
Enhanced Cryptanalysis of Substitution Cipher
Chaining mode (SCC-128)

Mohamed Abo El-Fotouh and Klaus Diepold

Institute for Data Processing (LDV)
Technische Universität München (TUM)

80333 Munich Germany
mohamed@tum.de,kldi@tum.de

Abstract. In this paper, we present an enhanced cryptanalysis of the
Substitution Cipher Chaining mode (SCC) [1]. In [2], SCC-128 (SCC
which uses AES with 128-bit key) was broken using 5 attacks, where the
authors used an active attack model (where the attacker can force the
disk encryption application to re-encrypt a sector for her), the complexity
of these attacks are at most 240 cipher executions. In this paper, we
enhance the main attack on SCC-128, this enhancement decrease the
complexity of SCC-128 attacks to be at most 214 cipher executions. We
also cryptanalze SCC-128 in a less restrictive attack model, our attacks
are upper bounded with 240 cipher executions.

1 Introduction

In [1], three new disk encryption modes of operations have been introduced,
the Substitution Cipher Chaining mode (SCC) which is a narrow block mode of
operation that provides error propagation, and two new variants of ELEPHAT
(ELEPHANT+ and ELEPHANT×) that uses SCC, where ELEPHANT is a
synonym for Windows Vista’s disk encryption algorithm [3]. All these modes
of operations uses the Advanced Encryption Standard (AES) [4] as there block
cipher.

In [2], SCC-128 (SCC which uses AES with 128-bit key) was attacked using 5
different attacks. These attacks were able to recover all the unknown keys/masks
used by SCC-128. In this paper, we enhance the main attack, our enhanced attack
requires less chosen plaintext and less execution time. We also present, how to
break SCC-128 in a less restrictive attack model, where the attacker can only
modify the ciphertext and read some decrypted plaintext.

This paper proceeds as follows: In Section 2, we briefly describe the AES. In
Section 3, we present the basic idea of our enhancement to the previous attack,
where we pre-processed the chosen plaintext to skip an AES round. In Section
4, we briefly review the square attack [5] and present our proposed variant of
square attack. In Section 5, we describe briefly the SCC-128. In Section 6, we
briefly describe the previous attacks used to break SCC-128. In Section 7, we
present our optimization for the previous main attack on SCC-128. In Section
8, we modify the main attack on SCC-128, to work in a less restrictive attack
model. We conclude in section 9.



2 The Advanced Encryption Standard (AES)

The 128-bit plaintext is arranged as an array of bytes. This array is called the
state, the bytes of the state are treated as elements of the finite field GF(28).
Figure 1 represents the state S as a matrix. AES has N rounds, where N equals to
10 for AES-128, 12 for AES-192, and 14 for AES-256. Table 1 present a high-level
description of AES encryption.

Fig. 1. AES State.

Table 1. AES Encryption.

Encrypt-AES(State,ExpandedKey)

AK(State,ExpandedKey)

for i=1 to N-1

SB(State)

SR(State)

MC(State)

AK(State,ExpandedKey + 4 × i)

end for

SB(State)

SR(State)

AK(State,ExpandedKey + 4 × N)

return State

An AES round is composed of the following four operations:

SubBytes (SB): a bytewise transformation that is applied on each byte of the
current state, using an 8-bit to 8-bit nonlinear S-box. This transformation is
the only non-linear transformation in AES and the S-box is known to have
excellent differential and linear properties [6].



ShiftRows (SR): a transposition step where each row of the state is rotated
to the left a certain number of steps.

MixColumns (MC): is an MDS matrix multiplication which confuses the four
entries of each column of the state.

AddRoundKey (AK): each byte of the state is xored with a round key.

The MixColumns operation is omitted in the last round and an initial key addi-
tion is performed before the first round for whitening. Table 2 present a high-level
description of the AES decryption, where SR−1, SB−1 and MC−1 are the inverse
of SR, SB and MC respectively. For full description of AES, refer to [4].

Table 2. AES Decryption.

