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Abstract. In this paper, we study GF-NLFSR, a Generalized Unbalanced Feis-
tel Network (GUFN) which can be considered as an extension of the outer func-
tion FO of the KASUMI block cipher. We show that the differential and linear
probabilities of any n + 1 rounds of an n-cell GF-NLFSR are both bounded
by p2, where the corresponding probability of the round function is p. Besides
analyzing security against differential and linear cryptanalysis, we provide a
frequency distribution for upper bounds on the true differential and linear hull
probabilities. From the frequency distribution, we deduce that the proportion
of input-output differences/mask values with probability bounded by pn is close
to 1 whereas only a negligible proportion has probability bounded by p2. We
also recall an n2-round integral attack distinguisher and (n2 + n − 2)-round
impossible impossible differential distinguisher on the n-cell GF-NLFSR by Li
et al. and Wu et al. As an application, we design a new 30-round block cipher
Four-Cell+ based on a 4-cell GF-NLFSR. We prove the security of Four-Cell+

against differential, linear, and boomerang attack. Four-Cell+ also resists exist-
ing key recovery attacks based on the 16-round integral attack distinguisher and
18-round impossible differential distinguisher. Furthermore, Four-Cell+ can be
shown to be secure against other attacks such as higher order differential attack,
cube attack, interpolation attack, XSL attack and slide attack.

Keywords: Block Ciphers, Generalized Unbalanced Feistel Network, Differential
Probability, Linear Hull Probability.

1 Introduction

In this paper, we examine a family of block ciphers whose structure is modelled after
that of a Generalized Unbalanced Feistel Network (GUFN). The GUFN was first sug-
gested by Schneier et al. in [24]. Similar to conventional Feistel networks, unbalanced

⋆ This is a revised version of our ACISP 2009 paper [3]. We have updated the analysis of
integral and impossible differential attacks to include improved results of Li et al. [14] and
Wu et al. [29]. We have also modified the design of our proposed cipher Four-Cell to Four-
Cell+ for better protection against the improved attacks.



ones comprise of a concatenation of rounds. In each round, one part of the block con-
trols the encryption of another part of the block. However, the two parts need not be
of equal sizes.

The particular GUFN we shall be analyzing is an n-cell extension of the outer
function FO of the KASUMI block cipher [27], which is a 2-cell structure. Besides
being a GUFN, our structure can also be viewed as an n-cell NonLinear Feedback
Shift Register (NLFSR). Thus, we call our structure a Generalized Feistel-NonLinear
Feedback Shift Register (GF-NLFSR). In Section 3, we shall give a detailed description
of the GF-NLFSR.

Many GUFN-based block ciphers have been constructed; some examples include
the ciphers SMS4 [16] and CLEFIA [25]. While the true differential and linear hull
probabilities of these ciphers are not known in the open literature, they have been
calculated for other GUFN-like constructions. In [27], these were derived for KASUMI’s
FO function, which is equivalent to a 2-cell GUFN. Similar analyses have been done
in [28] for another GUFN-like round function, and also in [19]. To the best of our
knowledge, bounds for the true differential and linear hull probabilities have not been
proven for GUFN-based ciphers with n input cells. Analysis of true differentials and
linear hulls is required in assessing vulnerability to attacks such as boomerang attack.
In light of this, the study in our paper is both novel and useful.

In Sections 4 and 5, we prove that the true differential and linear hull probabil-
ity of any n + 1 rounds of the n-cell GF-NLFSR is bounded by p2 where p is the
maximal probability of the nonlinear function. In Section 6, we investigate the fre-
quency distribution of the differential and linear hull probability of any n + 1 rounds
based on different input-output differentials/linear masks. From the frequency distri-
bution, we see that the maximal probability p2 only holds for a very tiny portion of all
differentials/linear hulls. There are also other differentials/linear hulls having proba-
bility bounds p3, p4, . . . , pn, but we prove that almost all differentials/linear hulls have
probability bound pn. Furthermore, we compute the expected differential/linear hull
probability bound and find this value to be close to (2−B + p)n where B is the size
of each cell in GF-NLFSR. These differential and linear hull probability bounds are
achieved when the input differences and mask values are randomly chosen, which is
likely when n+1 rounds of the n-cell GF-NLFSR is prepended and appended by addi-
tional cipher structures. In this case, the security of n+1 rounds of n-cell GF-NLFSR,
in the sense of differential and linear hull probability bounds, is therefore much better
than is typically believed. This motivates our study of the expected bounds in the
Section 6.

Other than differential and linear cryptanalysis, in Section 7, we recall the secu-
rity of GF-NLFSR against integral cryptanalysis and impossible differential attack,
based on the analysis of Li et al. [14] and Wu et al. [29]. For the former, the attacker
looks at larger carefully chosen sets of encryptions, in which parts of the input text
form a multiset. Li et al. studied the propagation of multisets through the cipher and
unveiled a n2-round distinguisher for GF-NLSR. An impossible differential characteris-
tics plays the role of a sieve, which methodically rejects the wrong key guesses, leaving
only the correct key. From the correspondence between integral attack and impossible
differential cryptanalysis, Li et al. found a (n2+n−2)-round impossible differential dis-



tinguisher on GF-NLFSR. The same impossible differential distinguisher is also found
independently by Wu et al. [29], where they apply that to analyze the block cipher
Four-Cell, proposed in a preliminary version of this paper [3].

As an application of the above results on GF-NLFSR, we design a GUFN-based
block cipher Four-Cell+ in Section 8. It is a 128-bit block cipher based on a 4-cell
GF-NLFSR where each cell is 32-bit long. Besides proving practical security against
differential and linear cryptanalysis, we are able to bound its true differential proba-
bility by 2−55.39 and linear hull probability by 2−52.96. Moreover, we show that with
99.9999% frequency, the differential and linear hull probability bounds are much lower
at 2−110.78 and 2−105.91 respectively. These facts also allow us to prove its security
against boomerang attack. Based on the results in Section 7, there exists a 16-round
integral attack and an 18-round impossible differential distinguisher on Four-Cell+.
To protect against these attacks, we set the number of rounds of Four-Cell+ to be
30. Furthermore, we explain why Four-Cell+ is secure against other cryptanalysis like
higher-order differential attack, cube attack, interpolation attack, XSL attack and slide
attack.

