
Proactive Linear Integer Secret Sharing

Rune Thorbek

BRICS, Dept. of Computer Science, University of Aarhus

Abstract. In [3] Damgard and Thorbek proposed the linear integer
secret sharing (LISS) scheme. In this note we show that the LISS scheme
can be made proactive.

1 Introduction

Secret sharing schemes protect secrets by distributing them over different
locations (parties). In a threshold-t scheme, the adversary is restricted
to corrupt no more than t out of n parties throughout the lifetime of
the scheme. If this assumption is fulfilled, then the adversary will not
learn the secret. But in some long-lived schemes with sensitive secrets
this guarantee may be insufficient.

In [9] Ostrovsky and Yung proposed the proactive model. In the proac-
tive model the life span of the protocol is divided into separate time pe-
riods, where the adversary can corrupt at most t parties in each period.
The set of corrupted parties may change from period to period, and the
protocol must remain secure, even though every party may have been
corrupt at some point. One way to achieve this, is by letting the parties
re-randomize the shares they hold between each time period and erase
the old shares. This procedure is called the refreshment. This should be
done in such a way, that the parties are still guaranteed the correctness
and the privacy of the scheme. Furthermore, to avoid gradual destruction
of the secret by corruption of shares, it is necessary to be able to recover
lost or corrupted shares without compromising the secrecy of any shares.

Proactive secret sharing has shown very useful in threshold RSA sig-
nature schemes [5], since it provides security in a long-lived system, e.g.,
for the master keys which cannot be periodically changed. While this
area has been studied in great detail [4, 10, 8, 1, 6], we consider the LISS
scheme in a proactive setting without a distributed exponentiation pro-
tocol in this chapter.

There are mainly two strategies to make a secret sharing scheme
proactive. One way to implement the refreshment phase is to let ev-
ery party re-share his share components and by the linearity of LISS

reconstruct the secret in a new single secret sharing in LISS. Doing this
straightforward has the disadvantage, that the share sizes grow very fast,
since the LISS scheme is done over the integers and needs some addi-
tional bits in each round to “hide” the secret. Another strategy is to add
a secret shared zero to the secret. In this strategy the share component
sizes grow amortized less than one bit. While this solves the problem for
a passive adversary, we need some means to detect tampered shares and
recover them if we consider an active adversary. All this will be solved in
this chapter.

2 Preliminaries

In a linear integer secret sharing [3] (LISS) scheme a dealer D can share a
secret s from a publically know interval [−2l..2l] over an access structure
Γ between the party P such that only qualified subsets can reconstruct
the secret while other subsets do not gain any information about the
secret. More precisely,

Definition 1. A LISS scheme is correct, if the secret can be recon-
structed from shares of any qualified set in A ∈ Γ , by taking an integer
linear combination of the shares with coefficient that depends only on the
index set A.

Definition 2. A LISS scheme is private, if for any forbidden set B ∈ ∆,
any two secret s, s′ ∈ [−2l..2l], and independent random coins r and r′,
the statistical distance between the distributions of the shares {si(s, r, k) |
i ∈ B} and {si(s′, r′, k) | i ∈ B} is negligible in the security parameter k.

A labeled matrix consists of a d × e matrix M and a corresponding sur-
jective function ψ : {1, . . . , d} → {1, . . . , n}. We say that the i-th row is
labeled by ψ(i) or owned by party Pψ(i). For any subset A ⊂ P, we let
MA denote the restriction of M to the rows labeled by some Pψ(i) ∈ A.
For any d-vector x, we similarly denote xA to be the restriction of entries
i with Pψ(i) ∈ A. For any two vectors a and b, let 〈a, b〉 denote the inner
product.

