
Efficient Unidirectional Proxy Re-Encryption?

Sherman S.M. Chow1, Jian Weng2,3,4,
Yanjiang Yang5, and Robert H. Deng3

1 Department of Computer Science
Courant Institute of Mathematical Sciences

New York University, NY, USA
schow@cs.nyu.edu

2 Department of Computer Science, Jinan University, Guangzhou, China
3 School of Information Systems, Singapore Management University, Singapore

cryptjweng@gmail.com, robertdeng@smu.edu.sg
4 State Key Laboratory of Information Security

Institute of Software, Chinese Academy of Sciences, Beijing, China
5 Institute for Infocomm Research, Singapore

yyang@i2r.a-star.edu.sg

Abstract. Proxy re-encryption (PRE) allows a semi-trusted proxy to convert a ciphertext orig-
inally intended for Alice into one encrypting the same plaintext for Bob. The proxy only needs a
re-encryption key given by Alice, and cannot learn anything about the plaintext encrypted. This
adds flexibility in various applications, such as confidential email, digital right management and
distributed storage. In this paper, we study unidirectional PRE, which the re-encryption key only
enables delegation in one direction but not the opposite. In PKC 2009, Shao and Cao proposed
a unidirectional PRE assuming the random oracle. However, we show that it is vulnerable to
chosen-ciphertext attack (CCA). We then propose an efficient unidirectional PRE scheme (with-
out resorting to pairings). We gain high efficiency and CCA-security using the “token-controlled
encryption” technique, under the computational Diffie-Hellman assumption, in the random ora-
cle model and a relaxed but reasonable definition.

Keywords: proxy re-encryption, unidirection, chosen-ciphertext attack

1 Introduction

Every application which requires some sort of confidentiality uses encryption as a building
block. As pointed out by Mambo and Okamoto [MO97], the encrypted data often needs to
be re-distributed in practice, i.e., the data encrypted under a public key pki should also be
encrypted under another independently generated public key pkj . This can be easily done
if the holder of the secret key ski (corresponding to pki) is online – simply decrypts the
ciphertext and re-encrypts the plaintext to pkj . However, this is not always practical. It is also
undesirable to just disclose the secret key to some untrusted server to do the transformation
of ciphertexts.

To solve this key management problem which hinders the practical adoption of encryption,
Blaze, Bleumer and Strauss [BBS98] introduced the concept of proxy re-encryption (PRE).
PRE schemes allow a secret key holder to create a re-encryption key. A semi-trusted proxy
can use this key to translate a message m encrypted under the delegator’s public key into an
encryption of the same message under a delegatee’s public key, as specified by the delegator.

? This work is partially supported by the Office of Research, Singapore Management University. It is also
partially supported by the National Science Foundation of China under Grant No. 60903178. We thank Jun
Shao for a discussion of the attack. This is a preliminary full version of our Africacrypt 2010 paper.

2 Sherman S.M. Chow, Jian Weng, Yanjiang Yang, and Robert H. Deng

This can be done without allowing the proxy any ability to perform tasks outside of these
proxy delegations. In particular, the proxy can neither recover the delegator’s secret key nor
decrypt the delegator’s ciphertext.

Proxy re-encryption schemes have applications in digital rights management (DRM) [Smi05],
distributed file storage systems [AFGH06], law enforcement [ID03], encrypted email forward-
ing [BBS98], and outsourced filtering of encrypted spam [AFGH06]. In all these cases, the
gist is that the process of re-encryption, i.e., decrypting under one key for encryption under
another key, should not allow the re-encryptor module to compromise the secrecy of encrypted
messages. This was related to the compromise of Apple’s iTunes DRM [Smi05]. With a PRE
scheme, the problem is solved since re-encryption can be performed without awarding the
proxy any information about the encrypted message. Besides DRM, distributed file storage
systems also benefit in the sense that the storage server (proxy) can re-encrypt the files for
different servers without knowing the underlying file content, and hence it is less attractive
for hacker attacks since compromising the server does not compromise the files. Similarly,
email servers can re-encrypt emails for different users with the same effect, say when a user
is on vacation and wants to forward his encrypted emails to his colleague.

1.1 The Use of Pairings in Proxy Re-Encryption

Blaze, Bleumer and Strauss’s seminal work [BBS98] proposed a bidirectional PRE scheme
against chosen plaintext attack (CPA). However, as indicated by [AFGH06], their scheme has
a few shortcomings – 1) the delegation in their scheme is transitive, which means that the
proxy alone can create delegation rights between two entities that have never agreed on this,
2) the delegator’s secret key can be recovered in full if the proxy and the delegate collude.
Afterwards, a number of PRE schemes have been proposed. Their properties are summarized
in Table 1. The schemes are chronologically arranged.

Schemes Uni/Bi Security RO Pairing Collusion
Directional -Free -Free -Resistant

Public-key-based

Ateniese et al. [AFGH06] → CPA × × X
Hohenberger et al. [HRSV07] → CPA X × X
Canetti-Hohenberger [CH07] ↔ CCA X × ×
Libert-Vergnaud [LV08c] → RCCA X × X
Libert-Vergnaud-Trace [LV08b] → CPA X × X
Deng et al. [DWLC08] ↔ CCA × X ×
Shao-Cao [SC09] → CCA? × X ×
Ateniese et al. [ABH09] → CPA X × X
Ours → CCA × X X

Identity-based

Green-Ateniese [GA07] → CCA × × ×
Chu-Tzeng [CT07] → RCCA X × ×

Table 1. Summary of PRE Schemes.

In this paper, we study unidirectional public-key-based PRE schemes which are secure
against adaptive chosen-ciphertext attack (CCA). Informally, CCA models an adversary who
can choose many ciphertexts and obtain their decryption under an unknown key, after seeing
the challenge ciphertext (the one encrypting the message of interest) and previous decryption

Efficient Unidirectional Proxy Re-Encryption 3

results. CCA-secure schemes often require ciphertext validity checking. As shown in Table 1,
most existing PRE schemes most existing PRE schemes no matter ID-based or not, are real-
ized by pairings. Below we look into two schemes to see why pairing is a useful “ingredient”.
In the bidirectional scheme proposed by Canetti and Hohenberger [CH07], the transformation
key is simply rki↔j = xj/xi ∈ Zp for the pair of delegation partners6 pki = gxi and pkj = gxj .
The ciphertext comes with the term pkr

i for randomness r ∈ Zp which can be transformed
to pkr

j easily by using rki↔j . The ciphertext validity can be checked with the help of the
pairing function ê(·, ·) with respect to the generator g and the public key pki or pkj . For the
unidirectional PRE scheme proposed by Libert and Vergnaud [LV08c] (hereinafter referred as
LV08), the transformation key is in the form rki↔j = gxj/xi . The ciphertext also comes with
the term pkr

i and the message is encrypted by ê(g, g)r. To recover the message, a pairing will
be applied to get ê(gxj/xi , pkr

i) = ê(g, gr)xj , ê(g, g)r can then be covered with xj . These tech-
niques for unidirectional transformation and ciphertext validity checking intrinsically require
the pairings. Moreover, the security guarantee provided by LV08 is only against replayable
chosen-ciphertext attacks (RCCA) [CKN03], a weaker variant of CCA tolerating a “harmless
mauling” of the challenge ciphertext.

1.2 Our Contributions

From a theoretical perspective, we would like to have PRE scheme realized under a broader
class of complexity assumptions, and see techniques other than using pairing in constructing
CCA-secure PRE. Practically, we want a PRE scheme with simple design, short ciphertext
size and high computational efficiency7. Removing pairing from PRE constructions is one of
the open problems left by [CH07].

Recently, Shao and Cao [SC09] proposed a unidirectional PRE scheme without pairings
(referred as SC09). Let N be a safe-prime modulus. SC09 requires 4 to 5 exponentiations in
Z∗

N2 for encryption, re-encryption and decryption8, and incurs an ciphertext overhead of 3
(plus proof-of-knowledge) to 5 Z∗

N2 elements. The modulus being used is N2. Its performance
over pairing-based scheme (e.g., LV08), which is instantiated on elliptic curves consist of much
shorter group elements at the same security level, is questionable. Their security proof relies
on the random oracle and the decisional (not computational) Diffie-Hellman assumption over
Z∗

N2 .
Most importantly, we identify flaws in their security proof which translate to a real-world

chosen-ciphertext attack against SC09. A possible fix further degrades the performance in
decryption time. In view of this, we propose an efficient unidirectional CCA-secure PRE
scheme without pairings, under the standard computational Diffie-Hellman assumption, in
the random oracle model. Our design is based on ElGamal encryption [Gam84] and Schnorr
signature [Sch91], which is (arguably) simple. Our decryption process is more natural and
does not require the input of the delegator’s public key, which is required in SC09.

6 For the bidirectional schemes, once a delegation is made, a delegator becomes a delegatee and a delegate
becomes a delegator simultaneously.

7 In spite of the recent advances in implementation technique, compared with modular exponentiation, pairing
is still considered as a rather expensive operation, especially in computational resource limited settings.

8 Speed-up by Chinese remainder theorem is not possible except 2 exponentiations in decryption, due to the
lack of the factoring of the delegator’s modulus.

4 Sherman S.M. Chow, Jian Weng, Yanjiang Yang, and Robert H. Deng

In this paper, collusion attack refers to any collusion of a proxy and a delegatee which
aimed to comproise the security of the delegator in any meaningful way.9 Finally, to the
best of our knowledge, there was no (R)CCA-secure unidirectional scheme which is collusion-
resistant.

1.3 Related Notions

Proxy encryption (no “re-”) (e.g., [MO97,Jak99,ID03]) also allows a delegator Alice to dele-
gate her decryption power to a delegatee Bob with the help of a proxy. ciphertext for Bob.
Different from PRE, these schemes require Alice to split her secret key between Bob and the
proxy. In other words, Bob needs to obtain and store an additional secret for each decryption
delegation. This may introduce other key management issues. In PRE, Bob just needs to use
his own secret to decrypt ciphertext originally addressed to him or ciphertext transformed
for him. Theoretically, he can be totally unaware of the delegation until he received the first
transformed ciphertext from the proxy. As argued in [CH07,LV08c], PRE is a (strict) subset
of proxy encryption.

Another notion with a similar name is universal re-encryption [GJJS04], in which the
ciphertexts are re-randomized, but the underlying public keys are not changed as in PRE.

2 Our Definitions of Unidirectional Proxy Re-Encryption

2.1 Framework of Unidirectional Proxy Re-Encryption

A unidirectional PRE scheme consists of the following six algorithms [CH07]:

Setup(κ): The setup algorithm takes as input a security parameter κ and outputs the global
parameters param, which include a description of the message space M.

KeyGen(): The key generation algorithm generates a public/private key pair (pki, ski).
ReKeyGen(ski, pkj): The re-encryption key generation algorithm takes as input a private key

ski and another public key pkj . It outputs a re-encryption key rki→j .
Encrypt(pk,m): The encryption algorithm takes as input a public key pk and a message

m ∈M. It outputs a ciphertext C under pk.
ReEncrypt(rki→j ,Ci): The re-encryption algorithm takes as input a re-encryption key rki→j

and a ciphertext Ci under public key pki. It outputs a ciphertext Cj under public key pkj .
This can be either deterministic or probabilistic.

Decrypt(sk,C): The decryption algorithm takes as input a private key sk and a ciphertext C.
It outputs a message m ∈M or the error symbol ⊥ if the ciphertext is invalid.