Like the AES cipher, our Four-Cell+ block cipher can be proven secure against
known block cipher attacks. In principle, it can use the same S-box (SubBytes) and
MDS transform (MixColumn) as AES. However, it is more efficient (in hardware) in the
sense that it uses less MDS transforms (30 compared to 40) than AES while keeping the
number of S-boxes unchanged. Another advantage of the n-cell GF-NLFSR structure
is that the nonlinear function in any n rounds can be computed in parallel. Therefore,
any four rounds of the nonlinear transforms in our block cipher Four-Cell+ can be
computed in parallel. This is not true for a general GUFN-based block cipher like
SMS4 [16].

2 Definitions and Preliminaries

In this paper, we shall study the GF-NLFSR which can be considered as a particular
instantiation of the Generalized Unbalanced Feistel Network defined in [24]. In what
follows, the “+” symbol is used to denote finite field addition (XOR) over GF (2)n or
ordinary addition, depending on the operands and context.

2.1 Differential Cryptanalysis

As is widely known, differential cryptanalysis [1] is a chosen-plaintext attack in which
statistical key information is deduced from ciphertext blocks obtained by encrypting
pairs of plaintext blocks with a specific bitwise difference under the target key. It studies
the propagation of input differences to output differences in iterated transformations.

Let f : GF (2)m 7→ GF (2)m be a Boolean mapping composed of a number of rounds.
The concept of characteristic was introduced: a sequence of difference patterns such
that the output difference from one round corresponds to the input difference in the
next round. On the other hand, in [12, 13], the concept of a differential, denoted by

α
f
−→ β, was presented, where the XORs in the inputs and outputs of the intermediate



rounds are not fixed. We denote DP (α
f
−→ β) = Pr(f(x) + f(x+ α) = β), where α, β

are fixed input and output differences.
Differential cryptanalysis exploits differential characteristics with high probability.

However, even if the maximal differential characteristic probability is low, one can-
not conclude that the cipher is secure against differential attack. Instead, one must
show that the maximal differential probability of all differentials is low enough [13].
This property ensures provable security against differential cryptanalysis as opposed to
practical security which simply considers the maximal differential characteristic prob-
ability.

Proposition 1 [13] A block cipher with block length m is resistant against conventional
differential attacks under an independent subkey assumption, if there does not exist any
differential α −→ β, α 6= 0, ranging over all but a few rounds, such that DP (α −→
β)≫ 2−m.

For key-dependent functions, we consider the average resistance against differential
cryptanalysis, i.e. the average differential probability taken over the entire key set. More
formally, let F : GF (2)m ×K 7→ GF (2)m be a key-dependent function. Denote fk =
F (x, k) for each fixed k ∈ K. Let α, β ∈ GF (2)m be constants. The differential proba-

bility of the differential α
F
−→ β is defined as DP (α

F
−→ β) = 1

|K|

∑

k∈K DP (α
fk
−→ β).

The maximal differential probability of F is defined asDP (Fmax) = max
α6=0,β

DP (α
F
−→ β).

2.2 Linear Cryptanalysis

Linear cryptanalysis [18] is a known-plaintext attack that tries to utilize high prob-
ability occurrences of linear expressions involving plaintext bits, ciphertext bits, and
subkey bits.

As with the differential case, we must also distinguish between a linear characteristic
and a linear hull. A linear characteristic over f consists of a sequence of mask values
such that the output mask values from one round corresponds to the input mask values

to the next round. On the other hand, a linear hull, denoted by u
f
←− w, is the set

of all linear characteristics with the same initial and terminal mask values. We denote

LP (u
f
←− w) = [2 · Pr(u · f(x) = w · x) − 1]2, where w, u are fixed input and output

mask values.
Linear cryptanalysis takes advantage of linear characteristics with high correlation

probability to recover key bits. However, in the evaluation of the strength of a block
cipher against linear cryptanalysis, one must consider the linear hulls instead. Having
low linear hull probability for all linear hulls will guarantee provable security against
linear attacks [21].

Proposition 2 [21] A block cipher with block length m is resistant against conventional
linear cryptanalysis under an independent subkey assumption, if there does not exist
any linear hull u←− w, u 6= 0, ranging over all but a few rounds, such that LP (u←−
w)≫ 2−m.



For key-dependent functions, we consider the average resistance against linear crypt-
analysis. Explicitly, let F : GF (2)m × K 7→ GF (2)m be a key-dependent function.
Denote fk(x) = F (x, k) for each fixed k ∈ K. Let u,w ∈ GF (2)m be constants.

The linear hull probability of the linear hull u
F
←− w is defined as LP (u

F
←− w) =

1
|K|

∑

k∈K LP (u
fk
←− w). The maximal linear hull probability of F is defined as LP (Fmax)

= max
w,u6=0

LP (u
F
←− w).

It was proven in [13] and [21] the following result about differential and linear hull
probabilities of compositions of key-dependent mappings.

Fact 1 [13, 21] Let F : GF (2)m ×GF (2)m ×K1 and G : GF (2)m ×GF (2)m ×K2 be
key-dependent functions of the type F (x, k, k′) = f(x+k, k′), G(x, k, k′) = g(x+k, k′),
where f : GF (2)m×K1 7→ GF (2)m and g : GF (2)m×K2 7→ GF (2)m are bijective for all

fixed k1 ∈ K1, k2 ∈ K2. Then DP (α
G◦F
−→ β) =

∑

ξ∈GF (2)m DP (α
f
−→ ξ)DP (ξ

g
−→ β)

and LP (u
G◦F
←− w)=

∑

v∈GF (2)m LP (u
g
←− v)LP (v

f
←− w).