Decrypt-AES(State,ExpandedKey)

AK(State,ExpandedKey + 4 × N)

SR−1(State)

SB−1(State)

for i=N-1 to 1

AK(State,ExpandedKey + 4 × i)

MC−1(State)

SR−1(State)

SB−1(State)

end for

AK(State,ExpandedKey)

return State

3 Pushdown attacks

The Pushdown attack hosts a chosen plaintext attack, where it prepares the
chosen plaintext for that attack [7]. Figure 2 gives an overview on how it works,
where:

1. In Fig. 2(a), an n round chosen plaintext attack is presented, that accepts
the set {X} of chosen plaintexts to calculate the Key K.

2. Fig. 2(b) presents the pre-processing step of the Pushdown attack, where
{X} is transformed to {Y}.

3. Fig. 2(c) presents the Pushdown attack, where after encrypting {Y} with
r rounds, we get {X’}, that should be equivilant to {X}, in the sense that
applying the n round chosen plaintext attack on {X’} will recover K. Thus,
we are able to increase the number of rounds attacked by the chosen plaintext
attack to (n+r) rounds.

In the next sub section, we will present how to perform the pre-processing
step to apply the Pushdown attack on the AES (when the pre-whitening step is
omitted).



(a) n round attack (b) Pre-processing (c) Pushdown attack

Fig. 2. Overview on the Pushdown attack.

3.1 Preparing a Λ1-Set

Let a Λ-set be a set of 256 AES states that are all different in some of the state
bytes (the active) and all equal in the other state bytes (the passive), recall that
the state of Rijndael is a 4 × 4 byte matrix. In other words for two distinct
states A and B in a Λ-set we have:
Ai,j 6= Bi,j if the byte at position (i,j) is active, and
Ai,j = Bi,j else, i.e the byte at position (i,j) is passive
A Λ-set with exactly k active bytes is a ”Λk-set”.

Proposition 1. Let Γ 1 be defined by:

Γ 1 = R−1(Λ1, 0) (1)

where R−1(X,K) applies an AES decryption round on the state X and Round
key K. We claim that Γ 1-Set is a Λ4-Set.

Proof. The proof is straight forward. Let us follow the difference propagation,
after applying AK the difference will not be changed and the result is still Λ1-
Set, but after applying MC−1 the difference will propagate to one column, thus
the result is a Λ4-Set. Applying SR−1 will not change the difference but will
change the positions of the active bytes and applying SB−1 will not change the
difference, thus the result is still Λ4.



Note, here we use a key with all zeros as a kind of optimization and simplifi-
cation of the analysis, in the sense that it has no effect on the input and can be
removed from the pre-processing process.

Proposition 2. Let ∆1 be defined by:

∆1 = R(Γ 1,K) (2)

where R(X,K) applies an AES encryption round on the state X and Round key
K. We claim that ∆1-Set is a Λ1-Set.

Proof. The proof is straight forward. SB, SR and MC will remove the effect of
SB−1, SR−1 and MC−1 respectively, thus the result will be the original Λ1-Set.
AK will not change the difference, thus the result is still a Λ1-Set.

Figure 3 illustrates the difference propagation of a Λ1-Set after applying an AES
decryption round followed by an AES encryption round (here S0,0 is assumed to
be the active byte).

Fig. 3. An example of applying the pre-processing step on a Λ1-Set, when S0,0 is the
active byte.

4 The Square Attack

The Square attack is a dedicated attack that exploits the byte-oriented structure
of Square cipher and was published in the paper presenting the Square cipher



itself [5]. This attack is also valid for Rijndael (AES) [4], as Rijndael inherits
many properties from Square. The attack is a chosen plaintext attack and is
independent of the specific choices of SB, the multiplication polynomial of MC
and the key schedule. It is faster than an exhaustive key search for Rijndael
versions of up to 6 rounds. In the following sub sections, we will present the
square attack on 4 and 5 rounds AES.

