
1

A novel multi-server authentication protocol

Yalin Chen 1 , Chun-Hui Huang 2 , *Jue-Sam Chou 3

1 Institute of information systems and applications, National Tsing Hua University

d949702@oz.nthu.edu.tw
2 Department of Information Management, Nanhua University Chiayi 622 Taiwan, R.O.C

g6451519@mail.nhu.edu.tw
3 Department of Information Management, Nanhua University Chiayi 622 Taiwan, R.O.C

*: corresponding author

jschou@mail.nhu.edu.tw

Tel: 886+ (0)5+272-1001 ext.56536

Abstract

Recently, Tsai and Hsiang et al. each proposed a multi-server authentication
protocol. They claimed their protocols are secure and can withstand various attacks.
However, after our analysis, we found some security loopholes in each protocol. We
will first show the attacks on their schemes and then present ours. After the security
analysis, we conclude that our scheme is the most secure one among all of the
proposed protocols in multi-server environments nowadays.

Keywords: multi-server, password authentication protocol, smart card, password
change, key agreement

1. Introduction

For password-based authentication protocols using smart cards are widely used in
an open network. A two-party password authentication protocol for client-server
architecture is therefore not sufficient when networks are getting larger and larger.
Consequently, several multi-server protocols were proposed [1-15].

In 2003, Li et al. [5] proposed a multi-server protocol based on ElGamal digital
signature and geometric transformations on an Euclidean plane. Unfortunately, their
protocol is vulnerable and has been broken by Cao and Zhong [8]. In 2004 and 2005,
Tsaur et al. [3, 4] proposed two multi-server schemes. However, both of their schemes
are based on Lagrange interpolating polynomial which is computationally intensive.
In 2006 and 2007, Cao et al. [9] and Hu et al. [7] each proposed an authentication
scheme for a multi-server environment. Both of their schemes assume that all servers
are trustworthy. Nevertheless, this assumption is not always true as stated in [1]. In
2008, Lee et al. [6] proposed an authenticated key agreement scheme for multi-server
using mobile equipment. However, their scheme can not add a server freely. Because
when a server is added, all users who want to login to this new server have to
re-register at the registration center for getting a new smart card. This increases the

2

registration center’s card-issue cost. Also, in 2008, Tsai [1] proposed an efficient
multi-server authentication scheme. He claims that his protocol can withstand seven
known attacks. Yet, after our analysis, we found that it is vulnerable to the server
spoofing attack. Recently, in 2009, Liao et al. [2] proposed a secure dynamic ID
scheme for multi-server environment. They claim that their protocol is secure.
However, Hsiang and Shih [14] found their scheme suffers from both the server
spoofing attack and the insider attack. Hence, they proposed an improvement on the
protocol. We also illustrate the same weakness of Liao et al.’s scheme in eprint [15].
Yet, we found that their improvement is still insecure. It is vulnerable to the insider
attack. In this paper, we will first show the attacks on [1] and [14], respectively. Then,
we show our scheme and examine its security.

The remainder of this paper is organized as follows: In Section 2, we review both
Tsai’s and Hsiang-Shih’s protocols. In Section 3, we demonstrate the vulnerabilities
existing in their schemes, respectively. Then, we propose a novel protocol in Section 4
and analyze its security in Section 5. The discussions and comparisons are made in
Section 6. Finally, a conclusion is given in Section 7.

2. Review of Tsai’s and Hsiang-Shih’s protocols

In this section, we review Tsai’s protocol in Section 2.1 and Hsiang-Shih’s protocol
in Section 2.2, respectively. Before that, the notations used throughout this paper are
first defined as follows.

RC : the registration center
Uu : a legal user u
Un : a legal malicious user n
Sj : a legal server j
E(P) : an attacker E who masquerades as a peer P.
SIDj : the identity of Sj

IDu : the identity of Uu

PWu : the password of Uu

x,y,r : RC’s secret keys
Flag : a word string which is set to‘the first time login’,‘not the first time login’,‘for

password change’or‘accept’used in our proposed protocol in Section 4.3.
g : the primitive element in a Galois field GF(p) where p is a large prime number.
H() : a collision-resistant one-way hash function
(a,b) : a string denotes that string a is concatenated with string b.
⊕ : a bitwise XOR operator

=> : a secure channel
→ : a common channel

3

2.1 Review of Tsai’s protocol

Tsai’s protocolassumes s servers exists in the system. At the beginning, RC
computes and sends H(SIDj,y) to each Sj, for j = 1 to s, with Sj keeping it secret, via a
secure channel. Tsai’sprotocol contains four phases. They are: (1)registration phase,
(2)login phase, (3)authentication of server and RC phase, and (4)authentication of
server and user phase. We describe them as follows.

(1) Registration phase

In this phase (as shown in Fig. 1), Uu performs the following steps for obtaining a
smart card from RC.

1. Uu freely chooses his IDu and PWu and calculates H(PWu). He then sends {IDu,
H(PWu)} to RC through a secure channel.

2. RC calculates B=H(IDu, x)⊕H(PWu) and issues Uu a smart card containing IDu

and B through a secure channel.

(2) Login phase

When Uu wants to login to Sj, he inserts his smart card and performs the following
steps.

1. Uu keys his IDu and PWu and generates a random nonce Nc. He then computes C1

=(B⊕H(PWu))⊕Nc = H(IDu, x)⊕Nc.

2. Uu sends {IDu, C1} to Sj.

Registration phase

Uu RC

1. chooses IDu, PWu

calculates H(PWu)

IDu, H(PWu)

2. calculates B=H(IDu, x)⊕H(PWu)
issues a smart card containing IDu and B

smart card

Login phase

Uu Sj

1. generates a nonce Nc
C1 =(B⊕H(PWu))⊕Nc

2. IDu, C1

Fig. 1. Registration phase and login phase of Tsai’s protocol

4

(3) Authentication of server and RC phase

In this phase (as shown in Fig. 2), after receiving message {IDu, C1} from Uu, Sj

runs the following steps to let himself be authenticated by RC, verify Uu’s legitimacy,
and negotiate the session key with Uu. Here, let the secret key shared between Sj and
RC be H(H(SIDj, y), Ns+1, NRC +2), where Ns and NRC are Sj’s and RC’s randomly

Authentication of server and RC phase
(A) the secret key is not generated

Sj RC

1. generates a nonce Ns
computes C2 = H(SIDj, y)⊕Ns.

2. IDu, SIDj, C1, C2

3.derives Ns' =H(SIDj, y)⊕C2

generates a nonce NRC

computes C3 = NRC⊕H(SIDj, y)

4. C3

5. retrieves
N 'RC=C3⊕H(SIDj, y)
calculates
C4 = H(H(SIDj, y), Ns)

⊕N 'RC

6. C4

7. computes
C '4 =H(H(SIDj, y), Ns')⊕NRC

checks C '4 =? C4

retrieves N 'c = H(IDu, x)⊕C1

computes
C5 = H(H(SIDj, y), Ns', NRC),
C6 =H(H(SIDj,y),Ns'+1,NRC +2)

⊕H(H(IDu, x), N 'c)

8. C5, C6

9. calculates
C '5=H(H(SIDj, y), Ns,N 'RC)
compares C '5=?C5

(B) the secret key has been generated

Sj RC

1. IDu, SIDj, C1

2. derives N 'c=H(IDu, x)⊕C1

computes
C6=H(H(SIDj,y),Ns'+1, NRC+2)

⊕H(H(IDu, x), N 'c)

3. C6

Fig. 2. Authentication of server and RC phase of Tsai’s protocol

5

chosen nonces respectively. To reduce the computational cost, this phase is divided
into two scenarios: (A) the secret key is not generated, and (B) the secret key has been
generated. We describe them below.