To lighten notations, we omit the public parameters param as the input of the algorithms.
Correctness requires that, for any parameters param, m ∈ M, the following probabilities are

9 For example, the collusion-resistance claimed in [SC09] can be more accurately described as delegator-secret-
key security (also see Section 2.2), and we listed it as not collusion-resistant due to the following attack. A
collusion of a delegatee of X and his proxy can recover a weak secret key (wskX) of X. Any re-enryption of
ciphertext of X to other delegatee contains most part of the original one, in particular, it is decryptable by
applying wskX on the original components (also see Section 3.)

Efficient Unidirectional Proxy Re-Encryption 5

equal to 1:

Pr
[
Decrypt(ski,C) = m

∣∣ (ski, pki)← KeyGen(),C← Encrypt(pki,m)
]
,

Pr

Decrypt (skj ,Cj) = m

∣∣∣∣∣∣∣∣∣∣∣∣

(ski, pki)← KeyGen(),
(skj , pkj)← KeyGen(),

rki→j ← ReKeyGen(ski, pkj),

Ci ← Encrypt(pki,m),
Cj ← ReEncrypt(rki→j ,Ci)


2.2 Security Models for “Token-Controlled” Re-Encryption

Our game-based definitions for single-hop unidirectional PRE systems are adaptions of the
definitions of the original (second level) ciphertext security and the transformed (first level)
ciphertext security in [LV08c]. As in [CH07,LV08c] our static corruption model makes the
knowledge of secret key (KOSK) assumption, the adversary only gets uncorrupted public key
or corrupted public/private key pair from the challenger, and is not allowed to adaptively
determine which parties will be compromised. Compared with [CH07,LV08c], our definition
considers the standard CCA security instead of RCCA security. However, this is at the ex-
pense of a relaxation requiring additional constraint on the re-encryption key that can be
compromised.

Definition 1 (Game Template of Chosen-Ciphertext Security).

Setup. The challenger C takes a security parameter κ and executes the setup algorithm to get
the system parameters param. C executes the key generation algorithm nu times resulting
a list of public/private keys PKgood,SKgood, and executes the key generation algorithm
for nc times to get a list of corrupted public/private keys PKcorr,SKcorr. A gets param,
SKcorr, and PK = (PKgood ∪ PKcorr) = {pki}i∈[1,nu+nc].

Phase 1. A adaptively queries to oracles OReK, OReE and ODec.
– OReK oracle takes 〈pki, pkj〉 and returns a re-encryption key rki→j.
– OReE oracle takes public keys 〈pki, pkj〉 and a ciphertext C and returns a re-encryption

of C from pki to pkj.
– ODec oracle takes a public key pk and a ciphertext C and returns the decryption of C

using the private key with respect to pk.
Challenge. When A decides that Phase 1 is over, it also decides whether it wants to be

challenged with a original ciphertext or a transformed ciphertext. It outputs two equal-
length plaintexts m0,m1 ∈ M, and a target public key pki∗. Challenger C flips a random
coin δ ∈ {0, 1}, and sends to A a challenge ciphertext C∗ depending on pki∗ and mδ

Phase 2. A issues queries as in Phase 1.
Guess. Finally, A outputs a guess δ′ ∈ {0, 1}.

The public keys supplied by A subject to the following constraints:

1. The public keys involved in all queries must come from PK.
2. The target public key pki∗ is from PKgood, i.e., uncorrupted.

The actual construction of C∗ and the constraints on the queries made by A are to be defined
according to different security notions.

6 Sherman S.M. Chow, Jian Weng, Yanjiang Yang, and Robert H. Deng

Definition 2 (Original Ciphertext Security). For original ciphertext security, the ad-
versary A plays the CCA game with the challenger C as in Definition 1, where the challenge
ciphertext is formed by C∗ = Encrypt(pki∗ ,mδ), and A has the following additional constraints:

1. OReK(pki∗ , pkj) is only allowed if pkj came from PKgood.
2. If A issued OReE(pki, pkj ,Ci) where pkj came from PKcorr, (pki,Ci) cannot be a derivative

of (pki∗ ,C
∗) (to be defined later).

3. ODec(pk,C) is only allowed if (pk,C) is not a derivative of (pki∗ ,C
∗).

Definition 3 (Derivative for Chosen-Ciphertext Security). Derivative of (pki∗ ,C
∗) in

the CCA setting is inductively defined in [SC09] as below, which is adopted from the RCCA-
based definition in [CH07]10:

1. Reflexivity: (pki∗ ,C
∗) is a derivative of itself.

2. Derivation by re-encryption: If A has issued a re-encryption query 〈pk, pk′,C〉 and obtained
the resulting re-encryption ciphertext C′, then (pk′,C′) is a derivative of (pk,C).

3. Derivation by re-encryption key: If A has issued a re-encryption key generation query
〈pk, pk′〉 to obtain the re-encryption key rk, and C′ = ReEncrypt(rk,C), then (pk′,C′) is a
derivative of (pk,C).

Definition 4 (Transformed Ciphertext Security). For transformed ciphertext, the ad-
versary A plays the CCA game with the challenger C as in Definition 1, where A can also
specify the delegator pki′. The challenge ciphertext is then created by the re-encryption process,
specifically, C∗ = ReEncrypt(rki′→i∗ ,Encrypt(pki′ ,mδ)). The only constraints of A are:

1. ODec(pki∗ ,C
∗) is not allowed.

2. If pki′ came from PKcorr, C would not return rki′→i∗ to A in phase 2.
3. If A obtained rki′→i∗, A cannot choose pki′ as the delegator in the challenge phase.

This can be considered as a weaker notion when compared with [LV08c].

Definition 5 (CCA Security of a PRE). We define A’s advantage in attacking the PRE
scheme as AdvIND-PRE-CCA

PRE,A =
∣∣ Pr[δ′ = δ]−1/2

∣∣, where the probability is taken over the random
coins consumed by the challenger and the adversary. A single-hop unidirectional PRE scheme
is defined to be (t, nu, nc, qrk, qre, qd, ε)-IND-PRE-CCA secure, if for any t-time IND-PRE-
CCA adversary A who makes at most qrk re-encryption key generation queries, at most qre

re-encryption queries and at most qd decryption queries, we have AdvIND−PRE−CCA
PRE,A ≤ ε.

Derivative and Two Different Kinds of Security. Intuitively speaking, original ci-
phertext security models the an adversary A challenged with an untransformed ciphertext
encrypted for a target user i∗. In a PRE scheme, however, A can ask for the re-encryption
of many ciphertexts or even a set of re-encryption keys. These queries are allowed as long as
they would not allow A to decrypt trivially. For examples, A should not get the re-encryption
key from user i∗ to user j if the secret key of user j has been compromised; on the other
hand, A can certainly get a re-encryption of the challenge ciphertext from user i∗ to user j as
long as j is an honest user and the decryption oracle of user j has not been queried with the
10 These original definitions also consider transitivity – If (pk, C) is a derivative of (pki∗ , C∗) and (pk′, C′) is

a derivative of (pk, C), then (pk′, C′) is a derivative of (pki∗ , C∗). However, this is irrelevant for single-hop
scheme like ours and [SC09].

Efficient Unidirectional Proxy Re-Encryption 7

resulting transformed ciphertext. This explains the intuition behind the notion of derivative
and the associated restrictions.

Since A can derive a transformed ciphertext with a certain related re-encryption key, one
may wonder why there is another notion about transformed ciphertext security. This latter
notion makes sense when the PRE system is single-hop, i.e., a transformed ciphertext cannot
be re-encrypted further to someone else. If a proxy colludes with a delegatee, by the correct
functionalities of a PRE, this collusion group can certainly decrypt any original ciphertext of
the target user. However, for a single-hop scheme, there is no reason that this collusion group
can decrypt any transformed ciphertext since it cannot be re-encrypted further. To conclude,
the adversary is allowed to transform an original ciphertext in the former notion, but there
are some re-encryption keys which it is not allowed to get (recall the constraints related to
derivatives); while in the latter, the adversary only sees the transformed ciphertext but not
the original one, and the adversary can get more re-encryption keys.

Our Definition of Transformed Ciphertext Security. The second constraint deserves
more discussion. The compromise of rki′→i∗ corresponds to the fact that the proxy, which
is designated by the delegator pki′ for the delegation to the delegatee pki∗ , is compromised.
Ideally, it seems that whether the delegator pki′ is compromised or not in this situation
does not affect the security of the transformed ciphertext for pki∗ . This is also what has been
modelled by the definition in [LV08c]. However, if the adversary A compromised the delegator
pki′ and also the proxy, A can simply ask the proxy to surrender the original ciphertext
Encrypt(pki′ ,mδ) before any actual transformation, and use ski′ to decrypt trivially. It is
true that if the proxy was initially honest and erased the original ciphertexts after their
transformation, the same attack does not apply; however, ciphertext is by definition public
in nature and the adversary may have captured the ciphertext already and decrypt it when
ski′ is obtained. We believe that the relaxed notion still have significance in the real world.

Nontransformable (First-Level) Ciphertext. To view the above relaxation from another
angle, one may feel that we lost a possible benefit of a single-hop scheme – some ciphertexts are
not further transformable so very sensitive information can be encrypted in this form (“first
level” ciphertext that cannot be re-encrypted). Actually, our definition does not rule out this
possibility. Our definition given above only considers transformed ciphertext, that is, the chal-
lenge ciphertext which is generated from the re-encryption algorithm. It does not rule out
the possibility of having another encryption algorithm Encrypt1 which directly produces non-
transformable ciphertext, when ReEncrypt(rki′→i∗ ,Encrypt(pki′ ,mδ)) and Encrypt1(pki∗ ,mδ)
are actually distinguishable.

We view this as one way to get CCA security instead of RCCA security. Using LV08 , it is
possible to directly encrypt ciphertexts that cannot be re-encrypted which is indistinguishable
from re-encryption, and the reason is that re-randomization can be done in the re-encryption
process. Recall that the security guarantee of LV08 actually allows the adversary to compro-
mise all proxies of the system; indeed, the re-randomizaation in LV08 can be done by any one
without any secret knowledge – this explains why LV08 is at most RCCA secure.

Of course, it is required to augment the PRE systems with yet another encryption algo-
rithm. However, it is often the case that the original decryption algorithm sufficies to decrypt
ciphertext produced in this way. The interface of Encrypt1 and its correctness requirement are
exactly the same as those of Encrypt. The security definition is also simple.

8 Sherman S.M. Chow, Jian Weng, Yanjiang Yang, and Robert H. Deng

Definition 6 (Nontransformable Ciphertext Security). For nontransformable cipher-
text, the adversary A plays the CCA game with the challenger C as in Definition 1, where the
challenge ciphertext is given by C∗ = Encrypt1(pki∗ ,mδ), and A is disallowed from making
ODec(pki∗ ,C

∗) query only. In particular, A can get all the re-encryption keys.

Delegator/Master Secret Security. Delegator secret security11 is considered in Ateniese
et al. [AFGH06] which captures the intuition that, even if a dishonest proxy colludes with the
delegatee, they still cannot derive the delegator’s private key in full. The attack mode is quite
simple and can be covered by the nontransformable / first-level ciphertext security [LV08c].
The reason behind is easy to see – there is no restriction in the re-encryption key generation
queries, and decryption is easy when the adversary can derive the delegator’s private key in
full.

3 Analysis of a CCA-Secure Unidirectional PRE Scheme

3.1 Review of Shao-Cao’s Scheme

SC09 [SC09] is reviewed as below, up to minor notational differences. We use � to highlight
the places which introduce the vulnerability.

Setup(κ): Given a security parameter κ, choose three hash functions H1 : {0, 1} → {0, 1}`1 ,
H2 : {0, 1} → {0, 1}`2 , and H3 : {0, 1} → {0, 1}`3 , where `1, `2 and `3 are determined by κ,
and the message spaceM is {0, 1}`2 . The parameters are param = (κ, H1,H2,H3, `1, `2, `3).