4.1 Square-4

Square-4 is the basic attack, that attacks 4 rounds of Rijndael. The attacker
chooses one Λ1-set P0 of plaintexts (where by Pi we denote the set of 256 states
which are the output of the ith round). From the round properties of Rijndael
we have P1 is a Λ4-set, P2 is a Λ16-set, and P3 is unlikely to be a Λ-set,

As explained in [4] all the bytes of P3 are balanced, i.e. the following property
holds:

For all (i, j) ∈ {0, 1, 2, 3}2 :
⊕

A∈P3

Ai,j = 0. (3)

Hence, all bytes at the input of the 4th round are balanced. This balance is
in general destroyed by the subsequent application of SB. We assume the 4th

round to be a final round, i.e., it does not include a MC operation. Every output
byte of the 4th round depends on only one input byte of the 4th round. Let a be
the output of the 4th round, b its input and k the Round Key of the 4th round.
We have:

ai,j = Sbox(bi′,j′)⊕ ki,j (4)

By assuming a value for ki,j , the value of bi′,j′ for all elements of the Λ-set can be
calculated from the ciphertexts. If the values of this byte are not balanced over
Λ, the assumed value for the key byte was wrong. This is expected to eliminate
all but approximately 1 key value. This can be repeated for the other bytes of k.
Since by checking a single Λ1-set leaves only 2−8 of the wrong key assumptions as
possible candidates, the Cipher Key can be found with overwhelming probability
with only 2 Λ-sets. The cost of this attack is 29 chosen plaintext and requires
about 29 cipher executions.

4.2 Square-5

If an additional round is added at the end, we have to calculate the above value
of bi′,j′ from the output of the 5th round instead of the 4th round. This can be
done by additionally assuming a value for a set of 4 bytes of the 5th Round Key.
As in the case of the 4-round attack, wrong key assumptions are eliminated by
verifying that bi′,j′ is not balanced. In this 5-round attack 240 key values must
be checked, and this must be repeated 4 times. Since by checking a single Λ-set
leaves only 2−8 of the wrong key assumptions as possible candidates, the Cipher
Key can be found with overwhelming probability with only 5 Λ-sets. The cost of
this attack is 5 ×28 chosen plaintext and requires about 240 cipher executions.



4.3 Pushdown-Square-5*

In this subsection, we present an attack on 5 rounds AES (where the pre-
whitening process is omitted). We use the pre-processing of the chosen plaintext
in Sect. 3.1, together with Square-4 attack to deploy our Pushdown attack on
AES.

Pushdown-Square-5* uses an Γ 1-Set instead of a Λ1-set. Note that by apply-
ing an AES round on a Γ 1-Set, the result will always be a Λ1-set for any used
Round key (refer to Sect. 3.1).

Pushdown-Square-5* attack is based on Square-4 attack, where we input a
Γ 1 to a 5 rounds AES, and after applying the first AES round, the input to the
second round is now a Λ1-set, from here we can apply Square-4 attack. Note
that whenever a Λ1-set is needed to be calculated the corresponding Γ 1-set is
calculated instead. The complexity of Pushdown-Square-5* is the same as that
of Square-4 (29 chosen plaintext and 29 cipher executions).

5 Substitution Cipher Chaining mode

SCC [1] is a dedicated mode of operation for disk encryption, that offers error
propagation.

5.1 SCC Keys

The secret key in SCC is divided into three different keys (each of which can be
either 128- or 256-bit):

1. EK: which is used to generate the expanded key, used in encrypting the
blocks.

2. TK: which is used to encrypt the sector ID to produce the tweak.
3. BK: which is used to generate the BT (mask layers), where BT is an array

of sixty four 128-bit words:
– BT is constructed once at the initialization of SCC mode.
– BT is constructed using the AES in the counter mode, where the counter

is initialized with zero and BK is the encryption key for the counter
mode.

5.2 Terminologies

The following terminologies are used to describe SCC.

IN: The input plaintext of size 4096-bit.
SID: The sector ID encoded as 64-bit unsigned integer.
GetTweak(TK,SID): Encrypts (using AES) SID after padding with zeros

with TK and returns the result.
T: The tweak.
ExKey: The expanded AES key.



Expand-Key(EK): Expands the EK with the AES key setup routine and re-
turns the result.

Xi: The ith block of text X, where a block is 128-bit.⊕
: Bitwise xor operation.

OUT=Encrypt-AES(IN,ExKey): Encrypts IN, using the AES encryption
routine with ExKey as the expanded key, and returns OUT.

Substitute(T,ExKey,i): Replaces the ith round subkeys in ExKey with T
(note that: the first round of the AES is round zero and it is the pre-whitening
process).

len(X): Returns the length of the string X in bits.