(A) the secret key is not generated.

1. Sj generates a random nonce Ns and computes C2 = H(SIDj, y)⊕Ns.

2. Sj sends {IDu, SIDj, C1, C2} to RC.
3. RC derives Ns'=H(SIDj, y)⊕C2. He then generates a random nonce NRC and

computes C3 = NRC⊕H(SIDj, y).

4. RC sends {C3} to Sj.
5. After receiving the message from RC, Sj retrieves N 'RC = C3⊕H(SIDj, y) and

calculates C4 = H(H(SIDj, y), Ns)⊕N 'RC.

6. Sj sends {C4} to RC.
7. RC computes C '4 = H(H(SIDj, y), Ns')⊕NRC and checks to see if C '4 is equal to

the received C4. If so, Sj is authentic. He then retrieves N 'c=H(IDu, x)⊕C1 and
computes C5 = H(H(SIDj, y), Ns', NRC), C6 = H(H(SIDj, y), Ns'+1, NRC +2)⊕

H(H(IDu, x), N 'c).
8. RC sends {C5, C6} to Sj.
9. After receiving the message from RC, Sj calculates C '5 = H(H(SIDj, y), Ns, N 'RC)

and compares it with the received C5. If they are equal, RC is authentic. Both Sj

and RC will store the common secret key AuthS-RC=H(H(SIDj, y), Ns+1, N 'RC +2)
for next execution of server and RC authentication to reduce the computational
cost in the verifier table.

(B) the secret key has been generated.

1. Sj sends {IDu, SIDj, C1} to RC.
2. RC derives N 'c=H(IDu, x)⊕C1 and uses his AuthS-RC to compute C6 = H(H(SIDj,

y), Ns'+1, NRC +2)⊕H(H(IDu, x), N 'c).

3. RC sends {C6} to Sj.

(4) Authentication of server and user phase

After the authentication of server and RC phase, Sj and Uu perform the following
steps for mutual authentication (as shown in Fig. 3).

1. Sj generates a random nonce NSU and uses his AuthS-RC to compute C7 = C6⊕

H(H(SIDj, y), Ns+1, N 'RC +2)=H(H(IDu, x), N 'c). He then calculates C8 = C1⊕C7,
V2 = C7⊕NSU, and C9 = H(C7, NSU)⊕C8.

2. Sj sends {V2 , C9} to Uu.
3. After receiving the message, Uu computes C '7 = H(H(IDu, x), Nc), retrieves N 'SU=

6

Authentication of server and user phase

Uu Sj

1. generates a nonce NSU

computes
C7 = C6⊕H(H(SIDj, y), Ns+1,N 'RC +2)

=H(H(IDu,x), N 'c)
calculates
C8 = C1⊕C7, V2 = C7⊕NSU

C9= H(C7, NSU)⊕C8

2. V2 , C9

3. computes
C '7 = H(H(IDu, x), Nc)

retrieves
N 'SU= C '7⊕V2

calculates
C '8 = C '7⊕C1

C '9 =H(C '7, N 'SU)⊕C '8
checks C '9 =? C9 ,

calculates
C10 = H(C '7, C '8, N 'SU)

4. C10

5.session key
SK= H(C '7 +1,C '8+2, N 'SU +3)

5. computes C '10 = H(C7, C8, NSU)
compares C '10 =? C10

session key SK= H(C7 +1, C8+2, NSU +3)

Fig. 3. Authentication of server and user phase of Tsai’s protocol

C '7⊕V2, and calculates C '8 = C '7⊕C1, C '9 = H(C '7, N 'SU)⊕C '8. He then checks to

see if the newly computed C '9 is equal to the received C9. If so, Sj is authentic. Uu

then calculate C10 = H(C '7, C '8, N 'SU).
4. Uu sends {C10} to Sj.
5. After receiving {C10}, Sj computes C '10 = H(C7, C8, NSU) and checks to see if C '10

is equal to the received C10. If so, Uu is authentic. They then have the same
session key SK= H(C '7 +1, C '8+2, N 'SU +3) and SK= H(C7 +1, C8+2, NSU +3) ,
respectively.

2.2 Review of Hsiang-Shih’s protocol

In this section, we review Hsiang-Shih’s protocol. Their protocol consists of four
phases: (1) registration phase, (2) login phase, (3) mutual verification and session key
agreement phase, and (4) password change phase. In their protocol, RC first computes
and sends H(SIDj,y) to legal servers Sj, for j=1 to w. (Assume that there are w servers
in the system.) We describe their protocol as follows and also depict it in Figure 4.

(1) Registration phase

7

In this phase, Uu performs the following steps to register at RC for obtaining a
smart card so that he can access the resources of all servers.

1. Chooses PWu, a random number bu, and computes H(bu⊕PWu). He then sends
{IDu, H(bu, PWu)} to RC through a secure channel.

2. RC computes Tu=H(IDu, x), Vu=Tu⊕H(IDu, H(bu⊕PWu)), Au=H(H(bu⊕PWu), r)
⊕H(x⊕r), Bu= Au⊕H(bu⊕PWu), Ru= H(H(bu⊕PWu), r) , and Hu=H(Tu). He

then stores Vu, Bu, Hu and Ru to the smart card and issues the card to Uu through a
secure channel.

3. Uu enters bu to his card and the smart card now contains bu, Vu, Bu, Hu and Ru.

(2) Login phase

When Uu wants to login to Sj, he inserts his smart card and performs the following
steps.

1. Uu keys his IDu, PWu and SIDj to the smart card. The smart card computes Tu'=Vu

⊕H(IDu, H(bu⊕PWu)), Hu'=H(Tu'), and checks to see if Hu stored is equal to the

computed Hu'. If so, smart card knows Uu is the real card holder. It then generates
a random nonce Nu and calculates Ai'=Bu⊕H(bu⊕PWu), CIDu= H(bu⊕PWu)⊕
H(Tu', Au', Nu), Puj= Tu'⊕H(Au', Nu, SIDj), Qu =H(Bu, Au', Nu), Du=Ru⊕SIDj⊕Nu,

and C0=H(Au', Nu+1, SIDj).
2. Uu sends {CIDu, Puj, Qu, Du, C0, Nu} to Sj.

(3) Mutual verification and session key agreement phase

After receiving the login message from Uu, Sj executes the following steps together
with Uu to authenticate each other and compute a common session key.

1. Sj generates a random nonce Njr and calculates Mjr= H(SIDj, y)⊕Njr.

2. Sj sends { Mjr, SIDj, Du, C0, Nu} to RC.
3. RC computes N *

jr =Mjr⊕H(SIDj, y), R*
u=Du⊕SIDj⊕Nu, A*

u=R*
u⊕H(x⊕r), C*

o=

H(A*
u , Nu+1, SIDj) and checks to see if C*

o is equal to the received C0. If so, Sj is
authentic. RC then generates a random nonce Nrj and calculates C1 = H(N *

jr ,
H(SIDj, y), Nrj), C2 = A*

u⊕H(H(SIDj, y), N *
jr).