KeyGen(): Given a security parameter κ, perform the following steps:
1. Choose two distinct Sophie Germain primes p′ and q′ of κ-bit.
2. Compute safe primes p = 2p′ + 1 and q = 2q′ + 1 (their primalities are guaranteed

since p′ and q′ are Sophie Germain primes).
3. Compute a safe-prime modulus N = pq.
4. Store sk = (p, q, p′, q′) as the long term secret key.
5. Choose a hash function H : {0, 1}∗ → ZN2 .

6. Pick a, b
$← [1, pp′qq′], store wsk = (a, b) as the “weak” secret key.

7. Randomly pick α ∈ Z∗
N2 , set g0 = α2 mod N2, g1 = ga

0 mod N2, and g2 = gb
0 mod N2;

the public key is pk = (H(), N, g0, g1, g2).
Either secret key can be used to decrypt (any) ciphertexts, but both of them are required
to produce a re-encryption key. Note that in the following description, the elements from
the key of user X contain an additional subscript of X, e.g., pkX = (HX(·), NX , gX0, gX1 =
gaX
X0, gX2).

ReKeyGen(skX , pkY): On input a long term secret key (pX , qX , p′X , q′X), a weak secret (aX , bX),
and a public key pkY = (HY , NY , gY 0, gY 1, gY 2), it outputs the re-encryption key rkX→Y =
(rk(1)

X→Y , rk
(2)
X→Y), where rk

(1)
X→Y = (Ȧ, Ḃ, Ċ), as follows:

1. Pick β̇
$← {0, 1}`1 , compute rk

(2)
X→Y = aX − β̇ mod (pXqXp′Xq′X).

11 This notion is named as master secret security in [AFGH06] since the delegator’s public key is the master
public key in their secure distributed storage application. It is also called “collusion-resistance” in some
literatures.

Efficient Unidirectional Proxy Re-Encryption 9

2. Pick σ̇
$← ZNY

, compute rX→Y = HY (σ̇‖β̇).
3. Compute Ċ = H1(σ̇)⊕ β̇.
4. Compute Ȧ = (gY 0)rX→Y mod (NY)2.
5. Compute Ḃ = (gY 2)rX→Y · (1 + σ̇NY) mod (NY)2.

Encrypt(pk = (H(), N, g0, g1, g2),m): To encrypt a message m ∈M:
1. Randomly pick σ ∈ ZN , compute r = H(σ‖m).
2. Compute C = H2(σ)⊕m.
3. Compute A = (g0)r mod N2, B = (g1)r · (1 + σN) mod N2 and D = (g2)r mod N2.
4. Run (c, s)← SoK.Gen(A,D, g0, g2, (B,C)), where the underlying hash function is H3.12

5. Output the ciphertext C = (A,B, C, D, c, s).

ReEncrypt(rkX→Y ,CX , pkX , pkY): On input a re-encryption key rkX→Y = (rk(1)
X→Y , rk

(2)
X→Y)

and a ciphertext C = (A,B, C, D, c, s) under key pkX = (HX , NX , gX0, gX1, gX2),

1. Check if c = H3(A‖D‖gX0‖gX2‖(gX0)sAc‖(gX2)sDc |(B‖C)). If not, return ⊥.

2. Otherwise, compute A′ = Ark
(2)
X→Y .

3. Output CY = (A, A′ , B, C, rk
(1)
X→Y) = (A,A′, B, C, Ȧ, Ḃ, Ċ).

The only “new” thing in CY is A′ = (gX0)r(aX−β̇) mod (NX)2 = (gX1)r (gX0)−rβ̇ mod (NX)2.
The second equality holds since gX1 = gaX

X0, by the public key construction in KeyGen.

Decrypt(sk,C): On input a private key and a ciphertext C, parse C,

– If C is an original ciphertext in the form C = (A,B, C, D, c, s):
1. Return ⊥ if c 6= H3(A‖D‖g0‖g2‖(g0)sAc‖(g2)sDc‖(B‖C)).
2. If sk is in the form of (a, b), compute σ = B/(Aa)−1 mod N2

N .

3. If sk = (p, q, p′, q′), compute σ = (B/g
w1
0)2p′q′−1 mod N2

N · π mod N , where w1 is
computed as that in [BCP03], and π is the inverse of 2p′q′ mod N .

4. Compute m = C ⊕H2(σ).
5. If B = (g1)H(σ‖m) · (1 + σN) mod N2, return m; else return ⊥.

– If C = (A,A′, B, C, Ȧ, Ḃ, Ċ) re-encrypted from pkX to pkY :

1. If sk is in the form of (a, b), compute σ̇ = Ḃ/(Ȧb)−1 mod N2
Y

NY
.

2. If sk = (p, q, p′, q′), similar to decrypting an original ciphertext, compute σ̇ =
(Ḃ/g

w1
Y 0)2p′q′−1 mod N2

Y
NY

· π mod NY , .
3. Compute β̇ = Ċ ⊕H1(σ̇).
4. If Ḃ 6= (gY 1)HY (σ̇‖β̇) · (1 + σ̇NY) mod N2

Y , return ⊥.

5. Compute σ = (B/(A′ ·Aβ̇)− 1 mod N2
X)/NX .

6. Compute m = C ⊕H2(σ).
7. Return m if B = (gX1)HX(σ‖m) · (1 + σNX) mod N2

X ; else ⊥.
The delegator’s public key (HX , NX , gX0, gX1, gX2) is required in the last few steps.
This deviates from our framework in Section 2.

12 A signature of knowledge (c, s) of the discrete logarithm of both y0 = gx
0 w.r.t. base g0 and y2 = gx

2 w.r.t.

base g2, on a message (B, C) ∈ {0, 1}∗ can be computed by first picking t ∈ {0, . . . , 2|N
2|+k − 1}, then

computing c = H3(y0||y2||g0||g2||gt
0||ht

0||m) and s = t− cx. This requires 2 exponentiations.

10 Sherman S.M. Chow, Jian Weng, Yanjiang Yang, and Robert H. Deng

3.2 Possible Vulnerabilities in the Re-Encryption Key

Before describing our attack, we briefly explain how the re-encryption key is generated in
SC09. Their ReKeyGen algorithm follows the “token-controlled encryption” paradigm, which is
adopted by [GA07,CT07] and our scheme to be presented. Specifically, ReKeyGen first selects a
random token β̇ to “hide” (some form of) the delegator’s secret key aX (i.e., rk

(2)
X→Y = aX−β̇),

and then encrypts this token β̇ under the delegatee’s public key, (i.e., rk
(1)
X→Y = (Ȧ, Ḃ, Ċ)).

Note that when the proxy and the delegatee collude, it is possible to recover aX . So the
encryption of the token should use a mechanism that is different from the usual encryption on
the plaintext (i.e., Ḃ is computed using g2 while B component in Encrypt is computed using
g1). Otherwise, it will subject to the following “chain collusion attack” mentioned in [SC09].

Imagine that Bob (who holds public key pkY), who received delegation from Alice (who
holds public key pkX), now delegates his own decryption right to Carol. If the ReKeyGen
algorithm requires Bob to use skY (i.e., the whole private key) instead of just some form
of the private key (e.g., aY in SC09), when his proxy colludes with Carol, skY can be easily
recovered. Furthermore, skY can be used to recover β̇ in the re-encryption key generated by
Alice to Bob; the secret key of Alice, skX , can also be recovered exactly in the way how skY

is recovered. This clearly compromises the security of Alice out of her expectation, since her
only delegatee Bob has done nothing wrong (perhaps except using an insecure scheme). This
is where the schemes [GA07,CT07] fail, as pointed by [SC09].

3.3 Our Attack

Shao and Cao [SC09] claimed that their PRE scheme is CCA-secure. However, in this section,
we demonstrate that it is not the case.

Before describing our attack, we briefly explain how the re-encryption key is generated in
SC09. Their ReKeyGen algorithm follows the “token-controlled encryption” paradigm, which is
adopted by [GA07,CT07] and our scheme to be presented. Specifically, ReKeyGen first selects a
random token β̇ to “hide” (some form of) the delegator’s secret key aX (i.e., rk

(2)
X→Y = aX−β̇),

and then encrypts this token β̇ under the delegatee’s public key (i.e., rk
(1)
X→Y = (Ȧ, Ḃ, Ċ)).

First, we found that any re-encryption query (not necessary of the challenge ciphertext)
reveals partial information about β̇. Moreover, there is no validity check on the A′ component
of the transformed ciphertext. The combined effect leads us to the following efficient attacker
A, which aims to decrypt challenge ciphertext C∗ = (A,B, C, D, c, s) encrypted for pk∗X =
(HX(·), NX , gX0, gX1, gX2).

1. Randomly pick m ∈ M and r ∈ Z(NX)2 , compute C ← Encryptpk∗X (m; r), i.e., using r as
the randomness in the first step of Encrypt.
(Being a public key encryption, anyone can perform the encryption.)

2. Issue a re-encryption oracle query to re-encrypt the ciphertext C from pk∗ to pk, in par-
ticular, A obtains Z ′ = g

r(aX−β̇)
X0 as the second component of the resulting transformed

ciphertext C0. (Z ′ here corresponds to A′ in the above description of SC09.)

3. Since Z ′ is in the form of (gX1)r (gX0)−rβ̇ mod (NX)2, A can compute (gX0)−rβ̇ ←
(Z ′/(gX1)r). (C is prepared by A, so A knows r.)

4. Issue a re-encryption oracle query to re-encrypt the ciphertext C∗ from pk∗ to pk, and
obtain C1 = (A,A′, B, C, Ȧ, Ḃ, Ċ) as a result.
(The secret key of pk is not compromised by A, so this is legitimate.)

Efficient Unidirectional Proxy Re-Encryption 11

5. Pick s
$← Z(NX)2 , compute A′ ← A′ · (g−rβ̇

X0)s and A← A · (gX0)rs.
6. Prepare C′ = (A,A′, B, C, Ȧ, Ḃ, Ċ) issue a decryption oracle query under pk to decrypt C′,

and the result is the message encrypted in C∗.

To see the correctness of the attack, first note that B,C, Ȧ, Ḃ, Ċ just come from the
derivative (pk,C1) of the challenge (pk∗,C∗), and they are the only values from the ciphertext
being used for the first three steps of Decrypt, so the correct value of β̇ can be recovered.

Moreover, in Decrypt (refer to A′ ·Aβ̇), A′Aβ̇ = A′(gX0
−rβ̇)s(A · gX0

rs)β̇ = A′ · g−rβ̇s
X0 · Aβ̇ ·

grβ̇s
X0 = A′Aβ̇, which is exactly what Decrypt will compute for the challenge.

Finally, C′ is not a derivative of C∗. To check against the definition of derivative: 1) C∗ 6= C′;
2) A has made two re-encryption queries, C has nothing to do with the challenge C∗, only
(pk,C1) is considered as a derivative of the challenge, but (pk,C′), where C1 6= C′, is not its
derivative; and 3) A has not made any re-encryption key generation oracle query at all.

3.4 Flaws in the Proof and A Possible Fix

This attack originated from some flaws in their proof [SC09], specifically, two rejection rules
regarding A in the decryption oracle simulation. There is no checking of A when decrypting
a transformed ciphertext in the real scheme, which makes a noticeable difference to the ad-
versary. The crux of our attack is the formulation of a new A component. One possible fix is
to re-compute A in Decrypt and check whether it is correctly generated, which requires one
more exponentiation in ZN2 .