Definition 3 ([2]). An Integer Span Program (ISP) for a monotone ac-
cess structure Γ consists of a tuple M = (M,ψ, ε), where M ∈ Zd,e is a
labeled matrix with a surjective function ψ : {1, . . . , d} → {1, . . . , n}, and
the target vector ε = (1, 0, . . . , 0)T ∈ Ze. Furthermore, for every A ⊆ P
the following holds,

- for every A ∈ Γ there exists a reconstruction vector λ ∈ Zd such that
MT
Aλ = ε.

- for every A /∈ Γ there exists a sweeping vector κ ∈ Ze such that
MAκ = 0 and 〈κ, ε〉 = 1.

The size of M is defined to be d.

In [3] it was shown how to construct a correct and private LISS scheme
from any ISP. For a given ISP we define l0 = l+ dlog2(κmax(e− 1))e+ 1,
where κmax = max{|a| | a is an entry in some sweeping vector }. To share
a secret s ∈ [−2l..2l], we use a distribution vector ρ which is a uniformly
random vector in [−2l0+k..2l0+k]e with the restriction that 〈ρ, ε〉 = s.
The share vector is computed by Mρ = s = (s1, . . . , sd)T , where the
share component si is given to party Pψ(i) for 1 ≤ i ≤ d. The share of
party Pj is the subset of share components s{Pj}.

3 Proactive Security

All the entities are Interactive Turing machines (ITM). The parties P1, . . . , Pn
are PPT ITMs which proactively secret share a secret. The adversary A
attacking the protocol is a ITM with unbounded computing power. See
Section 5.1 for further discussion on the computing power of the adver-
sary.

For simplicity we assume authenticated secure point-to-point channels
between all parties. This assumption will be discussed in more detail in
section 6. Furthermore, we assume a synchronous network, which proceeds
in rounds.

A

P1

P2

...

Pn

π

Since we assume point-to-point channels, the adversary cannot see the
communication between the parties. The adversary only sees the view of
the parties she corrupts, i.e., the messages received by the parties.

A proactive secret sharing scheme is divided into phases. We distin-
guish between an operational phase and a refreshment phase, which occur

alternately. The operational phases are where the secret sharing can be
used for whatever purpose it was intended, while the refreshment phases
are used to re-randomize the secret sharing, such that attacks in different
phases will not be able to benefit from each other. A stage consists of an
opening refreshment phase, an operational phase, and a closing refresh-
ment phase. Note, that if a refreshment phase is the closing refreshment
phase of stage u, then it is the opening refreshment phase of stage u+ 1.

stage u

· · · · · ·

stage u+ 1

operational phase
refreshment phase

The adversaryA decides when the refreshment phases start by sending
a command to all parties. While the refreshment ends when all honest
parties have output a special symbol indicating the end of refreshment.

In a proactive secret sharing scheme realizing ∆ the adversary may
adaptively corrupt any party during any phase, with the restriction that
the set C of corrupted parities is in ∆ in every stage. Hence, if a party is
corrupted during a refreshment phase, she is considered corrupt in both
stages that the phase belongs to.

If a party is corrupted during an operational phase the adversary is
given the view of the party from the beginning of the phase. Furthermore,
if a party is corrupted during a refreshment phase, then the adversary is
given the view starting from the beginning of the preceding operational
phase.

The adversary can decorrupt a party at the end of any operational
phase, and the party will be considered honest again. We distinguish be-
tween a passive and an active adversary. When a passive adversary cor-
rupts a party, she is given the internal state of the party and the control.
However the passive adversary follows the protocol and on decorruption
she leaves the internal state of the party in a consistent state with the
protocol. When an active adversary corrupts a party, she is given the in-
ternal state of the party, but she may deviate arbitrary from the protocol
and leave the party on decorruption in an arbitrary internal state.

The parties are assumed to get randomness from an incorruptible
source and are seeded with new fresh randomness whenever required. I.e.
after decorruption the adversary does not know the random choices made
by the party.

We need the following definition in order to formally define proactive
security.

