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Abstract. Consider a scenario in which an adversary, attacking a cer-
tain public key encryption scheme, gains knowledge of several ciphertexts
which underlying plaintext are meaningfully related with a given target
ciphertext. This kind of related message attack has been proved success-
ful against several public key encryption schemes; widely known is the
Franklin-Reiter attack to RSA with low exponent and its subsequent im-
provement by Coppersmith. However, to the best of our knowledge no
formal treatment of these type of attacks has to date been done, and
as a result, it has not been rigorously studied which of the “standard”
security notions imply resilience to them.
We give formal definitions of several security notions capturing the resis-
tance to this kind of attacks. For passive adversaries we prove that, for
the case of indistinguishability, security against related message attacks
is equivalent to standard CPA security. On the other hand, one-wayness
robust schemes in this sense can be seen as strictly between OW-CPA
and IND-CPA secure schemes. Furthermore, we prove that the same
holds for active (CCA) adversaries.

1 Introduction

In a related message attack against a cryptosystem, the attacker obtains several
ciphertexts such that there exists a known relation between the corresponding
plaintexts. These ciphertexts may thus help the attacker to achieve a certain
goal, for instance to gain useful information about the hidden plaintexts.

Such scenario is actually highly relevant in practise, as it is common that the
apriori knowledge of the adversary on a message flow translates into a known
relationship between the incoming messages. For example, as pointed in [13],
this could happen if the content of an encrypted message is followed by a serial
number. Then an attacker who pretends to be the legitimate recipient could
ask for a message-resend and, if he is able to determine the increment in the
serial number, he will obtain encryptions of two messages with a known relation
between them.

Although related message attacks against several cryptosystems have been
considered, a general formal study of the subject has never been proposed. This



is somewhat surprising, given the intense research carried over on probable se-
curity notions and proof techniques for public key encryption schemes (see, for
instance [3, 11]).

In this paper, we give security definitions for the above scenario, considering
passive (CPA) and active (CCA) adversaries which aim at violating the one-
wayness or the indistinguishability of a public key encryption scheme. We do
not consider non-malleability, as this notion in our setting highly depends on
the concrete relation taken into account; for our case studies, however, relations
are rather general.

Furthermore, we insert our new definitions in the graph of known security
notions, by proving its relationship to them. In particular, we prove that in the
sense of indistinguishability, CPA (resp. CCA) security against related message
attacks is equivalent to standard CPA (resp. CCA) security. For the case of
one-wayness however, CPA (resp. CCA) security is weaker than our new notion,
which is strictly between IND-CPA and OW-CPA (resp. IND-CCA and OW-
CCA).

Related Work. Franklin and Reiter [6] proved that RSA with low encrypting
exponent is vulnerable against this kind of attacks. Namely they showed that a
message m can be efficiently recovered from its RSA ciphertext when the public
exponent e equals 3 and two ciphertexts c1 = me and c2 = (am + b)e are known
together with the coefficients a and b . To make this attack work it is almost
always enough to compute the gcd of two polynomials of degree 3. Then Copper-
smith, Franklin, Patarin and Reiter [5] generalized this attack for an arbitrary
low public exponent, an arbitrary number of related messages and polynomial
relations of arbitrary degree between the messages. These generalizations require
computing the gcd of polynomials of arbitrary degree and also the resultant of
multivariate polynomials; thus, some of them are hardly relevant in practise. Re-
cently Yacobi and Yacobi [13] proposed another related message attack against
RSA when linear relations between sent messages are known. The tools they
use are divided-differences and finite-differences. Their attack is in some sense
more efficient than previous ones, though the adversary needs to intercept more
ciphertexts.

The McEliece cryptosystem has also been attacked this way. Berson [4] found
an attack which efficiently reveals the plaintext if a message is sent twice and,
more generally, if two messages with a known linear relationship between them
are sent. As the underlying field is of characteristic two, this means the adversary
can decrypt two ciphertexts if he knows the XOR of the corresponding bitstring
plaintexts.

Other related work in this direction we are aware of is that of Hastad [7]. In
this case the same message is sent to several recipients and it is encrypted using
a different RSA modulus each time. Hastad proved that, if certain conditions
on the number of sent messages are met, then the plaintext can be efficiently
recovered from the ciphertexts. He also showed that the attack can be extended
to the case where there is an affine relation between the sent messages instead
of all being the same. In this fashion, Pinch [10] extended the Hastad attack to



the LUC cryptosystem [9]. However, the scenario they both bear in mind differs
from the one studied here, as we impose that the related messages available to
the adversary are all encrypted under the same public key.
Paper Outline. After a brief preliminaries section, in which we recall the standard
security notions needed to follow our argumentation, Section 3 is devoted to the
introduction of our new definitions of security motivated by related-message
attacks.

Furthermore, in Section 4 we focus on the case of passive adversaries, and
prove that our new security notion (in the sense of indistinguishability) is equiv-
alent to IND-CPA. For the case of one-wayness we demonstrate that the notion
we introduce is strictly between OW-CPA and IND-CPA. Subsequently, identi-
cal results are obtained for active adversaries in Section 5. Our results are finally
summarized on a last short section where we display the derived extension of
the graph from Section 3.