5.3 Design

The listing of SCC is in table 3 and it works as follows:

Table 3. SCC listing for disk encryption.

Encrypt-SCC(IN,EK,Keylen,TK,SID)

T=GetTweak(TK,SID)

ExKey=Expand-Key(EK)

KL=len(EK)

if(KL==128)

x=4 y=5 z=6

else

x=5 y=7 z=10

end if

Substitute(T,ExKey,y)

Substitute(α0,ExKey,x)

Substitute(β0,ExKey,z)

OUTi=Encrypt-AES(INi,ExKey)

for i=1 to 31

Substitute(αi,ExKey,x)

Substitute(βi,ExKey,z)

τ=OUTi−1 ⊕ T

Substitute(τ,ExKey,y)
OUTi=Encrypt-AES(INi,ExKey)

end for

return OUT

where αi = BT2×i and βi = BT(2×i)+1

– The tweak T is calculated by encrypting the sector ID with the tweak key
TK.

– The expanded key ExKey is calculated.
– the values of x, y and z are determined by the encryption key size.



– For the first block, the secret tweak T replaces the subkeys of the yth round,
the secret 128-bit α0 replace the subkeys of the xth round, and the secret
128-bit β0 replace the subkeys of the zth round. Finally, the first block is
encrypted by the new expanded key.

– A loop that runs 31 times (where i takes the values from 1 to 31), the secret
128-bit αi replace the subkeys of the xth round, the secret 128-bit βi replace
the subkeys of the zth round, and τ replaces the subkeys of the yth round
(where τ is calculated by xoring ciphertext of the previous block with T and
it acts as the active tweak). Finally, the ith block is encrypted by the new
expanded key.

6 Previous Attacks

6.1 Active attack model

In [2], it was assume that the adversary has access to the encrypted hard disk
and can read the ciphertext stored on the hard disk, modify the ciphertext stored
on the hard disk, can ask the disk encryption application to encrypt some sectors
for her, and force the hard disk encryption application to re-encrypt a sector for
her, this can be done if the adversary can modify the plaintext of the sector in
memory and ask the disk encryption application to save it.

Following this attack model, five attacks have been mounted on SCC-128 and
were able to recover all the unknown keys/masks used by SCC-128, in the next
subsections we will present briefly these attacks.

6.2 The Unknowns

For SCC-128, we have the following set of unknown keys/masks:Π = {κi, αj , βj , τk :
0 ≤ i ≤ 10, i 6= x, y, z and 0 ≤ j ≤ 31} ,where κi is the round key of the ith

round and k is the sector ID.

6.3 Attack1

Let Bx
i be the ith block in the sector number x. The active tweak of the block

Bx
i+1 is defined by:

τx
i+1 = T x

i ⊕Bx
i (5)

So by controlling the values of Bx
i , we can control the values of τx

i+1, we use our
ability to modify τx

i+1 to mount the square attack [5] on the last 5 rounds of the
AES in SCC-128. The following procedure is used to generate a Λ1-set:

1. Generate a set A of 256 plaintexts, so as A is a Λ1-set.
2. For each plaintext Ai ∈ A

(a) Set Bx
i = Ai

(b) Read the sector x and ask the disk encryption application to re-encrypt
it.



(c) Store Cx
i+1, where Cx

i+1 is the ciphertext of Bx
i+1.

This will create a Λ1-set as the input to the 6th, which implies that we can apply
the square attack on the rest 5 rounds, and obtaining the round key of the last
round, from which we can calculate the rest of the round keys. The cost of this
attack is 5 × 28 chosen plaintext and requires about 240 cipher executions and
this will reduce the unknown set to: Π = {αj , βj , τk : 0 ≤ j ≤ 31}, where k is
the sector ID.

6.4 The other Attacks

Attack2: recovers the β mask, using a variant of the square attack presented in
Sect. 10.1, this attack depends on the fact that the encryption subkeys are
successfully recovered from Attack1. The cost of this attack is 214 chosen
plaintext and requires about 214 cipher executions or 213 chosen plaintext
and requires about 221 cipher executions and this will reduce the unknown
set to: Π = {αj , τk : 0 ≤ j ≤ 31}, where k is the sector ID.

