFLASH signature scheme
proposed by Patarin, Courtois, and Goubin [22]. In our cryptosystem we are not using any
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polynomial of the form xqi+1. Moreover the public key in our system is not quadratic but of
total degree 3, quadratic in plaintext variables and degree one in ciphertext variables. Sub-
stituting the ciphertext gives quadratic plaintext variables but in that case it will be different
for different ciphertexts. So to attack our cryptosystem by the methods of [21] and [27] is not
feasible.

5.3 Univariate polynomial representation of Multivariate Public Polynomi-

als

As the encryption function is from finite field F2m to finite field F22m so we can not directly
represent the encryption function by a polynomial. But it is possible by introducing dummy
variables xm, xm+1, . . . , x2m. In our cryptosystem the relation between the plaintext and ci-
phertext is F (X) = λ + σ ∗ (Z)2m−1, F (X) = T7(f0, f1, . . . , f2m−1). We have Y = T−1

6 (G(X))
where, G(X) =

(
(F (X) + λ) ∗ σ2m−1

)2m−1. Note that F (X) is non linear of degree 2, so that
T−1

6 (G(X)) will give 2m multivariate polynomials of degree 2.w(2m − 1). By lemma 3.3 of
[16] the degree of univariate polynomial representation is not constant but it is function of
m. Thus the degree and the number of nonzero terms of the univariate polynomial represen-
tation of encryption function are both O(mm) . The complexity of root finding algorithms
e.g. Berlekamp algorithm, is polynomial in the degree of the polynomial. This results in an
exponential time algorithm to find the roots of univariate polynomial. Therefore this approach
is less efficient than the exhaustive search.

5.4 Grobner Basis Attacks

After substituting the ciphertext in public key one can get 2m quadratic equations in m

variables and then Grobner basis techniques can be applied to solve the system. The classi-
cal algorithms for solving the system of multivariate equations is Buchberger’s algorithm for
constructing Grobner basis see [11]. Theoretically it can solve all the multivariate quadratic
equations. However its complexity is exponential in the number of variables, although there
is no closed-form formula for it. In the worst case the Buchberger’s algorithm is known to
run in double exponential time and on average its running time seems to be single exponential
(see [28]). There are some efficient variants F4 and F5 of Buchberger’s algorithm given by
Jean-Charles Faugere (see [29] and [30]). The complexity of computing a Grobner basis for
the public polynomials of the basic HFE scheme is not feasible using Buchberger’s algorithm.
However it is completely feasible using the algorithm F5. The complexities of solving the
public polynomials of several instances of the HFE using the algorithm F5 are provided in
[19]. Moreover it has been expressed in [19] “a crucial point in the cryptanalysis of HFE is
the ability to distinguish a randomly algebraic system from an algebraic system coming from
HFE”. Instead of using any polynomial of special form we are using convolution operation
to construct the public polynomials. Moreover our public key is of mixed type, this mean for
different ciphertexts we will get different system of quadratic polynomial equations, so in our
public key the quadratic polynomials looks random. We have already seen that the degree
of univariate polynomial representation of encryption function is proportional to m. It is ex-
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plained in [19] that in this case there does not seem to exist polynomial time algorithm to
compute the Grobner basis. Hence to attack our cryptosystem by Grobner basis method is
not feasible.

5.5 Relinearization, XL and FXL Algorithms

It is now clear that attack of [16] is not applicable to our cryptosystem. However the adversary
may directly apply the Relinearization, XL or FXL algorithm. The main problem in applying
the techniques to solve the quadratic equations directly is that our public key is of mixed type,
this means for different ciphertexts we have to solve the different system of quadratic non linear
equations. In the following we show that to attack the cryptosystem by this approach is not
possible.