Definition 4. Let y be a share vector and let H be the set of all honest
parties. If 〈y,λA〉 = y for all qualified A ⊆ H, where λA is the recon-
struction vector for A and y is a fixed value, then y is said to have correct
reconstructability.

Definition 5. A proactive secret sharing scheme is robust, if it has cor-
rect reconstructibility for the same value in each operational phase.

Definition 6. A proactive secret sharing scheme realizing ∆ is proac-
tively private, if the adversary may corrupt and decorrupt, as described
above, is private in all phases.

4 Proactive Protocol

The protocol is as follows.

Protocol Refresh
Initially a dealer has computed sharing vector (s1, . . . , sd)T = Mρ,
where ρ ∈ [−2l0+k..2l0+k]e was chosen at random with the restriction
that 〈ρ, ε〉 = s the secret.
1. For i = 1, . . . , n party Pi secret shares a zero, using uniformly

random ρ0 ∈ [−2l0+k..2l0+k]e, with the restriction that 〈ρ0, ε〉 =
0, to obtain share vector by (si1 , . . . , sid)

T = Mρ0 and for j =
1, . . . , d send sij to party Pψ(j).

2. For each i = 1, . . . , d party Pψ(i) lets s(new)
i = si +

∑n
j=1 sji be the

new share component.

Note 1. If the above protocol is used r times, then each share component
size grows at most log(n) + log(r) + 1 bits, i.e., amortized each share
component grows O(log(r)/r) bits.

Theorem 1. If the Refresh protocol is used polynomial many times, then
it is robust and proactively private for a passive adversary.

Proof. By inspection of the protocol it follows that the protocol is robust.
In order to prove that the protocol provides proactive privacy we pro-

vide a simulator. In each phase the adversary can corrupt and decorrupt
as many parties she wants with the restrictions described in Section 3.

The idea behind the simulator is as follows. The simulator generates
a LISS secret sharing of 0 and keeps the shares on behalf of each honest
party and provides the adversary with the shares for the corrupted parties.
The simulator then interacts in the protocols on behalf of each honest

party throughout the run. When a party is corrupted, the simulator will
have the required data of the honest party internal state and provides the
adversary with it. On decorruption of a party, the simulator will receive
the internal state from the adversary, and hence, has a consistent internal
state of the now honest party.

For notational convenience we let 0, 1, . . . , u denote the phases, and
let s0, s1, . . . , su denote the internal states of the honest parties. Note,
that the internal state of honest party Pi in phase j is given by (sj){Pi}.
Furthermore, we let the entries in sj owned by the corrupted parties all
contain the last known state. If j is a refreshment phase, then we let sj
denote the final state of the phase, i.e., sj = sj+1. Finally, let ∆ denote
the adversary structure for the LISS scheme.

The simulator acts as follows when ever required.

– In the first phase the simulator chooses ρ0 ∈ [−2l0+k..2l0+k]e uniformly
at random with the restriction that 〈ρ0, ε〉 = 0. Computes s0 = Mρ0,
the internal states of all parties. If the parties A ∈ ∆ are corrupted
at this point, the adversary is provided with (s0)A.

– At the beginning of each refreshment phase the simulator runs the
Refresh protocol on behalf of each honest party.

– When a party Pi is corrupted in phase j, the simulator provides the
adversary with (sj){Pi}.

– When a party Pi is decorrupted in phase j the simulator updates the
state (sj){Pi} with the provided data from the adversary.

– In the end of the last phase u when the secret s is revealed, the
simulator lets s′u = su + sMκ, where κ is the sweeping vector for
A, the set of currently corrupted parties, and reveals (s′u)A{ to the
adversary.

We need to show that this view is statistically close to a run of the real
protocol.

First two observations of the corruption in the phases. First, since
only corruptions and decorruptions happens in the operational phases,
i.e., the internal state does not change of any party, we can assume that
all parties are corrupted in the beginning of the phase. Secondly, since we
assume that all corruptions happen in the beginning of each round and the
Refresh protocol takes one round, we can also assume that all corruptions
of the refreshment phase happen in the beginning of the phase.