Attack3: recovers τx for the sector x, this attack assumes that Attack1 and
Attack2 were successful. The cost of this attack is 29 chosen plaintext and
requires about 29 cipher executions or 28 chosen plaintext and requires about
216 cipher executions and this will reduce the unknown set to: Π = {αj , τk :
0 ≤ j ≤ 31} , where k is the sector ID and k6= x.

Attack4: recovers the α mask, this attack assumes that Attack1, Attack2 and
Attack3 were successful. The cost of this attack is a known sector plaintext
and ciphertext and 64 cipher executions, this will reduce the unknown set
to: Π = {τk}, where k is the sector ID and k6= x.

Attack5: recovers the encrypt sector ID for a sector (τx for any sector), this
attack assumes that Attack1, Attack2 and Attack4 were successful. This
attack requires 1 known plaintext/ciphertext block and 2 cipher executions.

For more details about these attacks, refer to the Appendix.

7 Proposed optimization to the previous attacks

7.1 Attack1′

Let Bx
i be the ith block in the sector number x. The active tweak of the block

Bx
i+1 is defined by:

τx
i+1 = T x

i ⊕Bx
i (6)

So by controlling the values of Bx
i , we can control the values of τx

i+1, we use
our ability to modify τx

i+1 to mount the Pushdown-Square-5* attack (refer to
Sect. 4.3) on the last 5 rounds of the AES in SCC-128. The following procedure
is used to generate a Λ1-set:

1. Generate a set A of 256 plaintexts, so as A is a Γ 1-set.
2. For each plaintext Ai ∈ A



(a) Set Bx
i = Ai

(b) Read the sector x and ask the disk encryption application to re-encrypt
it.

(c) Store Cx
i+1, where Cx

i+1 is the ciphertext of Bx
i+1.

This will create a Γ 1-set as the input to the 6th, which implies that we can apply
the Pushdown-Square-5* attack on the rest 5 rounds, and obtaining the round
key of the last round, from which we can calculate the rest of the round keys. The
cost of this attack is 29 chosen plaintext and requires about 29 cipher executions
and this will reduce the unknown set to: Π = {αj , βj , τk : 0 ≤ j ≤ 31} ,where k
is the sector ID.

With this improvement, when replacing Attack1 with Attack1′, we achieved
to decrease the complexity of the attacks on SCC-128 to be at most 214 cipher
executions (the complexity of Attack2).

8 Proposed Attacks

8.1 A less Restrictive Attack model

We assume that the adversary has access to the encrypted hard disk and can read
the ciphertext stored on the hard disk, modify the ciphertext stored on the hard
disk, can read some of the decrypted plaintext and can ask the disk encryption
application to encrypt some sectors for her. Note that our assumptions are less
restrictive than those in [2], where the attacker does not force the hard disk
encryption application to re-encrypt a sector for her.

8.2 Pushup Attacks

The idea is to modify the chosen ciphertext, in such a way that after applying r
decryption rounds, we get the original/equivalent chosen chiphertexts. This idea
can increase the strength of an (n) round attack to an (n + r) round attack, as
the last r rounds are bypassed [7].

Proposition 3. Let Θ1 be defined by:

Θ1 = R−1(R(Λ1, 0),K) (7)

where R(X,K) applies an AES encryption round on the state X and Round key
K. We claim that Θ1 is a Λ1-Set.

Proof. The proof is straight forward. Let us follow the difference propagation,
after applying SB the difference will not be changed and the result is still Λ1-Set,
after applying SR the position of the active byte may change but the result is
still a Λ1-Set, but after applying MC the difference will propagate to one column,
thus the result is a Λ4-Set, applying AK has no effect on the difference. MC−1,
SR−1 and SB−1 will remove the effect of MC, SR and SB respectively, thus the
result will be the original Λ1-Set. After applying AK the result is still a Λ1-Set.



8.3 Attack1′′

Let Bx
i be the ith block in the sector number x. The active tweak of the block

Bx
i+1 is defined by:

τx
i+1 = T x

i ⊕Bx
i (8)

So by controlling the values of Bx
i , we can control the values of τx

i+1, we use our
ability to modify τx

i+1 to mount the square attack on the first 6 rounds of the
AES in SCC-128. The following procedure is used to generate Λ1-sets:

1. Generate a set A of 256 plaintexts, so as A is a Θ1-set.
2. For each plaintext Ai ∈ A

(a) Set Bx
i = Ai

(b) Read the plaintext of sector x.
(c) Store Px

i+1, where Px
i+1 is the plaintext of Bx

i+1.