2 Preliminaries

2.1 Public key encryption schemes and their security

Let us start with a brief revision of the main terminology and notion concerning
the security of public key encryption schemes

As standard, by a public key encryption scheme we mean a triplet of proba-
bilistic polynomial time algorithms Π = (K, E ,D) where

– K, the key generation algorithm, is randomized, takes the security parameter
k as an input and outputs a pair of corresponding public and secret key,

– E , the encryption algorithm, is also randomized, takes a message from the
message space M and the public key as an input, and outputs a correspond-
ing ciphertext (say, from a set C not necessarily equal to M);

– D, the decryption algorithm, is deterministic, takes an element c ∈ C and a
secret key as input and outputs, if it exists, the plaintext m that encrypts
to c with a corresponding public key. Otherwise, it outputs an error message
⊥ .

Security notions for public key encryption schemes are formulated in terms
of the adversary’s goals and capabilities. The adversary will be modelled, as
standard, by a probabilistic polynomial time Turing machine A. We will consider
here two adversarial goals:

– violating the one-wayness (OW) of the scheme, namely, getting back the
whole plaintext of a given ciphertext,

– violating the indistinguishability (IND) of the scheme, by gaining any infor-
mation about the plaintext of a given ciphertext.

Furthermore, we will consider two types of adversaries in terms of their ca-
pabilities:



– a passive (CPA) adversary A is able to obtain a valid ciphertext from any
given plaintext, that is, A has non-limited access to the encryption algorithm
E and holds all public information (including the public key);

– an active (CCA) adversary A has, in addition, access to a decryption oracle,
which gives the output of a legitimate decryption machine holding the secret
key. Then, when presented with a target ciphertext, he will try to exploit
the interaction with such an oracle to gain information on the corresponding
plaintext. At this, we must impose the restriction that A will not be able
to query this decryption oracle on this so-called challenge ciphertext (see
bellow).

Summarizing, the “classical” security notions which we will adapt to the
scenario we are considering are IND-CPA, OW-CPA, IND-CCA and IND-CPA.
We refer the interested reader, for further details, to [11]. Here we briefly recall
the corresponding definitions:

Definition 1. [OW-ADV] Let Π = (K, E ,D) be a public key encryption scheme.
Consider the following interaction between an adversary A of type ADV ∈ {CPA, CCA}
and a simulator S.

Step 1. The simulator S runs the key generation algorithm on input a publicly
known security parameter k, obtaining a pair (pk, sk) of corresponding public
and secret keys.

Step 2. S selects uniformly at random a message m0 ∈ Mk encrypts it using pk

and E .
Step 3. S hands the challenge ciphertext c0 and the public key pk to the adver-

sary A.
Step 4. A outputs a guess m for m0.

Now denote by SuccOW (A) 1 the advantage probability over a random guess
2 that the adversary outputs the correct plaintext message m0, taken over the
space defined by the (u.a.r.) choices described above and the random coins of the
encryption algorithm.

The scheme Π is secure in the sense of OW-ADV if and only if for any
adversary A of type ADV the probability SuccOW (A) is a negligible function 3

of the security parameter k.

Definition 2. [IND-ADV] Let Π = (K, E ,D) be a public key encryption scheme.
Consider the following experiment carried over between an adversary A of type
ADV ∈ {CPA, CCA} and a simulator S.

1 SuccOW (A) is often defined as the probability that the adversary outputs the correct
plaintext message. The use of this definition carries over the implicit assumption that
the probability of success with a random guess over the message space is negligible
in the security parameter, which we don‘t make here.

2 Without any information the adversary has probability 1/|M | of correctly guessing
m0.

3 A function ν : N 7−→ R is negligible if for any constant c > 0, there exists n0 ∈ N
such that |ν(n)| ≤ n−c, ∀n ≥ n0.



Step 1. The simulator S runs the key generation algorithm on input a publicly
known security parameter k, obtaining a pair (pk, sk) of corresponding public
and secret keys. It forwards the public key pk to the adversary A.

Step 2. The adversary A selects two messages m0, m1 ∈ Mk and hands them
to S.

Step 3. S chooses a bit b uniformly at random and encrypts mb using pk and
E ; then it hands the corresponding challenge ciphertext cb to A.

Step 4. A outputs a guess b∗ for the bit b.

Now denote by SuccIND(A) the advantage probability, over a random guess4

that the adversary outputs the correct bit b.
This probability is again taken over the space defined by the (u.a.r.) choices

described above and the random coins of the encryption algorithm.
The scheme Π is secure in the sense of IND-ADV if and only if for any

adversary A of type ADV the probability SuccIND(A) is a negligible function of
the security parameter k.

