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Abstract 

 
Crisp Commitment schemes are very useful building blocks in the design of high-level 
cryptographic protocols. They are used as a mean of flipping fair coins between two players and 
others. In this paper an attempt has been made to give a generalized framework for Crisp 
Commitment schemes is called an Ordinary Crisp Commitment Scheme (OCCS). The Hiding and 
Binding properties of OCCS are well defined. We also review some the existing of different Crisp 
Commitment schemes and we show how it is follow our presenting framework. 
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1. Introduction: 
 

The notion of Crisp Commitment scheme is at the heart of most the constructions of modern 
Cryptography protocols. Protocols are essentially a set of rules associated with a process or a 
scheme defining the process.  Commitment schemes are the processes in which the interests of 
the parties involved in a process are safeguarded and the process itself is made as fair as possible,  
used as a sub-protocols in such applications as zero knowledge proofs[20], secure multiparty 
computations[21], sealed-bid auctions and e-voting. 
In the Commitment scheme, one party, whom we denote the sender namely Alice, aim to entrust 
a concealed message m to the second party namely Bob. Intuitively a commitment scheme can be 
seen as the digital equivalent of a sealed envelope [22]. If Alice wants to commit to some 
message m she just puts it into the sealed envelope, so that whenever Alice wants to reveal the 
message to Bob, she opens the envelope. Clearly, such a mechanism can be useful only if it meets 
some basic requirements. First of all the digital envelope should hide the message from Bob. 
(This is often referred in the literature as the hiding property). Second, the digital envelope should 
be binding, meaning with this that Alice cannot change her mind about m, and by checking the 
opening of the commitment one can verify that the obtained value is actually the one Alice had in 
mind originally (this is often referred to as the binding property).  
Many crisp commitment schemes of OCCS type are in use over a considerable period of time  
[1,3,4,5,6,7,19]. The organization of this paper is: In the next section we give preliminaries. 
Section 3 the presenting generalized framework OCCS. In Section 4 we discuss some of the 
existing Commitment schemes and we show how it is follow our presenting OCCS. Section 5 
conclusion.   
    

2. Preliminaries: 
Following mathematical and statistical concepts form the basis of our discussions. 
Discrete logarithm. 
Definition 1:  Let Zp* be multiplicative group modulo p, let  α be a generator of Zp* and let 

β∈Zp*.  Let Zp-1 ={0,1,2,….,p-2} be additive group modulo p. Then the discrete logarithm is a 
function f : Zp* → Zp-1  and denoted by dlogα(β)    (mod p). Which assigned to a unique integer 

x∈Zp-1  such that β = αx (mod p). 
Definition 2:  Discrete Logarithm assumption: Given a prime p, let Zp* be the set of all positive 

integer numbers less than p and co-prime with p. Let α be a generator Zp* and an element β∈Zp*. 
Find an integer x, 0 ≤ x≤p-2 such that β = αx mod p. 
Lemma 1: Let G be a finite cyclic group and g be a primitive root of  G. for all q divisors of 
│G│, let Gq be the subgroup of G generated by b│G│/q . Then the groups Gq are all subgroups 
of G. in particular, every subgroup of G is cyclic, and for each divisor q of G there is a unique 
subgroup of G of order q, namely Gq. 
Definition 3: Hash Function 
A hash function is a function h: X → Y which has a minimum, the following two properties: 

a. Compression – h maps an input x of arbitrary finite bit-length, to an output h(x) of 
fixed length. 

b. Easy of computations: given h and an input x, h(x) easy to compute.   
The following problems become naturally associated with any hash function: 

1. Pre-image problem: Given h: X → Y and y∈Y, find x∈X such that h(x)=y. 

2. Second Pre-image problem: Given h: X → Y  and x∈X, find x'∈X  such that x≠x’ 
and h(x’)=h(x). 

3. Collision problem: Given h: X → Y , find x, x'∈X  such that x≠x’ and h(x’)=h(x)  
Complexities of solving above problems, given a hash function, gives strength to any security 
policy that uses hash functions. 
 