In Sections 4 and 5, we shall be demonstrating provable security of our design structure
against differential and linear cryptanalysis by studying its differential and linear hull
probabilities. Fact 1 will be required in the proofs of our results later.

3 Description of the Structure

In this section, we will give a description of our design structure, which we call GF-
NLFSR. It is essentially a generalization of the outer function, FO, of the KASUMI
cipher. The FO function was first suggested by Matsui in [19, Figure 7] as one of the
new structures of block ciphers with provable security against differential and linear
cryptanalysis. It was then adopted in the design of KASUMI [27]. The following re-
sult was proven in the same paper regarding the maximal differential and linear hull
probabilities of this function.

Fact 2 [27, Theorem 2] Let F be the 3-round function shown in Figure 1 of [27] (i.e.
a 2-cell GF-NLFSR) where each Fi : GF (2)B×GF (2)B×K ′i 7→ GF (2)B is of the form
Fi(x, ki, k

′
i) = fi(x + ki, k

′
i) and each fi : GF (2)B ×K ′i 7→ GF (2)B is bijective for all

fixed k′i ∈ K
′
i, where K ′i is the key space for k′i.

(1) If DP ((fi)max) ≤ p for each i, then DP (Fmax) ≤ p2.
(2) If LP ((fi)max) ≤ q for each i, then LP (Fmax) ≤ q2.

This function splits the input block into 2 sub-blocks of equal size. Our block cipher
structure generalizes this by splitting the input block into n sub-blocks of equal size.
Figure 1 below displays one round of GF-NLFSR. Explicitly, suppose we have a m-bit
block cipher, i.e. the input and output blocks are both of size m = nB bits. Let the
internal state by denoted by S = (S1, S2, . . . , Sn) where Si ∈ GF (2)B . Therefore the
internal state consists of n sub-blocks of B bits each. The round keys of the cipher
shall be denoted by ki, k

′
i (i = 1, . . . , n+ 1). Each Fi function is of the form

Fi : GF (2)B ×GF (2)B ×K ′i 7→ GF (2)B

Fi(x, ki, k
′
i) = fi(x+ ki, k

′
i)



Fig. 1. One round of n-cell GF-NLFSR

where each fi : GF (2)B ×K ′i 7→ GF (2)B is bijective for all fixed k′i ∈ K
′
i.

The round function R that maps Si to Si+1 under the round keys ki, k
′
i is:

R : GF (2)m ×GF (2)B ×K ′i 7→ GF (2)m

((S1, S2, . . . , Sn), ki, k
′
i) 7→ (S2, S3, . . . , Sn, Fi(S1, ki, k

′
i) + S2 + S3 + . . .+ Sn)

4 Differential Probability

In this section, we present a result for the differential probability of an n-block GF-
NLFSR over n+ 1 rounds which is similar to Fact 2.

Theorem 1 Let F be the (n + 1)-round function in Figure 2 (left) of Appendix B
where each Fi : GF (2)B × GF (2)B × K ′i 7→ GF (2)B is of the form Fi(x, ki, k

′
i) =

fi(x + ki, k
′
i) and each fi : GF (2)B ×K ′i 7→ GF (2)B is bijective for all fixed k′i ∈ K

′
i.

If DP ((fi)max) ≤ p for each i, then DP (Fmax) ≤ p2.

Proof. Let the input difference of F be α = (α1, . . . , αn) 6= 0 and the output difference
be β = (β1, . . . , βn) 6= 0, where αi, βi ∈ GF (2)B for i = 1, 2, . . . , n. Also let the output
difference of F1 be ǫ.



In general, the input-output differences for all Fi’s in the n-cell GF-NLFSR can be
summarized as follows:

α1
F1−→ ǫ

α2
F2−→ ǫ+ α2 +β1

α3
F3−→ ǫ+ α2 + α3 +β1 + β2

...
...

...

αn
Fn−→ ǫ+ α2 + α3 + . . .+ αn +β1 + β2 + . . .+ βn−1

ǫ+ α2 + α3 + . . .+ αn

Fn+1

−→ β1 + β2 + . . .+ βn−1 + βn

(1)

From Fact 1, we have the following:

DP (α
F
−→ β) =

∑

ǫ∈GF (2)B

DP (α1
F1−→ ǫ)DP (α2

F2−→ ǫ+ α2 + β1)DP (α3
F3−→ ǫ+ α2 + α3 + β1 + β2) . . .

DP (ǫ+ α2 + . . .+ αn

Fn+1

−→ β1 + . . .+ βn).
(2)

We shall show that at least 2 input differences in Equation 2 are non-zero when

α 6= 0. This implies that DP (α
F
−→ β) ≤ p2. It suffices to prove this fact for the cases

where only one of α1, α2, . . . , αn is non-zero.

(1) Suppose that only α1 6= 0, then ǫ 6= 0 (otherwise, DP (α1
F1−→ ǫ = 0)). Therefore,

the input difference of Fn+1, i.e. ǫ+ α2 + . . .+ αn = ǫ, is non-zero.

(2) Suppose that only α2 6= 0, then the input difference of Fn+1, i.e. ǫ+α2+ . . .+αn =
α2, is non-zero.

...

(n) Suppose that only αn 6= 0, then the input difference of Fn+1, i.e. ǫ+α2+ . . .+αn =
αn, is non-zero.

Therefore, at least 2 of the input differences are non-zero and DP (α
F
−→ β) ≤ p2. ⊓⊔

5 Linear Hull Probability

We also have a result similar to Fact 2 for the linear hull probability of GF-NLFSR
over n+ 1 rounds where the internal state is split into n equally sized blocks.

Theorem 2 Let F be the (n + 1)-round function in Figure 2 (right) of Appendix B
where each Fi : GF (2)B × GF (2)B × K ′i 7→ GF (2)B is of the form Fi(x, ki, k

′
i) =

fi(x + ki, k
′
i) and each fi : GF (2)B ×K ′i 7→ GF (2)B is bijective for all fixed k′i ∈ K

′
i.

