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Abstract. This paper presents a new identity based key agreement protocol. In id-based cryptography
(introduced by Adi Shamir in [33]) each party uses its own identity as public key and receives his secret
key from a master Key Generation Center, whose public parameters are publicly known.
The novelty of our protocol is that it can be implemented over any cyclic group of prime order, where
the Diffie-Hellman problem is supposed to be hard. It does not require the computation of expensive
bilinear maps, or additional assumptions such as factoring or RSA.
The protocol is extremely efficient, requiring only twice the amount of bandwith and computation of
the unauthenticated basic Diffie-Hellman protocol. The design of our protocol was inspired by MQV
(the most efficient authenticated Diffie-Hellman based protocol in the public-key model) and indeed its
performance is competitive with respect to MQV (especially when one includes the transmission and
verification of certificates in the MQV protocol, which are not required in an id-based scheme). Our
protocol requires a single round of communication in which each party sends only 2 group elements: a
very short message, especially when the protocol is implemented over elliptic curves.
We provide a full proof of security in the Canetti-Krawczyk security model for key exchange, including
a proof that our protocol satisfies additional security properties such as forward secrecy, and resistance
to reflection and key-compromise impersonation attacks.

1 Introduction

Identity-based cryptography was introduced in 1984 by Adi Shamir [33]. The goal was to simplify
the management of public keys and in particular the association of a public key to the identity of
its holder. Usually such binding of a public key to an identity is achieved by means of certificates
which are signed statements by trusted third parties that a given public key belongs to a user. This
requires users to obtain and verify certificates whenever they want to use a specific public key, and
the management of public key certificates remains a technically challenging problem.

Shamir’s idea was to allow parties to use their identities as public keys. An id-based scheme
works as follows. A trusted Key Generation Center (KGC) generates a master public/secret key
pair, which is known to all the users. A user with identity ID receives from the KGC a secret key
SID which is a function of the string ID and the KGC’s secret key (one can think of SID as a
signature by the KGC on the string ID). Using SID the user can then perform cryptographic tasks.
For example in the case of id-based encryption any party can send an encrypted message to the user
with identity ID using the string ID as a public key and the user (and only the user and the KGC)
will be able to decrypt it using SID. Note that the sender can do this even if the recipient has not
obtained yet his secret key from the KGC. All the sender needs to know is the recipient’s identity
and the public parameters of the KGC. This is the major advantage of id-based encryption.

Id-Based Key Agreement and its Motivations. This paper is concerned with the task of id-
based key agreement. Here two parties Alice and Bob, with identities A,B and secret keys SA, SB
? An extended abstract of this paper appears in the proceedings of CT-RSA 2010
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respectively, want to agree on a common shared key, in an authenticated manner (i.e. Alice must be
sure that once the key is established, only Bob knows it – and viceversa). Since key agreement is
inherently an interactive protocol (both parties are “live” and ready to establish a session) there is
a smaller gain in using an id-based solution: indeed certificates and public keys can be easily sent
as part of the protocol communication.

Yet the ability to avoid sending and verifying public key certificates is a significant practical
advantage (see e.g. [36]). Indeed known shortcomings of the public key setting are the requirement
of centralized certification authorities, the need for parties to cross-certify each other (via possibly
long certificate chains), and the management of some form of large-scale coordination and commu-
nication (possibly on-line) to propagate certificate revocation information. Identity-based schemes
significantly simplify identity management by bypassing the certification issues. All a party needs
to know in order to generate a shared key is its own secret key, the public information of the KGC,
and the identity of the communication peer (clearly, the need to know the peer’s identity exists in
any scheme including a certificate-based one).

Another advantage of identity-based systems is the versatility with which identities may be
chosen. Since identities can be arbitrary string, they can be selected according to the function and
attributes of the parties (rather than its actual “name”). For example in vehicular networks a party
may be identified by its location (“the checkpoint at the intersection of a and b”) or in military
applications a party can be identified by its role (“platoon x commander”). This allows parties
to communicate securely with the intended recipient even without knowing its “true” identity but
simply by the definition of its function in the network.