The Relinearization technique is developed in [16] for solving over defined system of quadratic
equations. Unfortunately (or fortunately) it is shown in [28] that the Relinearization technique
is not as efficient as one may expect since many of newly generated equations are dependent.
Hence the XL (extended relinearization) technique has been proposed in [28]. It is claimed
to be the best algorithm for solving over defined multivariate equations. However when the
number of equations is m + r for some 1 ≤ r ≤ m then XL has exponential complexity [28]. In
our cryptosystem r = m. Hence the XL algorithm can not be directly used to attack our cryp-
tosystem. A variant of the XL algorithm called FXL, was introduced in [28]. In this algorithm
some variables are guessed to make the system slightly over defined. Then the XL algorithm
is applied. The main question is how many variables must be guessed. Although more guesses
make the system more unbalanced they add to the complexity of the algorithm. The optimum
number of guesses is provided in [28]. Using this optimum value the FXL has the exponential
complexity for solving the system of public polynomials in proposed cryptosystem. Hence The
FXL algorithm is not applicable to our cryptosystem.

6 Complexity and number of operations for encryption and

decryption

In this section we give complexity of the encryption and decryption of our cryptosystem.

6.1 Encryption

The public key in our cryptosystem consists of 2m equations of the form (10). There are
O(m2) terms of the form xixj in each 2m equations of the public key so the complexity of
evaluating public key at message block x0, x1, . . . , xm−1 is O(m3). The next step of encryption
is to solve the 2m linear equation in 2m ciphertext variables y0, y1, . . . , y2m−1. This can be
done efficiently by Gaussian elimination in O(m3) complexity. Hence the total complexity of
encryption is O(m3).
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6.2 Decryption

In our cryptosystem decryption is very fast. In decryption we are using the operations: permu-
tation of bits, xor and left cyclic shifts of bits. In this section we will count the total number of
operations to describe the exact efficiency of our cryptosystem. To operate Ti or T−1

i , 0 ≤ i ≤ 5
on a m bit string we need one permutation on bits and at most m− 2 left cyclic shifts and m

xor operations. To operate Ti or T−1
i , for i = 6, 7 on a 2m bit string we need one permutation

on 2m bits and at most 2m− 2 left cyclic shifts and 2m xor operations. To compute (Z)2m−1,
where Z is 2m bit string, we need at most (2m − 1)(2m − 2) + 2m − 2 left cyclic shifts and
at most (2m − 1)2 + 2m − 1 xor operations. Thus to compute L−1

θ where θ is m bit binary
string we need at most (m− 1)(m− 2) + m− 2 left cyclic shifts and at most (m− 1)2 + m− 1
xor operations. Thus we see that in decryption we need O(m2) xor operations and O(m2) left
cyclic shifts operations.

7 Comparison with HFE

In our cryptosystem the complexity of encryption is O(m3), i.e., equivalent to that of HFE.
But the decryption is faster than HFE. In HFE the decryption is slow because one needs
to compute the roots of a polynomial. The decryption complexity of HFE is O

(
n4d2log(d)

)
where d is the degree of HFE polynomial. Note that for security reasons one can not take
smaller degree. Due to this the decryption process in HFE is slow. In our cryptosystem we
are using left cyclic shifts and xor operations resulting much faster decryption process. In our
cryptosystem we need O(m2) left cyclic shifts and O(m2) xor operations to decrypt a message.
Public key size of HFE is of O(m3) terms. In our cryptosystem public key size is bigger than
HFE but it is also of O(m3) as it is possible to write public key as two sets of quadratic public
polynomials. Secret key generation in our public key cryptosystem is faster than HFE because
for secret keys we have to select random odd weight and even weight binary strings and random
permutations.