2.2 Admissible Relations

Not all relations we may consider are appropiate for formalizing related mes-
sage attacks, in particular, we shall not study relations with a somewhat non-
homogeneous behavior in the message space. More precisely, information like
“how many messages are related to m” should not leak useful information to the
adversary; we want to quantify what he gains from eavesdropping ciphertexts of
related clear messages, and assume such advantage does not lie in the mere fact
that these ciphertexts exist.

Let M be a finite (message) space. Let R be a certain relation, which is pub-
licly known and can be formalized as a subset of M∗, and for which moreover
membership can be tested efficiently (in polynomial time). We can for instance
assume that, for a fixed security parameter k, actually the considered message
space is a subset Mk ⊆ M and R ⊆ Mn+1

k for some (publicly known) n polyno-
mial in k.

Moreover, given any m ∈ Mk, letRm be the set of n-tuples (m1, . . . , mn) such
that (m,m1, . . . , mn) ∈ R. Further, given a message m ∈ Mk, for i = 0, . . . , n de-
fine the setsRi

m of n-tuples (m1, . . . , mn), such that (m1, . . . , mi−1,m,mi, . . . ,mn) ∈
R.5

Definition 3. [Admissible Relation] Let R be as above. We say that R is ad-
missible if the following properties hold for any k ∈ N:

i. for all m ∈ Mk, i ∈ 1, . . . , n + 1, Ri
m 6= ∅;

ii. for all m ∈ Mk it is possible to efficiently sample, uniformly at random,
n-tuples from Rm;

4 Obviously, without any information the adversary has probability 1
2

of guessing b,
thus this advantage is meassured as 2Pr[b∗ = b]− 1.

5 Note that R0
m = Rm.



iii. for random independent uniform choices of m,m∗ ∈ Mk, and i = 0, . . . , n,
it holds ∣∣∣∣

|Ri
m|

|Ri
m∗ | − 1

∣∣∣∣ ≤ ε(k)

where the function ε : N 7−→ R is negligible.

Note that condition iii. is imposed to prevent information leakage from the
mere fact that there may exist significantly less messages related to a certain
plaintext than to another; the relation must behave somewhat uniformly with
respect to all messages.

3 Proposed security notions

We are now ready to introduce the new definitions. In the sequel, all considered
adversaries are, as standard, modelled by probabilistic polynomial time turing
machines. We start by the definition of security in the sense of one-wayness; at
this, the adversarial goal is to decrypt a challenge ciphertext c0, having captured
several ciphertexts whose corresponding plaintexts are related to m0 in the sense
of the publicly known relation R.

Remark 1. In the sequel, we restrict CCA adversaries further, in the sense that
they shall not be allowed to query the decryption oracle on any ciphertext output
by the simulator.

Definition 4. [R-OW-RM-ADV] Let Π = (K, E ,D) be a public key encryption
scheme. Let R be an admissible relation defined on the corresponding message
space M.

Consider the following interaction between an adversary A of type ADV ∈
{CPA, CCA} and a simulator S.

Step 1. The simulator S runs the key generation algorithm on input a publicly
known security parameter k, obtaining a pair (pk, sk) of corresponding public
and secret keys.

Step 2. S selects uniformly at random a message m0 ∈ Mk and n messages 6

(m1, . . . ,mn) ∈ Rm0 .

Step 3. S encrypts all these messages using pk and E and and hands the cor-
responding ciphertexts (c0, c1, . . . , cn) and the public key pk to the adversary
A.

Step 4. A outputs a guess m for m0.

6 recall that n is polynomial in the security parameter k and publicly known.



Now denote by SuccOW
R (A) the advantage probability over a random guess

7 that the adversary outputs the correct plaintext message m0, taken over the
space defined by the (u.a.r.) choices described above and the random coins of the
encryption algorithm.

The scheme Π is secure in the sense of R-OW-RM-ADV if and only if for
any adversary A of type ADV the probability SuccOW

R (A) is a negligible function
of the security parameter k.

We now introduce the definition of security in the sense of indistinguishability;
at this, the adversarial goal is to retrieve any information from the plaintext
corresponding to a challenge ciphertext having again at hand several ciphertexts
whose corresponding plaintexts are related to the one hidden in the target, in
the sense of the publicly known relation R.

Definition 5. [R-IND-RM-ADV] Let Π = (K, E ,D) be a public key encryption
scheme. Let R be an admissible relation defined on the corresponding message
space M..

Consider the following experiment carried over between an adversary A of
type ADV ∈ {CPA, CCA} and a simulator S.

Step 1. The simulator S runs the key generation algorithm on input a publicly
known security parameter k, obtaining a pair (pk, sk) of corresponding public
and secret keys. It forwards the public key pk to the adversary A.

Step 2. The adversary A selects two messages m0, m1 ∈ Mk and hands them
to S.

Step 3. S chooses a bit b uniformly at random and selects n messages
(m2, . . . ,mn+1) uniformly at random from Rmb

.
Step 4. S encrypts all these messages using pk and E and hands the correspond-

ing ciphertexts (cb, c2, . . . , cn+1) to A.
Step 5. A outputs a guess b∗ for the bit b.