4. RC sends {C1, C2, Nrj} to Sj.
5. After receiving the message from RC, Sj computes H(Njr, H(SIDj, y), Nrj) and

checks to see if it is equal to the received C1. If so, RC is authentic. Sj then
calculates A''u= C2⊕H(H(SIDj, y), Nrj), T''u= Puj⊕H(A''u , Nu, SIDj), hu=CIDu⊕

H(T''u , A''u , Nu) and B''u= A''u⊕hu. Then he computes H(B''u , A''u , Nu) and compares
it with Qi received in the login phase. If they are equal, the login request is
accepted. He proceeds to generate a random nonce Nj and calculate

8

Registration phase

Uu RC

1. chooses random bu, PWu

computes H(bu⊕PWu) IDu, H(bu, PWu)

2. computes Tu=H(IDu, x)

Vu=Tu⊕H(IDu, H(bu⊕PWu))
Au=H(H(bu⊕PWu), r)⊕H(x⊕r)
Bu= Au⊕H(bu⊕PWu)
Ru=H(H(bu⊕PWu),r), Hu=H(Tu)
stores Vu, Bu, Hu, and Ru in the
smart card

3. enters bu to smart card smart card
(smart card contains bu,Vu, Bu, Hu and Ru)

Login phase

Uu Sj

1. keys IDu, PWu and SIDj

computes
Tu'=Vu⊕H(IDu,H(bu⊕PWu)),Hu'=H(Tu')
If Hu=Hu', generates a nonce Nu.
calculates
Ai'=Bu⊕H(bu⊕PWu)
CIDu=H(bu⊕PWu)⊕H(Tu',Au',Nu)
Puj= Tu'⊕H(Au', Nu, SIDj)
Qu =H(Bu, Au', Nu)
Du=Ru⊕SIDj⊕Nu

C0=H(Au', Nu+1, SIDj) 2. CIDu, Puj, Qu, Du, C0, Nu

Mutual verification and session key agreement phase
Uu Sj RC

2. Mjr, SIDj, Du, C0, Nu

4. C1, C2, Nrj

6. C1, C2, Nrj

8. M*
ij , Nj

Fig. 4. Hsiang-Shih’s protocol

Mij=H(B''u , Ni, A''u , SIDj).
6. Sj sends {Mij, Nj} to Uu.
7. Uu computes H(Bu, Ni, Au, SIDj) and checks to see if it is equal to the received Mij.

If it is, Sj is authentic. He then calculates M*
ij=H(Bu, Nj, Au, SIDj).

8. Uu sends {M*
ij} to Sj.

9. Sj computes H(B''u , Nj, A''u , SIDj) and checks to see if it is equal to the received
M*

ij .

9

10. After finishing mutual authentication, Uu and Sj can compute the common session

key SK= H(Bu, Au, Nu, Nj, SIDj) and SK= H(B''u , A''u , Nu, Nj, SIDj), respectively.

(4) Password change phase

When Uu wants to change his password from PWu to PWu
new, he executes the

following steps.

1. Keys his IDu, PWu.
2. The smart card computes Tu'=Vu⊕H(IDu, H(bu⊕Wu)), Hu'=H(Tu') and checks to

see if Hu stored in the smart card is equal to the computed Hu'. If so, Uu is the real
card holder.

3. The smart card allows Uu to submit a new password PWunew.
4. The smart card computes Vunew=Tunew⊕H(IDu, H(bu⊕PWunew)), Bunew= Bu⊕H(bu

⊕PWu)⊕H(bu⊕PWunew) and replaces Vu, Bu with Vunew, Bunew, respectively.

3. Security loopholes in Tsai’s and Hsiang-Shih’s protocols

In this section, we will show that Tsai’s protocol suffers server spoofing attacks in
both scenarios and Hsiang-Shih’sprotocol suffers user impersonation attack and
off-line password guessing attack when the smart card is lost. We demonstrate the
security loopholes of both schemes in Section 3.1 and Section 3.2, respectively.

3.1 Server spoofing attack by an insider server on Tsai’s protocol

Assume that Si is a legal server registered at RC. He also has his H(SIDi, y) and
keeps it secret. He can then masquerade as a legal server to cheat a remote user. This
is because in the authentication of server and user phase, a user doesn’t examine if the
message is indeed sent from the correct server. In the following, we present server
spoofing attacks on the two scenarios, (A) and (B), and also illustrate them in Figure 5
and 6, respectively.

(A) the secret key is not generated.

For this case, we describe the attack as follows and also illustrate it in Figure 5.

1. When Uu wants to communicate with Sj, he starts the protocol and sends {IDu, C1}
to Sj who Si masquerades.

2. Si generates a nonce Ns, computes C2 = H(SIDi, y)⊕Ns, and sends {IDu, SIDi, C1,

C2} to RC. Then, for the subsequent transmitted messages, C3, C4, C5 and C6

(except C6) between RC and Si for authenticating each other are independent on
Uu’s secrecy H(H(IDu, x), Nc) (as depicted in scenario (A) of Fig. 2), RC and Si

will be doomed to achieve mutual authentication successfully.

10

3. RC and Si then negotiate to establish the common secret key AuthS-RC=H(H(SIDi,
y), Ns+1, N 'RC +2)=H(H(SIDi, y), Ns'+1, NRC +2) in the phase of server and RC
authentication. Then, Si and Uu perform the authentication of server and user
phase.

4. Si generates a random nonce NSU and uses his AuthS-RC to compute C7 = C6⊕

AuthS-RC =H(H(IDu, x), N 'c). He then calculates C8 = C1⊕C7, V2 = C7⊕NSU, and
C9 = H(C7, NSU)⊕C8.

5. Si sends {V2 , C9} to Uu.
6. After receiving the message, Uu computes C '7 = H(H(IDu, x), Nc), retrieves N 'SU=

C '7⊕V2, and calculates C '8 = C '7⊕C1, C '9 = H(C '7, N 'SU)⊕C '8. He then checks

to see if C '9 is equal to the received C9. If so, Uu confirms that the message is sent
from the sender who had received his C1 in the login phase. Si disguising himself
as Sj is thus regarded as being authentic by Uu. Uu then calculates C10 = H(C '7, C
'8, N 'SU).

7. Uu sends {C10} to Si.
8. Si computes C '10 = H(C7, C8, NSU) and checks to see if C '10 is equal to the received

Uu Si (Sj) RC

1. IDu, C1 2. IDu, SIDi, C1, C2

3. establishes AuthS-RC

4. generates a nonce NSU

computes
C7 =C6⊕AuthS-RC

=H(H(IDu, x), N 'c)
C8 = C1⊕C7

V2 = C7⊕NSU

C9 = H(C7, NSU)⊕C8

3. establishes
AuthS-RC

5. V2 , C9

6. computes
C '7 = H(H(IDu, x), Nc)
retrieves N 'SU= C '7⊕V2

calculates C '8 = C '7⊕C1

C '9 = H(C '7, N 'SU)⊕C '8
checks C '9 =? C9

calculates
C10 = H(C '7, C '8, N 'SU)

7. C10

8. session key
SK= H(C '7 +1,C '8+2,N 'SU +3)

8. computes
C '10 = H(C7, C8, NSU)
compares C '10 =?C10

session key
SK= H(C7 +1, C8+2, NSU +3)

Fig.5. Server spoofing at tack by an insider server on Tsai’s protocolfor scenario (A) the secret key is not generated.

