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Abstract

Crisp Commitment schemes are very useful buildingcks in the design of high-level
cryptographic protocols. They are used as a medlipping fair coins between two players and
others. In this paper an attempt has been madeave a generalized framework for Crisp
Commitment schemes is called an Ordinary Crisp Comemt Scheme (OCCS). The Hiding and
Binding properties of OCCS are well defined. Weaksview some the existing of different Crisp
Commitment schemes and we show how it is followmresenting framework.
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1. Introduction:

The notion of Crisp Commitment scheme is at thertheamost the constructions of modern
Cryptography protocols. Protocols are essentialgetaof rules associated with a process or a
scheme defining the process. Commitment schengetharprocesses in which the interests of
the parties involved in a process are safeguardddree process itself is made as fair as possible,
used as a sub-protocols in such applications as keswledge proofs[20], secure multiparty
computations[21], sealed-bid auctions and e-voting.

In the Commitment scheme, one party, whom we deth@tsender namely Alice, aim to entrust
a concealed message m to the second party namblyirBoitively a commitment scheme can be
seen as the digital equivalent of a sealed enve]@pg If Alice wants to commit to some
message m she just puts it into the sealed envedopthat whenever Alice wants to reveal the
message to Bob, she opens the envelope. Cleacly,asmechanism can be useful only if it meets
some basic requirements. First of all the digitavedope should hide the message from Bob.
(This is often referred in the literature as theig property). Second, the digital envelope should
be binding, meaning with this that Alice cannot i her mind about m, and by checking the
opening of the commitment one can verify that thiaimed value is actually the one Alice had in
mind originally (this is often referred to as thiading property).

Many crisp commitment schemes of OCCS type aresgnaver a considerable period of time
[1,3,4,5,6,7,19]. The organization of this paperlis the next section we give preliminaries.
Section 3 the presenting generalized framework QAGSSection 4 we discuss some of the
existing Commitment schemes and we show how iblieW our presenting OCCS. Section 5
conclusion.

2. Preliminaries:
Following mathematical and statistical conceptsiftine basis of our discussions.
Discrete logarithm.
Definition 1: Let Zp* be multiplicative group modulo p, let be a generator of Zp* and let

Bezp*. Let Zp-1={0,1,2,....,p-2} be additive group mhalo p. Then the discrete logarithm is a
function f : Zp*— Zp-1 and denoted by dig@) (mod p). Which assigned to a unique integer
xeZp-1 such thap = o* (mod p).

Definition 2: Discrete Logarithm assumption: Given a prime pZ[g be the set of all positive

integer numbers less than p and co-prime with poll® a generator Zp* and an elempaf p*.
Find an integer x, 8 x<p-2 such thag = o™ mod p.
Lemma 1: Let G be a finite cyclic group and g be a pringtinoot of G. for all q divisors of
| G|, let Gq be the subgroup of G generated b@th/q . Then the groups Gq are all subgroups
of G. in particular, every subgroup of G is cyclmd for each divisor g of G there is a unique
subgroup of G of order g, namely Ggq.
Definition 3: Hash Function
A hash function is a function h: % Y which has a minimum, the following two propestie

a. Compression — h maps an input x of arbitrary fibitdength, to an output h(x) of

fixed length.

b. Easy of computations: given h and an input X, B&gy to compute.

The following problems become naturally associat#l any hash function:

1. Pre-image problem: Given h: % Y and Y, find xeX such that h(x)=y.

2. Second Pre-image problem: Given h=XY and xX, find x'eX such that ¥x’
and h(x")=h(x).

3. Caollision problem: Given h: X- Y , find x, xeX such that ¥x’ and h(x’)=h(x)

Complexities of solving above problems, given ahlfasiction, gives strength to any security
policy that uses hash functions.



Definition 4: Universal hash function:
Let S and T be two sets and let U be a family atfions from S to T is called a Universal family
of hash functions if for any two distinct elemestss, in S and for any two elements t1,t2in T
we have Probfu(s1)=tl1 and u(s2)=t2]=1/|T|2 ud.
Definition 5: Pseudo- Random Generator Function:
Let m(n) be some function such that m(n)>n. G:{0,4}{0,1} ™™ is a pseudo-random generator
(PRG) if for all polynomialp and all probabilistic polynomial time machines Ritlattempt to
distinguish between out of the generator and traihdom sequences except for many n's:
|Prob[D(y)=1]-Prob[D(G(s))=1]|< p(n)
Where the probabilities taken over y {0™Y and s {0,1} chosen uniformly at random.
Definition 6: Statistical Difference between two pobability distributions:
Let D1 and D2 be two discrete probability distribus defined over the same set X. the
statistical difference between Bnd 0 is denoted by || D D,|| and is given by
|| Di- D2f|=Xxex |Prob 1 () — Prob D(X)[ ... (1)
Definition 7: Pre-image set of y under hilLet h: X— Y be a hash function. Then the set of pre-

images of Y in X is defined by
Qy={xeX | h(x)=y and ¢Y}
Theorem 1:

The set of pre-images@y},.y , naturally define a partition on X.