If LP ((fi)max) ≤ q for each i, then LP (Fmax) ≤ q2.



Proof. Let the output mask value of F be u = (u1, . . . , un) 6= 0 and the input mask
value be w = (w1, . . . , wn) 6= 0. If the output mask value of F1 is ǫ, it can be easily
derived that we have the following individual round approximations:

ǫ
F1←− w1

u1 + u2
F2←− ǫ + w2

u2 + u3
F3←− ǫ + w3 + u1 + u2

...
...

...

un−1 + un
Fn←− ǫ + wn + u1 + un−1

un

Fn+1

←− ǫ + u1 + un

Then Fact 1 gives

LP (u
F
←− w) =

∑

ǫ∈GF (2)B

LP (ǫ
F1←− w1)LP (u1 + u2

F2←− ǫ+ w2)LP (u2 + u3
F3←− ǫ+ w3 + u1 + u2) . . .

LP (un−1 + un
Fn←− ǫ+ wn + u1 + un−1)LP (un

Fn+1

←− ǫ+ u1 + un).
(3)

We shall show that at least 2 output mask values in Equation 3 are non-zero when

u,w 6= 0. This will then imply that LP (u
F
←− w) ≤ q2. If all the output mask values

are equal to 0, i.e.

ǫ = u1 + u2 = u2 + u3 = . . . = un−1 + un = un = 0,

then
u1 = u2 = . . . = un = 0

⇒ u = 0

which gives a contradiction. Therefore, at least 1 output mask value is non-zero. Now
we show that if only one of them is non-zero, then we will arrive at a contradiction.

(1) Suppose that only ǫ 6= 0. Then u1 = u2 = . . . = un = 0 which is a contradiction
since u 6= 0.

(2) Suppose that only u1 + u2 6= 0. Note that if ǫ = 0, then w1 = 0; otherwise,

LP (ǫ
F1←− w1) = 0. If w1 = 0, then for other non-zero values of ǫ, LP (ǫ

F1←− w1) = 0.

ǫ = u2 + u3 = u3 + u4 = . . . = un−1 + un = un = 0

⇒ ǫ+ u1 + un = u1 = 0 (otherwise, LP (u
F
←− w) = 0)

and u2 = u3 = . . . = un = 0
⇒ u = 0

which gives a contradiction.



(3) Suppose that only u2 + u3 6= 0. Then

ǫ = u1 + u2 = u3 + u4 = . . . = un−1 + un = un = 0

⇒ ǫ+ u1 + un = u1 = 0 (otherwise, LP (u
F
←− w) = 0)

⇒ u2 = u1 = 0 and u3 = u4 = . . . = un = 0
⇒ u = 0

which gives a contradiction.

...

(n) Suppose that only un−1 + un 6= 0. Then

ǫ = u1 + u2 = u2 + u3 = . . . = un−2 + un−1 = un = 0

⇒ ǫ+ u1 + un = u1 = 0 (otherwise, LP (u
F
←− w) = 0)

⇒ u1 = u2 = . . . = un−1 = 0 and un = 0
⇒ u = 0

which gives a contradiction.
(n+ 1) Suppose that only un 6= 0. Then

ǫ = u1 + u2 = u2 + u3 = . . . = un−1 + un = 0
⇒ u1 = u2 = . . . = un−1 = un

⇒ w1 = 0, ǫ+ w2 = w2 = 0, ǫ+ w3 + u1 + u2 = w3 = 0, . . . ,

ǫ+ wn + u1 + un−1 = wn = 0 (otherwise, LP (u
F
←− w) = 0)

⇒ w = 0

which gives a contradiction.

Therefore, at least 2 of the output mask values must be non-zero and LP (u
F
←− w) ≤

q2. ⊓⊔

6 Frequencies of Differential and Linear Hull Probabilities
and Expected Value

Here we calculate the approximate number of input-output differences (α −→ β) or

mask values (u ←− w) with DP (α
F
−→ β) ≤ px or LP (u

F
←− w) ≤ qx respectively

(x = 2, . . . , n). With reference to the sequence of differences and mask values stated in
Sections 4 and 5, let∆ = {α1, α2, . . . , αn} andΩ = {u1+u2, u2+u3, . . . , un−1+un, un}.

Define Nd(x) (respectively Nl(x)) as the number of input-output differences (α, β)
(respectively input-output masks (w, u)) when there are x non-zero entries in ∆ (re-
spectively Ω). From the structure of n-cell, having x non-zero entries in ∆ or Ω will

ensure DP (α
F
−→ β) ≤ px or LP (u

F
←− w) ≤ qx respectively. The only exception is

when x = 1, where we still have DP (α
F
−→ β) ≤ p2 or LP (u

F
←− w) ≤ q2 by Theorems

1 and 2.



Various cases for the input-output pairs and their corresponding bounds are shown
in Table 1 in Appendix A. When there are x non-zero entries in ∆, the number of
possible input-output differences is given by Nd(x) =

(

n
x

)

(2B − 1)x(2nB − 1). This is

because there are
(

n
x

)

possible input differences with x non-zero entries where each non-
zero entry has 2B − 1 possibilities, and there are 2nB − 1 possibilities for the non-zero
output difference. We have an identical formula for Nl(x) by a similar reason.