Now denote by SuccIND
R (A) the advantage probability, over a random guess8

that the adversary outputs the correct bit b.
This probability is again taken over the space defined by the (u.a.r.) choices

described above and the random coins of the encryption algorithm.
The scheme Π is secure in the sense of R-IND-RM-ADV if and only if for

any adversary A of type ADV the probability SuccIND
R (A) is a negligible function

of the security parameter k.

Now, our goal is actually to prove resistance against related messages attacks
for general relations. We introduce the following definition:

7 Without any information the adversary has probability 1/|Mk| of correctly guessing
m0.

8 obviously, without any information the adversary has probability 1
2

of guessing b,
thus this advantage is meassured as 2Pr[b∗ = b]− 1.



Definition 6 (OW-RM-ADV / IND-RM-ADV). Let Π = (K, E ,D) be a public
key encryption scheme, then it is secure in the sense of OW-RM-ADV (resp.
of IND-RM-ADV) if it is R-OW-RM-ADV (resp. R-IND-RM-ADV) secure for
every admissible relation R.

The following diagram summarizes some of the currently known relations
among the main notions of security for public key schemes (see [3]). In the next
two sections we will insert the new related-message attacks motivated notions in
this diagram.Our results will in particular prove that resistance against related
message attacks (in the OW sense) is strictly between the standard IND and
OW notions, both for passive and active adversaries.

IND − CPA ←−
6−→ IND − CCA

↓6 ↑ ↓6 ↑
OW − CPA ←−

6−→ OW − CCA

Fig. 1. Relations from [3].

4 Relations between notions: The Passive Case

4.1 OW-CPA versus OW-RM-CPA

– OW-RM-CPA ⇒ OW-CPA :
Suppose an encryption scheme is not OW-CPA. This means, SuccOW (A)
is non-negligible in the security parameter; in other words, given a target
ciphertext the adversary is able to recover the corresponding plaintext with
non-neglibible probability. Clearly, the same holds if he is not only given
the target ciphertext, but also n ciphertexts whose underlying plaintext are
related to the hidden one.

– OW-CPA ; OW-RM-CPA
1. Textbook RSA. Textbook RSA is known to be, for some specifications of
the key generation algorithm, OW-CPA secure under the assumption that
the RSA function is one-way. However, as proved by Franklin and Reiter [6],
and later by Coppersmith [5] its one wayness can be overcome with non-
negligible probability by a passive adversary taking advantage of related
message attacks for some linear relation R.
Note that we have to assume above that the key generation is such that
using Coppersmith’s attack to try to invert the RSA function for a low
public exponent does not compromise the OW-CPA security of the system.
On the other hand, the related message attack of [5] relies on calculating the
gcd of two polynomials of degree e, where e is the public exponent. This can



be computed in O(e log2 e) time [12], which makes the attack very efficient
for many exponents like the popular choice e = 216 + 1.

2. Mc Eliece. Another example is the McEliece cryptosystem, whose OW-
CPA security, as far as we know, remains unbroken for a suitable choice of
parameters. On the other hand, Berson’s related message attack [4] against
the original scheme works no matter how the parameters are chosen ( There-
fore the cryptosystem is not OW-RMA-CPA secure:
Let us start by describing the McEliece cryptosystem in the usual way as a
triple (K, E ,D):
• K, on input the security parameter, generates three binary matrices: a

n × n permutation matrix P , a k × k invertible matrix S and a n × k
generator matrix G for a Goppa code with error correcting capacity t.
The integers (n, k, t) depend on the security parameter. The secret key
is sk = (P, G, S) and the public key is the product matrix pk = PGS.

• E , on input (pk, m), where m ∈ {0, 1}k, selects uniformly at random an
error vector e ∈ (F2)n with Hamming weight equal to t. Then computes
the ciphertext c = PGSm + e.

• D, on input (sk, c), computes y = P−1c and decodes y to a codeword x.
Then returns m = S−1x.

In a brute force attack against this cryptosystem, an adversary can guess a
set E0 consisting on k positions of the error vector e. If all these positions
happen to equal 0 then ci = (PGSm)i for every i ∈ E0, where the subindex
denotes the i-th coordinate. Then the message can be recovered from the
ciphertext by inverting a submatrix of the public key PGS (corresponding
to the rows with indices in E0). However the probability of this guessing
being correct is negligible in the security parameter.

Berson’s attack is based on the fact that if a message is sent twice then it
becomes much easier to guess coordinates of the ciphertext unaffected by
the error vector. Namely, if an adversary A gets ciphertexts c = PGSm + e
and c′ = PGSm + e′ then he can compute c ⊕ c′ which equals e ⊕ e′ and
then he is able to determine the set L0 = {1 ≤ i ≤ n : ei = e′i}. As t
is always small when compared to n, the expected number of coincidences
ei = e′i = 1 is low, therefore the probability of finding an unaffected position
when choosing from L0 is pretty high.