 



Definition 4: Universal hash function:  
Let S and T be two sets and let U be a family of functions from S to T is called a Universal family 
of hash functions if for any two distinct elements s1, s2 in S and for any two elements  t1,t2 in T  

we have   Prob[u(s1)=t1 and u(s2)=t2]=1/|T|2    for u∈U. 

Definition 5: Pseudo- Random Generator Function:  
Let m(n) be some function such that m(n)>n. G:{0,1}n →{0,1} m(n) is a pseudo-random generator 
(PRG) if for all polynomial p and all probabilistic polynomial time machines D that attempt to 
distinguish between out of the generator and truly random sequences except for many n's: 

|Prob[D(y)=1]-Prob[D(G(s))=1]|< 1/p(n)   
Where the probabilities taken over y {0,1}m(n) and s {0,1}n chosen uniformly at random. 
Definition 6: Statistical Difference between two probability distributions:  
Let D1 and D2 be two discrete probability distributions defined over the same set X. the 
statistical difference between D1 and D2 is denoted by || D1- D2|| and is given by 

|| D1- D2||=∑x∈X |Prob D1 (x) – Prob D2(x)|     ...... (1) 
Definition 7: Pre-image set of y under h: Let h: X → Y be a hash function. Then the set of  pre-

images of y∈Y in X is defined by 

Ωy={x∈X | h(x)=y and y∈Y} 

Theorem 1: 

The set of pre-images { Ωy} y∈Y ,    naturally define a  partition on X. 
Proof: follows from the  fact that   pre-images of two distinct elements are disjoint sets,  and 
union of all  pre-images is the  domain set. 
 
Associated with every hash function we can always define a uniform distribution function. 
Definition 8: Uniform distribution on X:  Let h: X → Y be a hash function. 

      Now define:  Uy(x) = Prob[x∈X : h(x)=y] 
It can be seen that above distribution is well defined. We get a family of distributions for each of   
y in Y.   Hence  we can consider two  elements  y1  and  y2  to be close under   hashing  if  the 
statistical difference between the corresponding uniform distributions  is small. 
 
 

3. An Ordinary Crisp Commitment Scheme: (OCCS) 
An Ordinary Commitment scheme is a tuple{ M, X, Y,K, F, P, E(ei,ti)} where:  
M: Message space, such that  M={0,1}n. 
X: A set of the witnesses, such that X ={0,1}k. 
Y: A set of the Commitments, such that Y ={0,1}ℓ.  
K: is the set of Indices k encoded by unary (1k) we called it the security parameter of public 

commitment key Fk ∈F. 

F : A family of public commitment keys (PCK), where Fk ∈F and Fk:M × X → Y. 

P: A set of individuals, generally with three elements A as a committing party, B as the party to 
which a commitment made and TC as the trusted party. 
 E(ei,ti): The events occurring at times ti as per algorithms ei  for i=1,2,3. 

• The environment is setup initially, according to the algorithm Setupalg – e1. TC select 

k� K which sufficient large and then generate a public Commitment key (PCK) Fk∈F  
and publish it to the parties A and B at time t1. 

• During the commit phase at time t2, A run the Commitalg – e2 , she encapsulate m∈M 

along with witness chosen at random x∈X  into a Commitment Fk(m,x)=y ∈Y, and 
sends y to B.  



• In the Open phase at time t3, A sends to B the necessary information m' and x' for 
revealing the Commitment, B uses this and run the Openalg-e3: by reconstruct 
Fk(m',x')=y’ and checks weather the result is same as the Commitment y. 
Decision making:  If( y’=y) 

        Then B is bound to act as in m'=m 
                    Else he is free to not act as m'=m 
As shown in figure 1.  