4 Our Proposed Unidirectional PRE Scheme

4.1 Construction

Our proposed unidirectional PRE scheme extends the bidirectional scheme proposed by Deng
et al. [DWLC08], again by the “token-controlled encryption” technique. As previously dis-
cussed in Section 3, however, this should be carefully done to avoid possible attacks.

Setup(κ): Choose two primes p and q such that q|p−1 and the bit-length of q is the security pa-
rameter κ. Let g be a generator of group G, which is a subgroup of Z∗

q with order q. Choose
four hash functions H1 : {0, 1}`0 × {0, 1}`1 → Z∗

q ,H2 : G → {0, 1}`0+`1 ,H3 : {0, 1}∗ → Z∗
q

and H4 : G → Z∗
q . The former three will be modeled as random oracles in our security

proof. Here `0 and `1 are security parameters determined by κ, and the message spaceM
is {0, 1}`0 . The parameters are param = (q, G, g, H1,H2,H3,H4, `0, `1).

KeyGen(): Pick ski = (xi,1
$← Z∗

q , xi,2
$← Z∗

q) and set pki = (pki,1, pki,2) = (gxi,1 , gxi,2).

ReKeyGen(ski, pkj): On input user i’s private key ski = (xi,1, xi,2) and user j’s public key
pkj = (pkj,1, pkj,2), this algorithm generates the re-encryption key rki→j as below:

1. Pick h
$← {0, 1}`0 and π

$← {0, 1}`1 , compute v = H1(h, π).
2. Compute V = pkv

j,2 and W = H2(gv)⊕ (h‖π).

3. Define rk
〈1〉
i→j = h

xi,1H4(pki,2)+xi,2
. Return rki→j = (rk〈1〉i→j , V, W).

12 Sherman S.M. Chow, Jian Weng, Yanjiang Yang, and Robert H. Deng

Encrypt(pki = (pki,1, pki,2),m): To encrypt a plaintext m ∈M:

1. Pick u
$← Z∗

q and compute D =
(
pk

H4(pki,2)

i,1 pki,2

)u

.

2. Pick ω
$← {0, 1}`1 , compute r = H1(m,ω).

3. Compute E =
(
pk

H4(pki,2)

i,1 pki,2

)r

and F = H2(gr)⊕ (m‖ω).
4. Compute s = u + r ·H3(D,E, F) mod q.
5. Output the ciphertext C = (D,E, F, s).

ReEncrypt(rki→j ,Ci, pki, pkj): On input a re-encryption (user i to user j) key rki→j = (rk〈1〉i→j , V, W),
an original ciphertext Ci = (D,E, F, s) under public key pki = (pki,1, pki,2), this algorithm
re-encrypts Ci into another one under public key pkj = (pkj,1, pkj,2) as follows:

1. If
(
pk

H4(pki,2)

i,1 pki,2

)s

= D · EH3(D,E,F) does not hold, return ⊥.

2. Otherwise, compute E′ = Erk
〈1〉
i→j , and output (E′, F, V,W).

Let r = H1(m,ω), v = H1(h, π), the transformed ciphertext is of the following forms:

Cj = (E′, F, V,W) =
(
gr·h,H2(gr)⊕ (m‖ω), pkv

j,2,H2(gv)⊕ (h‖π)
)

.

Encrypt1(pki = (pki,1, pki,2),m): To create a nontransformable ciphertext under public key
pki of a message m ∈M:

1. Pick h
$← {0, 1}`0 and π

$← {0, 1}`1 , compute v = H1(h, π).
2. Compute V = pkv

j,2 and W = H2(gv)⊕ (h‖π).

3. Pick ω
$← {0, 1}`1 , compute r = H1(m, ω).

4. Output the ciphertext C = (E′, F, V,W).

Decrypt(ski,Ci): On input a private key ski = (xi,1, xi,2) and ciphertext Ci, parse Ci, then
work according to two cases:

– C is an original ciphertext in the form C = (D,E, F, s):

1. If
(
pk

H4(pki,2)

i,1 pki,2

)s

= D · EH3(D,E,F) does not hold, return ⊥.

2. Otherwise, compute (m‖ω) = F ⊕H2(E
1

xi,1H4(pki,2)+xi,2).

3. Return m if E =
(
pk

H4(pki,2)

i,1 pki,2

)H1(m,ω)

holds; else return ⊥.

– C is a transformed ciphertext in the form C = (E′, F, V,W):
1. Compute (h‖π) = W ⊕H2(V 1/ski,2) and (m‖ω) = F ⊕H2(E′1/h).
2. Return m if V = pk

H1(h,π)
i,2 and E′ = gH1(m,ω)·h hold; else ⊥.

4.2 Security Analysis

The intuition of CCA security can be seen from the below properties.

1. The validity of the original ciphertexts can be publicly verifiable by everyone including the
proxy; otherwise, it will suffer from an attack as illustrated in [DWLC08]. For our scheme,
the ciphertext component (D, s) in the original ciphertext (D,E, F, s) can be viewed as a
signature signing the “message” (E,F), that is how we get pubic verifiability.

Efficient Unidirectional Proxy Re-Encryption 13

2. The original ciphertexts should be CCA-secure. The original ciphertext produced by our
scheme is indeed a “hashed” CCA-secure ElGamal encryption tightly integrated with a
Schnorr signature.

3. The transformed ciphertexts should be CCA-secure In our scheme, a transformed cipher-
text can be viewed as two seamlessly integrated “hashed” CCA-secure ElGamal encryp-
tions.

We make four observations on the re-encryption key computation.

1. It takes the input of ski, but not skj , so our scheme is unidirectional.
2. Even though h can be recovered by anyone who owns skj , rk

〈1〉
i→j only gives information

about xi,1H4(pki,2)+xi,2 (no matter whom the delegatee j is), but not the concrete value
of xi,1 or xi,2. This gives an intuition why our scheme achieves delegator secret security.

3. A collusion of the delegatee and the proxy cannot recover xi,1, which is needed to decrypt
original ciphertexts.

4. If the delegatee j is now a delegator to someone else (say k). Again, only xj,1H4(pkj,2)+xj,2

is known to a collusion of the delegatee k and a proxy, which is not useful in recovering
the token h in rki→j , hence the chain collusion attack suffered by [GA07,CT07] does not
apply.

Theorem 1. Our scheme is IND-PRE-CCA secure in the random oracle model, if the CDH
assumption holds in group G and the Schnorr signature [Sch91] is existentially unforgeable
against chosen message attack.

The detailed proof can be found in the appendix. The proof first uses Coron’s technique
[Cor00] to implant our hard problem to many uncorrupted public keys. At the same time, for
those uncorrupted public keys which is generated as usual (without the problem embedded),
re-encryption key can still be generated with non-negligible probability.

To prove the original ciphertext security is relatively simple. For transformed ciphertext,
an implicitly defined random h value which is unknown to the simulator may be used in
the re-encryption key returned as the response to the oracles query. To answer decryption
oracle queries, the simulator can extract the random h value used from the random oracle
and unwrap the given ciphertext. For the challenge ciphertext generation, our definition of
security rules out the case that both the delegator and the proxy are compromised, so any
partial information regarding the value of h used in the re-encryption key would not affect
the (different) h value associated with the challenge ciphertext.

For nontransformable ciphertext security, the situation is much simpler. The h value used
in the challenge ciphertext is essentially a one-time pad, and the reduction boils down to the
underlying hashed ElGamal encryption, so the simulator can compute all the re-encryption
keys.

4.3 Efficiency Comparisons

In Table 2, we compare our scheme with SC09 [SC09] with our suggested fix. We use texp to de-
note the computational cost of an exponentiation. In our calculation, a multi-exponentiation
(m-exp) (which we assume it multiplies only up to 3 exponentiations in one shot) is consid-
ered as 1.5texp. Encrypt of LV08 , ReEncrypt and Decrypt(C) of SC09 used 1, 2 and 2 m-exp

respectively. In our scheme, we assume pk
H4(pki,2)

i,1 pki,2 is pre-computed. Even not, it only adds
at most 1texp in Encrypt, ReEncrypt and Decrypt(C) using m-exp, since there are other expo-
nentiations to be done. The comparison indicates that our scheme beats SC09 in all aspects.

14 Sherman S.M. Chow, Jian Weng, Yanjiang Yang, and Robert H. Deng

Schemes SC09 [SC09] Our Scheme

Encrypt 5texp (in ZN2) 3texp (in G)

ReEncrypt 4texp (in ZN2) 2.5texp (in G)

Decrypt(C) 5texp (in ZN2) 3.5texp (in G)

Decrypt(C′) 5texp (in ZN2) 4texp (in G)

|C| 2k + 3|(NX)2|+ |m| 3|G|+|Zq|
|C′| `1 + 3|(NX)2|+ 2|(NY)2|+ |m| 2|G| + 2|Zq|
Security Not Collusion-Resistant CCA-Secure

Assumption DDH over ZN2 CDH over G
RO-Free × ×
Nature of Decryption of C′ requires No delegator
Decrypt pkX of the delegator public key is required

Table 2. Comparisons of Unidirectional Proxy Re-Encryption Schemes. C denotes an original
ciphertext and C′ denotes a transformed ciphertext, |C| and |C′| are their size. NX (NY) is the safe-prime
modulus used by the delegator (delegatee).

5 Conclusions

Most existing unidirectional proxy re-encryption (PRE) schemes rely on pairing except a
recently proposed scheme by Shao and Cao [SC09]. However, we showed that their CCA-
security proof in the random oracle model is flawed, and presented a concrete attack. Possible
fixes of their scheme further degrades either the decryption efficiency or the transformed
ciphertext length. We then presented a natural construction of CCA-secure unidirectional
PRE scheme without pairings that is very efficient.

Our scheme is single-hop and relies on the random oracle. It would be interesting to
construct a multi-hop scheme in the standard model. It seems to be possible to use the token-
controlled encryption approach to build a multi-hop scheme; however, the design may be
inelegant and the efficiency may not be ideal. We remark that our scheme is proven under
a relaxed security definition. We left it as an open problem to devise a pairing-free CCA-
secure scheme without this relaxation. Another interesting problem, which possibly requires
a different set of techniques, is to construct other schemes in proxy re-cryptography, such as
conditional PRE schemes [CWC+09] and proxy re-signatures [CP08,LV08a], without pairings.

References

[ABH09] Giuseppe Ateniese, Karyn Benson, and Susan Hohenberger. Key-Private Proxy Re-encryption. In
CT-RSA, volume 5473 of Lecture Notes in Computer Science, pages 279–294. Springer, 2009.

[AFGH06] Giuseppe Ateniese, Kevin Fu, Matthew Green, and Susan Hohenberger. Improved Proxy Re-
Encryption Schemes with Applications to Secure Distributed Storage. ACM Trans. Inf. Syst.
Secur., 9(1):1–30, 2006.

[BBS98] Matt Blaze, Gerrit Bleumer, and Martin Strauss. Divertible Protocols and Atomic Proxy Cryp-
tography. In EUROCRYPT, volume 1403 of Lecture Notes in Computer Science, pages 127–144.
Springer, 1998.

[BCP03] Emmanuel Bresson, Dario Catalano, and David Pointcheval. A Simple Public-Key Cryptosystem
with a Double Trapdoor Decryption Mechanism and Its Applications. In ASIACRYPT, volume
2894 of Lecture Notes in Computer Science, pages 37–54. Springer, 2003.

[BDZ03] Feng Bao, Robert H. Deng, and Huafei Zhu. Variations of Diffie-Hellman Problem. In ICICS,
volume 2836 of Lecture Notes in Computer Science, pages 301–312. Springer, 2003.

[BSNS05] Joonsang Baek, Reihaneh Safavi-Naini, and Willy Susilo. Certificateless Public Key Encryption
Without Pairing. In ISC, volume 3650 of Lecture Notes in Computer Science, pages 134–148.
Springer, 2005.