We give some concrete examples: the original proposal of McEliece has pa-
rameters (n = 1024, k = 524, t = 50) and Berson’s attack has success prob-
ability around 0.08 with only one guess (when the number of coincidences
between positions of e and e′ equals the expected value). For an example
with bigger parameters we take the ones proposed in [8] for 256-bit security.
These are (n = 6624, k = 5129, t = 115). In this case the expected number
of coincidences ei = e′i = 1 is between 1 and 2. If we assume it equals 2,
then the probability of success of Berson’s attack is around 0.04 with just
one guess. The calculations are easy to make following Berson’s paper.



4.2 IND-RM-CPA versus IND-CPA

– IND-RM-CPA ⇔ IND-CPA
Clearly, if the adversary can violate IND-CPA security then he can violate
IND-RM-CPA security (he has at least the same information in the second
case). Now, let us see how for any admissible relation R it holds IND-CPA
⇒ R-IND-RM-CPA.
Let R be an admissible and publicly known relation for M . Let A be any
pptm adversary who has non-negligibly above 1

2 probability to win the R-
IND-RM-CPA challenge. We are going to argue he has non-negligibly above
1
2 probability to win the IND-CPA challenge. Indeed, assume he choses mes-
sages m0 and m1 in the IND-CPA game and has received a challenge cipher-
text c∗.
Let A sample u.a.r. n messages (m0

2, . . . ,m
0
n+1) ∈ Rm0 . Further, he en-

crypts messages m0
2, . . . , m

0
n+1 with the public encryption algorithm yielding

(c0
2, . . . , c

0
n+1).

Similarly, he samples u.a.r. n messages (m1
2, . . . , m

1
n+1) ∈ Rm1 and en-

crypts messages m1
2, . . . , m

1
n+1 with the public encryption algorithm yielding

(c1
2, . . . , c

1
n+1).

The challenge ciphertext c∗ is an encryption of mb with b chosen u.a.r. from
{0, 1}. Now the adversary plays the R−IND-RM-CPA game with challenge
ciphertexts: (c∗, c0

2, . . . , c
0
n+1) and (c∗, c1

2, . . . , c
1
n+1). If b = 0 then A has a

non-negligible probability above 1
2 to win first the game, while he has no

advantage in the second one. If b = 1 then the reverse situation happens.
This allows A to make a distinction between the two situations and break
the IND-CPA security of the system: just let the adversary repeat the above
experiment T = T (k) times for each c∗ and make a decision by majority.

4.3 IND-CPA versus OW-RM-CPA

– IND-RM-CPA⇒ OW-RM-CPA. This is obvious from the definitions.
– OW-RM-CPA ; IND-CPA

Let us consider the following encryption scheme, which is a slight naive
variation of El-Gamal encryption:
For a fixed security parameter k, let p and q be k-bit primes and g a generator
of the subgroup of prime order q of Z∗p. Let us denote that subgroup by G,

and define a hash function H with domain G and image in {0, 1}t(k), for some
polynomial t. We will assume this function H is an “ideal” hash function,
following the so-called random oracle paradigm (see [1]).

Now consider the following encryption scheme Π = (K, E ,D) where
• K, the key generation algorithm, on the security parameter k outputs

the secret key sk := x, which is chosen u.a.r. from Zq and the public key,
gx mod p.



• E , the encryption algorithm, on input the public key and a message m
in G, it selects u.a.r. r ∈ Zq and outputs the ciphertext tuple

(gr mod p,mgxr mod p,H(m)).

• D, the decryption algorithm, on input a triplet (a, b, c) will retrieve the
message m as (ax)−1b mod p and check whether H(m) = c. If this check
is correct, output m, otherwise, output ⊥ .

It is easy to see that this scheme is not IND-CPA secure; note that the
adversary can compute the hash value for the two possible plaintexts m0

and m1 and see which one coincides with the hash value included in the
target cyphertext, thus distinguishing with probability one an encryption of
m0 from an encryption of m1.
Now, let us see that the scheme is OW-RM-CPA secure in the random ora-
cle model. The idea behind the proof is that the third element on a cipher-
text triplet should look like a random bit string unless you know the input
message; thus, it should not help at all in breaking the one-wayness of the
scheme.
We formalize the proof via a sequence of games or experiments, in which the
adversary interacts with a simulator. This interaction will help us bounding
his probability of success in violating the one wayness of the scheme. The
first game is actually the true attack experiment. On the sequel, we will
denote by Si the event that the adversary wins in Game i.

Game 0. This is the real game the adversary faces in the attack. Thus, the
simulator runs the key generation algorithm and presents him a public key,
pk and c0, c1, . . . , cn with n polynomial in k and each ci an encryption of
mi under sk and such that (m0,m1, . . . , mn) ∈ R. Note that for each i ∈
{0, . . . , n}, ci is a triplet (xi, yi, zi). At this, we should assume m0 has been
chosen u.a.r. from Mk and (m1, . . . , mn) u.a.r. from Rm0 . Thus, P [S0] =
SuccOW

R (A).