Start –e1

Generate randomly PCK Fk �F

Fk:M × X → Y

Start – e2

For m�M

Choose  x�RX

Commitment 
Fk(m,x)=y

A Send y to B

If (t<t3)

Wait 

Yes  No  

A send m’ and x’ to B 

Start –e3

TC run Setup algorithm  A run Commit algorithm  B run Open algorithm  

Reconstruct 
Fk(m’,x’)=y’  

If (y’=y)
Yes  No  

Act m’=m Not act m’=m 

Select k�K

 
                         Figure 1: An Ordinary Crisp Commitment scheme  
Definition 3.1 Hiding- Commitment: 
A Commitment y in an Ordinary Crisp Commitment scheme is called λ-hiding (λ is a function of 

k ). If for any m∈M={0,1} n , x∈RX={0,1} k and given Fk∈F, Let UFk and U’Fk are two different 
distributions over a set Ωy obtained after running commit algorithm. Then  

 For all (m1, x1), (m2, x2)∈Ωy    || UFk(m1, x1) – U’Fk(m1, x1)||= λ  where 0≤ λ ≤ 1 
i.e. the receiver cannot distinguish between what the sender committed to m1 or m2 only in λ. 

(note that ∈R is stands for chosen randomly) 
Definition 3.2 Binding – Commitment: 
A commitment y in an Ordinary Crisp Commitment scheme is called µ-binding (µ is a function of 

k). If given m∈M, x∈RX and y∈Y such that Fk(m,x)=y.  Then the probability of obtain m'∈M and 

x'∈RX such that (m,x)≠(m',x') and Fk(m,x)=Fk(m',x')=y is given by:   
                             Prob[(m',x')|(m,x): Fk(m' ,x')=Fk(m,x)]=µ where 0≤ µ ≤ 1 

 
4. Different Commitment Schemes in Practice: 

 There are many Commitment Schemes presented in the last decade which based in different hard 
mathematical function. Schemes will be differing depending on the choice of algorithm Fk, table 
1 [5] summarized the underlying schemes. 
4-1 Pederson Commitment Scheme: 
Pederson Commitment scheme [3] is non-interactive Commitment scheme which is based on 
discrete logarithm problem. Let  

i. q: be k-bit  large prime number. 
ii. p: be a prime number such that p≡1 (mod q). 
iii.  Zq : is an additive group modulo q . 



iv. Zp
* : is a multiplicative group modulo p. 

v. Gq : is a unique subgroup of order q of Zp
*  (Lemma 1) 

vi. let M= Zq ⊆{0,1} k, X= Zq ⊆{0,1} k and Y= Gq⊆{0,1} k
 . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4-2 Halevi - Micali Commitment Scheme: Halevi and Micali Commitment scheme [5] is non-
interactive Commitment scheme which is based on Collision Free hashing Function (CFHF). Let  

i. h:{0,1} * →{0,1} k : be a collision free hash function chosen from a family H. 
ii. u:{0,1}Ο(k) →{0,1} k : be a universal hash function chosen from a family U.  
iii.  M={0,1} n  , X={0,1}Ο(k) and Y={0,1}Ο(k). 

 

Setup Phase: 
Input:  Security parameter k encoding by unary 1k. 

• Select randomly k-bit prime number q. 
• Select randomly a prime number p such that p≡1 (mod q). 
• Calculate a generator g of the group Gq according to the algorithm: 

1- randomly choose a from 1≤a≤ p-1. 
   2- If g=a(p-1)/q ≠1 (mod p) 
   3- Then return g. 
   4- Else go to step 1. 

• Calculate an element h in Gq according to the algorithm: 
                                    1- randomly choose b from 1≤b≤ q-1. 
   2- If h=gb≠1 (mod p) 
   3- Then return h. 
   4- Else go to step 1. 

Output:  The Public Commitment Key Fk:Zq×Zq →Gq defined as  
 Fk(m,x)=gm hx  (modp) 
TC distribute the public Commitment key to the parties Alice and Bob at time t1. 

 

Commit phase: 

Input : Alice select her message m∈M⊆{0,1} k  to be commit to. 

1. She choose randomly a witness x∈X⊆{0,1} k. 
2. She compute the commitment y=Fk(m,x)= gm hx  (mod p). 

Output : The concealed Commitment y. 
Alice sends y to Bob at time t2. 

 

Open phase: 

Input : Alice reveal the message m'∈M⊆{0,1} k  and the witness x'∈X⊆{0,1} k to Bob. 

• Bob recomputed the commitment y'=Fk(m',x')= gm hx  (mod p). 
If (y'=y) 

               Then Bob is bound to act as in m'=m 
Else Bob free to not act as m'=m. 