Efficient Unidirectional Proxy Re-Encryption 15

[CH07] Ran Canetti and Susan Hohenberger. Chosen-Ciphertext Secure Proxy Re-Encryption. In ACM
Conference on Computer and Communications Security, pages 185–194. ACM, 2007.

[CKN03] Ran Canetti, Hugo Krawczyk, and Jesper Buus Nielsen. Relaxing Chosen-Ciphertext Security. In
CRYPTO, volume 2729 of Lecture Notes in Computer Science, pages 565–582. Springer, 2003.

[Cor00] Jean-Sébastien Coron. On the Exact Security of Full Domain Hash. In CRYPTO, volume 1880 of
Lecture Notes in Computer Science, pages 229–235. Springer, 2000.

[CP08] Sherman S.M. Chow and Raphael C.-W. Phan. Proxy Re-signatures in the Standard Model. In
ISC, volume 5222 of Lecture Notes in Computer Science, pages 260–276. Springer, 2008.

[CT07] Cheng-Kang Chu and Wen-Guey Tzeng. Identity-Based Proxy Re-encryption Without Random
Oracles. In ISC, volume 4779 of Lecture Notes in Computer Science, pages 189–202. Springer, 2007.

[CWC+09] Cheng-Kang Chu, Jian Weng, Sherman S.M. Chow, Jianying Zhou, and Robert H. Deng. Con-
ditional Proxy Broadcast Re-Encryption. In ACISP, volume 5594 of Lecture Notes in Computer
Science, pages 327–342. Springer, 2009.

[DWLC08] Robert H. Deng, Jian Weng, Shengli Liu, and Kefei Chen. Chosen-Ciphertext Secure Proxy Re-
encryption without Pairings. In CANS, volume 5339 of Lecture Notes in Computer Science, pages
1–17. Springer, 2008.

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure Integration of Asymmetric and Symmetric Encryp-
tion Schemes. In CRYPTO, volume 1666 of Lecture Notes in Computer Science, pages 537–554.
Springer, 1999.

[GA07] Matthew Green and Giuseppe Ateniese. Identity-Based Proxy Re-encryption. In ACNS, volume
4521 of Lecture Notes in Computer Science, pages 288–306. Springer, 2007.

[Gam84] Taher El Gamal. A Public Key Cryptosystem and a Signature Scheme Based on Discrete Loga-
rithms. In CRYPTO, pages 10–18, 1984.

[GJJS04] Philippe Golle, Markus Jakobsson, Ari Juels, and Paul F. Syverson. Universal Re-encryption for
Mixnets. In CT-RSA, volume 2964 of Lecture Notes in Computer Science, pages 163–178. Springer,
2004.

[HRSV07] Susan Hohenberger, Guy N. Rothblum, Abhi Shelat, and Vinod Vaikuntanathan. Securely Obfus-
cating Re-encryption. In TCC, volume 4392 of Lecture Notes in Computer Science, pages 233–252.
Springer, 2007.

[ID03] Anca-Andreea Ivan and Yevgeniy Dodis. Proxy Cryptography Revisited. In NDSS. The Internet
Society, 2003.

[Jak99] Markus Jakobsson. On Quorum Controlled Asymmetric Proxy Re-encryption. In Public Key
Cryptography, volume 1560 of Lecture Notes in Computer Science, pages 112–121. Springer, 1999.

[LV08a] Benôıt Libert and Damien Vergnaud. Multi-use Unidirectional Proxy Re-Signatures. In ACM
Conference on Computer and Communications Security, pages 511–520. ACM, 2008.

[LV08b] Benôıt Libert and Damien Vergnaud. Tracing Malicious Proxies in Proxy Re-encryption. In Pairing,
volume 5209 of Lecture Notes in Computer Science, pages 332–353. Springer, 2008.

[LV08c] Benôıt Libert and Damien Vergnaud. Unidirectional Chosen-Ciphertext Secure Proxy Re-
encryption. In Public Key Cryptography, volume 4939 of Lecture Notes in Computer Science,
pages 360–379. Springer, 2008.

[MO97] Masahiro Mambo and Eiji Okamoto. Proxy Cryptosystems: Delegation of the Power to Decrypt
Ciphertexts. IEICE Transactions on Fundamentals of Electronics, Communications and Computer
Sciences, E80-A(1):54–63, 1997.

[SC09] Jun Shao and Zhenfu Cao. CCA-Secure Proxy Re-encryption without Pairings. In Public Key
Cryptography, volume 5443 of Lecture Notes in Computer Science, pages 357–376. Springer, 2009.

[Sch91] Claus-Peter Schnorr. Efficient Signature Generation by Smart Cards. J. Cryptology, 4(3):161–174,
1991.

[Smi05] Tony Smith. DVD Jon: Buy DRM-less Tracks from Apple iTunes. Available online at
http://www.theregister.co.uk/2005/03/18/itunes pymusique, January 2005.

A Proof of Chosen-Ciphertext Security

A.1 Complexity Assumptions

Definition 7 (Computational Diffie-Hellman (CDH) Problem). Let G be a cyclic
multiplicative group with prime order q. The CDH problem in G is, given (g, ga, gb) ∈ G3

with a, b
$← Z∗

q, to compute gab.

16 Sherman S.M. Chow, Jian Weng, Yanjiang Yang, and Robert H. Deng

Definition 8 (CDH Assumption). For an algorithm B, its advantage in solving the CDH
problem is defined as AdvCDH

B , Pr
[
B(g, ga, gb) = gab

]
, where the probability is taken over

the random choices of a, b and those made by B. We say that the (t, ε)-CDH assumption holds
in G if no t-time algorithm B has advantage at least ε in solving the CDH problem in G.

We show our reduction to an equivalent problem for higher readability, which is the
divisible computation Diffie-Hellman (DCDH) problem introduced by Bao et al. [BDZ03].

The task is to compute gb/a given (g, ga, gb) ∈ G3 with unknown a, b
$← Z∗

q . It is shown in
[BDZ03] that the DCDH and CDH are equivalent in the same group.

A.2 Preliminaries for the Proofs

Given an adversary A, who asks at most qHi random oracle quires to Hi with i ∈ {1, 2, 3},
and breaks the (t, nu, nc, qrk, qre, qd, ε)-IND-PRE-CCA security of our scheme, we will show
how to construct a polynomial time algorithm B which can break the CDH assumption in G
or the existential unforgeability against chosen message attack (EUF-CMA) of the Schnorr
signature with non-negligible advantage. For a cleaner proof, we assume that Schnorr signature
is EUF-CMA secure.

AdversaryA can choose to either attack the original ciphertext security (denoted byAorig),
the transformed ciphertext security (denoted by Atran) or the nontransformable ciphertext
security (denoted by Anotr). The proofs for security against Aorig and Atran share many
similarities, and the former may be a bit simpler. The proof for security against Anotr is the
simplest among all three. The corresponding reduction algorithms are Borig, Btran, and Bnotr.
For brevity, we do not repeat parts of the simulations which are the same, but for these parts
we will refer the reduction algorithm by B (∈ {Borig,Btran,Bnotr}) to avoid confusion.

Our proofs are given in the random oracle model, so we first describe how B simulates the
random oracles. Algorithm B gives (q, G, g, H1, . . . ,H4, `0, `1) to A. Here H1,H2 and H3 are
random oracles controlled by B. B maintains four hash lists H list

i with i ∈ {1, 2, 3}, which are
initially empty, and responds the random oracles queries for A as shown in Figure 1.

– H1(m,ω): If this query has appeared on the H list
1 in a tuple (m,ω, r), return the predefined value r. Otherwise,

choose r
$← Z∗

q , add the tuple (m,ω, r) to the list H list
1 and respond with H1(m,ω) = r.

– H2(R): If this query has appeared on the H list
2 in a tuple (R, β), return the predefined value β. Otherwise,

choose β
$← {0, 1}`0+`1 , add the tuple (R, β) to the list H list

2 and respond with H2(R) = β.
– H3(D,E, F): If this query has appeared on the H list

3 in a tuple (D,E, F, γ), return the predefined value γ.

Otherwise, choose γ
$← Z∗

q , add the tuple (D,E, F, γ) to the list H list
3 and respond with H3(D,E, F) = γ.

Fig. 1. Simulations for Hi for i = 1, 2, 3

B maintains two lists K list and Rlist which are initially empty, which stores the list of
public/private key pairs and re-encryption key generated respectively.

A.3 Original Ciphertext Security

Key generations. Borig generates the uncorrupted-keys and corrupted-keys as follows.

Efficient Unidirectional Proxy Re-Encryption 17

– Uncorrupted-key generation. Borig picks xi,1
$← Z∗

q , xi,2
$← Z∗

q . and uses Coron’s technique
[Cor00] – flips a biased coin ci ∈ {0, 1} that yields 1 with probability θ and 0 otherwise.
• If ci = 1, it defines pki = (pki,1, pki,2) = (gxi,1 , gxi,2);
• If ci = 0, it defines pki = (pki,1, pki,2) = ((ga)xi,1 , (ga)xi,2).
Borig adds the tuple (pki, xi,1, xi,2, ci) to K list and returns pki to A.

– Corrupted-key generation. B picks xj,1, xj,2
$← Z∗

q , and defines pkj = (gxj,1 , gxj,2) , cj = ‘−’.
It then adds the tuple (pkj , xj,1, xj,2, cj) to K list and returns (pkj , (xj,1, xj,2)) to A.

Phase 1. Adversary A issues a series of queries which B answers A as follows:

– OReK(pki, pkj): If Rlist has an entry for (pki, pkj), return the predefined re-encryption key
to A. Otherwise, algorithm B acts as follows:
1. Recover tuples (pki, xi,1, xi,2, ci) and (pkj , xj,1, xj,2, cj) from K list.

2. Pick h
$← {0, 1}`0 , π

$← {0, 1}`1 . Compute v = H1(h, π)
3. Compute V = pkv

j,2, W = H2(gv)⊕ (h‖π).
(The above two steps are exactly the same as those in ReKeyGen algorithm.)

4. Construct the first component rk〈1〉i→j according to the following cases:

• ci = 1 or ci = ‘−’: define rk
〈1〉
i→j = h

xi,1H4(pki,2)+xi,2
, and define τ = 1.

• (ci = 0 ∧ cj = 1) or (ci = 0 ∧ cj = 0): pick rk
〈1〉
i→j

$← Z∗
q , and define τ = 0.

• (ci = 0 ∧ cj = ‘−’): output “failure” and aborts.
For ci = 1 or ci = ‘−’, rki→j is obviously correct due to ski = (xi,1, xi,2).
For the case (ci = 0 ∧ cj = ‘−’), we defer the probability analysis to later part.
For the cases where (ci = 0 ∧ cj 6= ‘−’), using a random rki→j would not match with
the value of h associated with (V,W). For this, we will rely on the security of “hashed”
ElGamal encryption scheme [Gam84,FO99,BSNS05].

5. If B does not abort, add (pki, pkj , (rk
〈1〉
i→j , V, W), h, τ) into list Rlist.

6. Return rki→j = (rk〈1〉i→j , V, W) to A.
– OReE(pki = (pki,1, pki,2), pkj = (pkj,1, pkj,2),Ci = (D,E, F, s)):

1. If
(
pk

H4(pki,2)

i,1 pki,2

)s

6= D · EH3(D,E,F), return ⊥ since Ci is invalid.

2. Recover tuples (pki, xi,1, xi,2, ci) and (pkj , xj,1, xj,2, cj) from K list.
3. If (ci = 0 ∧ cj = ‘−’) does not hold, issue a re-encryption key generation query
〈pki, pkj〉 to obtain rki→j , and then return ReEncrypt(rki→j ,Ci, pki, pkj) to A.