Let A0, A1, . . . , Au denote the unqualified set of corrupted parties in
each phase. Let κ0,κ1, . . . ,κu be the sweeping vectors for A0, A1, . . . , Au,
respectively.

Assume first that the adversary only has corrupted parties in the
operational phases, that is, in each refreshment phases all parties are
honest. First of all, each operational phase isolated is private. We need
to show, that given two views of operational phases, the scheme is still
private.

Let share vector s′i = si−sMκi. Then note, that the adversary knows
(si)Ai = (s′i)Ai for all i = 0, 1, . . . , u. However the share vectors are also
dependent,

s1 = s0 +
n∑
i=1

z
(0)
i

s2 = s1 +
n∑
i=1

z
(1)
i

...

su = su−1 +
n∑
i=1

z
(u−1)
i ,

where z(j)
i is a zero-sharing for all i = 1, . . . , n and j = 0, . . . , u− 1.

Consider the following.

s′0 = s0 + sMκ0

s′1 = s′0 − sMκ0 +
n∑
i=1

z
(0)
i + sMκ1

s′2 = s′1 − sMκ1 +
n∑
i=1

z
(1)
i + sMκ2

...

s′u = s′t−1 − sMκu−1 +
n∑
i=1

z
(u−1)
i + sMκu,

where the view of the adversary is exactly the same, but the secret s is
proactively shared instead of 0. Consider,

s′j = s′j−1 − sMκj−1 +
n∑
i=1

z
(j−1)
i + sMκj ,

which also can be represented by the distribution vectors,

ρ′j = ρ′j−1 − sκj−1 +
n∑
i=1

ρ
(j−1)
z,i + sκj ,

such that s′j = Mρ′j , s
′
j−1 = Mρ′j−1 and z(j−1)

i = Mρj−1
z,i for i = 1, . . . n.

Note that the term sκj does not influence the view of the adversary,
and the term sκj−1 can be subtracted from an honest 0-sharing z(j−1)

i

and therefore not change the view of the adversary. Furthermore note,
that the adversary does not have any partial information on any of the
z

(j−1)
i , since we assumed that the adversary only corrupted parties in the

operational phase.
That is, if the protocol is only used polynomial many times then the

privacy of LISS ensures that the views are indistinguishable with all but
negligible probability in the security parameter k if the adversary has no
corrupted parties in the refreshment phases.

We only need to argue, that if the adversary corrupts a party during
a refreshing phase, it does not help her. However consider the following.

ρ′j = ρ′j−1 − sκj−1 +
n∑
i=1

ρ
(j−1)
z,i + sκj .

If j is a refreshment phase, then note, that if parties Aj ⊂ P were cor-
rupted during that phase, then Aj = Aj−1 ∩ Aj ∩ Aj+1. Hence, the two
terms sκj−1 and sκj do not change any of the corrupted parties shares.
We therefore conclude, that the view is exactly the same and therefore the
adversary does not profit from the corruption of the parties in A during
the refreshment phase.

5 Active Security

5.1 Verifiable Secret Sharing

In order to make the LISS scheme and the Refresh protocol secure against
an active adversary we need a linear integer commitment scheme. Let
Ca = com(a) denote the commitment of a. Strictly speaking a commit-
ment Ca = com(a, r) includes the commitment a and some randomness
r. One can open a commitment by revealing a and r, then everybody
can check that com(a, r) = Ca. For simplicity we exclude the randomness
used in the commitment.

A commitment com(a) = Ca is binding if the committer cannot open
the commitment to any other value b 6= a. A commitment com(a) = Ca is
hiding if Ca does not reveal anything about a. Both the binding and the
hiding property come in a computational, statistical, and perfect flavor.
Since we do not consider any specific commitment scheme one should just
remember, that the security is no stronger than the commitment scheme.