Proof: follows from the fact that pre-imageswb distinct elements are disjoint sets, and
union of all pre-images is the domain set.

Associated with every hash function we can alwagfshd a uniform distribution function.
Definition 8: Uniform distribution on X: Let h: X— Y be a hash function.

Now define: Uy(x) = ProbEX : h(x)=y]
It can be seen that above distribution is wellredi We get a family of distributions for each of

yinY. Hence we can consider two elementsayitl y2 to be close under hashing if the
statistical difference between the correspondirifptm distributions is small.

3. An Ordinary Crisp Commitment Scheme: (OCCS)

An Ordinary Commitment scheme is a tuple{ M, X, YK P, E(g,t)} where:

M: Message space, such that M={C,1}

X: A set of the witnesses, such that X ={d,1}

Y: A set of the Commitments, such that Y ={0,1}

K: is the set of Indices k encoded by unar§) (@e called it the security parameter of public

commitment key EeF.

F : A family of public commitment keys (PCK), whefgel and EM x X — V.

P: A set of individuals, generally with three elertA as a committing party, B as the party to
which a commitment made and TC as the trusted party
E(e,t;): The events occurring at timesas per algorithms dor i=1,2,3.
* The environment is setup initially, according te tidgorithmSetupalg —£TC select
kI K which sufficient large and then generate a puBlienmitment key (PCK) JeF
and publish it to the parties A and B at time t

* During the commit phase at timg A run theCommitalg —e, , she encapsulateaf

along with witness chosen at randoeXx into a Commitment fm,x)=y €Y, and
sends y to B.



* In the Open phase at timg A sends to B the necessary information m' anfrx'
revealing the Commitment, B uses this and run @penalge3: by reconstruct
F«(m',x")=y’ and checks weather the result is sami@@£ommitment y.

Decision making: If( y'=y)
Then B is bound to act as in m'=m
Else he is free to not act &snm
As shown in figure 1.

TC run Setup algorithm A run Commit algorithm B run Open algorithm

Select k1K FormiIM
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Choose XzX Reconstruct
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13
. X 4
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i

Figure 1: An Ordinary Qri€Eommitment scheme
Definition 3.1 Hiding- Commitment:
A Commitment y in an Ordinary Crisp Commitment goleis called.-hiding (. is a function of

k). If for any meM={0,1}" , xerX={0,1}* and given keF, Let U and U are two different
distributions over a s&d, obtained after running commit algorithm. Then

For all (m, x1), (Mg, X)€Qy || Uh(my, X1) — U'rd(my, Xo)|[=2 where A <1

i.e. the receiver cannot distinguish between whatdender committed to;nor m, only in A.
(note thater is stands for chosen randomly)

Definition 3.2 Binding — Commitment:
A commitment y in an Ordinary Crisp Commitment soleds calledi-binding ( is a function of

K). If given neM, xegX and &Y such that i{m,x)=y. Then the probability of obtain e and

x'erX such that (m,»3(m’',x") and k(m,x)=FR(m',x")=y is given by:
Prob[(m',x)|(m,x)«(f" ,X")=R(m,x)]=p where & n<1

4. Different Commitment Schemes in Practice
There are many Commitment Schemes presented laghdecade which based in different hard
mathematical function. Schemes will be differingpeleding on the choice of algorithm, Fable
1 [5] summarized the underlying schemes.
4-1 Pederson Commitment Scheme:
Pederson Commitment scheme [3] is non-interactiveni@itment scheme which is based on
discrete logarithm problem. Let
i.  Q:be k-bit large prime number.
ii.  p:beaprime number such thatipimod q).
ii.  Zg:is an additive group modulo q .



iv. Zp* : is a multiplicative group modulo p.
v.  Gq:is aunique subgroup of order g qf ALemma 1)

vi. letM=Z,<{0,1}%, X=Z,<{0,1}" and Y= G&{0,1}*.

Setup Phase:
Input: Security parameter k encoding by unalfy 1

» Select randomly k-bit prime number q.

* Select randomly a prime number p such thedt pmod Q).

» Calculate a generator g of the group Gq accordirte algorithm:
1- randomly choose a fronxé< p-1.
2- If g=d"Y"9%£1 (mod p)
3- Then return g.
4- Else go to step 1.

« Calculate an element h in Gg according to the élgor

1- randomly olse b from %b< g-1.

2- If h=¢’#1 (mod p)
3- Then return h.

4- Else go to step 1.
Output: The Public Commitment KeyZ.xZ, —G, defined as

F«(m,x)=d"h* (modp)
TC distribute the public Commitment key to the @rtAlice and Bob at time t1.

Commit phase:
Input: Alice select her messagesM<{0,1}* to be commit to.

1. She choose randomly a witnessoe{0,1}.

2. She compute the commitment yffa,x)= d"h* (mod p).
Output: The concealed Commitment y.
Alice sends y to Bob at time t2.

Open phase:
Input: Alice reveal the messageak<{0,1}* and the witness«X<{0,1}* to Bob.
» Bob recomputed the commitment yii',x")= d"h* (mod p).