8 Conclusion and Future Work

In this paper we show how permutation p-polynomials can be used to design an efficient pub-
lic key cryptosystem. We characterize permutation p-polynomials over finite field Fqm for
m = pkand use these to construct a trapdoor function. Computations with these polynomials
are fast which makes them useful. As far as we know these permutation p-polynomials were
never used before to design a public key cryptosystem. In our cryptosystem the public key is
of mixed type of total degree three, two in plaintext variable and one in cipher text variable.
However it is possible to reduce the public key size by writing it as a two sets of quadratic
polynomials. Further investigations to develop an efficient cryptosystem using these permuta-
tion p-polynomials with public of two degree in plaintext variable can be an interesting topic
of future work. The bit size in our public key cryptosystem is of the form 2k. It is desirable
to extend this cryptosystem for an arbitrary bit size with same level of efficiency. This can be
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done by characterizing permutation p-polynomials over finite field Fqm for arbitrary m and by
giving efficient method to find their inverse.
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10 Appendix

Example 1. x + x2 + x4, x + x2 + x8, x2 + x4 + x8 are permutation polynomials of F24 and
their inverses are x + x4 + x8, x + x2 + x8 and x2 + x4 + x8 respectively.
x+x2 +x4, x+x2 +x8 and x+x2 +x4 +x8 +x16 are permutation polynomials of F28 and their
inverses are x2 + x4 + x16 + x32 + x128, x + x4 + x32 + x64 + x128 and x2 + x8 + x64 respectively.

Here is the toy example of our public key cryptosystem.
Example 2. We are taking the finite field F24 and λ = 0 and σ = (1, 0, 0, 0, 0, 0,

0, 0). Suppose ϑ
′

is the normal element of F28 and we are taking the normal basis repre-

sentation of F28 with respect to ϑ
′
. Suppose T1 = π1 =

(
0 1 2 3
2 0 3 1

)
and T2 = π2 =(

0 1 2 3
3 2 1 0

)
and T3, T4, T5 are x + x2 + x4, x2 + x4 + x8, x + x2 + x8 respectively,

T6 = π6 =

(
0 1 2 3 4 5 6 7
3 1 5 0 4 2 6 7

)
and T7 = π7

(
0 1 2 3 4 5 6 7
5 3 7 2 1 0 4 6

)
. Mes-

sage M = (x0, x1, x2, x3),
T1(M) = M

′
= (x2, x0, x3, x1) and T2(M) = M

′
= (x3, x2, x0, x1). We compute all the bits

of M
′ ∗M

′′
. Suppose [M

′ ∗M
′′
]i denotes the ith bit of M

′ ∗M
′′
. We obtain, [M

′ ∗M
′′
]0 =

x2x3 + x0 + x3x1 + x1x2, [M
′ ∗ M

′′
]1 = x2 + x1, [M

′ ∗ M
′′
]2 = x3 + x1x0 + x2x1 + x0x2,

[M
′ ∗M

′′
]3 = x2x0 + x0x1 + x2x3 + x1x3. Now compute all the bits M

′ ∗M
′ ∗M

′′
. The bits of

M
′∗M ′∗M ′′

are [M
′∗M ′∗M ′′

]0 = x2x3+x0x1+x3+x1, [M
′∗M ′∗M ′′

]1 = x0+x2+x0x1+x2x3,
[M

′ ∗M ′ ∗M ′′
]2 = x0x3+x1x2, [M

′ ∗M ′ ∗M ′′
]3 = x0x3+x1x2. (f0, f1, f2, f3) denotes the bits of

T3(M
′∗M ′∗M ′′

) and (f4, f5, f6, f7) denotes the bits of T4(M
′∗M ′′

)+T5(M
′∗M ′∗M ′′

), we have
f0 = x3x2+x0x1+x3+x1, f1 = 1+x0x3+x1x2, f2 = 1+x0x3+x0x1, f3 = x0+x2+x3x2+x1x2,
f4 = x0 + x0x3 + x3x2 + x1x3, f5 = 1 + x0 + x2x3 + x3x0, f6 = x3 + x2x0 + x1x2 + x0x1,
f7 = 1 + x0x1 + x0x2 + x3x1 + x2x3. Ciphertext Y = (y0, y1, y2, y3, y4, y5, y6, y7) is an element
of F22m . T6(Y ) = Z = (y3, y1, y5, y0, y4, y2, y6, y7). Note that ϑ