4. Else, search for the tuple (m,ω, r) ∈ H list
1 such that (pk

H4(pki,2)

i,1 pki,2)
r = E. If there

exists no such tuple, return ⊥. (This corresponds to the event REErr to be explained).
5. Retrieve (pki, pkj , (∗, V, W), h, ‘−’) from list Rlist, define E′ = gr·h.
6. If it is not found, we prepare a “partial” re-encryption key as follows.
7. Pick h

$← {0, 1}`0 , π $← {0, 1}`1 . Compute v = H1(h, π).
8. Compute V = pkv

j,2, W = H2(gv)⊕ (h‖π).
9. Store (pki, pkj , (⊥, V, W), h, ‘−’) into list Rlist, define E′ = gr·h.

10. E′ is consistently computed as long as r can be retrieved, return (E′, F, V,W) to A
– ODec(pki,Ci): B first parses pki = (pki,1, pki,2) and recovers tuple (pki, xi,1, xi,2, ci) from

K list. If ci = 1 or ci = ‘−’, algorithm B runs Decrypt((xi,1, xi,2),Ci) and returns the result
to A. Otherwise, algorithm B works according to the following two cases:

18 Sherman S.M. Chow, Jian Weng, Yanjiang Yang, and Robert H. Deng

• Ci is an original ciphertext Ci = (D,E, F, s): If
(
pk

H4(pki,2)

i,1 pki,2

)s

6= D · EH3(D,E,F),

return ⊥ to A indicating that Ci is an invalid ciphertext. Otherwise, search lists H list
1

and H list
2 to see whether there exists (m,ω, r) ∈ H list

1 and (R, β) ∈ H list
2 such that(

pk
H4(pki,2)

i,1 pki,2

)r

= E, β ⊕ (m‖ω) = F and R = gr.

If yes, return m to A. Otherwise, return ⊥.
• Ci is a transformed ciphertext Ci = (E′, F, V,W): B decrypts according to two cases:
∗ If there exists a tuple (pkj , pki, (rk

〈1〉, V, W), h, 0) in Rlist: Compute E = E
′ 1

rk〈1〉 .
Search to see whether there exists (m,ω, r) ∈ H list

1 and (R, β) ∈ H list
2 such that(

pk
H4(pkj,2)

j,1 pkj,2

)r

= E, β ⊕ (m‖ω) = F, R = gr.

If yes, return m to A, else return ⊥.
Note that all V,W values from Rlist are correctly generated.

∗ Else, search for (m,ω, r), (h, π, v) ∈ H list
1 and (R, β), (R′, β′) ∈ H list

2 such that

pkv
i,2 = V, β′ ⊕ (h‖π) = W, gr·h = E′, β ⊕ (m‖ω) = F,R = gr and R′ = gv.

If yes, return m to A, else return ⊥.

Challenge. WhenA decides that Phase 1 is over, it outputs a public key pki∗ = (pki∗,1, pki∗,2)
and two equal-length messages m0,m1 ∈ {0, 1}`0 . Algorithm B recovers tuple (pki∗ , xi∗,1, xi∗,2, c

∗)
from K list. According to the constraints described in IND-PRE-CCA game, c∗ must be equal
to 1 or 0. Borig picks δ

$← {0, 1} and simulates the challenge ciphertext as follows.

1. If c∗ = 1, Borig outputs “failure” and aborts.
2. Compute E∗ =

(
gb

)xi∗,1H4(pki∗,2)+xi∗,2 .

3. Pick e∗, s∗
$← Z∗

q , and compute D∗ =
(
gb

)−(xi∗,1H4(pki∗,2)+xi∗,2)e∗
(
g

1
a

)(xi∗,1H4(pki∗,2)+xi∗,2)s∗

.

4. Pick F ∗ $← {0, 1}`0+`1 and define H3(D∗, E∗, F ∗) = e∗.

5. Pick ω∗
$← {0, 1}`1 , and implicitly define H1(mδ, ω

∗) = ab and H2(gab) = (mδ‖ω∗)⊕ F ∗.
6. Return C∗ = (D∗, E∗, F ∗, s∗) as the challenge original ciphertext to adversary Aorig.

Observe that the challenge ciphertext C∗ is identically distributed as the real one from the
construction. To see this, letting u∗ , s∗ − abe∗ and r∗ , ab, we have

D∗ =
(
gb

)−(xi∗,1H4(pki∗,2)+xi∗,2)e∗ (
g

1
a

)(xi∗,1H4(pki∗,2)+xi∗,2)s∗

=
((

g
1
a

)xi∗,1H4(pki∗,2)+xi∗,2

)s∗−abe∗

=
(
g

1
a
·xi∗,1H4(pki∗,2)g

1
a
·xi∗,2

)s∗−abe∗

=
(
pk

H4(pki∗,2)

i∗,1 pki∗,2

)u∗

,

E∗ =
(
gb

)xi∗,1H4(pki∗,2)+xi∗,2

=
((

g
1
a

)xi∗,1H4(pki∗,2)+xi∗,2

)ab

=
(
pk

H4(pki∗,2)

i∗,1 pki∗,2

)r∗

,

F ∗ = H2(gab)⊕ (mδ‖ω∗) = H2(gr∗)⊕ (mδ‖ω∗),
s∗ = (s∗ − abe∗) + abe∗ = u∗ + ab ·H3(D∗, E∗, F ∗) = u∗ + r∗ ·H3(D∗, E∗, F ∗).

Efficient Unidirectional Proxy Re-Encryption 19

Phase 2. Adversary A continues to issue queries as in Phase 1, with the restrictions described
in the IND-PRE-CCA game. Algorithm B responds to these queries for A as in Phase 1.

Guess. Eventually, adversary A returns a guess δ′ ∈ {0, 1} to Borig. Algorithm Borig randomly
picks a tuple (R, β) from the list H list

2 . and outputs R as the solution to the given DCDH
instance.

This completes the description of the simulation. It remains to related the probability for
success and the execution time, which will be shown in Lemma 1 and Lemma 2. ut

A.4 Transformed Ciphertext Security

Key generations. Btran generates the uncorrupted-keys and corrupted-keys as follows.

– Uncorrupted-key generation. Btran firstly picks xi,1, xi,2
$← Z∗

q .
Btran flips a biased coin ci ∈ {0, 1} that yields 1 with probability θ and 0 otherwise.
If ci = 1, defines pki,2 = gxi,2/ga, pki,1 = (ga)1/H4(pki,2) · gxi,1 (different from Borig);
If ci = 0, defines pki,2 = (ga)xi,2 , pki,1 = (ga)xi,1 .
Btran adds the tuple ((pki,1, pki,2), xi,1, xi,2, ci) to K list and returns (pki,1, pki,2) to A.

– Corrupted-key generation. Same as Borig.

Phase 1. Adversary A issues a series of queries which B answers A as follows:

– OReK(pki, pkj): If Rlist has an entry for (pki, pkj), return the predefined re-encryption key
to A. Otherwise, algorithm B acts as follows:
1. Recover tuples (pki, xi,1, xi,2, ci) and (pkj , xj,1, xj,2, cj) from K list.

2. Construct the first component rk〈1〉i→j according to the following cases:
• ci = 1 or ci = ‘−’:

(a) Define rk
〈1〉
i→j = h

xi,1H4(pki,2)+xi,2
, and define τ = 1.

(b) Pick h
$← {0, 1}`0 , π

$← {0, 1}`1 . Compute v = H1(h, π)
(c) Compute V = pkv

j,2, W = H2(gv)⊕ (h‖π).
(The above two steps are exactly the same as those in ReKeyGen algorithm.)

For ci = ‘−’, rki→j is obviously correct due to ski = (xi,1, xi,2).
For ci = 1 (a

H4(pki,2) + xi,1)H4(pki,2) + (−a + xi,2) = xi,1H4(pki,2) + xi,2. Looking
ahead, ci = 0 is where we plug the hard problem instance and pray that the
adversary will choose it as the target in challenge phase
• ci = 0 ∧ cj = 0:

(a) Pick rk
〈1〉
i→j

$← Z∗
q , and define τ = 0.

(b) Pick z
$← Z∗

q , set V = (gb)z, which defines bz = axj,2v, i.e., gv = gbz/(axj,2).

(c) Pick W
$← {0, 1}`0+`1 , implicitly define H2((gb/a)z/xj,2) = (h‖π)⊕W , h, π.

(d) Store (pki, pkj , (rki→j , V, W),⊥, 0, z) into list Rlist.
Using a random rki→j would not match with the value of h associated with (V,W).
For this, we will rely on the security of “hashed” ElGamal encryption scheme
[Gam84,FO99,BSNS05].
• (ci = 0 ∧ cj = 1) or (ci = 0 ∧ cj = ‘−’): output “failure” and aborts. We defer

the probability analysis to later part.

20 Sherman S.M. Chow, Jian Weng, Yanjiang Yang, and Robert H. Deng

3. If B does not abort, add (pki, pkj , (rk
〈1〉
i→j , V, W), h, τ) into list Rlist.

4. Return rki→j = (rk〈1〉i→j , V, W) to A.
– OReE, ODec: Same as Borig.

Challenge. When A decides that Phase 1 is over, it outputs a delegator’s public key pki′ =
(pki′,1, pki′,2), a delegatee’s public key pki∗ = (pki∗,1, pki∗,2) and two equal-length messages
m0,m1 ∈ {0, 1}`0 . Algorithm B recovers tuples (pki∗ , xi∗,1, xi∗,2, c

∗) and tuple (pki′ , xi′,1, xi′,2, c
′)

from K list. According to the constraints described in IND-PRE-CCA game, c∗ must be equal
to 1 or 0. B simulates the challenge ciphertext as follows.

1. If c′ = 1 or c∗ = 1, Btran outputs “failure” and aborts.
2. If c′ = ‘−’, in our security model Atran would not get rki′→i∗ which makes the simulation

of ciphertext a special case of the simulation below.
3. Pick t

$← Z∗
q , define E′∗ = (gb)t, which implicitly defines r∗h∗ = bt, i.e., r∗ = bt/h∗.

4. Pick F ∗ $← {0, 1}`0+`1 , implicitly define F ∗ = H2((gb/a)t/rki′→i∗ (xi′,1H4(pki′,2)+xi′,2))⊕(mδ‖ω∗).
Recall that h∗ = rki′→i∗a(xi′,1H4(pki′,2) + xi′,2) for c′ = 0, which implicitly defines
H1(mδ, ω

∗) = r∗ = (b/a)(t/rki′→i∗(xi′,1H4(pki′,2) + xi′,2)). This explains F ∗.
5. Retrieve (pki′ , pki∗ , (rki′→i∗ , V

∗,W ∗),⊥, 0, z∗) from list Rlist. If not found, do the following
to define V ∗, W ∗ and z∗ (and store them into list Rlist afterwards).

6. Pick z∗
$← Z∗

q , set V ∗ = (gb)z∗ , which defines bz = axi∗,2v for c∗ = 0, i.e., gv = gbz/(axi∗,2).

7. Pick W ∗ $← {0, 1}`0+`1 , implicitly define H2((gb/a)z∗/xi∗,2) = (h∗‖π∗)⊕W ∗, h∗, π∗.
8. Return C∗ = (E′∗, F ∗, V ∗,W ∗) as the challenge ciphertext to adversary Atran.

Phase 2. Adversary A continues to issue queries as in Phase 1, with the restrictions described
in the IND-PRE-CCA game. Algorithm B responds to these queries for Atran as in Phase 1.