Finally, identities can also include additional attributes which are temporal in nature: in par-
ticular an “expiration date” for an identity makes revocation of the corresponding secret key much
easier to achieve.

For the reasons described above, id-based KA protocols are very useful in many systems where
bandwith and computation are at a premium (e.g. sensor networks), and also in ad-hoc networks
where large scale coordination is undesirable, if not outright impossible. Therefore it is an important
question to come up with very efficient and secure id-based KA protocols.

Previous work on id-based key agreement. Following Shamir’s proposal of the concept of
id-based cryptography, some early proposals for id-based key agreement appeared in the literature:
we refer in particular to the works of Okamoto [28] (later improved in [29]) and Gunther [21]. A
new impetus to this research area came with the breakthrough discovery of bilinear maps and their
application to id-based encryption in [5]: starting with the work of Sakai et al. [32] a large number
of id-based KA protocols were designed that use pairings as tool. We refer the readers to [6] and
[12] for surveys of these pairing-based protocols.

The main problem with the current state of the art is that many of these protocols lack a proof
of security, and some have even been broken. Indeed only a few (e.g., [8, 37]) have been proven
according to a formal definition of security.

Our Contribution. By looking at prior work we see that provably secure id-based KAs require
either groups that admit bilinear maps [8, 37], or to work over a composite RSA modulus [29].

This motivated us to ask the following question: can we find an efficient and provably secure
id-based KA protocol such that:

1. it that can be implemented over any cyclic group in which the Diffie-Hellman problem is sup-
posed to be hard. The advantages of such a KA protocol would be several, in particular: (i) it
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would avoid the use of computationally expensive pairing computations; (ii) it could be imple-
mented over much smaller groups (since we could use ’regular’ elliptic curves, rather than the
ones that admit efficient pairings computations for high security levels, or the group Z∗N for a
composite N needed for Okamoto-Tanaka).

2. it is more efficient than any KA protocols in the public key model (such as MQV [26]), when one
includes the transmission and verification of certificates which are not required in an id-based
scheme. This is a very important point since, as we pointed out earlier in this Section, id-based
KA protocols are only relevant if they outperform PKI based ones in efficiency.

Our new protocol presented in this paper (whose description appears in Figure 1), achieves all these
features.

The IB-KA Protocol

Setting: A Key Generation Center (KGC) chooses a group G of prime order q together with a random

generator g ∈ G and an exponent x
$← Zq. KGC publishes G, q, g, y = gx and two hash functions H1, H2.

Key Derivation: A user with identity U receives its private key (rU , sU ) from the KGC computed

as the Schnorr’s signature of the string U under public key y. That is rU = gkU for kU
$← Zq and

sU = kU + xH1(U, rU ) mod q.

Key agreement: A and B choose ephemeral private exponents tA and tB , respectively.

A A, rA, uA = gtA

- B

B, rB , uB = gtB

�

z1 = (uBrBy
H1(B,rB))tA+sA z1 = (uArAy

H1(A,rA))tB+sB

z2 = utA
B z2 = utB

A

Z = H2(z1, z2)

Fig. 1. A and B share session key Z. See Section 3 for more specific details.

It can be implemented over any cyclic group over which the Diffie-Hellman problem is as-
sumed to be hard. In addition it requires an amount of bandwith and computation similar to the
unauthenticated basic Diffie-Hellman protocol. Indeed our new protocol requires a single round of
communication in which each party sends just two group elements (as opposed to one in the Diffie-
Hellman protocol). Each party must compute four exponentiations to compute the session key (as
opposed to two in the Diffie-Hellman protocol).