′
= (1, 0, 0, 0, 0, 0, 0, 0). Suppose
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P0, P1, P2, P3, P4, P5, P6, P7 denote the bits of T7(f0, f1, f2, f3, f4, f5, f6, f7) ∗ Z + ϑ
′
. We com-

pute all the Pi, so the required public key is :
P0 = 1 + y0(x0x1 + x1x2) + y1(x0x2) + y2(x0x3 + x2x3) + y3(x2x3 + x0x3) + y4(x0x3 + x1x3) +
y5(x2x3 + x0x3 + x1x3) + y6(x1x2 + x2x3 + x1x3) + y7(x0x1 + x1x3)x0y3 + x1y3 + x0y7 + x2y7 +
x2y6 + x0y6 + y2 + y4 + x1y0 + x3y0 + x0y5 + x1y1

P1 = y0(x2x3 +x0x3 +x1x3)+y1(x0x3 +x2x3)+y2(x0x3 +x1x3)+y3(x0x1 +x1x2)+y4(x0x1 +
x1x2) + y5(x0x2) + y6(x0x3 + x2x3) + y7(x2x3 + x1x2 + x0x2 + x1x3) + x0y0 + x0y1 + x0y3 +
x0y7 + x1y1 + x1y4 + x1y5 + x2y3 + x2y7 + x3y4 + y2 + y6

P2 = y0(x0x2)+y1(x0x1 +x1x2)+y2(x0x1 +x1x2)+y3(x2x3 +x1x3 +x0x2 +x1x2)+y4(x0x3 +
x2x3 + x1x3) + y5(x2x3 + x0x3) + y6(x0x3 + x1x3) + y7(x0x3 + x2x3) + x0y1 + x0y3 + x0y4 +
x0y5 + x1y0 + x1y2 + x1y5 + x2y1 + x2y3 + x3y2 + y6 + y7

P3 = y0(x0x3 + x2x3) + y1(x0x2 + x1x2 + x2x3) + y2(x0x3 + x2x3 + x1x3) + y3(x2x3 + x0x3) +
y4(x0x2) + y5(x0x1 + x1x2) + y6(x0x1 + x1x2) + y7(x0x3 + x1x3) + x0y0 + x0y1 + x0y2 + x0y5 +
x1y0 + x1y4 + x1y6 + x2y1 + x2y5 + x3y6 + y3 + y7

P4 = y0(x0x1 + x1x2) + y1(x2x3 + x0x3) + y2(x0x2) + y3(x1x3 + x0x3) + y4(x0x3 + x2x3) +
y5(x2x3 + x0x2 + x1x3 + x1x2) + y6(x1x3 + x2x3 + x0x3) + y7(x0x3 + x2x3) + x0y0 + x0y4 +
x0y5 + x0y6 + x1y4 + x1y2 + x1y7 + x2y0 + x2y5 + x3y7 + y1 + y3

P5 = y0(x0x2 + x1x2 + x1x3 + x2x3) + y1(x0x3 + x1x3) + y2(x0x3 + x2x3) + y3(x0x1 + x1x2) +
y4(x0x1 + x1x2) + y5(x2x3 + x0x3) + y6(x0x2) + y7(x2x3 + x0x3 + x1x3) + x0y0 + x0y2 + x0y4 +
x0y7 + x1y2 + x1y3 + x1y6 + x2y0 + x2y4 + x3y3 + y1 + y5

P6 = y0(x0x3 +x2x3)+y1(x0x1 +x1x2)+y2(x0x1 +x1x2)+y3(x2x3 +x0x3 +x1x3)+y4(x0x2 +
x1x3 + x2x3 + x1x2) + y5(x0x3 + x1x3) + y6(x0x3 + x2x3) + y7(x0x2) + x0y2 + x0y3 + x0y4 +
x0y6 + x1y1 + x1y6 + x1y7 + x2y2 + x2y4 + x3y1 + y0 + y5