Based on the values Nd(x) and Nl(x), we see that when an attacker uses plaintexts
such that the input differences α (output mask values u resp.) are randomly chosen,
he is more likely to obtain a bound much lower than p2 (q2 resp.) since most of the
input differences α (output mask values u resp.) give rise to differential probabilities

DP (α
F
−→ β) (linear hull probabilities LP (u

F
←− w) resp.) whose bounds are much

smaller than p2 (q2 resp.). Such a scenario may occur when, for example, the (n+ 1)-
round structure is an intermediate portion of a cipher so that the attacker does not have
much control over the input differences (output mask values resp.). This motivates our
desire to have more practically useful differential and linear hull probability bounds.
For this purpose, we make the following definitions:

Definition 1 The expected differential probability is defined as Ed =
P

α,β 6=0
DP (α

F
−→β)

#{(α,β)|α,β 6=0}

and the expected linear probability is defined as El =
P

w,u6=0
LP (u

F
←−w)

#{(w,u)|w,u6=0}

Note that
∑n

x=2Nd(x) = (2nB − 1)2 which is the total number of differences with
both input and output non-zero. We may make a similar observation for the linear case.
From this table, we may directly calculate the proportion of input-output differences
(mask values resp.) with differential (linear hull resp.) probability ≤ px (qx resp.).
Denote the approximate proportion of input-output differences with differential proba-

bility ≤ px by Pd(x) = Nd(x)
#{(α,β)|α,β 6=0} . Likewise, denote the approximate proportion of

input-output mask values with linear hull probability ≤ qx by Pl(x) = Nl(x)
#{(w,u)|w,u6=0} .

It can be computed that the statistics are heavily skewed towards the lowest probabil-
ities instead of p2 or q2. For example, when n = 4, B = 8, and when n = 4, B = 16,
we have the following proportions shown in Table 2 in Appendix A.

Using the frequency values in Table 1, we can derive that

Ed ≤
1

(2nB − 1)2

[

(

n

1

)

(2B − 1) · (2nB − 1)p2 +

n
∑

x=2

(

n

x

)

(2B − 1)x · (2nB − 1)px

]

<
1

(2nB − 1)

[

(

n

1

)

(2B − 1)p+

n
∑

x=2

(

n

x

)

(2B − 1)xpx

]

<
1

(2nB − 1)

[

n
∑

x=0

(

n

x

)

(2B − 1)xpx

]

=
1

(2nB − 1)
(1 + (2B − 1)p)n

≈ (2−B + p)n, (4)



where we have approximated 2B − 1 and 2nB − 1 by 2B and 2nB respectively because
B is usually much larger than 1. Similarly, we have El ≤ (2−B + q)n.

For example, when n = 4, B = 8 and p = 2−6, the bound in (4) is approximately
2−22.7, which is much better than the 2−12 bound obtained from Theorem 1.

7 Integral Attack and Impossible Differential Attack
Distinguishers

Proposition 3 ([14, Proposition 1]) Let the input of the i-th round of n-cell GF-
NLFSR be (x0, x1, . . . , xn−1), and the output of the (i+n−1)-th round be (y0, y1, . . . , yn−1).
Then

y0 = Fi(x0)⊕ x1 ⊕ . . .⊕ xn−1

ym = Fi+m−1(xm−1)⊕ Fi+m(xm)⊕ xm if 1 ≤ m ≤ n− 1

and
n−1
∑

i=0

yi = Fi+n−1(xn−1).

Proposition 3 can be verified directly from the definition of the round function of n-cell
GF-NLFSR. From it, Proposition 4 can be deduced.

Proposition 4 ([14, Proposition 2]) Let the input to n-cell GF-NLFSR be (x,C1, . . . , Cn−1)

where Ci’s are constants, and the output of the r-th round be (y
(r)
0 (x), y

(r)
1 (x), . . . , y

(r)
n−1(x))

where r = m× n. Then

(1) y
(m×n)
i (x) is a permutation polynomial if i = m.

(2) y
(m×n)
i (x) is a constant if i > m.

From Propositions 3 and 4, Li et al. proved the following n2 integral attack distinguisher
on n-cell GF-NLFSR. Recall that in integral attack, a word in GF (2)b is called active
if it ranges through all values in GF (2)b.

Proposition 5 ([14, Theorem 1]) There is an n2-round integral distinguisher of n-cell
GF-NLFSR:

(A,C, . . . , C)→ (S0, S1, . . . , Sn−1),

where C is constant, A is active and S0 ⊕ S1 ⊕ · · · ⊕ Sn−1 is active.

Proposition 5 is true because by Proposition 4, the rightmost cell of the n2− n round,

y
(n2−n)
n−1 (x), is active when the input is of the form (A,C, . . . , C). This will give a

(n2 − n)-round integral distinguisher. By Proposition 3, we have
∑n−1

i=0 y
(n2)
i (x) =

Fn2(y
(n2−n)
n−1 (x)) and the n2 − n integral distinguisher is extended to n2 rounds.

From the integral distinguisher, Li et al. [14] deduced the (n2 + n − 2)-round im-
possible differential distinguisher in Proposition 6. This result was also found by Wu
et al. [29] independently, using a more direct approach.



Proposition 6 ([14, Theorem 4],[29, Theorem 1]) There exists an (n2 +n− 2)-round
impossible differential in n-cell GF-NLFSR of the following form:

(δ, 0, . . . , 0) 6→ (ψ, ψ, 0, . . . , 0)

where δ 6= 0 and ψ 6= 0.

Proposition 6 is true because any integral attack distinguisher can be converted to a
half of an impossible differential distinguisher by letting the active words correspond to
non-zero differences and passive (constant) words correspond to zero differences. By the
correspondence with the integral distinguisher, the output differential (δ0, δ1, . . . , δn−1)

after n2 rounds in the forward direction satisfies the condition
∑n−1

i=0 δi 6= 0. Li et al.
used the (n− 2)-round differential path

(ψ, ψ, 0, . . . , 0)→ (0, . . . , 0, ψ, ψ)

in the backward direction to “miss-in-the-middle”, i.e. obtain a contradiction because
0 + · · ·+ 0 + ψ + ψ = 0.

8 Application : New Block Cipher Four-Cell+

As an application, we design a new 128-bit block cipher, Four-Cell+, with 128-bit key
size. It uses the block cipher structure described in Section 3 with four cells where each
cell is a 32-bit word. The block cipher has 30 rounds and uses two types of nonlinear
functions for round i, defined as follows:

fi(xi, ki, 0) = MDS(S(xi + ki)), for rounds i = 1, 2, . . . , 10 and i = 21, 22, . . . , 30.

fi(xi, ki, k
′
i) = S(MDS(S(xi + ki)) + k′i), for rounds i = 11, 12, . . . , 20.