This will create a Λ1-set as the input to the 6th decryption round, which im-
plies that we can apply the square attack on the first 5 decryption rounds, and
obtaining the round key of the first round, from which we can calculate the
rest of the round keys. The cost of this attack is 5 × 28 chosen plaintext and
requires about 240 cipher executions and this will reduce the unknown set to:
Π = {αj , βj , τk : 0 ≤ j ≤ 31} ,where k is the sector ID.

Note that the square property on which the square attack is build on, is
independent of the specific choices of SB, MC and the key schedule [4], thus the
property holds in the decryption direction.

Attack2, Attack3, Atack4 and Attack5 as described in [2] can be used
to recover the rest of unknowns (Note that these attacks conform to our less
restrictive attack model).

9 Conclusion

In this paper, we improve the complexity of the previous attacks on SCC-128
(which were done using an active attack model), were we reduced the number
of cipher executions from 240 to 214. We also introduce, how to break SCC-
128 using a less restrictive attack model, our attacks require at most 240 cipher
executions.

References

[1] M. El-Fotouh and K. Diepold. The Substitution Cipher Chaining mode. In SE-
CRYPT 2008, Porto, Portugal, July 2008.

[2] M. El-Fotouh and K. Diepold. Cryptanalysis of Substitution Cipher Chaining mode
(SCC). In to appear, in 2009 IEEE International Conference on Communications
(ICC 2009), Dresden, Germany, June 2009.

[3] N. Ferguson. AES-CBC + Elephant diffuser : A Disk Encryption Algo-
rithm for Windows Vista. http://download.microsoft.com/download/0/2/3/

0238acaf-d3bf-4a6d-b3d6-0a0be4bbb36e/BitLockerCipher200608.pdf, 2006.



[4] J. Daemen and V. Rijmen. The Design of Rijndael. 2002.
[5] J. Daemen, L. Knudsen, and V. Rijmen. The Block Cipher Square. In FSE ’97:

Proceedings of the 4th International Workshop on Fast Software Encryption, pages
149–165, 1997.

[6] K. Nyberg and L. Knudsen. Provable security against a differential attack. Journal
of Cryptology, 8:27–37, 1995.

[7] M. El-Fotouh and K. Diepold. The Pushdown attack on AES. In SECUREWARE
2009, Athens, Greece, June 2009.

[8] S. Lucks. Attacking Seven Rounds of Rijndael under 192-bit and 256-bit Keys. In
Proceedings of AES 3, NIST, 2000.

10 Appendix

The implementation of AES has a great degree of freedom to change the order
of its elementary operations, without changing the behavior f the cipher. We use
the L-representation defined in [8], where Lr is defined as:

Lr = MC
−1(SB−1(Kr)) (9)

Note that by knowing Lr is equivalent to knowing Kr, where Kr is the rth

round key. In table 4, we present the original round of AES and its equivalent
using the L-representation of the round subkeys.

Table 4. AES original and equivalent round functions.

Round function Equivalent function

SB(State) SB(State)

SR(State) AK(State,Lr)

MC(State) SR(State)

AK(State,Kr) MC(State)

return State return State

10.1 Square attack for L-representation

The square attack in [4] assumes that the last round is a final round (i.e. there is
no MC function). After recovering the encryption key EK, what is left is to attack
three rounds of AES with independent subkeys, and all these round are full
rounds (as they are in the middle of the cipher). By using the L-representation
as in [8], we can re-state the square attack to work on full rounds.