Guess. Eventually, adversary Atran returns a guess δ′ ∈ {0, 1} to B. Algorithm Btran first
retrieves (mδ′ , ω, r) from the list H list

1 and test if (ga)r·rki′→i∗ (xi′,1H4(pki′,2)+xi′,2)/t = gb. If
no such entry is found, Btran randomly picks a tuple (R, β) from the list H list

2 and outputs
Rxi∗,2/z∗ as the solution to the given DCDH instance.

This completes the description of the simulation. It remains to related the probabilities
for success and the execution times of the simulation and the adversary, which will be shown
in Lemma 1 and Lemma 2. ut

A.5 Nontransformable Ciphertext Security

Without loss of generality, we assume that the Schnorr signature is (t′, ν)-EUF-CMA secure
for some probability 0 < ν < ε. suppose there exists a t-time adversary A who can break the
IND-PRE-CCA security of our scheme for nontransformable ciphertext with advantage ε− ν,
then we show how to construct an algorithm B which can break the (t′, ε′)-CDH assumption
in G, given as input a CDH challenge tuple (g, ga, gb). To output gab eventually, algorithm
Bnotr acts as the challenger and plays the IND-PRE-CCA game with adversary Anotr in the
following way.

– Uncorrupted key generation: Algorithm Bnotr first picks xi,1, xi,2
$← Z∗

q , and define pki =

(pki,1, pki,2) =
(
(ga)1/H4(pki,2) · gxi,1 , gxi,2/ga

)
. Next, set ci = 0 and add the tuple (pki, xi,1, xi,2, ci)

Efficient Unidirectional Proxy Re-Encryption 21

to the K list. Finally, it returns pki to adversary A. The private key with respect to pki is
ski = (a

H4(pki,2) + xi,1,−a + xi,2), is unknown to both Bnotr and Anotr.

– Corrupted key generation: Bnotr picks xj,1, xj,2
$← Z∗

q and defines pkj = (gxj,1 , gxj,2) and
cj = 1. It then adds the tuple (pkj , xj,1, xj,2, cj) to the K list and returns (pkj , (xj,1, xj,2)).

– Re-encryption key generation: For the re-encryption key from user i to user j, Bnotr parses
pki as pki = (pki,1, pki,2) and pkj = (pkj,1, pkj,2). Next, it recovers tuples (pki, xi,1, xi,2, ci)
and (pkj , xj,1, xj,2, cj) from the K list. Then, it constructs the re-encryption key rki→j for
adversary A according to the following situations:
• If ci = 1, Bnotr return the result of ReKeyGen(ski, pkj) to A since ski = (xi,1, xi,2) is

known.
• If ci = 0, it means that ski = (a

H4(pki,2) + xi,1,−a + xi,2). Bnotr picks h
$← {0, 1}`0 , π $←

{0, 1}`1 and returns rki→j = (rk〈1〉i→j = h
xi,1H4(pki,2)+xi,2

, V = gH1(h,π),W = H2(pkv
j,2)⊕

(h‖π)), which is valid since xi,1H4(pki,2)+xi,2 = (a
H4(pki,2) +xi,1)H4(pki,2)+(−a+xi,2).

Phase 1. ODec: Same as Borig.
Challenge. WhenAnotr decides that Phase 1 is over, it outputs a public key pki∗ = (pki∗,1, pki∗,2)
and two equal-length messages m0,m1 ∈ {0, 1}`0 . Algorithm Bnotr responds as follows:

1. Recover tuple (pki∗ , xi∗,1, xi∗,2, c
∗) from K list.

2. Pick δ
$← {0, 1}, ω∗ $← {0, 1}`1 , and issue an H1 query on (mδ, ω

∗) to obtain the response
r∗.

3. Pick h∗
$← {0, 1}`0 , π∗ $← {0, 1}`1 and W ∗ $← {0, 1}`0+`1 . Then implicitly define H1(h∗, π∗) =

b and H2(g−abgb·xi∗,2) = (h∗‖π∗)⊕W ∗ (note that Bnotr knows neither b nor g−abgb·xi∗,2).
4. Define E′∗ = gr∗h∗ , F ∗ = H2(gr∗)⊕ (mδ‖ω∗), V ∗ = gb.
5. Return C∗ = (E′∗, E∗, F ∗,W ∗) as the challenge ciphertext to adversary Anotr.

Observe that the challenge ciphertext C∗ is identically distributed as the real one from the
construction. To see this, letting r∗ = b, we have

V ∗ = gb = gv∗ ,

W ∗ = H2(g−abgb·xi∗,2)⊕ (h∗‖π∗) = H2((g−a+xi∗,2)b)⊕ (h∗‖π∗) = H2(pkr∗
i∗,2)⊕ (h∗‖π∗).

Guess. Same as Phase 1.
Eventually, adversary A returns a guess δ′ ∈ {0, 1} to Bnotr. Algorithm Bnotr randomly

picks a tuple (R, β) from the list H list
2 and outputs

(
R

g
b·xi∗,2

)−1
as the solution to the given

CDH instance.

Analysis. It is clear that the public keys and the re-encryption key are distributed correctly.
The simulation of the decryption oracle is perfect, with the exception that simulation errors
may occur in rejecting some valid ciphertexts (denote this event by DErr). A similar analysis
as in Appendix A.6 can yield Pr[DErr] ≤ (qH1

+qH2
)qd

2`0+`1
+ 2qd

q .
Next, we evaluate the simulations of the random oracles. It is clear that the simulations

of H3 and H4 are perfect. Let AskH∗
1 be the event that (h∗, π∗) has been queried to H1, and

AskH∗
2 be the event that g−abgb·xi∗,2 has been queried to H2. The simulations of H1 and H2

are also perfect, as long as AskH∗
1 and AskH∗

2 did not occur, where h∗ and π∗ are chosen by
Bnotr in the Challenge phase.

22 Sherman S.M. Chow, Jian Weng, Yanjiang Yang, and Robert H. Deng

Now, let Good denote the event (AskH∗
2 ∨ (AskH∗

1|¬AskH∗
2) ∨ DErr). A similar analysis as

in Appendix A.6 can yields

ε− ν ≤ Pr[Good] ≤ (Pr[AskH∗
2] + Pr[AskH∗

1|¬AskH∗
2] + Pr[DErr]) ,

and then

Pr[AskH∗
2] ≥ ε− ν − Pr[AskH∗

1|¬AskH∗
2]− Pr[DErr] ≥ ε− ν − qH1 + (qH1 + qH2)qd

2`0+`1
− 2qd

q
.

If AskH∗
2 happens, algorithm B will be able to solve DCDH instance. Therefore, we obtain

ε′ ≥ 1
qH2

Pr[AskH∗
2] ≥

1
qH2

(
ε− ν − qH1 + (qH1 + qH2)qd

2`0+`1
− 2qd

q

)
.

From the description of the simulation, B’s running time can be bounded by

t′ ≤ t + (qH1 + qH2 + qH3 + qH4 + qu + qc + qrk + qd)O(1)
+ (2qu + 2qc + 2qrk + 2qd + (2qH2 + 2qH1)qd)texp.

A.6 Lemmata for Probability Analysis of the Simulations

Lemma 1. With Aorig, B can solve the DCDH problem with advantage ε′ within time t′ where

t′ ≤ t + (qH1 + qH2 + qH3 + qH4 + nu + nc + qrk + qre + qd)O(1)
+ (2nu + 2nc + 2qrk + 5qre + 2qd + qH1qre + (2qH2 + 2qH1)qd)texp,

ε′ ≥ 1
qH2

(ε

e(1 + qrk)
− qH12

`0 + qH3 + (qH1 + qH2)qd

2`0+`1
− qre + 2qd

q
− ε1 − ε2

)
,

texp denotes the time to exponentiate in group G, e is the base of the natural logarithm,
ε1 denotes the advantage in breaking the CCA security of the underlying “hashed” ElGa-
mal encryption and ε2 denotes the advantage in breaking the existential unforgeability of the
underlying Schnorr signature.

Proof (Lemma 1). The main idea of the proof is borrowed from [BSNS05]. We first evaluate
the simulations of the random oracles. It is clear that the simulation of H4 is perfect. Let AskH∗

3

be the event that Aorig queried (D∗, E∗, F ∗) to H3 before Challenge phase. The simulation
of H3 is also perfect, as long as AskH∗

3 did not occur. Since F ∗ is randomly chosen from
{0, 1}`0+`1 by the challenger in Challenge phase, we have Pr[AskH∗

3] ≤
qH3

2`0+`1
. Let AskH∗

1 be
the event that (mδ, ω

∗) has been queried to H1, and AskH∗
2 be the event that gab has been

queried to H2. The simulations of H1 and H2 are also perfect, as long as AskH∗
1 and AskH∗

2

did not occur, where δ and ω∗ are chosen by B in the Challenge phase.
It is clear that the responses to Aorig’s uncorrupted/corrupted-key generation queries are

perfect. Let Abort denote the event of B’s aborting during the simulation of the re-encryption
key queries or in the Challenge phase. We have Pr[¬Abort] ≥ θqrk(1− θ), which is maximized
at θopt = qrk

1+qrk
. Using θopt, the probability Pr[¬Abort] is at least 1

e(1+qrk) .
The simulation of the re-encryption key queries is the same as the real one, except for the

case (ci = 0 ∧ cj = 1) or (ci = 0 ∧ cj = 0), in which the component rk
(1)
i→j is randomly

chosen. If event Abort does not happen, this is computationally indistinguishable from the
real world according to the following facts.

Efficient Unidirectional Proxy Re-Encryption 23

1. The secret key skj is unknown to A since cj 6= ‘−’.
2. (pkv

j,2,H2(gv) ⊕ (h‖π)) with v = H1(h, π) is in fact an encryption of h under pkj,2 using
the “hashed” ElGamal encryption scheme [Gam84,FO99,BSNS05], which is based on the
CDH assumption.

To reduce the indistinguishability to that of the underlying encryption scheme, we need the
two following facts.

1. The value v is generated at random and is unrelated to any other values – v is determined
by H1(h, π), see the point below.

2. The values h and π are not used elsewhere in the proof – this is ensured since rk′i→j is
randomly chosen (this is the only other place where h may appear) and the decryption
oracle only returns the message instead of any intermediate values like h or π.

One may also refer to the proof for the transformed ciphertext security to see how the
DCDH problem instance is embedded to (V,W). We remark that even though the value of
h is a function of the unknown secret key of the delegator, the simulator can execute in a
different “mode” such that the value of the secret key of the delegator is known, as we are
relying on the security of the underlying encryption with respect to the delegatee here.

Next, we analyze the simulation of the re-encryption queries. This simulation is also per-
fect, unless Aorig can submit valid original ciphertexts without querying hash function H1 (de-
note this event by REErr). However, since H1 acts as a random oracle, we have Pr[REErr] leq qre

q .
The simulation of the decryption oracle is perfect, with the exception that simulation

errors may occur in rejecting some valid ciphertexts. However, these errors are not significant
as shown below: Suppose a ciphertext C has been queried to the decryption oracle. Even if
C is a valid ciphertext, there is a possibility that C can be produced without querying gr

to H2, where r = H1(m,ω). Let Valid be an event that C is valid. Let AskH2 and AskH1

respectively be the events that gr has been queried to H2 and (m,ω) has been queried to H1.
We have Pr[Valid|(¬AskH1 ∨ ¬AskH2)] ≤ Pr[Valid|¬AskH1] + Pr[Valid|¬AskH2)] ≤ 2

q . To see,
the probability that A can come up with a “valid” E with respect to the public key and the
H1’s output without querying H1 at that point is 1

q . Similarly, A can come up with a “valid”
F with respect to the H2’s output without querying H2 at the concerned point is again 1

q .
Let DErr be the event that Valid|(¬AskH1∨¬AskH2) happens during the entire simulation.