11

C10. If so, Uu is authentic. They, Uu and Si, compute the common session key as
SK= H(C '7 +1, C '8+2, N 'SU +3) and SK= H(C7 +1, C8+2, NSU +3), respectively.

From the above-mentioned steps, we can see that a server spoofing attack can
besuccessfully launched by insider attacker Si for this case.

(B) the secret key has been generated.

For this case, we describe the attack as follows and also illustrate it in Figure 6.

1.Uu starts the protocol and sends {IDu, C1} to Si who masquerades as Sj.
2. When Si runs the authentication of server and RC phase, he simply sends {IDu,

SIDi, C1} to RC. RC deduces N 'c=H(IDu, x)⊕C1 and computes C6 = H(H(SIDi, y),
Ns'+1, NRC +2)⊕H(H(IDu, x), N 'c).

3. RC sends {C6} to Si. Si then performs the authentication of server and user phase
with Uu.

4. Si generates a random nonce NSU and uses the generated common secret key
AuthS-RC to compute C7 = C6⊕AuthS-RC =H(H(IDu, x), N 'c). He then calculates C8

= C1⊕C7, V2 = C7⊕NSU, and C9 = H(C7, NSU)⊕C8.

Uu Si (Sj) RC

1. IDu, C1 2. IDu, SIDi, C1

3. C6

4. generates a nonce NSU

computes
C7 = C6⊕AuthS-RC

=H(H(IDu, x), N 'c)
calculates C8 = C1⊕C7

V2 = C7⊕NSU

C9 = H(C7, NSU)⊕C8

5. V2 , C9

6. computes C '7 = H(H(IDu, x), Nc)
retrieves N 'SU= C '7⊕V2

calculates C '8 = C '7⊕C1

C '9 = H(C '7, N 'SU)⊕C '8
checks C '9=?C9

calculates C10 = H(C '7, C '8, N 'SU)

7. C10

8. session key
SK= H(C '7 +1, C '8+2, N 'SU +3)

8. computes
C '10 = H(C7, C8, NSU)
compares C '10 =? C10

session key
SK= H(C7 +1,

C8+2, NSU +3)

Fig. 6. Server spoofing attack by an insider server on Tsai’s protocolfor scenario (B) the secret key has been generated.

12

5. Si sends {V2 , C9} to Uu.
6. After receiving the message, Uu computes C '7 = H(H(IDu, x), Nc), retrieves N 'SU=

C '7⊕V2, and calculates C '8 = C '7⊕C1, C '9 = H(C '7, N 'SU)⊕C '8. He then checks

to see if C '9 is equal to the received C9. If so, Uu confirms that the message is sent
from the sender who has received his C1 in the login phase. Si disguising himself
as Sj is therefore regarded as being authentic. Uu then proceeds to calculate C10 =
H(C '7, C '8, N 'SU).

7. Uu sends {C10} to Si.
8. After obtaining the message from Uu, Si computes C '10 = H(C7, C8, NSU) and

checks to see if C '10 is equal to the received C10. If so, Uu is authentic. They then
compute the common session key SK= H(C '7 +1, C '8+2, N 'SU +3) and SK= H(
C7 +1, C8+2, NSU +3), respectively.

From the above-mentioned steps, we can see that a server spoofing attack launched
by insider attacker Si has been successfully accomplished in case (B).

3.2 Attack on Hsiang-Shih’s protocol

In the following, we demonstrate two attacks, (a) the impersonation attack and (b)
the off-line password guessing attack if the smart card is lost, on Hsiang-Shih’s
protocol.

(a) The impersonation attack

We further divide this kind of attack into following two cases: (1) outsider
impersonation attack, and (2) insider impersonation attack.

(1) Outsider impersonation attack

In Hsiang-Shih’s protocol, it can easily be seen that any passive attacker can
deduce all of a user Uu’s secrets stored in the smart card from the messages, {Mjr, SIDj,
Du, C0, Nu}, { CIDu, Puj, Qu, Du, C0, Nu}, and {C1, C2, Nrj}, transmitted among Uu, Sj

and RC. For he can deduce Au= C2⊕H(Mjr), and then obtain Ru, Tu, H(bu⊕PWu) by
computing Ru=Du⊕SIDj⊕Nu, Tu=Puj⊕H(Au, Nu, SIDj), and H(bu⊕Wu)=CIDu⊕H(Tu,

Au, Nu). Hence, he can impersonate Uu to login to Sj by sending a login request. For
example, he sends the login request {CIDu, P uj ', Qu ', Du ', C0 ', Nu'} to Sj by selecting a
new random nonce Nu' and computing CIDu= H(bu⊕PWu)⊕H(Tu, Au, Nu'), Puj= Tu⊕

H(Au, Nu', SIDj), Qu =H(Bu, Au, Nu'), Du=Ru⊕SIDj⊕Nu', and C0=H(Au, Nu'+1, SIDj).

Obeying their protocol, it is obvious that he can pretend Uu and access all servers’s
resources successfully.

(2) Insider impersonation attack

13

An insider attacker E is a malevolent user registered at RC. He can use his secret be,
PWe, Be, Re to deduce H(x⊕r) by computing H(x⊕r)=Be⊕Re⊕H(be⊕PWe). Then, he
can use his computed H(x⊕r), the eavesdropped message {CIDu, Puj, Qu, Du, C0, Nu}

transmitted between Uu and Sj in the login phase, and the public parameter SIDj to
deduce Ru, Au, Tu, H(bu⊕PWu) by computing Ru=Du⊕SIDj⊕Nu, Au=Ru⊕H(x⊕r),
Tu=Puj⊕H(Au, Nu, SIDj), and H(bu⊕Wu)=CIDu⊕H(Tu, Au, Nu). He then can calculate
all of Uu’s secrets {Vu, Bu} stored in the smart card by computing Vu= Tu⊕H(IDu,
H(bu⊕PWu)) and Bu= Au⊕H(bu⊕PWu). For E has all the secret data of Uu, he can

therefore impersonate Uu in the same manner successfully as described in Section
3.2.(a).(1).

(b) Off-line password guessing attack if the smart card is lost

In the password change phase, when a user wants to change his password, the
smart card has to verify the correctness of the card holder’s password. If the smart is
lost or stolen, the attacker can read the secret data {bu, Vu, Hu} stored in the smart card.
He then can compute T’=Vu⊕H(IDu, H(bu⊕PW’)), where PW’is his guessing

password, and check to see if his computed H(T’) is equal to the stored value of Hu

without the help of any other entities. If the two values equal, he successfully
launches the attack. Else, he can repeat the above password guessing attack until he
obtains the correct one. Therefore, a smart-card-lost off-line password guessing attack
can be launched.

Furthermore, after guessing the correct password, the attacker can enforce the
password change phase. Subsequently, from then on, the real card holder cannot use
his password to login to the remote server anymore. That is, their scheme suffers from
Denial-of-service attack as well.