A similar favorable comparison holds with the Okamoto-Tanaka protocol in [29]. While that
protocol requires only two exponentiations, it does works over Z∗N therefore requiring the use of
a larger group size, which almost totally absorbs the computational advantage, and immediately
implies a much larger bandwith requirement. Detailed efficiency comparisons to other protocols in
the literature are discussed in Section 6.
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We present a full proof of security of our protocol in the Canetti-Krawczyk security model. Our
results hold in the random oracle model, under the Strong Diffie-Hellman Assumption. We also
present some variations of our protocol that can be proven secure under the basic Computational
Diffie-Hellman Assumption. Our protocol can be proven to satisfy additional desirable security
properties such as perfect forward secrecy3, and resistance to reflection and key-compromise im-
personation attacks.

Our Approach. The first direction we took in our approach was to attempt to analyze the id-
based KA protocols by Gunther [21] and Saeednia [31]. They also work over any cyclic group where
the Diffie-Hellman problem is assumed to be hard, but lack a formal proof of security. While the
original protocols cannot be shown to be secure, we were able to prove the security of modified
versions of them. Nevertheless these two protocols were not very satisfactory solutions for the
problem we had set out to solve, particularly for reasons of efficiency since they required a large
number of exponentiations, which made them less efficient than say MQV with certificates. The
security analysis of these modified Gunther and Saeednia protocols will be included in the final
version.

Our protocol improves over these two protocols by using Schnorr’s signatures [34], rather than
ElGamal, to issue secret keys to the users. The simpler structure of Schnorr’s signatures permits a
much more efficient computation of the session key, resulting in less exponentiations and a single
round protocol. Our approach was inspired by the way the MQV protocol [26] achieves implicit
authentication of the session key. Indeed our protocol can be seen as an id-based version of the
MQV protocol.

2 Preliminaries

In this section we present some standard definitions needed in the rest of the paper.
Let N the set of natural numbers. We will denote with ` ∈ N the security parameter. The

partecipants to our protocols are modeled as probabilistic Turing machines whose running time is
bounded by some polynomial in `. If S is a set, we denote with s

$← S the process of selecting an
element uniformly at random from S.

Definition 1 (Negligible function). A function ε(`) is said to be negligible if for every polyno-
mial p(`) there exists a positive integer c ∈ N such that ∀` > c we have ε(`) < 1/p(`).

In the following assume G to be a cyclic multiplicative group of order q where q is a `-bit long
prime. We assume that there are efficient algorithms to perform multiplication and membership
test in G. Finally we denote with g a generator of G.

Assumption 1 (Computational Diffie-Hellman [16]) We say that the Computational Diffie-
Hellman (CDH) Assumption (for G and g) holds if for any probabilistic polynomial time adversary
A the probability that A on input (G, g, gu, gv) outputs W such that W = guv is negligible in `. The
probability of success of A is taken over the uniform random choice of u, v ∈ Zq and the coin tosses
of A.

3 We can prove PFS only in the case the adversary was passive in the session that he is attacking – though he can be
active in other sessions. As proven by Krawczyk in [25], this is the best that can be achieved for 1-round protocols
with implicit authentication, such as ours.
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The CDH Assumption has a Decisional version in which no adversary can actually recognize the
value guv when given gu, gv. In the proof of our basic protocol we are going to need the ability to
perform such decisions when one of the two elements is fixed, while still assuming that the CDH
holds. The assumption below basically says that the CDH Assumption still holds in the presence
of an oracle DH(U, ·, ·) that solves the decisional problem4 for a fixed U .

Assumption 2 (Strong-DH Assumption [1]) We say that the Strong-DH (SDH) Assumption
holds (for G and g) if the CDH Assumption holds even in the presence of an oracle DH(U, ·, ·)
that on input two elements V̂ , Ŵ in the group generated by g, output ”yes” if and only if Ŵ is the
Diffie-Hellman of U and V̂ .

The oracle DH for the Decisional DH problem exists for some groups G, e.g. the ones that admit a
bilinear map. We stress, however that we need the oracle only for the proof of security, and it is not
needed in the execution of the protocol by the real-life parties. This means that we can efficiently
implement our protocol over any cyclic group G.
The oracle DH for the Decisional DH problem exists for some groups G, e.g. the ones that admit a
bilinear map. We stress, however that we need the oracle only for the proof of security, and it is not
needed in the execution of the protocol by the real-life parties. This means that we can efficiently
implement our protocol over any cyclic group G.