By linearity we mean, given two commitments Ca = com(a) and Cb =
com(b) and constant c it is possible to compute commitment C = com(a+
cb), such that being able to open com(a) and com(b) makes it possible to
open com(a+cb). We use the following notation for simplicity C = CaC

c
b .

Given a linear integer commitment scheme com, then verifiable secret
sharing (VSS) for the LISS scheme is constructed as follows. A distribu-
tion vector is chosen ρ ∈ [−2l0+k..2l0+k] with 〈ρ, ε〉 = s ∈ [−2l..2l] the se-
cret to be VSSed. Then commit to C1 = com(s), C2 = com(ρ2), . . . , Ce =
com(ρe) and broadcast them to all parties involved. Then compute s =
Mρ for ISP M = (M,ψ, ε). For i = 1, . . . , n send share s{Pi} to Pi.

By the linearity of the scheme every party can check that the received
share components are consistent with the broadcast commitments. Simply
note,

com(si) = C
mi,1
1 C

mi,2
2 · · ·Cmi,ee ,

where M = [mi,j]. Furthermore, this ensures the parties that the VSS
value is consistently opened.

5.2 The Refresh Protocol with Active Security

The simple observation is, that in order for a party to convince the others
that he secret shares a 0, he simply uses the trivial commitment 1 which
commits to 0 using randomness 0.

In the following protocol we first assume, that all honest parties in-
ternal states are consistent, that is, their shares and commitments are
correct. We will come back to this issue in the next subsection.

Protocol Refresh
Initially a dealer has computed sharing vector (s1, . . . , sd)T = Mρ,
where ρ ∈ [−2l0+k..2l0+k]e was chosen at random with the restriction
that 〈ρ, ε〉 = s the secret. Furthermore, all parties have commitments
C1 = com(s), C2 = com(ρ2), . . . , Ce = com(ρe).
1. Refreshment. For i = 1, . . . , n party Pi secret shares a zero, using

uniformly random ρ ∈ [−2l0+k..2l0+k]e, with the restriction that
〈ρ, ε〉 = 0, to obtain share vector by (si1 , . . . , sid)

T = Mρ. He
broadcasts commitments Ci2 = com(ρ2), . . . , Cie = com(ρe) and
for j = 1, . . . , d send sij to party Pψ(j).

2. Verification. For j = 1, . . . , n and i = 1, . . . , d party Pψ(i) verifies
that com(sji) = C

mj,2
j2
· · ·Cmj,eje

, if not, then broadcast (Complaint, Pj)
3. Accusation. If Pj receives (Complaint, Pj) from Pi, then Pj broad-

casts all private information he sent to Pi. If Pj sends information

that fails the verification in step 2 or sends nothing, then Pj is
added to an initially empty set B, otherwise Pi is added to B. If
B is qualified, then abort the protocol.

4. Update. For each i = 1, . . . , d party Pψ(i) lets s(new)
i = si+

∑n
j=1,j /∈B sji

be the new share component, and C
(new)
j = Cj

∏n
i=1,j /∈B Cji for

j = 2, . . . , e.

For now, we just assume that information broadcast in step 3 is the
same send privately to Pi. See Note 3 and Section 6 for a solution of the
problem. Then finally note, if the access structure is Q3, then the problem
can be solved by adding both parties to Pi and Pj to B in step 3.

If a corrupt party Pi complains about an honestly generated zero-
sharing, then obviously she will be added to B. If a corrupt party Pj
shares an inconsistent zero-sharing, then an honest party will complain,
and Pj will be added to B. Hence, B cannot become qualified.

While this ensures that the refreshment is done correctly, this does
not ensure that the internal states are correct of the honest parties.

5.3 Detection of Corrupted Shares and Recovery of Shares

The active adversary can leave the internal state of the decorrupted party
in an arbitrary way. First of all, a party does not know whether he was
corrupted or not, hence we need a detection protocol, which can clarify
this matter for each currently honest party.