4. Our protocol

After presenting the attacks on protocols [1] and [14], in this section, we present
our scheme. Our protocol contains four phases. They are: (1)preparation phase,
(2)registration phase, (3)login phase, and (4)authentication and session key agreement
phase or authentication and password change phase. In our protocol, RC is
trustworthy and has two secret keys, x and y. All identities of users and servers are
public, e.g. IDu and SIDj. We describe the first two phases in Section 4.1 and Section
4.2 respectively and also depict them in Figure 10. The last two phases are combined
and divided into three scenarios. We discuss them in Section 4.3 and also depict them
in Figure 11, 12, and 13, respectively.

(1) Preparation phase

14

In this phase, for each server Sj with identity SIDj, RC performs the following
steps.

1. RC computes RSj=H(SIDj, y).
Preparation phase

Sj RC

1. RSj=H(SIDj, y)

2. RSj

Registration phase

Uu RC

1. chooses IDu, PWu

calculates H(IDu, PWu) IDu, H(IDu, PWu)

2. calculates B=H(IDu, x)⊕H(IDu, PWu)
smart card smart card contains IDu and B

Fig. 10. Preparation phase and registration phase

2. RC sends RSj to Sj via a secure channel.

(2) Registration phase

In this phase, Uu performs the following steps to register at RC for obtaining a
smart card. Once having registered at RC, he can use the card to login to any eligible
server for accessing resources.

1. Uu randomly chooses his IDu, PWu and calculates H(IDu, PWu). He then sends
{IDu, H(IDu, PWu)} to RC through a secure channel.

2. RC calculates B=H(IDu, x)⊕H(IDu, PWu) and issues Uu a smart card containing

IDu and B through a secure channel.

(3) Login for authentication and session key agreement or for password change

In our scheme when Uu wants to login Sj, he may want to execute either
authentication and session key agreement or password change. We first describe
former case using two scenarios: (A) the first time execution (of login for
authentication and session key agreement phase), and (B) not the first time execution
(of login for authentication and session key agreement phase). Then, we describe the
latter case using scenario (C) (login for password change phase). We describe them as
follows and also depict them in Figure 11, 12, and 13, respectively.

(A) the first time execution (of login for authentication and session key
agreement phase)

15

(a) Login phase

When Uu wants to access Sj’s resources, he inserts his smart card and performs the
following steps. The steps are also illustrated in Figure 11.

1. Uu keys his IDu and PWu to the smart card. The smart card computes Bu=B⊕

H(IDu, PWu), generates a random nonce c and calculates Nc=gc, C1 =H(Bu, SIDj,
Nc).

2. Uu sends {IDu, SIDj, C1, Nc, Flag} to Sj, where Flag is set to‘the first time login’.

(b) Authentication and session key agreement phase

When receiving the login message from Uu, Sj executes the following steps to
determine if Uu is valid. If so, he negotiates the session key with Uu. We describe
them using the following steps. The steps are also illustrated in Figure 11-continued.

1. After receiving {IDu, SIDj, C1, Nc, Flag} from Uu, Sj reads Flag and knows that
Uu is the first time login. He then generates a random nonce s and calculates
Ns=gs, V1 =H(RSj, IDu, Ns).

2. Sj sends {IDu,SIDj, C1,Nc, Tu, V1,Ns} to RC.
3. After receiving the authentication request, RC first checks to see if IDu andSIDj

are valid. If so, RC calculates C*
1 =H(H(IDu, x), SIDj, Nc), V*

1 = H(H(SIDj, y), IDu,
Ns) and checks to see if they are equal to the received C1 and V1, respectively. If
so, RC confirms that both Uu and Sj are authentic and knows that Uu attempts to
login to Sj. He then computes C2=H(SIDj, H(IDu, x), Ns, Nc) and V2=H(IDu,
H(SIDj, y), Nc, Ns).

4. RC sends { C2, V2} to Sj.
5. After receiving the message from RC, Sj computes V*

2 =H(IDu, RSj, Nc, Ns) and
checks to see if it is equal to the received V2. If it is, Sj confirms that RC is
authentic. He then calculates the session key SK=(Nc)s to be shared with Uu and
computes C3=H(C2⊕SK), Bj =H(IDu, RSj), and Bc = Bj⊕SK.

6. Sj sends { C3, Ns, Bc } to Uu.
7. After receiving the message from Sj, Uu computes SK '=(Ns)c, C*

3=H(H(SIDj,Bu,
Ns, Nc)⊕SK ') and checks to see if this computed C*

3 is equal to the received C3.
If so, Uu confirms that Sj is authentic. He then calculates Bj'= Bc⊕SK ', Buj = Bj'⊕

Login phase of the scenario (A)

Uu Sj

1. keys IDu, PWu

computes
Bu=B⊕H(IDu, PWu)
generates a nonce c
calculates Nc=gc

16

C1 =H(Bu, SIDj, Nc)

2. IDu, SIDj, C1, Nc, Flag

Fig. 11. Scenario (A): the first time execution (of login for authentication and session key agreement phase

Authentication and session key agreement phase of the scenario (A)

Uu Sj RC

1. generates
a nonce s
calculates
Ns=gs

V1=H(RSj, IDu,
Ns)

2. IDu, SIDj, C1,
Nc,V1, Ns

3. checks IDu , SIDj

calculates
C*

1 =H(H(IDu, x), SIDj, Nc)
V*

1 =H(H(SIDj, y), IDu, Ns)
checks C*

1 =? C1 , V*
1 =? V1

computes
C2= H(SIDj, H(IDu, x), Ns,Nc)
V2=H(IDu, H(SIDj, y), Nc, Ns)

4. C2, V2

5. computes
V*

2 =H(IDu, RSj,
Nc, Ns)

checks V*
2 =? V2

calculates
session key
SK=(Nc)s

computes
C3=H(C2⊕SK)
Bj =H(IDu, RSj)
Bc = Bj⊕SK

6. C3, Ns, Bc

7. computes
session key
SK '=(Ns)c

C*
3 = H(H(SIDj,

Bu, Ns, Nc)
⊕SK ')

checks C*
3 =? C3

Bj'= Bc⊕SK '
Buj = Bj'⊕H(

IDu, PWu)
stores Buj

Fig. 11-continued. Scenario (A): the first time execution (of login phase for authentication and session key agreement phase)

17

H(IDu, PWu) and stores the common secret key Buj in his smart card for login Sj

without the help of RC’s authentication next time. Uu and Sj then have the

common session key SK '= SK= gc.s.
(B) not the first time execution (of login for authentication and session key

agreement phase)

When Uu wants to access Sj’s resources again, he inserts his smart card and
performs the following steps. The steps are also illustrated in Figure 12.

(a) Login phase

1. Uu keys his IDu and PWu to the smart card. The smart card computes B*
j = Buj⊕

H(IDu, PWu), generates a random nonce u and calculates Nu=gu, C =H(B*
j , IDu,

SIDj, Nu).
2. Uu sends {IDu, SIDj, C, Nu, Flag} to Sj, where Flag is set to ‘not the first time

login’.

(b) Authentication and session key agreement phase

When receiving the login message from Uu, Sj executes the following steps to
determine if Uu is valid. If so, he negotiates the session key with Uu.