The question, then, is the real-life meaning of a proof under the Strong-DH assumption when the
protocol is implemented over a group G that does not admit such oracle DH. If we prove the security
of our protocol under the SDH assumption, then if a successful adversary can be constructed one
of two things must be true:

1. either the CDH Assumption is false
2. or we have a proof that the hardness of the Decisional problem is implied by the CDH Assump-

tion (in other words the CDH and DDH Assumptions are equivalent). Indeed in this case the
CDH holds, and the protocol is insecure, which means that the oracle DH cannot exists (if it
existed, given that the CDH holds, the protocol should be secure).

In other words, while proofs under the Strong-DH assumption do not necessarily offer a constructive
cryptanalysis of a conjectured hard problem in case of a successful attack, they do offer the “dual”
ability to prove the equivalence of the CDH Assumption (with any other additional assumption
required by the proof) with the DDH Assumption over the underlying group.

2.1 Definitions for identity-based key agreement

The security of our protocols is analyzed in a version of the Canetti-Krawczyk (CK) [9, 10] model
for key agreement, adapted to the identity-based setting. We present an informal summary of the
model and we refer the reader to [9, 10] for details.

An identity-based key-agreement protocol is runned by parties interacting in a network where
each party is identified by a unique identity which is publicly known to all the other parties (e.g.
Alice’s identity is a string IDA). In addition there exists a trusted entity called Key Generation
Center (KGC) that generates the public parameters of the system and also issues secret keys to

4 We remark that in recent papers the name strong Diffie-Hellman assumption was used to denote a different
conjecture defined over bilinear groups [4]. In this paper, we refer to the original terminology from [1]
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users associated with their public identities, e.g. the KGC generates a secret key SKA associated
to IDA.

An instance of the protocol is called a session. The two parties participating in the session are
called its peers. Each peer maintains a session state which contains incoming and outgoing messages
and its random coins. If the session is completed then each party outputs a session key and erases
its session state. A session may also be aborted. In this case no session key is generated.

Each party assigns an unique identifier to a session he is participating in. For simplicity, we
assume it to be the quadruple (Alice,Bob,mOut,mIn) where Alice is the identity of the party, Bob
its peer, mOut and mIn are the outgoing and incoming messages, respectively, for Alice. If Alice
holds a session (Alice,Bob,mOut,mIn) and Bob holds a session (Bob,Alice,mIn,mOut) then the
two sessions are matching.

The adversary The CK definition models a very realistic adversary which basically controls all
communication in the network. In particular it can intercept and modify messages exchanged by
parties, delay or block their delivery, inject its own messages, schedule sessions etc. The adversary is
allowed to choose the identities of the parties, and obtain private keys from the KGC for identities
of its choice.

Finally we allow the adversary to access some of the parties’ secret information, via the following
attacks: party corruption, state-reveal queries and session-key queries. When an adversary corrupts
a party, it learns its private information (the private key and all session states and session keys
currently stored), and it later controls its actions. In a state-reveal query to a party running a
session, the adversary learns the session state for that session (since we assume that session states
are erased at the end of the session, such query makes sense only against sessions that are still
incomplete). Finally a session-key query allows the adversary to learn the session key of a complete
session. A session is called exposed if it or its matching session (if existing) is compromised by one
of the attacks above.

Security Definition Let A be a probabilistic polynomial time adversary modeled as described
above. Then consider the following experiment running A.

At the beginning of the game the adversary receives in input the public parameters of the system
(generated by the KGC) and then can perform all the actions described in the section before.

At some point, A chooses a test session among all the completed and unexposed sessions. We
toss a random bit b $← {0, 1}. If b = 0 we give A the session key K0 of the test session. Otherwise
we take a random session key K1 and provide A with K1.