Game 1. The adversary interacts with a simulator which instead of H uses a
random-oracle simulation to the hash function.
Namely, the simulator keeps record of hash queries on a so called H-list, i.e.
for every query H(query) it outputs a value random selected uniformly at
random from {0, 1}t(k) and writes up the tuple (query, random) in his H-list.
Subsequently, for a hash query H(m) such that a record (m, z) appears in
the H-list the answer of the simulator will be z.
Now, the random oracle assumption states that P [S0] = P [S1].

Game 2. At this, we modify the simulator in the following sense: it selects
u.a.r. two messages m0 and m∗

0 from Mk, and two n-tuples (m1, . . . ,mn) ∈
Rm0 and (m∗

1, . . . , m
∗
n) ∈ Rm∗

0
. It also runs the key generation algorithm

and outputs pk and c0, c1, . . . , cn with each ci a triplet (xi, yi, zi) such that
• (xi, yi) is an ElGamal encryption of mi under sk



• zi a hash query as described on the previous game, on input m∗
i .

At this, the amount of information the adversary may gather about a plain-
text mi from its ciphertext (xi, yi, zi), comes strictly from the tuple (xi, yi),
as zi is constructed from m∗

i (and any correlation to mi comes from the
relation R, and available a priori to the adversary).
Note that the output of this simulator may only be distinguished from the
output of the simulator from Game 1 if
• the adversary queried, by chance, at some point the random oracle H on

input mi or m∗
i for some i = 1, . . . , n. However, as R is admissible this

happens with negligible probability only, wich we will denote ε(k),
or

• on the selected n-tuples (m0,m1, . . . , mn) and (m∗
0,m

∗
1, . . . , m

∗
n) there

exist i 6= j ∈ {0, . . . , n} such that mi = mj and m∗
i 6= m∗

j or vice versa.
However, the adversary cannot perceive this difference, as given (xi, yi)
and (xj , yj) he cannot tell whether they are encryptions of the same
message or not - this follows easily from the fact that standard ElGamal
is IND-CPA (see [14]).

Thus, |P [S2]− P [S1]| ≤ ε(k).
Now, as m∗

0 has been chosen u.a.r from Mk and independently of m0, only the
first coordinates (xi, yi) on the output values ci are correlated to the target
plaintext m0, i.e. of use for the adversary. Thus, his probability of success
here is exactly the same as his probability of success against the OW-RM-
CPA challenge against standard ElGamal. This is negligible, as standard
ElGamal is IND-CPA⇔ IND-RM-CPA ⇒ OW-RM-CPA. Therefore, P [S2]
is negligible in the security parameter k. As

P [S0] = SuccOW
R (A) ≤ P [S2] + ε(k)

this concludes the proof.

Note that the above simulation from Game 2 cannot be carried over by re-
placing each random oracle evaluation H(mi) with a truly random value. The
reason is that the adversary expects n hash values z1, . . . , zn that come from
related messages. Simple example, consider the relation R(m1, . . . , m4) = 1 iff
m1 = m3 and m2 = m4; a 4-tuple of related messages is clearly distinguishable
from a 4-tuple of random values.

It is worth mentioning that our proof does not use any specific feature of
El-Gamal encryption scheme, just the fact that it is IND-CPA secure. Thus the
result remains true if we choose any other IND-CPA secure scheme and modify
the encryption algorithm by appending a hash image of the message to the
corresponding ciphertext.

5 Relations between notions: The active case

Let us start by arguing with a classical example that, indeed, CCA adversaries
are trivially more powerful than CPA adversaries:



5.1 OW-RM-CPA ; OW-RM-CCA

Indeed, let Π = (K, E ,D) be any OW-RM-CPA encryption scheme. Modify the
decryption algorithm in that, for each public key, private key pair, on input a
message c∗ that is not a valid ciphertext with respect to the secret key in use,
it outputs the error message ⊥= sk, i.e., the actual secret key!.

Indeed, the resulting ciphertext is no longer resisting any OW-RM-CCA at-
tack, as the adversary trivially decrypts the target ciphertext with the secret
key retrieved by querying the decryption oracle with any invalid ciphertext.

5.2 IND-RM-CCA versus IND-CCA

– IND-RM-CCA ⇔ IND-CCA The argument is, for both implications, fully
analogous to the pasive (CPA) case from Section 4.

5.3 OW-CCA versus OW-RM-CCA

– OW-RM-CCA ⇒ OW-CCA :
Similarly as for the passive case, if an encryption scheme is not OW-CCA,
given a target ciphertext the adversary is able to recover the corresponding
plaintext with non-neglibible probability. Again, the same holds if he is not
only given the target ciphertext, but also n ciphertexts whose underlying
plaintext are related to the hidden one.