Here, S : GF (28)4 → GF (28)4 is defined as

S(x1, x2, x3, x4) = (Inv(x1), Inv(x2), Inv(x3), Inv(x4)),

where Inv : GF (28) → GF (28) is affine equivalent to x 7→ x254 on GF (28) (e.g., the
AES S-box). MDS : GF (28)4 → GF (28)4 is a 4-byte to 4-byte maximal distance
separable transform with optimal branch number 5 (e.g., the MixColumn operation
in AES). Note that one subkey and one layer of S-box is used for rounds 1, 2, . . . , 10
and 21, 22, . . . , 30 while two subkeys and two layers of S-boxes are used for rounds
11, 12, . . . , 20. Moreover, we XOR a 128-bit post-whitening key K31 to the output after
30 rounds. We leave the implementation of a secure key schedule open to the reader.

In the following section, we demonstrate the security of Four-Cell+ against a slew
of cryptanalytic attacks, in addition to differential and linear cryptanalysis.

Remark 1. Four-Cell+ is a modification of the cipher Four-Cell, which was presented
in a preliminary version of this paper at ACISP 2009 [3]. The number of rounds is
increased from 25 in Four-Cell to 30 in Four-Cell+, while keeping the number of S-boxes
the same at 160. This is in response to the improved integral and impossible differential



attack of Li et al. [14] and Wu et al. [29] on n-cell GF-NLFSR. In particular, Wu et
al. performed an impossible differential attack on Four-Cell to recover the key with a
complexity of 2111.5 chosen plaintexts and 2123.5 encryptions. It is a theoretical break
because it improves the exhaustive search complexity of 2128 by 24.5 times provided,
the adversary can obtain the ciphertexts corresponding to 2111.5 chosen plaintexts.

8.1 Security of Four-Cell+

In Sections C.1 and C.2 in Appendix, we show that the differential and linear charac-
teristic probabilities of Four-Cell+ are at most 2−156 < 2−128. Therefore it is practically
secure against differential and linear cryptanalysis. In Section C.3 in Appendix, we show
that the true differential and linear probabilities of Four-Cell+ are at most 2−55.39 and
2−52.96 respectively. However, this bound is tight only for a negligible number of input-
output differences and masks. The expected differential and linear probabilities are
actually 2−110.5 and 2−105.79 respectively. Based on the true differential probability, we
show in Section C.4 in Appendix that if we split Four-Cell+ into two sub-ciphers with
true differential probabilities p and q, then (pq)2 ≤ 2−134.78 < 2−128. This will ensure
Four-Cell+ is secure against boomerang attack. In Section C.5 in Appendix, we show
that there is a 17-round attack based on an 16-round integral attack distinguisher. But
it is unlikely that it will work against the full cipher which needs a 27-round distin-
guisher. In Section C.6 in Appendix, we summarize the impossible differential attack of
Wu et al. [29] on 25 rounds of Four-Cell+ with data complexity 2111.5 chosen plaintexts
and time complexity 2123.5 encryptions. But it will not work on the full cipher which
has 30 rounds. In Section C.7 in Appendix, we show that Four-Cell+ is secure against
higher order differential and cube attacks after 12 rounds, because the algebraic de-
gree of the cipher attains the maximum degree 127. We also explain that interpolation
attack might not work as the cipher will be a complex multivariable equation over
GF (28). In Section C.8, we give some background on the XSL attacks and explain why
it might not work on our cipher. Finally in Section C.9, we explain that Four-Cell+ is
secure against slide attack because of its distinct round structures and distinct round
subkeys.

8.2 Implementation Considerations

The Four-Cell+ cipher uses 160 S-boxes based on the inversion function onGF (28). This
is the same as the number of S-boxes used in AES. However only 30 MDS transform
are used when compared to AES, which uses 40 MDS transforms. This might make the
cipher faster in hardware implementations where the S-box and MDS are not combined
into a T-table. Moreover, note that the computation of the nonlinear function in any
4 consecutive rounds of the cipher can be performed in parallel for faster encryption
speed, giving it an added advantage over other GUFNs such as SMS4. Thus the Four-
Cell+ cipher which (like the AES cipher) has provable security against existing block
cipher attacks can be viewed as a viable alternative.

Also note that although the inverse cipher of Four-Cell+ is distinct from Four-Cell+

itself and therefore coding might potentially take up more space in hardware, it is still



useful for modes of operation such as counter mode, output feedback (OFB) mode, and
cipher feedback (CFB) mode, where no inverse cipher is required.
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A Tables

Table 1. Frequencies of differential and linear hull probabilities

Differential Linear hull Nd(x)/Nl(x) # of elements in ∆ (or Ω resp.)
probability probability which are non-zero
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!

(2B
− 1) · (2nB

− 1) 1

Table 2. Distribution of proportions

Differential Linear hull x Pd(x)/Pl(x)
probability probability n = 4, B = 8 n = 4, B = 16

p4 q4 4 0.9844663148 0.9999389662

p3 q3 3 0.1544260886 0.0000610323

p2 q2 2 0.0000910763 0.1396955440 × 10−8

Table 3. Distribution of Differential and Linear Hull Probabilities of the Four-Cell+ Cipher

Differential Linear hull x Frequency Pd(x)/Pl(x)
probability probability

2−110.78 2−105.91 4 2256.000000 0.999999

2−83.09 2−79.43 3 2226.000000 9.31 × 10−10

2−55.39 2−52.96 2 2194.584962 3.25 × 10−18



B Figures

Fig. 2. Sequence of differences(left)/mask values(right) for n + 1 rounds of GF-NLFSR



C Security of Four-Cell+

C.1 Security of Four-Cell+ against Differential Cryptanalysis

Because of the structure of the cipher, an adversary can guess the post-whitening
and some of the last three subkeys and perform the attack with a 27-round differential
distinguisher. Each nonlinear function for rounds i = 1, 2, . . . , 10 has the same maximal
differential probability as an S-box, which is 4/256 = 2−6 from [8]. The differential
characteristic probability of the first 10 rounds is at most (2−6)2 × (2−6)2 = 2−24

by Theorem 1. The nonlinear function for rounds i = 11, 12, . . . , 20 has differential
characteristic probability at most (4/256)5 = 2−30 because of the effect of the MDS
transform which causes at least 5 S-boxes to be active. The differential characteristic
probability for the next 10 rounds is at most (2−30)2× (2−30)2 = 2−120 by Theorem 1.
The differential characteristic probability for the next 5 rounds is again (2−6)2 = 212.
The probability of any 25-round (and thus 27-round) differential characteristic is at
most:

2−24 × 2−120 × 2−12 = 2−156 < 2−128 = 2−blocksize.