After having received Kb, the adversary can continue to perform its actions against the protocol
with the exception that it cannot expose the test session. At the end of the game A outputs a bit
b′ as its guess for b.

Definition 2. An identity-based key-agreement protocol is said to be secure if for any PPT adver-
sary A the following holds:

1. if two uncorrupted parties complete matching sessions then they output the same session key
with overwhelming probability;

2. the probability that A guesses the correct b in the above experiment is at most 1/2 plus a negligible
fraction of the security parameter.

We define the advantage of A as AdvIB−KAA = |Pr[b = b′]− 1/2|.
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3 The New Protocol IB-KA

Protocol setup. The Key Generation Center (KGC) chooses a group G of prime order q (where
q is `-bits long), a random generator g ∈ G and two hash functions H1 : {0, 1}∗ → Zq and
H2 : Zq × Zq → {0, 1}`. Then it picks a random x

$← Zq and sets y = gx. Finally the KGC outputs
the public parameters MPK = (G, g, y,H1, H2) and keeps the master secret key MSK = x for
itself.
Key Derivation. A user with identity ID receives, as its secret key, a Schnorr’s signature [34]
of the message m = ID under public key y. More specifically, the KGC after verifying the user’s
identity, creates the associated secret key as follows. First it picks a random k

$← Zq and sets
rID = gk. Then it uses the master secret key x to compute sID = k +H1(ID, rID)x. (rID, sID) is
the secret key returned to the user. The user can verify the correctness of its secret key by using
the public key y and checking the equation gsID

?= rID · yH1(ID,rID).
A protocol session. Let’s assume that Alice wants to establish a session key with Bob. Alice owns
secret key (rA, sA) and identity A while Bob has secret key (rB, sB) and identity B.

Alice selects a random tA
$← Zq, computes uA = gtA and sends the message 〈A, rA, uA〉 to Bob.

Analogously Bob picks a random tB
$← Zq, computes uB = gtB and sends 〈B, rB, uB〉 to Alice.

After the parties have exchanged these two messages, they are able to compute the same session
key Z = H2(z1, z2). In particular Alice computes

z1 = (uBrByH1(B,rB))tA+sA and z2 = utAB .

On the other hand Bob computes

z1 = (uArAyH1(A,rA))tB+sB and z2 = utBA .

It is easy to see that both the parties are computing the same values z1 = g(tA+sA)(tB+sB) and
z2 = gtAtB . The state of a user ID during a protocol session contains only the fresh random
exponent tID. We assume that after a session is completed, the parties erase their state and keep
only the session key.

Remark: In the next section we show that protocol IB-KA is secure under the Strong Diffie-Hellman
Assumption. However, in Section 5 we show how to modify IB-KA to obtain security under the basic
CDH Assumption, at the cost of a slight degradation in efficiency.

4 Security Proof

We prove the security of the protocol by a usual reduction argument. More precisely we show how
to reduce the existence of an adversary breaking the protocol into an algorithm that is able to
break the SDH Assumption with non-negligible probability. The adversary is modeled as a CK
attacker: (see Section 2.1 for details): in particular it will choose a test session among the complete
and unexposed sessions and will try to distinguish between its real session key and a random one.

In our reduction we will make use of the General Forking Lemma, stated by Bellare and Neven
in [2]. It follows the original forking lemma of Pointcheval and Stern [30], but, unlike that, it makes
no mention of signature schemes and random oracles. In this sense it is more general and it can be
used to prove the security of our protocol. We briefly recall it in the following.
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Lemma 1 (General Forking Lemma [2]). Fix an integer Q ≥ 1 and a set H of size |H| ≥ 2. Let
B be a randomized algorithm that on input x, h1, . . . , hQ returns a pair (J, σ) where J ∈ {0, . . . , Q}
and σ is referred as side output. Let IG be a randomized algorithm called the input generator. Let
accB = Pr[J ≥ 1 : x $← IG, h1, . . . , hQ

$← H; (J, σ) $← B(x, h1, . . . , hQ)] be the accepting probability
of B.