The adversary chooses one Λ1-set P0 of plaintexts (where by Pi we denote the
set of 256 states which are the output of the ith round). As explained in [4] all the
bytes of P3 are balanced, i.e. the balance property holds (3). P4 is the set of 256
ciphertexts the adversary learns. Let L4 be the L-representation of K4 (9). The
adversary can calculate the set Q4 in between P3 and P4 by applying MC−1 and



SR−1 on the elements of P4, where for any Xi ∈ P4 the corresponding element
is Zi ∈Q4. So we invert the fourth round step by step, by inverting the MC
function , inverting the SR function, add (a possible choice for) the key L4

i,j and
invert the SR function. If our guess a ∈ {0, 1}8 for L4

i,j is correct, the set of bytes
SB−1(Zi,j ⊕ a) is balanced, it is estimated that this guess will eliminate all the
wrong guesses but one. So, we can construct an expected number of about 216

candidates of L4.
Each candidate corresponds with a unique choice of the key of the last round.

We can try another set of Λ1-set to eliminate the wrong candidates , or just
use exhaustive key search over all the key candidates using the same 256 known
pairs of plaintext and ciphertext as before. With overwhelming probability, either
approaches uniquely determined the last round key. The memory requirement of
this attack is low and need either 29 chosen plaintext and 29 cipher executions
or 28 chosen plaintext and 216 cipher executions.

10.2 Attack2

Generate a set A of 256 plaintexts, so as A is a Λ1-set. Apply two decryption
AES round function using the recovered κ2 and κ1, then xor the result with κ0.
Name the resulting set D. Note that encrypting the set D will result in a Λ1-set
as the input for the third round.

The attack works as follows, for each block Bx
i in a sector x:

– Use D as its input and encrypt that block.
– Decrypt the ciphertext till the 7th round with the recovered round keys,

name this set E.
– Apply the attack in Sect. 10.1, where the set A is the plaintext and the set

E is the ciphertext.
– The recovered round key is βi.

The cost of this attack is 214 chosen plaintext and requires about 214 cipher
executions or 213 chosen plaintext and requires about 221 cipher executions and
this will reduce the unknown set to: Π = {αj , τk : 0 ≤ j ≤ 31}, where k is the
sector ID.

10.3 Attack3

Generate a set A of 256 plaintexts, so as A is a Λ1-set. Apply one decryption
AES round function using the recovered κ1, then xor the result with κ0. Name
the resulting set C. Note that encrypting the set C will result in a Λ1-set as the
input for the second round.

The attack works as follows, for any block Bx
i in a sector x:

– Use C as its input and encrypt that block.
– Decrypt the ciphertext till the 8th round with the known round keys, name

this set D.



– Apply the attack in Sect. 10.1, where the set A is the plaintext and the set
D is the ciphertext.

– The recovered round key is τx.

The cost of this attack is 29 chosen plaintext and requires about 29 cipher
executions or 28 chosen plaintext and requires about 216 cipher executions and
this will reduce the unknown set to: Π = {αj , τk : 0 ≤ j ≤ 31} , where k is the
sector ID and k6= x.

10.4 Attack4

For the sector x, the set of unknowns is: Π = {αj : 0 ≤ j ≤ 31} , which can be
recovered directly, by the following procedure:

– For each block Bx
i :

1. Encrypt the plaintext Xi using the first three rounds and the known
round keys to get Yi.

2. Apply SB, SR and MC on Yi to produce Wi.
3. Encrypt Xi using SCC to get Ai.
4. Decrypt Ai using four rounds using the known round keys to get Bi.
5. Apply an inverse AES round on Bi using βi as the round key to get Ci.
6. Calculate TTx

i =Bx
i−1 ⊕ τi : Bx

−1 = 0, use TTx
i as the key of the 5th

round.
7. Apply an inverse AES round on Ci using TTx

i as the round key to get
Di.

8. αi = Di ⊕Wi

Now we have all the unknowns of the sector x, this attack requires only a known
sector plaintext and ciphertext and 64 cipher executions, this will reduce the
unknown set to: Π = {τk}, where k is the sector ID and k6= x.

10.5 Attack5

To recover the encrypt sector ID for a sector, we use the following procedure:

1. Encrypt a known plaintext Xi to get Ai.
2. Encrypt Xi using four rounds and the known round keys and αi to get Yi.
3. Apply SB, SR and MC on Yi to produce Wi.
4. Decrypt Ai using five rounds with the known round keys and βi to get Bi.
5. Calculate TTx

i = Bi ⊕Wi

6. Calculate τx = TT x
i ⊕Bx

i−1 : Bx
−1 = 0

This attack requires 1 known plaintext/ciphertext block and 2 cipher executions.