– OW-CCA ; OW-RM-CCA
Let us consider a “hashed” textbook RSA, that is, the textbook RSA en-
cryption algorithm is modified in that, on input a public key (e, N) and a
plaintext m, it oututs (c,H(m)), with c a standard textbook RSA encryption
(me (mod N)) and H a random oracle image of m. Then, the decryption
algorithm is modified in that, on input a ciphertext (c1, c2) it performs the
usual textbook RSA decryption, retrieves m1 and outputs m1 iff H(m1) = c2

(and ⊥ otherwise).
Moreover, consider the key generation procedure so that the resulting scheme
is OW-CPA but not OW-RM-CCA, i.e., it is OW-CPA but the related mes-
sage attacks of Franklin-Reiter/Coppersmith [6, 5] still apply.
We are going to prove this scheme is plaintext aware, i.e., the adversary can
only construct a ciphertext if he knows the corresponding plaintexts. 9

First, note that the adversarial probability of success against the one-wayness
of the scheme does not augment by decrypting eavesdropped messages with
the decryption oracle; indeed, a CPA adversary already has access to polyno-
mially many (plaintext, ciphertext) pairs; and note that knowing such a pair
(m, c) implies knowledge of the corresponding pair (m, H(m)). Following the
standard RO simulation, we assume A keeps a two column table with entries

9 In this case, as knowing a pair (plaintext, ciphertext) implies knowing the H-image
of the plaintext, strong plaintext awarness and plaintext awareness in the RO, as
defined by Bellare et al.(see [3, 2]) are equivalent.



(x,H(x)) corresponding to his random oracle queries. Furthermore, he may
also write there pairs (x,H(x)) retrieved from eavesdropped messages. We
will refer to this table as the H-list.
Assume A, with polynomially many queries to H and to the decryption or-
acle, outputs a new (not eavesdropped!) valid ciphertext c = (c1, c2). Then,
by a standard argument A must know the corresponding plaintext m. Oth-
erwise, there must exist a so called plaintext extractor PE which could have
output m just from the public key and A’s H-list. Indeed, on input a valid
ciphertext c = (x, y), PE searches on the H-list to see whether y is a response
to an H query performed by A. If this is the case, then he outputs the x-
entry corresponding to this query. Note that this is the case except with
negligible probability (the probability that A guessed the value c2 without
querying H).
Thus, the decryption oracle is of no use to the adversary and OW-CCA
security is equivalent to OW-CPA. As a result, the scheme is OW-CCA in
the random oracle model, while not OW-RM-CCA. This concludes the proof.

Note that in the proof we do not use any specific fact about textbook RSA,
just that it is possible to find parameters such that the scheme is OW-CPA
but not OW-RMA-CPA secure (see Section 4). Thus the proof works for any
scheme with this property.

5.4 OW-RM-CCA versus IND-RM-CCA

– IND-RM-CCA ⇒ OW-RM-CCA
This follows trivially from the definitions.

– OW-RM-CCA ; IND-RM-CCA
Let us construct an encryption scheme which we can prove OW-RM-CCA
but which is not IND-RM-CCA. At this, we modify a well known construc-
tion of Bellare and Rogaway (see [1]), which is IND-CCA in the random
oracle model. Let us start by describing this construction: Once the security
parameter k is fixed, assume that we fix {0, 1}k as plaintext space together
with a function fk : {0, 1}k → {0, 1}k, chosen from a one-way trapdoor
permutation family. Moreover, consider two hash functions

Gk : {0, 1}k → {0, 1}k and Hk : {0, 1}2k → {0, 1}k1 ,

where k1 is polynomial in k (for asymptotic arguments, we may assume k1

grows roughly as k). In the sequel, we drop the subscript k unless necessary.
The scheme Π = (K, E ,D) is described as follows:
• K, on input k outputs a description of the function f (the public key pk)

and trapdoor information for computing its inverse f−1 (the secret key
sk).

• E , on input (pk, m), where m ∈ {0, 1}k, it selects uniformly at random
a value r in {0, 1}k and computes

x = f(r), y = m⊕G(r) and z = H(m||r)
and outputs the ciphertext c = (x, y, z).



• D, on input (sk, c) computes

r = f−1(x), and m = y ⊕G(r).

Now, if z = H(m||r) the algorithm returns m, otherwise, it returns ⊥ .

This scheme can be proven IND-CCA secure in the random oracle model.
Namely, one should assume that H and G behave like random oracles, using
the usual paradigm.
Now let us construct a related scheme, modifying the random oracle H (in
that it is now defined on {0, 1}k) and the encryption algorithm. Consider
Π̂ = (K, Ê , D̂) such that:
• K, as in Π.
• Ê , on input (pk, m), where m ∈ {0, 1}k, it selects uniformly at random

a value r in {0, 1}k and computes

x = f(r), y = m⊕G(r) and z = H(m)

and outputs the ciphertext c = (x, y, z).
• D̂, on input (sk, c) computes

r = f−1(x), and m = y ⊕G(r).

Now, if z = H(m) the algorithm returns m, otherwise, it returns ⊥ .

It is easy to see that Π̂ is no longer IND-CCA (actually, not even IND-CPA),
as an encryption of m0 can be distinguished from an encryption of m1 just
by checking on the third element of the ciphertext triplet.
Let us however argue that this scheme is OW-RM-CCA.
Let R be any admissible relation. Again, we derive the proof via a sequence
of games or experiments, in which the adversary interacts with a simulator.
The first game is the true attack experiment and we will denote by Si the
event that the adversary wins in Game i.