The forking algorithm FB associated to B is the randomized algorithm that takes in input x and
proceeds as follows:

Algorithm FB(x)
Pick random coins ρ for B
h1, . . . , hQ

$← H

(J, σ) $← B(x, h1, . . . , hQ; ρ)
If J = 0 then return (0,⊥,⊥)
h′1, . . . , h

′
Q

$← H

(J ′, σ′) $← B(x, h1, . . . , hJ−1, h
′
J , . . . , h

′
Q, ; ρ)

If (J = J ′ and hJ 6= h′J) then return (1, σ, σ′)
Else return (0,⊥,⊥).

Let frk = Pr[b = 1 : x $← IG; (b, σ, σ′) $← FB(x)]. Then frk ≥ accB(accBQ − 1
|H|).

Roughly speaking the lemma says that if an algorithm B accepts with some non-negligible
probability, then a “rewind” of B is likely to accept roughly with the same probability (more
specifically the probability squared). If we look at the details of this lemma, the intuitions are
that: (1) h1, . . . , hQ can be seen as the set of replies to random oracle queries made by the original
adversary and (2) the forking algorithm implements the rewinding. Moreover it is important that
in FB the two executions of B are run with the same random coins. We defer to [2] for the proof of
the lemma.

Theorem 3. Under the Strong-DH Assumption, if we model H1 and H2 as random oracles, then
protocol IB-KA is a secure identity-based key agreement protocol.

Proof. For sake of contradiction let us suppose there exists a PPT adversary A that has non-
negligible advantage ε into breaking the protocol IB-KA , then we show how to build a solver
algorithm S for the CDH problem.

In our reduction we will proceed into two steps. First, we describe an intermediate algorithm B
(i.e. the simulator) that interacts with the IB-KA adversary A and returns a side output σ. Second,
we will show how to build an algorithm S that exploits FB, the forking algorithm associated with
B, to solve the CDH problem under the Strong-DH Assumption.
B receives in input a tuple (G, g, U, V ), where U = gu, V = gv and u, v are random exponents

in Zq, and a set of random elements h1, . . . , hQ ∈ Zq. The simulator is also given access to a DH
oracle DH(U, ·, ·) that on input (V̂ , Ŵ ) answers “yes” if (U, V̂ , Ŵ ) is a valid DDH tuple . The side
output of B is σ ∈ G×Zq or ⊥. Let n be an upper bound to the number of sessions of the protocol
run by the adversary A and Q1 and Q2 be the number of queries made by A to the random oracles
H1, H2 respectively. Moreover, let Qc be the number of users corrupted by A and Q = Q1 +Qc+ 1.

Algorithm BDH(U,·,·)(G, g, U, V, h1, . . . , hQ)
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Initialize ctr ← 0; bad← false; empty tables H1, H2;

Run A on input (G, g, y = U) as the public parameters of the protocol and simulates the
protocol’s environment for A as follows:

Guess the test session by choosing at random the user (let us call him Bob) and the order
number of the test session. If n is an upper bound to the number of all the sessions
initiated by A then the guess is right with probability at least 1/n.

H2 queries On input a pair (z1, z2):
If H2[z1, z2] = ⊥: choose a random string Z ∈ {0, 1}` and store H2[z1, z2] = Z
Return H2[z1, z2] to A

H1 queries On input (ID, r):
If H1[ID, r] = ⊥, then ctr ← ctr + 1;H1[ID, r] = hctr
Return H1[ID, r] to A

Party Corruption When A asks to corrupt party ID 6= B, then:
ctr ← ctr + 1; s $← Zq; r = gsy−hctr

If H1[ID, r] 6= ⊥ then bad← true
Store H1[ID, r] = hctr and return (r, s) as ID’s private key.
For the case of Bob, the simulator simply chooses the rB component of Bob’s private
key by picking a random kB

$← Zq and setting rB = gkB . We observe that in this case B
is not able to compute the corresponding sB. However, since Bob is the user guessed for
the test session, we can assume that the adversary will not ask for his secret key.