Consider the following protocol.

Protocol Detect
Each party Pi internal state consists of a share s{Pi} and commitments

(S(i), R
(i)
2 , . . . , R

(i)
e) of supposedly ρ = (s, ρ2, . . . , ρe)T for s = Mρ

and a Recover bit which is set if he knows the internal state has been
tampered.
1. Each party Pi broadcasts commitments (S(i), R

(i)
2 , . . . , R

(i)
e)

2. Each party Pi collects

B = {Pj ∈ P | (S(j), R
(j)
2 , . . . , R(j)

e) = (S(i), R
(i)
2 , . . . , R(i)

e)}.

If B is not qualified or the share components known by Pi are
not consistent with (S(i), R

(i)
2 , . . . , R

(i)
e), then the state of Pi is

corrupted and flips on the Recover bit.

Lemma 1. Let ∆ be a Q2 adversary structure, let C be the set of cor-
rupted parties, and D be the set of decorrupted parties. If the adversary
cannot break the binding property of the commitment scheme in use and
C ∪D ∈ ∆, then the Detect protocol will put all honest parties with tam-
pered internal state in Recover state.

Proof. Divide the parties in three groups. Let H be the set of parties
which has never been corrupted, C the set of parties which are corrupted,
and D the set of parties which are honest but are decorrupted. Note that
the sets are mutually disjoint but the union cover the entire set of parties.

The set H will follow the protocol and their set collected in step 2 of
the protocol will be qualified since the adversary structure ∆ is Q2, i.e.,
H = (C ∪D){ is qualified.

The set D do not necessarily have tampered input. But if a party
has tampered commitments he cannot receive a qualified set of the same
commitments, since they must come from other parties in the set C or
D. If only the share components are tampered, they will not open the
right combinations of the commitments under the assumption that the
adversary cannot break the binding property of the commitment scheme.

The recovery process can be achieved by the following protocol. The
protocol assumes that the honest parties agree on the commitments. This
can be achieved by running the Detect protocol.

Protocol Recovery
The honest parties mutually agree on the following commitments,
C1 = com(s), C2 = com(ρ2), . . . , Ce = com(ρe), where ρ = (s, ρ2, . . . , ρe)T ∈
[−2l0+k..2l0+k]e was chosen at random with the restriction that 〈ρ, ε〉 =
s ∈ [−2l..2l]. Then for each i = 1, . . . , n Pi received s{Pi} privately
from the dealer, where s = (s1, . . . , sd)T = Mρ for an ISP M =
(M,ψ, ε), where M ∈ Zd,e. Let l(max) be the maximal bit-length of
any share component.
1. Recovery. For each i = 1, . . . , d party Pψ(i) VSS share compo-

nent si by choosing distribution vector ρ = (si, ρ2, . . . , ρe)T ∈
[−2l

(max)
0 +k..2l

(max)
0 +k]e uniformly at random, with 〈ρ, ε〉 = si. Com-

putes share vector si = Mρ. Broadcasts commitments C
(i)
2 =

com(ρ2), . . . , C(i)
e = com(ρe). For j = 1, . . . , n send (si){Pj} to

party Pj .
2. Verification. When any party Pj receives broadcast commitments

(C(i)
2 , . . . , C

(i)
e) from Pψ(i) along with privately received shares

(si){Pj} verify for each share components sι ∈ (si){Pj} that com(sι) =

C
mι,1
si (C(i)

2)mι,2 · · · (C(i)
e)mι,e , where Csi = C

mi,1
1 C

mi,2
2 · · ·Cmi,ee and

M = [mi,j]. If not, broadcast (Complaint, Pi).
3. Accusation. When party Pi receives broadcast (Complaint, Pi) from
Pj he broadcasts all the private information send to Pj in the
recovery step (step 1).