1. After receiving {IDu, SIDj, C, Nu, Flag } from Uu, Sj first checks to see if IDu is
valid. If IDu is legal, from the flag, Sj knows that Uu logins not the first time. He
generates a random nonce j, calculates Nj=gj, Bj =H(IDu, RSj), C ' = H(Bj, IDu,
SIDj, Nu), and checks to see if C ' is equal o the received C. If so, Sj confirms

18

Fig. 12. Scenario (B): not the first time execution (of login for authentication and session key agreement phase)

that Uu is authentic. He then calculates the session key K=(Nu)j and U=H(Nj, K⊕

Bj).
2. Sj sends {Nj, U} to Uu.
3. After receiving the message from Sj, Uu computes the session key K '=(Nj) u, U

'=H(Nj, K '⊕B*
j) and checks to see if U ' is equal to the received U. If it is, Uu

confirms that Sj is authentic. Uu and Sj then have the common session key K '=
K=g u j.

(C) Login for authentication and password change phase

To get rid of the weakness as described in Section 3.2.(b), the clients must change
his password under the intervention of RC when executing the password change phase.
Under such limitation, it not only can prevent the password guessing attack if the
smart card is lost but also meet the requirement that the client can choose and change
his password at will. To attain this purpose, the password change phase of our
protocol contains two phases, (a) Login phase and (b) Authentication and password
change phase.

When Uu wants to change his password, he performs the following steps. The steps

Login phase

Uu Sj

1. keys IDu, PWu

computes
B*

j = Buj⊕H(IDu, PWu)
generates a nonce u,

calculates Nu=gu,
C =H(B*

j , IDu, SIDj, Nu)

2. IDu, SIDj, C, Nu, Flag

Authentication phase and session key agreement phase

Uu Sj

1. checks IDu

2. generates j, calculates Nj=gj

Bj =H(IDu, RSj)
C '= H(Bj, IDu, SIDj, Nu)
C '=? C
session key K=(Nu) j

calculates U=H(Nj, K⊕Bj)

{ Nj , U}

3. session key K '=(Nj) u

calculates U '=H(Nj, K '⊕B*
j)

U '=? U

19

are also illustrated in Figure 13.

(a) Login phase

1. Uu keys his IDu, PWu, and new password PWu
new to the smart card. The smart

card checks PWu to see if IDu is the real cardholder. If so, the card computes
Bu=B⊕H(IDu, PWu), generates a random nonce c, and calculates Nc=gc, C1

=H(Bu, H(IDu, PWu
new), Nc), and CP1=H(Bu, Nc)⊕H(IDu, PWu

new).

2. Uu sends {IDu, SIDj, C1, CP1, Nc, Flag} to RC, where Flag is set to‘for password
change’.

Login phase

Uu RC

1. Uu keys IDu, PWu, PWu
new, checks IDu

computes Bu=B⊕H(IDu, PWu)
generates nonce c
calculates Nc=gc

C1 =H(Bu, H(IDu, PWu
new), Nc)

CP1=H(Bu, Nc)⊕H(IDu, PWu
new)

2. IDu, SIDj, C1,

CP1, Nc, Flag

Authentication and password change phase

Uu RC

1. acquires T, checks IDu, SIDj

retrieves H(IDu, PWu
new)=

CP1⊕H(H(IDu, x), Nc)
calculates
C*

1 = H(H(IDu,x),H(IDu,
PWu

new),Nc)
checks C*

1 =? C1

generates nonce r
calculates Nr =gr, K=gc.r

CP2=H(IDu, K)
CP3=H(Flag,H(IDu,x),Nc,Nr)

2. CP2, CP3, Nr

3. calculates K '=(Nr)c, CP*
2 =H(IDu, K)

CP*
3 =H(Flag, Bu, Nc, Nr)

compares CP*
2 =?CP2

compares CP3=?CP*
3

replaces B with Bu⊕H(IDu, PWu
new)

Fig. 13. Scenario (C): Login for authentication and password change phase

20

(2) Authentication and password change phase

1. After receiving the password change request, RC checks to see if IDu and SIDj are
valid. If they are valid, RC retrieves H(IDu, PWu

new) by computing CP1⊕

H(H(IDu, x), Nc), calculates C*
1 = H(H(IDu, x), H(IDu, PWu

new), Nc), and checks to
see if C*

1 is equal to the received C1. If so, Uu is authentic. RC generates a

random nonce r and calculates Nr =gr, K=gc.r, CP2=H(IDu, K), and CP3=H(Flag,
H(IDu, x), Nc, Nr), where Flag is set to‘accept’.

2. RC sends {CP2, CP3, Nr} to Uu.
3. After receiving the message from RC, Uu calculates K '=(Nr)c, CP*

2 =H(IDu, K),
and CP*

3 =H(Flag, Bu, Nc, Nr) and checks to see if CP*
2 is equal to the received

CP2. If so, Uu confirms that RC is authentic. He then compares CP3 with CP*
3 . If

they are equal, Uu knows that his password change request has been accepted.
The smart card then replaces the stored B with Bu⊕H(IDu, PWu

new).

5. Security analysis for our protocol

We will show that our protocol not only can provide mutual authentication, perfect
forward secrecy, changing password freely and securely, and session key agreement
but also can resist various attacks such as, stolen-verifier attack, insider-server
spoofing attack, insider-user impersonating attack, off-line password guessing attack,
on-line password guessing attack, replay attack, parallel session attack (Man-in-the
-Middle attack), and smart-card-lost attack. In the following, for each security
attribute analysis, we mainly concern the most complex part, scenario (A) as indicated
in Figure 11, in our protocol. The other two scenarios, (B) and (C), can be reasoned in
a similar manner. We omit them unless stated otherwise.

5.1 Mutual authentication

In the following, we demonstrate that scenario (A) depicted in Figure 11 can
provide mutual authentication between each pair among the three parties, user Uu,
server Sj and RC. We describe it below.

As in the figure, for authenticating Uu after receiving his login request, Sj first
sends {IDu, SIDj, C1, Nc, V1, Ns} to RC. RC verifies the validities of both C1 and V1.
If they are valid, RC confirms that both Uu and Sj are authentic. Here, we demonstrate
these relations using the two solid arrows,  and , as involved in Figure 14. He
then sends C2 and V2 to Sj. Sj verifies the validity of V2. If it is valid, Sj confirms that
RC is authentic. This is depicted in Figure 14 by the solid arrow. He then sends {C3,
Ns} to Uu. Also, Uu has to verify {C3, Ns} to authenticate Sj. If C3 is valid, Uu

confirms that Sj is authentic. This is depicted using the solid arrow  in the figure.
Obviously, authenticity relationship has transitive property when the identities of both

21

communicating parties and their common secret are committed. Otherwise, the PKI
infrastructure will not work. From this observation, if there is an authenticity from A
to B and from B to C, then there is an authenticity from A to C. According to this rule,
we can obtain the dashed arrow  from  and  (as shown in Figure 14). The
remaining dashed arrow  can be obtained by using the following proof of
contradiction. If we use A B to represent A authenticates B, or equivalently, B
is regarded as authentic by A, for we already know the facts that RC Sj and RC

Uu, if Sj Uu doesn’t hold, then from the transitive property, RC Uu

cann’t hold as well. This contradicts the fact that RC Uu. Hence, the dashed
arrow exists. This completes the figure. From the figure, we can see that the mutual
authentications between each pair of the three parties can be satisfied.



 

 



Fig. 14. Authenticity relationship

5.2 Session key agreement

In our protocol, after a legal user Uu has logged into an eligible server and finished
the authentication and session key agreement phase, they have the same session key.
This can easily be seen in the two steps, step 5 and step 7, of the authentication and
key agreement phase executed by Sj and Uu respectively in Section 4.(3).(A).(b).