Game 0. This is the true R-OW-RM-CCA experiment. Thus, the simulator
runs the key generation algorithm and presents him a public key, pk and
c0, c1, . . . , cn with n polynomial in k and each ci an encryption of mi under sk

and such that (m0,m1, . . . , mn) ∈ R. For each i ∈ {0, . . . , n}, each ciphertext
ci is a triplet (xi, yi, zi). At this, we should assume m0 has been chosen u.a.r.
from {0, 1}k and (m1, . . . , mn) u.a.r. from Rm0 . Thus, P [S0] = SuccOW

R (A).

Game 1. Here, the simulator S simulates all his queries to the hash func-
tions H and G using the random oracle paradigm, that is, he will as usual
keep record of hash queries on two lists, which we will refer to as H-list and
G-list. That is, i.e. for every query H(query) (resp., G(query) it outputs a
value random selected uniformly at random from the corresponding image
space and writes up the tuple (query, random) in the corresponding list. Sub-
sequently, for a hash query H(q) or G(q) such that a record (q, z) appears



in the corresponding H-list or G-list the answer of the simulator will be z.
The random oracle paradigm states now that P [S0] = P [S1].

Game 2. We now change how the simulator constructs the values c0, c1, . . . , cn

presented to the adversary. In particular, the first two elements of a cipher-
text triplet ci are constructed as in Ê , but not the last one. S chooses m∗

0

u.a.r. from {0, 1}k and (m∗
1, . . . , m

∗
n) u.a.r. from Rm∗

0
. Now, each zi is the

response of the simulators H-query on input m∗
i .

Note that the output of this simulator may only be distinguished from the
output of the simulator from Game 1 if

• the adversary or the decryption oracle queried, by chance, at some point
the random oracle H on input mi or m∗

i for some i = 1, . . . , n. We
know that the the decryption oracle rejects queries coming from mi for
i = 1, . . . , n, and as R is admissible there is negligible probability that
an encryption of any m∗

i has been fed into the decryption oracle. Thus,
the probability P2 that any of the above happens is negligible.

• on the selected n-tuples (m0,m1, . . . , mn) and (m∗
0,m

∗
1, . . . , m

∗
n) there

exist i 6= j ∈ {0, . . . , n} such that mi = mj and m∗
i 6= m∗

j or vice
versa. However, the adversary cannot perceive this difference, as given
(f(r),mi ⊕G(r)) is and IND-CPA encryption of mi.

Thus, |P [S2]− P [S1]| ≤ P2.
Game 3. Let us now change the simulation further, by imposing that also the
second element in a ciphertext triplet ci is constructed independently of the
“unstarred” messages mi. Namely, now the second component yi will be a
bitstring selected uniformly at random from {0, 1}l. Note that, the random
oracle simulation of G guarantees that, if the adversary does not know r, G(r)
is for him a u.a.r. selected element in {0, 1}k, (and thus, so is G(r)⊕mi). As
a result, given that f is a one-way permutation, an element yi from one of
the ciphertext triplets output by the simulator is only distinguishable from
a random bitstring in {0, 1}l if A queried, at some point, the random oracle
G on r, which happens with negligible probability (P3) only. As a result,

|P [S3]− P [S2]| ≤ P3.

Note moreover that
P [S3] =

1
2l

,

as in this game the adversary obtains no information about the challenge
ciphertext m0 from the simulatior.
As a result,

P [S0] ≤ 1
2l

+ P2 + P3.

and thus SuccOW
R is negligible in the security parameter, which concludes

the proof.



6 Summary and Further Remmarks

With the above results, we have been able to fully complete the graph of relations
from [3], inserting the new notions we have defined:

IND − CPA ←−
6−→ IND − CCA

m m
IND −RM − CPA IND −RM − CCA

↓6 ↑ ↓6 ↑
OW −RM − CPA ←−

6−→ OW −RM − CCA
↓6 ↑ ↓6 ↑

OW − CPA ←−
6−→ OW − CCA

Fig. 2. Completing the graph from [3].

It is somewhat not surprising that the indistinguishability notions of security
imply resistance against related message attacks. On the other hand, it is as
well natural that also in this scenario active adversaries are more powerful than
passive ones. More surprising is perhaps the fact that OW-RM security is strictly
between OW and IND security, which clearly indicates that, when using a one-
way secure scheme, habits like repeating fixed headings on messages may not be
safe.

It remains to investigate further what happens for the case of non-malleability.
Recall that this property captures the resistance of an encryption scheme to at-
tacks that aim at constructing a new valid ciphertext from eavesdropped cipher-
texts of meaningfully related plaintexts. Already finding a suitable definition of
what it means to be non-malleable in the related-message attacks scenario is
non-trivial; in particular, determining what kind of relations we may consider
admissible seems quite involved.
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