Output : Bob is bound to act as in m'=m or not. 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4-3dsNaor Commitment Scheme: Naor Commitment scheme [4] is an interactive Commitment 
scheme which is based on Pseudo-Random Generator. 
Let  
 

i. G:{0,1} k →{0,1} 3k : Pseudo-Random Generator. 
ii. E:{0,1}n→{0,1} ℓ : An encoding function, where ℓ=3/2 k. 
iii.  R=(r1,r2, …….,r3k): be a vector chosen from {0,1}3k , such that dist(0,R)=ℓ, where dist 

is hamming distance and 0 is a 3k-bit zero vector (this vector is chosen by B and 
sends to A in commit phase). 

M={0,1} n  , X={0,1}k and Y={0,1}3k .  
 
 
 
 
 
 
 
 
 
 
 

Setup phase: 
Input : Security parameter k encoding by unary 1k. 

• Choose CRHF h:{0,1}* →{0,1} k from a family of CRHF H. 
Output : The Public Commitment Key Fk: M × X →Y defined as Fk(m,x)=(h(x),u). 
Where u:{0,1}Ο(k) →{0,1} k : be a universal hash function chosen from a family U such theat 
u(x)=h(m) by the party Alice.  
 

Commit phase: 

Input : Alice select her message m∈M={0,1} n which to be commit to. 

1.  She compute h(m)=s, where s ∈{0,1} k . 

2. She choose randomly a witness x∈X={0,1} Ο (k) 
3. She choose a universal hash function u randomly from the family U. 
4. She compute u(x) 

              If (u(x)=s). 
  Compute h(x)=c. 
    Else go to step 2. 

Output : The concealed Commitment (c, u). 

Open phase: 

Input : Alice reveal the message m'∈M={0,1} n  and the witness x'∈X={0,1} Ο (k) to Bob. 

• Compute h(x’)  
         If  ( h(x’)=y )  
     Calculate u(x’) and h(m’) 
     If  (u(x’)=h(m’)) 
             Then Bob is bound to act as in m'=m 
      Else Bob is free to not act as in m'=m 
                    Else Bob is free to not act as in m'=m 
 
Output : Bob is bound to act as in m'=m or not. 

Setup phase: 
Input : Security parameter k encoding by unary 1k. 

• She choose Pseudo-Random Generator G:{0,1}k →{0,1} 3k. 
• She choose an encoding function E:{0,1}n→{0,1} ℓ, where ℓ=3/2 k. 
• Let  R=(r1,r2, …….,r3k): be a vector chosen from {0,1}3k ,  (which chosen by Bob  and 

sends to Alice  before committing to her message). 
Output : The Public Commitment Key Fk: M × X →Y defined as: 
  Bi(x)                 if ri=0 
Fk(m,x)=      1≤ i≤3k 
  Bi(x)XorE (m)      if ri=1 
TC sends PCK to the parties Alice and Bob at time t1. 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 1: Comparison between existences an elementary Commitment Schemes   
Name of the scheme Original year of 

publishing 
Complexity of assumption Local computation 

Pederson[3] CRYPTO 1991 Discrete Logarithm 
Problem(DLP) 

Modular Multiplication 

Naro[4] CRYPTO 1989 Pseudo-Random 
Generator(PRG) 

Pseudo-R 
andom Generator 
Error-Correcting Codes 

Halevi-Micali[5] CRYPTO 1996 Collision Resistance Hash 
Function (CRHF) 

CRHF 
Universal Hash Function 

 
Name of the scheme   #rounds for 

Commitment 
Length of 

commitment string 
Length of security 

parameter =                 
Pederson[3] 1-Round  O(max(k,n)) 1024-bits  
Naro[4] 2-Round  O(max(k,n)) 64-bits  
Halevi-Micali[5] 1-Round  O( k ) 128-bits  

 
4- Conclusion: 
We present a general framework of commitment scheme called an ordinary crisp commitment 
scheme OCCS. Some existing commitment schemes had been discuss and we show it is follows 
our framework. 
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