4. Verification of Accusation. When a party receives a opened share
of Pj from party Pi in step 3 he verifies if the opened share can
open the correct commitments, if not, Pi is added to an initially
empty list B otherwise Pj is added to list.

5. Reconstruction. They chose a reconstruction vector λ = (λ1, . . . , λd)T

which excludes all parties in B and for all i = 1, . . . , d party Pψ(i)

lets s(new)
i =

∑
j λjsji be the new share. Let the commitments

C
(new)
1 =

∏d
i=1C

λi
si and for j = 2, . . . , e let C(new)

j =
∏d
i=1(C(i)

j)λi .
Finally, clear the internal state for everything except the new com-
mitments and share.

Note 2. If the access structure involved in above protocol is Q3, then
step 3 and 4 in the protocol are not necessary, since we can just add both
parties in the set B.

Note 3. If step 3 and 4 are included in the protocol, then we need a way
to ensure, that the information broadcast in step 3 is the same as party
Pj received in step 1. For simplicity we assume that this is forfilled. For
further discussion and solutions of the problem, see Section 6.

In the refreshment phase the parties should run the Detect and the Refresh
protocol in parallel, that way each honest party knows whether his inter-
nal state has been tampered.

Note, that the Recover protocol assumes that the internal states of the
commitment are consistent, this can be achieved by running the Detect
protocol in parallel. Furthermore, an honest party with tampered shares
will be included in the list B from step 4 in the Recover protocol, since at
the point of verification every honest party agrees on which commitments
are the correct ones.

Remark 1. The reconstruction vector chosen in step 5 can be chosen de-
terministically based on the set B from step 4, hence, no further commu-
nication is required.

Theorem 2. If the commitment scheme is binding then all honest parties
will have consistent internal state after a parallel run of the Detect and
the Refresh protocol.

Proof. First we consider an honest party with consistent internal state,
i.e., a state which the adversary has not tampered. If he receives some
counterfeit shares from a party, then he will complain and under the as-
sumption in Note 3 the accused party will broadcast the same information
such that all parties can verify that the claim is correct. Note, that the
problem is only relevant if the access structure is not Q3.

An honest party with tampered internal state will either discover the
inconsistency due to the Detect protocol or otherwise he will be excluded
from the protocol by complaints in step 2. Finally note, that he will receive
correctly generated shares from all honest parties and recover the state.

6 Dynamically Authenticated Secure Point-to-Point
Channels

The assumption of authenticated secure point-to-point channels between
all parties might not be realistic even in the case of a passive adversary.
In real life this model would be implemented by using some kind of public
key infrastructure. While the adversary breaks into the different parties,
she could steel the private key. After a couple of stages she would know
all the parties private keys, and hence, be able to decrypt all messages
send in the network.

If we consider an active adversary, then two further problems appear.
Firstly, how to resolve the problem if the adversary removes or changes the
private key and/or uses it. Secondly, the problem pointed out in Note 3.

Herzberg et al. [7] proposed to have initialized public/secret key pairs,
such that party Pi knows all parties correct public keys pk(0)

1 , . . . , pk
(0)
n

and has his own private key sk(0)
i . Then at each refreshment phase, each

party Pi generates a new public/secret key pair sk(1)
i /pk(1)

i and signs the
new public key by sk(0)

i and broadcasts it.
If the adversary knows sk(u)

i but has decorrupted party Pi, i.e., party
Pi is honest again, then obviously she can decrypt all messages encrypted
to Pi. But when Pi decides to generate a new pair pk(u+1)

i and sk
(u+1)
i

and broadcasts pk(u+1)
i signed with pk

(u)
i , then the adversary does not

know sk
(u+1)
i since the adversary does not know the randomness used to

generate the key pair. This solves the problem with passive corruption.
With an active adversary we first consider the problem pointed out in

Note 3. It can be solved by using the public key infrastructure described
above. Simply, instead of party Pi sends private messages to, say, Pj , then
Pi encrypts the private messages under public key pk(u)

j , signs everything

he sends under his secret key sk
(u)
i , and broadcasts everything. Then

when Pi is asked to open the message send to Pj , he simply broadcasts
the messages and the randomness used to encrypt under the public key
pk

(u)
j of Pj . If Pi fails to do this, he is considered corrupt, otherwise the

accuser Pj is considered corrupt. Note again, that this is only a problem
when we consider access structures which are not Q3.