P7 = y0(x0x3 + x1x3) + y1(x0x3 + x1x3 + x2x3) + y2(x0x2 + x2x3 + x1x2 + x1x3) + y3(x0x2) +
y4(x2x3 + x0x3 + x0x2) + y5(x1x2 + x0x1) + y6(x0x1 + x1x2) + y7(x2x3 + x0x3) + x0y1 + x0y2 +
x0y6 + x0y7 + x1y3 + x1y5 + x1y7 + x2y2 + x2y6 + x3y5 + y0 + y4

The public key looks large, however it is possible to reduce the size of public key containing
only quadratic terms. The public key can be written as two sets of public polynomials con-
taining only quadratic terms. We have
P

′
0 = 1 + y0g1 + y1g0 + y2g4 + y3g4 + y4g5 + y5g3 + y6b + y7g5 + x0y3 + x1y3 + x0y7 + x2y7 +

x2y6 + x0y6 + y2 + y4 + x1y0 + x3y0 + x0y5 + x1y1

P
′
1 = y0g3 + y1g4 + y2g5 + y3g1 + y4g1 + y5g0 + y6g4 + y7g2 + x0y0 + x0y1 + x0y3 + x0y7 + x1y1 +

x1y4 + x1y5 + x2y3 + x2y7 + x3y4 + y2 + y6

P
′
2 = y0g0 + y1g1 + y2g1 + y3g2 + y4g3 + y5g4 + y6g5 + y7g4 + x0y1 + x0y3 + x0y4 + x0y5 + x1y0 +

x1y2 + x1y5 + x2y1 + x2y3 + x3y2 + y6 + y7

P
′
3 = y0g4 + y1g6 + y2g3 + y3g4 + y4g0 + y5g1 + y6g1 + y7g5 + x0y0 + x0y1 + x0y2 + x0y5 + x1y0 +

x1y4 + x1y6 + x2y1 + x2y5 + x3y6 + y3 + y7

P
′
4 = y0g1 + y1g4 + y2g0 + y3g5 + y4g4 + y5g2 + y6g3 + y7g4 + x0y0 + x0y4 + x0y5 + x0y6 + x1y4 +

x1y2 + x1y7 + x2y0 + x2y5 + x3y7 + y1 + y3

P
′
5 = y0g2 + y1g5 + y2g4 + y3g1 + y4g1 + y5g4 + y6g0 + y7g3 + x0y0 + x0y2 + x0y4 + x0y7 + x1y2 +

x1y3 + x1y6 + x2y0 + x2y4 + x3y3 + y1 + y5

P
′
6 = y0g4 + y1g1 + y2g1 + y3g3 + y4g2 + y5g5 + y6g4 + y7a0 + x0y2 + x0y3 + x0y4 + x0y6 + x1y1 +

18



x1y6 + x1y7 + x2y2 + x2y4 + x3y1 + y0 + y5

P
′
7 = y0g5 + y1g3 + y2g2 + y3g0 + y4g7 + y5g1 + y6g1 + y7g4 + x0y1 + x0y2 + x0y6 + x0y7 + x1y3 +

x1y5 + x1y7 + x2y2 + x2y6 + x3y5 + y0 + y4

Where g0 = x0x2, g1 = x0x1 + x1x2, g2 = x2x3 + x1x2 + x0x2 + x1x3, g3 = x2x3 + x0x3 + x1x3,
g4 = x2x3 + x0x3, g5 = x0x3 + x1x3, g6 = x2x3 + x1x2 + x0x2, g7 = x2x3 + x0x3 + x0x2 and
b = g0+g2. Suppose M = (0, 0, 0, 1) is the plaintext message. Substituting this in above public
equation we get linear equations, y2+y4+y0 = 1, y2+y4+y6 = 0, y2+y6+y7 = 0, y3+y6+y7 = 0,
y1+y3+y7 = 0, y1+y3+y5 = 0, y0+y1+y5 = 0, y0+y4+y5 = 0. Solving these linear equations
by Gaussian-elimination we get (y0, y1, y2, y3, y4, y5, y6, y7) = (0, 1, 0, 0, 1, 1, 1, 1), which is the
required ciphertext.
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