If (y'=y)
Then Bob is bound to act as in m'=m
Else Bob free to not act as m'=m.

Output: Bob is bound to act as in m'=m or not.

4-2 Halevi - Micali Commitment Scheme:Halevi and Micali Commitment scheme [5] is non-
interactive Commitment scheme which is based ofistm Free hashing Function (CFHF). Let
i. h:{0,1} —{0,1}*: be a collision free hash function chosen frofaraily H.
i. u{0,1}°® —-{0,1}*: be a universal hash function chosen from a fatil
i. ~ M={0,1}" , X={0,1}°¥ and Y={0,1°%"



Setup phase:
Input: Security parameter k encoding by unafy 1
« Choose CRHF h:{0,1}—{0,1}* from a family of CRHF H.
Output: The Public Commitment Key,FM x X —Y defined as Fk(m,x)=(h(x),u).
Where u:{0,1P® —{0,1}* : be a universal hash function chosen from a fardilsuchth
u(x)=h(m) by the party Alice.

Commit phase:
Input : Alice select her message=smM={0,1} " which to be commit to.

1. She compute h(m)=s, wheref®,1}*.

She choose randomly a witness<x{0,1}°®

2
3. She choose a universal hash function u randomiy free family U.
4. She compute u(x)
If (u(x)=s).
Compute h(x)=c.
Else go to step 2.
Output: The concealed Commitment (c,

Open phase:
Input: Alice reveal the messageah!={0,1}" and the witness«X={0,1}° " to Bob.

e Compute h(x")
If (h(x)=y)
Calculate u(x’) and h(m’)
If (u(x’)=h(m"))
Then Bob is bound to act as in m'=m
Else Bob is free to not act as in m'=m
Else Bob is free to not acirasi'=m

Output: Bob is bound to act as in m'=m or |

4-3dsNaor Commitment SchemeNaor Commitment scheme [4] is an interactive Commmiit
scheme which is based on Pseudo-Random Generator.
Let

i.  G:{0,1}* —{0,1}*: Pseudo-Random Generator.

il. E:{0,1}"—{0,1}" : An encoding function, wher&=3/2 k.

iii. R=(ry,ro, ....... F3): be a vector chosen from {0}, such thatist(0,R)=(, wheredist
is hamming distance ar@lis a 3k-bit zero vector (this vector is chosenBand
sends to A in commit phase).

M={0,1}" , X={0,1}* and Y={0,1}*

Setup phase:
Input: Security parameter k encoding by unafy 1
« She choose Pseudo-Random Generator G:{0;4p,1} **.
+ She choose an encoding function E:{0;2)0,1} ", wheret=3/2 k.
e Let R=(n,l, ....... ) be a vector chosen from {0}, (which chosen by Bob an
sends to Alice before committing to her message).
Output: The Public Commitment Key,FM x X —Y defined as:
Bi(X) if =0
F«(m,x)= Ki<3k
Bi(xX)XorE (m)  if=1
TC sends PCK to the parties Alice and Bob at tiine t




Commit phase:

« Bobselecta
Alice.

vector R3(r,

&)

y=F{m,x)=
Bi(x)XorE (m)

Input : Alice select her message=M={0,1} " which to be commit to.
) from {0,1}* s.t.dist(0,R)=t and sends to

+ Alice choose randomly the witness)={0,1} .
e Alice compute G(X)=( BX), Bx(x),
e Alice encode her message using E.
e Alice compute the commitment

........ » Ba(X)

if |"i=0

if =1

Output: The concealed Commitment y=;(x), Bi(x)XorE (m)). Alice send y to Bob at time

Open phase:

While (r=0)

If (Bi(x")= Bi(x))
Bob compute E(m")=B")Xor(Bi(x)XorE (m))

Input: Alice reveal the messageakl={0,1}" and the witness«X={0,1}* to Bob
*  Bob compute G(x)=( §x), Bx(X"),

........ » Ba(X))

Bob compute m' by decoding E(m’).
Then Bob is bound to act as in m'=m

Else Bob is free to not act as in m'=m
Output: Bob is bound to act as in m'=m or not.

Table 1: Comparison between existences an elenygdtanmitment Schemes

Name of the scheme

Original year g
publishing

Complexity of assump

Local computation

Pederson][3] CRYPTO 1991 Discrete Logarithm | Modular Multiplication
Problem(DLP)

Naro[4] CRYPTO 1989 Pseudo-Random Pseudo-R
Generator(PRG) andom Generator

Error-Correcting Codes

Halevi-Micali[5]

CRYPTO 1996

Collision Resistance H
Function (CRHF)

CRHF
Universal Hash Function

Name of the schemg

#rounds for

Length of

Length of security

Commitment commitment string parameter =
Pederson([3] 1-Round O(max(k,n)) 1024-bits
Naro[4] 2-Round O(max(k,n)) 64-bits
Halevi-Micali[5] 1-Round O(k) 128-bits

4- Conclusion:

We present a general framework of commitment scheafled an ordinary crisp commitment
scheme OCCS. Some existing commitment schemesdaddiscuss and we show it is follows

our framework.
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