Then, since Aorig issues at most qd decryption oracles, we have Pr[DErr] ≤ (qH1
+qH2

)qd

2`0+`1
+ 2qd

q .
Now, let Err denote the event (AskH∗

2 ∨AskH∗
1 ∨AskH∗

3 ∨REErr∨DErr)
∣∣¬Abort. If Err does

not happen, due to the randomness of the output of the random oracle H2, it is clear that
adversary Aorig cannot gain any advantage greater than 1

2 in guessing δ. Namely, we have
Pr[δ = δ′|¬Err] = 1

2 . Hence, by splitting Pr[δ′ = δ], we have

Pr[δ′ = δ] = Pr[δ′ = δ|¬Err] Pr[¬Err] + Pr[δ′ = δ|Err] Pr[Err]

≤ 1
2

Pr[¬Err] + Pr[Err] =
1
2

+
1
2

Pr[Err]

and Pr[δ′ = δ] ≥ Pr[δ′ = δ|¬Err] Pr[¬Err] =
1
2
− 1

2
Pr[Err].

By definition of the advantage for the IND-PRE-CCA adversary, we then have

ε =
∣∣2× Pr[δ′ = δ]− 1

∣∣
≤ Pr[Err] = Pr[(AskH∗

2 ∨ AskH∗
1 ∨ AskH∗

3 ∨ REErr ∨ DErr)
∣∣¬Abort]

≤ (Pr[AskH∗
2] + Pr[AskH∗

1] + Pr[AskH∗
3] + Pr[REErr + Pr[DErr]) / Pr[¬Abort].

24 Sherman S.M. Chow, Jian Weng, Yanjiang Yang, and Robert H. Deng

Since B picks ω
$← {0, 1}`1 which is hidden by the “one-time pad” given by H2, Pr[AskH∗

1] ≤
qH1

2`1
, we obtain the following bound:

Pr[AskH∗
2] ≥ Pr[¬Abort] · ε− Pr[AskH∗

1]− Pr[AskH∗
3]− Pr[DErr]− Pr[REErr]

≥ ε

e(1 + qrk)
− qH1

2`1
− qH3

2`0+`1
− (qH1 + qH2)qd

2`0+`1
− 2qd

q
− qre

q

=
ε

e(1 + qrk)
− qH12

`0 + qH3 + (qH1 + qH2)qd

2`0+`1
− qre + 2qd

q
.

If AskH∗
2 happens, algorithm B will be able to solve DCDH instance. Therefore, we obtain

ε′ ≥ 1
qH2

Pr[AskH∗
2] ≥

1
qH2

(ε

e(1 + qrk)
− qH12

`0 + qH3 + (qH1 + qH2)qd

2`0+`1
− qre + 2qd

q

)
.

From the description of the simulation, B’s running time can be bounded by

t′ ≤ t + (qH1 + qH2 + qH3 + qH4 + nu + nc + qrk + qre + qd)O(1)
+ (2nu + 2nc + 2qrk + 5qre + 2qd + qH1qre + (2qH2 + 2qH1)qd)texp.

This completes the proof of Lemma 1. ut

Lemma 2. With Atran, B can solve the CDH problem with advantage ε′ within time t′ where

t′ ≤ t + (qH1 + qH2 + qH3 + qH4 + nu + nc + qrk + qre + qd)O(1)
+ (2nu + 2nc + 2qrk + 3qre + 2qd + (2qH2 + 2qH1)qd)texp,

ε′ ≥ 1
qH2

(
ε− qH12

`0 + (qH1 + qH2)qd

2`0+`1
− 2qd

q
− ε2

)
,

texp denotes the running time of an exponentiation in group G and ε2 denotes the advantage
in breaking the existential unforgeability of the underlying Schnorr signature.

Proof (Lemma 2). It is clear that the responses to Atran’s uncorrupted/corrupted queries,
re-encryption key generation queries and re-encryption queries are all perfect. The simulation
of the decryption queries is perfect, with the exception that simulation errors may occur in
rejecting some valid ciphertexts (denote this event by DErr). A similar analysis as in Lemma
1 can yields Pr[DErr] ≤ (qH1

+qH2
)qd

2`0+`1
+ 2qd

q .
Next, we evaluate the simulations of the random oracles. It is clear that the simulations

of H3 and H4 are perfect. Let AskH∗
1 be the event that (h∗, π∗) has been queried to H1, and

AskH∗
2 be the event that gb/a or (gb/a)t/rki′→i∗ (xi′,1H4(pki′,2)+xi′,2))⊕ (mδ‖ω∗) has been queried

to H2. The simulations of H1 and H2 are also perfect, as long as AskH∗
1 and AskH∗

2 did not
occur, where h∗ and π∗ are chosen by B in the Challenge phase.

Let Err denote (AskH∗
2 ∨ AskH∗

1 ∨ DErr). A similar analysis as in Lemma 1 can yield

Pr[AskH∗
2] ≥ ε− Pr[AskH∗

1]− Pr[DErr] ≥ ε− qH12
`0 + (qH1 + qH2)qd

2`0+`1
− 2qd

q
.

If AskH∗
2 happens, algorithm B will be able to solve DCDH instance. Therefore, we obtain

ε′ ≥ 1
qH2

Pr[AskH∗
2] ≥

1
qH2

(
ε− qH12

`0 + (qH1 + qH2)qd

2`0+`1
− 2qd

q
− ε2

)
.

Efficient Unidirectional Proxy Re-Encryption 25

From the description of the simulation, B’s running time can be bounded by

t′ ≤ t + (qH1 + qH2 + qH3 + qH4 + nu + nc + qrk + qre + qd)O(1)
+ (2nu + 2nc + 2qrk + 3qre + 2qd + (2qH2 + 2qH1)qd)texp.

This completes the proof of Lemma 2. ut

B Delegator Secret Security

Delegator secret security is formally defined via the following game:

Setup. Challenger C runs Setup(1κ) and gives the global parameters param to A.
Queries. A adaptively issues queries q1, . . . , qm where query qi is one of the following:

– Uncorrupted-key generation query: C first runs KeyGen() to obtain a public/private key
pair (pki, ski), and then sends pki to A.

– Corrupted-key generation query: C first runs KeyGen() to obtain a public/private key
pair (pkj , skj), and then gives (pkj , skj) to A.

– Re-encryption key query 〈pki, pkj〉: C runs ReKeyGen(ski, pkj) to generate a re-encryption
key rki→j and returns it to A. Here ski is the private key with respect to pki. It is
required that pki and pkj were generated beforehand a key generation query, either
corrupted or uncorrupted.

Output. Finally, A outputs a private key ski∗ with respect to the public key pki∗ . A wins
the game if ski∗ is indeed a valid private key came from a uncorrupted-key generation
query.

We refer to the above adversary A as a DSK adversary, and define his advantage in
attacking the PRE scheme’s delegator secret security as AdvDSK

PRE,A = Pr[A wins], where the
probability is taken over the random coins consumed by the challenger and the adversary.

Definition 9. We say that a PRE scheme is (t, nu, nc, qrk, ε)-DSK secure, if for any t-time
DSK adversary A that makes at most qrk re-encryption key queries, AdvDSK

PRE,A ≤ ε.

Definition 10. The discrete logarithm (DL) problem in G is, given a tuple (g, ga) ∈ G2 with
unknown a, to compute a.

Definition 11. For a polynomial-time algorithm B, we define his advantage in solving the
DL problem in G as

AdvDL
B , Pr[B(g, ga) = a], where the probability is taken over the random choices of a

in Zq, the random choice of g in G, and the random bits consumed by B. We say that the
(t, ε)-DL assumption holds in group G, if no t- time adversary B has advantage at least ε in
solving the DL problem in G.

The delegator secret security of our scheme can be ensured by the following Theorem 2.
We remark that it does not rely on the random oracle model.

Theorem 2. Our scheme has delegator secret security if the DL assumption holds in G.
Concretely, if there exists an DSK adversary A, who breaks the (t, qu, qc, qrk, ε)-DSK security
of our scheme, then there exists an algorithm B which can break the (t′, ε)-DL assumption in
G with t′ ≤ t + O(2nutexp + 2nctexp + 2qrktexp).

26 Sherman S.M. Chow, Jian Weng, Yanjiang Yang, and Robert H. Deng

Proof. Suppose B is given as input a DL challenge tuple (g, ga) ∈ G2 with unknown a
$← Z∗

q .
Algorithm B’s goal is to output a. Algorithm B acts as a challenger and plays the DSK game
with adversary A in the following way:

Setup. Algorithm B gives (q, G, g, H1, . . . ,H4, `0, `1) to A. Here H1,H2,H3 and H4 are just
cryptographic hash functions which are not modelled as random oracles.

Queries. Adversary A issues a series of queries as defined in the DSK game. B maintains a
list K list, which is initially empty, and answers these queries for A as follows:

– Uncorrupted-key generation query: Algorithm B first picks xi,1, xi,2
$← Z∗

q , and defines

pki = (pki,1, pki,2) =
(
(ga)1/H4(pki,2) · gxi,1 , gxi,2/ga

)
. Next, set ci = 0 and add the tuple

(pki, xi,1, xi,2, ci) to the K list. Finally, it returns pki to adversary A. Note that the private
key with respect to pki is ski = (a

H4(pki,2) + xi,1,−a + xi,2), which is unknown to both B
and A.

– Corrupted-key generation query: B picks xj,1, xj,2
$← Z∗

q and defines pkj = (gxj,1 , gxj,2) and
cj = 1. It then adds the tuple (pkj , xj,1, xj,2, cj) to the K list and returns (pkj , (xj,1, xj,2))
to A.

– Re-encryption key query 〈pki, pkj〉: B parses pki as pki = (pki,1, pki,2) and pkj = (pkj,1, pkj,2).
Next, it recovers tuples (pki, xi,1, xi,2, ci) and (pkj , xj,1, xj,2, cj) from the K list. Then, it
constructs the re-encryption key rki→j for adversary A according to the following situa-
tions:
• If ci = 1, B can return the result of ReKeyGen(ski, pkj) to A, since ski = (xi,1, xi,2) is

known.
• If ci = 0, it means that ski = (a

H4(pki,2) + xi,1,−a + xi,2). B picks h
$← {0, 1}`0 , π $←

{0, 1}`1 and returns rki→j =
(
rk

〈1〉
i→j = h

xi,1H4(pki,2)+xi,2
, V = gH1(h,π),W = H2(pkv

j,2)⊕

(h‖π)
)
, which is valid since xi,1H4(pki,2)+xi,2 = (a

H4(pki,2) +xi,1)H4(pki,2)+(−a+xi,2).

Output. Eventually, A outputs the private key ski∗ = (ski∗,1, ski∗,2) with respect to the
public key pki∗ , which is came from an uncorrupted-key generation query. B recovers the
tuple (pki∗ , xi∗,1, xi∗,2, ci∗) from the K list (Note that it must be ci∗ = 0), and then outputs
xi∗,2− ski∗,2 as the solution to the DL challenge. Note that, if ski∗ = (ski∗,1, ski∗,2) is a valid
private key with respect to pki∗ , we have ski∗,1 = a

H4(pki∗,2) + xi∗,1 and ski∗,2 = −a + xi∗,2.

It can be verified that the responses for the uncorrupted/corrupted-key generation queries
and the re-encryption key query are perfect. Thus, when adversary A outputs the valid private
key ski∗ with advantage ε, B can resolve the DL instance with the same advantage. It can be
easily seen that B’s running time is bounded by t′ ≤ t + O(2nutexp + 2nctexp + 2qrktexp). ut