Consider the problem when the adversary A uses some decorrupted
honest party’s Pi secret key sk

(u)
i , while the secret key has not been

tampered in the internal state by the adversary, i.e., Pi still has the same
copy of sk(u)

i . Herzberg et al. [7] suggest to let the honest party Pi send
a signed disqualification of his own secret key. Then a reboot procedure
should be started, where all parties are rebooted, i.e., the adversary is
removed from all of them, and a new consistent public key infrastructure
is provided to the parties. The reason this strategy is necessary is that
the parties cannot distinguish which messages come from the adversary
A and which come from the honest party Pi.

Finally consider the case where the adversary A tampers or removes
the private key sk

(u)
i of Pi. This obviously makes it impossible for Pi

to sign a message to start a reboot process. The simple solution is to
send an unsigned reboot symbol to initiate the reboot. This opens up
for the possibility that the adversary can start a reboot process without
corrupting any party. But to our knowledge there is no way to elegantly
handle this problem.

7 Acknowledgments

Ivan Damg̊ard, Martin Geisler, Mikkel Krøig̊ard, and Gert Læssøe Mikkelsen.

References

1. R. Canetti, R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Adaptive security
for threshold cryptosystems. In M. J. Wiener, editor, CRYPTO, volume 1666 of
Lecture Notes in Computer Science, pages 98–115. Springer, 1999.

2. R. Cramer and S. Fehr. Optimal black-box secret sharing over arbitrary abelian
groups. In M. Yung, editor, CRYPTO, volume 2442 of Lecture Notes in Computer
Science, pages 272–287. Springer, 2002.

3. I. Damg̊ard and R. Thorbek. Linear integer secret sharing and distributed expo-
nentiation. In M. Yung, Y. Dodis, A. Kiayias, and T. Malkin, editors, Public Key
Cryptography, volume 3958 of Lecture Notes in Computer Science, pages 75–90.
Springer, 2006.

4. Y. Frankel, P. Gemmell, P. D. MacKenzie, and M. Yung. Optimal resilience proac-
tive public-key cryptosystems. In FOCS, pages 384–393, 1997.

5. Y. Frankel, P. Gemmell, P. D. MacKenzie, and M. Yung. Proactive rsa. In B. S. K.
Jr., editor, CRYPTO, volume 1294 of Lecture Notes in Computer Science, pages
440–454. Springer, 1997.

6. Y. Frankel, P. D. MacKenzie, and M. Yung. Adaptive security for the additive-
sharing based proactive rsa. In K. Kim, editor, Public Key Cryptography, volume
1992 of Lecture Notes in Computer Science, pages 240–263. Springer, 2001.

7. A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung. Proactive secret sharing or:
How to cope with perpetual leakage. In D. Coppersmith, editor, CRYPTO, volume
963 of Lecture Notes in Computer Science, pages 339–352. Springer, 1995.

8. S. Jarecki and N. Saxena. Further simplifications in proactive rsa signatures. In
J. Kilian, editor, TCC, volume 3378 of Lecture Notes in Computer Science, pages
510–528. Springer, 2005.

9. R. Ostrovsky and M. Yung. How to withstand mobile virus attacks (extended
abstract). In PODC, pages 51–59, 1991.

10. T. Rabin. A simplified approach to threshold and proactive rsa. In H. Krawczyk,
editor, CRYPTO, volume 1462 of Lecture Notes in Computer Science, pages 89–
104. Springer, 1998.