5.3 Perfect forward secrecy

In our scheme, a compromised password can’t be used to construct previous
session keys for that we use the Diffie-Hellman key agreement protocol which are
based on random nonces. In other words, the session keys generated before in each
session between the user and server are independent. Accordingly, our scheme
provides perfect forward secrecy.

5.4 Changing password freely and securely

In our protocol, user Uu can change his password securely. Even if an attacker E
can temporarily obtain Uu’s smart card; however, without the knowledge of Uu’s
password, he can’t change Uu’s password by choosing two different passwords, PW1

guessed by E as the old and PW2 as the new one, and replacing B with B⊕H(IDu, PW1)

Uu Sj RC

22

⊕H(IDu, PW2), where B is the value stored in Uu’s smart card. This is because the

password change request can only be accepted after successful mutual authentication
between Uu and RC as stated in Section 4.(3).(C).(b).

5.5 Preventing the stolen-verifier attack

The protocol we proposed doesn’t hold any verifier table. RC holds only two secret
keys, x and y. Each user has only one secret H(his identity, x) and each server has
only one secret H(his identity, y). Therefore, our scheme gets rid of using verifier
tables and thus can prevent stolen-verifier attack.

5.6 Preventing the insider-server spoofing attack

It is unnecessary to assume that all servers are trustworthy as needed in [7, 9, 12],
because in our protocol, an illegal or spoofing server’s request will be rejected. More
precisely, if a legal server Si having his own RSi sends message 2 in Figure
11-continued to RC by impersonating Sj, without the knowledge of Sj’s RSj and RC’s
secret key y, the value of V1 he computes would be different from the value of RC’s
computation V*

1 . Hence, he can’t be authenticated by RC. Therefore, the server
spoofing attack fails.

5.7 Preventing insider-user impersonating attack

If a legal client Un wants to impersonate client Uu to login to Sj. Without the
knowledge of Uu’s B and PWu, the value of C1 he computes would be different from
the value of RC’s computation C*

1 as shown in Figure 11-continued. Hence, he can’t
be authenticated by RC. Therefore, the insider-user impersonating attack fails.

5.8 Preventing off-line and on-line password guessing attack

In scenario (A) of our protocol, there are four messages: M1={IDu, SIDj, C1, Nc,
Flag}, M2={IDu, SIDj, C1, Nc, V1, Ns}, M3={ C2, V2} and M4={ C3, Ns}, to and from
through the Internet. Assume that an attacker Un who hasn’t got Uu’s smart card wants
to guess Uu’s password PWu. (If Un has got Uu’s smart card, this case is termed as
smart-card-lost attack. We will discuss it in section 5.11.) We argue that Un will not
succeed. For among the transmitted messages, except for C1 computed by Uu in M1

and M2, Sj and RC needn’t use Uu’s password PWu to compute any values. Moreover,
PWu in C1 is protected by a hash function iterating two times, i.e., C1 =H(B⊕H(IDu,

PWu), SIDj, Nc). Not to mention, its inner hash result is Xor-ed by an unknown value
B. Hence, Un can hardly succeed in guessing PWu due to the one-way property of a
hash function. That is, due to the unknown value B, Un definitely can’t implement the
off-line password guessing attack. For the same reason, we can easily see that an

23

attacker can not launch an on-line password guessing attack if we set our protocol to
tolerate three times of wrong password logins.

5.9 Preventing replay attack

For our protocol uses different random nonces, c and s, each time in computing Nc
and Ns which are needed in computing the related values, such as C1, V1, C2, V2 and
C3, to prevent any replay attack. Therefore, an attacker cannot be authenticated
successfully by resending any previous transmitted values.

5.10 Preventing parallel session (Man-in-the-Middle) attack

In scenario (A), assume that Un wants to launch a parallel session attack by
masquerading as both Sj to Uu and Uu to Sj. After receiving the message M1={IDu,
SIDj, C1, Nc, Flag} from Uu in the login phase, Un masquerading as Uu starts another
protocol by resending M1 to Sj. For more clarity, we briefly show this scenario in Fig.
15. Although, using value C1, Un can pass RC’s authentication after Sj sending M1 to
RC. However, without the knowledge of Uu’s nonce c, he can’t finish the
authentication and session key agreement phase to impersonate Uu to Sj. Because Un,
without the knowledge of c, can’t compute the correct session key SK ', (Ns)c, shared
with Sj. Similarly, Un can’t impersonate Sj to Uu for he hasn’t Sj’s secret RSj to
compute V1 for being verified by RC. Hence, Un can’t obtain C2, V2 from RC to
compute a valid C3 which will be transmitted to Uu for Uu to authenticate Sj. In other
words, Un can not succeed in impersonating Sj to Uu. Therefore, the parallel session
attack fails.

Sj (Uu)
M1

Un
(Sj) Uu

M1

Fig. 15. Parallel session attack

5.11 Preventing smart-card-lost attack

Assume that an attacker Un has got Uu’s smart cardand knows the stored value B.
Even under such a situation, our protocol still can prevent various attacks including:
(1) insider impersonating attack, (2) off-line/on-line password guessing attack, (3)
outsider impersonation attack, (4) replay attack. We analyze each type of attack as
follows.

(1) Insider impersonating attack: Although, Uu obtains the smart card and knows
the value B. However, without the knowledge of Uu’s PWu, the value C1 =H(B
⊕H(IDu, PWu), SIDj, Nc) which Un computes would be different from the

24

value of RC’s computation C*
1 . Hence, he can’t be authenticated by RC.

Therefore, the insider attack fails.
(2) Off-line/On-line password guessing attack: When Un gets the smart card, he

may want to launch an off-line password guessing attack. However, for the
smart card only stores IDu and B, without the help of on-line RC which will
responds with C2, V2 to Sj only under the situation that C1 equals his
computation C*

1 . That can happen only Un can guess the correct PWu. Hence,
he can’t launch such an off-line password guessing attack. In other words,
without a correct password PW to compute the specified Bu=B⊕H(IDu, PW),

Un can’t compute the right value of C1=H(Bu, SIDj, Nc) to pass RC’s
verification. More precisely, since the computed C1 for each guessing needed
to be verified by RC to confirm its correctness, Un can’t implement the off-line
password guessing attack without the help of RC. In the same fashion, the
impossibility of on-line password guessing attack can be obviously seen if we
set the protocol to tolerate three times of wrong password logins.

(3) Outsider impersonation attack: Assume that an un-registered user getting Uu’s
smart card wants to impersonate Uu by starting the protocol with Sj. Similarly,
without the knowledge of Uu’s password PWu, he can not deduce the correct
value of Bu=B⊕H(IDu, PWu)=H(IDu, x) and henceforth C1, which will be

verified by RC. In other words, since each password guessing for each
impersonation needs the help of RC’s verification, the attacker could hardly be
authenticated successfully. This means the outsider impersonation attack fails.

Except for the resistance of the above mentioned attacks, our protocol also can
prevent replay attack under the situation of smart card loss. The reasons are the same
as the ones previously described in Section 5.9. We omit them here.

6. Discussion

In this section, we first show that our protocol meets the requirement of single
registration property. Then, to show the advantage of our scheme, we compare our
protocol with both Tsai’s [1] and Hsiang-Shih’s [14] in communication cost and with
[3,4,6,10,11] in the aspect of card-issue cost.