Therefore Four-Cell+ is secure against differential cryptanalysis.

C.2 Security of Four-Cell+ against Linear Cryptanalysis

In a similar way, we will estimate the correlation of a 27-round linear characteristic.
From [8], the correlation of an S-box has magnitude at most 32 which implies a lin-
ear probability of at most (32/256)2 = 2−6. Similar to our reasoning for differential
cryptanalysis, we can split the first 25 rounds into five 5-round sub-ciphers and apply
Theorem 2. We see that the linear characteristic probability for 25 rounds (and thus
27 rounds) of the cipher is at most:

(2−6)2 × (2−6)2 × ((2−6)5)2 × ((2−6)5)2 × (2−6)2 = 2−156 < 2−128 = 2−blocksize.

Thus the cipher is secure against linear cryptanalysis.

C.3 Actual Differential and Linear Hull Probability of Four-Cell+

We shall need the following result from [23].

Proposition 7 ([23, Theorem 1 and 2]) Assume that the round keys, which are XORed
to the input data at each round, are independent and uniformly random. If Br(D) = k,
the probability of each differential of the SDS structure is bounded by:

max



 max
1≤i≤n

max
1≤u≤2m−1

2m−1
∑

j=1

DPSi(u→ j)
k
, max
1≤i≤n

max
1≤u≤2m−1

2m−1
∑

j=1

DPSi(j → u)
k





The linear hull probability of the SDS structure is bounded by:

max



 max
1≤i≤n

max
1≤u≤2m−1

2m−1
∑

j=1

LPSi(u→ j)
k
, max
1≤i≤n

max
1≤u≤2m−1

2m−1
∑

j=1

LPSi(j → u)
k







Using Proposition 7, Park proved that the differential probability of the SDS structure
corresponding to the nonlinear function Fi for i = 11, 12, . . . , 15 of the Four-Cell+

cipher is 2−27.696 in [23, Section 4]. The linear correlation of each S-box takes the
values

0,±4,±8,±12,±16,±20,±24,±28,±32

with frequencies

17, 48, 36, 40, 34, 24, 36, 16, 5,

respectively. By substituting these values for the linear probability (= (correlation/256)2)
in Proposition 7, the linear hull probability is at most 2−26.478.

By substituting the differential and linear hull probabilities of the SDS structure
in Table 1 of Appendix A, we get in Table 3 the distribution of any 5 rounds of the
Four-Cell+ cipher between rounds i = 11, 12, . . . , 20. This will also give an upper bound
for the differential and linear hull probabilities of the cipher. Table 3 shows that for
5 intermediate rounds of the cipher, the true differential and linear probabilities are
at most 2−55.39 and 2−52.96 respectively. However, this happens only for a negligible
number of input-output differences over 5 rounds. Over more rounds or when the input
differences cannot be controlled, a more accurate measure is the expected differential
and linear probability over 5 rounds, which is given by (2−32 + 2−27.696)4 ≈ 2−110.5

and (2−32 + 2−26.478)4 ≈ 2−105.79 respectively.

C.4 Protection against Boomerang Attacks

There is also a stronger form of differential attack called boomerang attack [26]. It splits
R− 3 rounds of Four-Cell+ into 2 shorter ciphers such that the differential probability
of each part is known to be large, say with probability p for the differential α → β
for the first part and probability q for the differential γ → δ for the second part. The
distinguisher is the following boomerang process:

(1) Ask for the encryption of a pair of plaintexts (P1, P2) such that P1 + P2 = α and
denote the corresponding ciphertexts by (C1, C2).

(2) Calculate C3 = C1 + δ and C4 = C2 + δ, and ask for the decryption of the pair
(C3, C4). Denote the corresponding plaintexts by (P3, P4).

(3) Check whether P3 + P4 = α.

For a random permutation, the probability that the last condition is satisfied is 2−blocksize.
The probability that a quartet of plaintexts and ciphertexts satisfies the boomerang
conditions is (pq)2. Therefore, we have a distinguisher which distinguishes between the
cipher being attacked and a random cipher if (pq)2 < 2−blocksize.

For Four-Cell+, similar to our computation of the 25-round differential characteris-
tic probability, 20 rounds of the cipher already has maximal differential characteristic
probability (2−6)2 × (2−6)2 × ((2−6)5)2 × ((2−6)5)2 = 2−144 which is less than 2−128.
Thus it is unlikely that an adversary can find a good differential over 20 rounds and
any good differential is likely to involve 19 or less rounds. Thus when the adversary
splits 30 − 3 = 27 rounds into two sub-ciphers, one of them will contain at least 5
rounds where the nonlinear function involves 2 layers of S-boxes and the other will



contain at least 5 rounds where the nonlinear function involves 1 layer of S-boxes.
The differential probabilities of the 2 sub-ciphers are at most 2−55.39 and 2−12. Thus
(pq)2 ≤ 2−134.78 < 2−128 and Four-Cell+ is secure against boomerang attack.

In another variant of the boomerang attack, intermediate differences, β and γ,
are allowed to vary so that the adversary only needs to find several high probability
differential paths of the same initial and terminal differences α and δ. We leave the
investigation of Four-Cell+ against that variant as a future research problem.

Remark 2. We have used the assumption that if the differential characteristic proba-
bility of R′ rounds of a cipher is less than 2−blocksize, then it is not likely that a good
differential over R′ rounds can be found. This is in line with the common approach of
practical provable security against differential cryptanalysis employed in the proofs of
security of ciphers like AES [8]. Thus if our assumption is not true, then the approach
is wrong because although we can prove that the differential characteristic probability
is less than 2−blocksize, we can still find a differential with high probability to launch
differential cryptanalysis.

C.5 Protection against Integral Attack

According to Section 7, there is a 16-round integral attack distinguisher: the adversary
starts with (A, c, c, c), where the first 32-bit word A ranges through all 232 vectors and
the other words are kept constant; and the XOR-sum of the 16th-round output words
will be a permutation over GF (2)32. This can be exploited in a 17-round basic integral
attack with complexity 264 by guessing two subkeys (in round 17), and inverting the
232 ciphertexts to verify if the XOR-sum of the four 16th round output words is a
permutation. To launch an integral attack on the full 30-round Four-Cell+ cipher, the
adversary would need to guess, in addition to the subkeys used in the round functions,
128 bits of post-whitening keyK31. Even if the adversary can bypass the post-whitening
key, he can extend an integral attack distinguisher by at most three rounds. That means
he would need to extend the integral attack distinguisher from 18 to 30−3 = 27 rounds
which seems unlikely.

C.6 Protection against Impossible Differential Attack

According to Section 7, there is a 18-round impossible characteristic that begins with
the differential (δ, 0, 0, 0) and ends in the differential (ψ, ψ, 0, 0). A straightforward
attack on 19 rounds would be to guess two subkeys (in round 19) with complexity
264, and then invert the pair of ciphertexts to verify if the 18th round output satisfies
the required impossible differential. There is a more sophisticated 25-round attack
outlined in [29] where the attacker chooses a number of plaintext differential structures
and guesses some subkey bits in the first 4 rounds to ensure the input differential at
the 5th round is of the correct form (δ, 0, 0, 0). Then they place the 18-round impossible
differential at rounds 5− 22, and guess subkeys in rounds 25, 24 to decrypt these two
rounds respectively. This enables them to obtain some subkey bits in round 23 and
hence eliminate all the wrong subkey guesses. The attack recovers the key with data
complexity 2111.5 and time complexity 2123.5 encryptions. It is highly unlikely that this
25-round attack can be extended to a 30-round attack on Four-Cell+.



C.7 Protection against Higher Order Differential, Cube and Interpolation

Attacks

The algebraic degree of any round with a single layer of S-box (rounds 1-10, 21-30)
is 7 while that of any round with two layers of S-boxes (rounds 11-20) is 49. By the
4th round, every output bit will have degree 7. By the 8th round, every output bit will
have degree 49 (composition of two balanced functions both of degree 7). By the 12th

round, every output bit will have the maximal degree 127 for 128-bit balanced functions
(composition of two balanced function of degree 7 and 49, or 49 and 49). There are two
known attacks, higher order differential [10] and later, cube attacks [9], which exploits
the algebraic degree d of a block cipher in terms of the plaintext. However, both has
data and time complexity of magnitude O(2d). Thus, they will be ineffective against
Four-Cell+ when there are 12 or more rounds.

The interpolation attack [10] works on block ciphers that can be expressed as an
equation in GF (2n) with few monomials. In Four-Cell+, if we use the AES S-box,
each S-box is a sum of 8 monomials in GF (28). However, if we compose the S-boxes
with the MDS transforms (e.g. AES MixColumn) over several rounds, the block cipher
will become a complex multi-variable function which is a sum of many monomials over
GF (28). Thus it will be secure against interpolation attack. Moreover, the cipher can be
made more secure against interpolation attack by choosing each S-box to be a random
pre- and post-affine transform of x−1. Then the expression for each S-box will be a
sum of 255 monomials over GF (28).

C.8 Protection against XSL Attacks

The XSL attack [5, 6] tries to solve the sparse equations formed by the plaintext,
ciphertexts and intermediate variables in a block cipher computation. It multiplies the
existing equations with monomials to form new equations. The aim is to do this process
intelligently so as to increase the number of equations more quickly than the number of
new monomials, such that eventually we have more equations than monomials. Then
the set of equations can be solved by linearization to reveal the secret key.

However, the second XSL attack (the better of the two attacks in [5]) has complexity
2203 and is ineffective against AES-128. Four-Cell+ and AES-128 are block ciphers
with 128-bit block size, and have a comparable number of S-boxes (based on x−1 in
GF (28)) in both the main cipher and key schedule. So we expect them to be described
by a comparable number of equations and monomials which might lead to similarly
ineffective XSL attack complexity.

There is also a more powerful attack where we embed AES in GF (28) to form the
BES (Big Encryption Standard) cipher [20]. In that case, each S-box can be expressed
as 24 quadratic equations based on 41 monomials over GF (28), instead of 24 quadratic
equations based on 81 monomials over GF (2). When we apply the second XSL attack
[5] on BES, the reduction in the number of monomials causes the attack complexity
to drop from 2203 to only 287. However, it has been shown in [15] that the number of
linearly independent equations in the XSL attack on BES might be over-estimated and
the actual complexity of this attack should be at least 2401.



In a similar way to [20], Four-Cell+ can also be embedded in GF (28) to form a
Big Four-Cell+ cipher. We can also show that the XSL attack will not work on this
embedded Big Four-Cell+ cipher by a method similar to that in [15].

C.9 Protection against Slide Attack

The slide attack [2] works on ciphers which have cyclical structures over a few rounds,
i.e. the cipher structure and subkeys are repeated over every few rounds. It can usually
be protected against if the subkeys of each rounds are different. In our cipher, besides
having a different subkey for every round, the cipher rounds are different between
rounds 11 to 20 (which has two layers of S-boxes) and the other rounds (which has one
layer of S-box). Therefore, slide attack will not work.