6.1 Single registration

In our protocol, a user needs not to register at each server. Instead, he only needs to
register at RC. Consequently, he needs to remember only one password and can
access all of the legal servers’resources.

6.2 Low communication cost

25

Tsai’s protocol needs seven passes from login to complete mutual authentication in
the first scenario and five passes in the second scenario as indicated in Figure 1
through Figure 3. Hsiang-Shih’s protocol needs five passes as indicated in Figure 4.
However, ours needs four passes in scenario (A) and only two passes in scenario (B).
Therefore, our protocol is significantly more efficient than [1] and [14]. That is
because when estimatly the efficiency of a protocol, the number of passes is the
dominant factor when compared with the computation overhead the protocol requires.
That is, our scheme has the lowest communication cost when compared with theirs.

6.3 Increasing servers freely/ Low card-issue cost

Several schemes [3,4,6,10,11] can’t add a server freely.For in them, when a server
is added, all users who want to login to the newly added server need to re-register to
get a new smart card. It increases the system’s card-issue cost. In our protocol, when a
server is added, all users don’t need re-register. He can use his own card to access the
new server’s resources. That is, our protocol can let the number of servers increase
freely and thus has low card-issue cost.

6.4 Comparison

In this section, we compare the security features and some other properties among
our scheme and the other proposed schemes listed in the reference, except [8] and [15]
which only pointed out the weakness of [5] and [2] respectively without proposing a
new method. Comparing with those schemes, our scheme not only can provide the
secure RC-off-line authentication and resist against all attacks but also can add a
server freely. We summarize the comparison of each property in Table 1. From Table
1, we can see our protocol is the most favorite one in multi-server environments.

Tab. 1. The comparison of our scheme and other proposed schemes

Ours [1] [2] [3] [4] [5] [6] [7] [9] [10][11][12][13][14]

1. RC-off-line authentication ○ × ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ × ×

2. Increasing servers freely ○ ○ ○ × × ○ × ○ × × × ○ ○ ○

3. No assuming that all servers are trustworthy ○ ○ ○ ○ ○ ○ ○ × × ○ ○ × ○ ○

4. Low computationally intensive ○ ○ ○ × × × ○ ○ ○ ○ ○ ○ ○ ○

5. No verifier table in RC or any server ○ ×a.
○ ○ ○ ○ ○ ○ ○ ○ ○ ○ × ○

6. Mutual authentication ○ ○ ○ × × × ○ ○ × ○ ○ ○ ○ ○

7. Preventing insider-server spoofing attack ○ × × ○ ○ ○ ○ × × ○ ○ × ○ ○

8. Preventing off-line password guessing attack ○ ○ × ○ ○ × ○ ○ ○ ○ ○ ○ ○ ○

9. Preventing parallel session attack ○ ○ × × × × ○ ○ ○ ○ ○ ○ ○ ○

10. Preventing smart-card-lost attack ○ ○ × × ○ × × × ○ × × × × ×

a. It is described in Section 2.1.(3).(A).

26

7. Conclusion

We have analyzed the security of Tsai’s and Hsiang-Shih’sprotocols. Although
they claimed their protocols are secure, we have showed several attacks on their
schemes. In addition, we propose a novel secure efficient protocol. After the security
analysis, we conclude that our protocol has the following merits including: 1. single
registration, 2. no verifier table, 3. low communicational cost, 4. increasing servers
freely, 5. mutual authentication, 6. session key agreement, 7. perfect forward secrecy,
8. changing password freely and securely, and 9. preventing various attacks such as,
stolen-verifier attack, insider-server spoofing attack, insider-user impersonating attack,
off-line password guessing attack, on-line password guessing attack, replay attack,
parallel session attack, and smart-card-lost attack. That is, up to date, our protocol is
not only the most secure but also the most efficient scheme using smart card in a
multi-server environment.

References

[1] J.L. Tsai, “Efficient multi-server authentication scheme based on one-way hash
function without verification table”, Computers & Security, Vol. 27, No. 3-4, pp.
115-121, May-June 2008.

[2] Y.P. Liao, S.S. Wang, “A secure dynamic ID based remote user authentication
scheme for multi-server environment”, Computer Standards & Interfaces, Vol.
31, No. 1, pp. 24-29, January 2009.

[3] W.J. Tsaur, C.C. Wu, W.B. Lee, “An enhanced user authentication scheme for
multi-server Internet services”, Applied Mathematics and Computation, Vol. 170,
No. 1-1, pp. 258-266, November 2005.

[4] W.J. Tsaur, C.C. Wu, W.B. Lee, “A smart card-based remote scheme for
password authentication in multi-server Internet services”, Computer Standards
& Interfaces, Vol. 27, No. 1, pp. 39-51, November 2004.

[5] I.C. Lin, M.S. Hwang, L.H. Li, “A new remote user authentication scheme for
multi-server architecture”, Future Generation Computer Systems, Vol. 19, No. 1,
pp. 13-22, January 2003.

[6] J. H. Lee, D. H. Lee, “Efficient and Secure Remote Authenticated Key
Agreement Scheme for Multi-server Using Mobile Equipment”, Proceedings of
International Conference on Consumer Electronics, pp. 1-2, January 2008.

[7] L. Hu, X. Niu, Y. Yang, “An Efficient Multi-server Password Authenticated Key
Agreement Scheme Using Smart Cards”, Proceedings of International
Conference on Multimedia and Ubiquitous Engineering, pp. 903-907, April
2007.

[8] X. Cao, S. Zhong, “Breaking a remote user authentication scheme for multi-

27

server architecture”, IEEE Communications Letters, Vol. 10, No. 8, pp. 580-581,
August 2006.

[9] Z.F. Cao, D.Z. Sun, “Cryptanalysis and Improvement of User Authentication
Scheme using Smart Cards for Multi-Server Environments”, Proceedings of
International Conference on Machine Learning and Cybernetics, pp. 2818-2822,
August 2006.

[10] C.C. Chang, J.Y. Kuo, “An efficient multi-server password authenticated key
agreement scheme using smart cards with access control”, Proceedings of
International Conference on Advanced Information Networking and Applications,
Vol. 2, No. 28-30, pp. 257-260, March 2005.

[11] R.J. Hwang, S.H. Shiau, “Password authenticated key agreement protocol for
multi-servers architecture”, Proceedings of International Conference on Wireless
Networks, Vol. 1, No. 13-16, pp. 279-284, June 2005.

[12] C.C. Chang, J.S. Lee, “An efficient and secure multi-server password
authentication scheme using smart cards”, Proceedings of International
Conference on Cyberworlds, No. 18-20, pp. 417-422, November 2004.

[13] W.S. Juang, “Efficient multi-server password authenticated key agreement using
smart cards”, IEEE Transactions on Consumer Electronics, Vol. 50, No. 1, pp.
251-255, February 2004.

[14] H.C. Hsiang, W.K. Shih, “Improvement of the secure dynamic ID based remote
user authentication scheme for multi-server environment”, Computer Standards
& Interfaces, In Press, Available online December 2008.

[15] Y. Chen, C.H. Huang, J.S. Chou, “Comments on two multi-server authentication
protocols”, http://eprint.iacr.org/2008/544, December 2008.