Simulating sessions First we describe how to simulate sessions different from the test
session. Here the main point is that the adversary is allowed to ask session-key queries
and thus the simulator must be able to produce the correct session key for each of
these sessions. The simulator has full information about all the users’ secret keys except
Bob. Therefore B can easily simulate all the protocol sessions that do not include Bob,
and answer any of the attacker’s queries about these sessions. Hence we concentrate on
describing how B simulates interactions with Bob.
Assume that Bob has a session with Charlie (whose identity is the string C). If Charlie
is an uncorrupted party this means that B will generate the messages on behalf of him.
In this case B knows Charlie’s secret key and also has chosen his ephemeral exponent tC .
Thus it is trivial to see that B has enough information to compute the correct session
key. The case when the adversary presents a message 〈C, rC , uC〉 to Bob as coming
from Charlie is more complicated. Here is where B makes use of the oracle DH(y, ·, ·)
to answer a session-key query about this session. The simulator replies with a message
〈B, rB, uB = gtB 〉 where tB is chosen by B. Recall that the session key is H2(z1, z2) with
z1 = g(sC+tC)(sB+tB) and z2 = utBC . So z1 is the Diffie-Hellman result of the values uCgsC

and uBg
sB , where gsC = rCy

H1(C,rC) and gsB = rBy
H1(B,rB) can be computed by the

simulator. Notice also that the simulator knows tB and kB (the discrete log of rB in base
g). Therefore it checks if H2[z1, z2] = Z where z2 = utBC and DH(y, uCgsC , z̄1) = “yes′′

where z1 = z1
(uCg

sC )(kB+tB)H1(B,rB)−1 . If B finds a match then it outputs the corresponding

Z as session key for Bob. Otherwise it generates a random ζ
$← {0, 1}` and gives it as

response to the adversary. Later, for each query (z1, z2) to H2, if (z1, z2) satisfies the
equation above it sets H2[z1, z2] = ζ and answers with ζ. This makes oracle’s answers
consistent.
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In addition observe that the simulator can easily answer to state reveal queries as it
chooses the fresh exponents on its own.

Simulating the test session Let 〈B, ρB, uB = gtB 〉 be the message from Bob to Alice
sent in the test session. We notice that such message may be sent by the adversary who
is trying to impersonate Bob. In this case A may use a value ρB = gλB of its choice as the
public component of Bob’s private key (i.e. different than rB = gkB which B simulated
and for which it knows kB). B responds with the message 〈A, rA, uA = V 〉 as coming
from Alice. Finally B provides A with a random session key.

Run until A halts and outputs its decision bit
If H1[B, ρB] = ⊥ then set ctr ← ctr + 1 and H1[B, ρB] = hctr
If bad = true then return (0,⊥)
Let i ∈ {1, . . . , Q} such that H1(B, ρB) = hi
Let Z = H2(z1, z2) be the correct session key for the test session where
z1 = (uArAyH1(A,rA))(tB+λB+xhi) and z2 = utBA .

If A has success into distinguishing Z from a random value it must necessarily query the
correct pair (z1, z2) to the random oracle H2. This means that B can efficiently find the pair
(z1, z2) in the table H2 using the Strong-DH oracle.

Compute τ = z1
z2(uBρBy

hi )sA
= ρvBW

hi

Return (i, (τ, hi))

Let IG be the algorithm that generates a random Diffie-Hellman tuple (G, g, U, V ) and accB be
the accepting probability of B.5 Then we have that:

accB ≥
ε

n
− Pr[bad = true].

The probability that bad = true is the probability that the adversary has guessed the “right” r for
a corrupted party ID before corrupting it, in one of the H1 oracle queries beforehand. Since r is
uniformly distributed the probability of guessing it is 1/q, and since the adversary makes at most
Q queries to H1 and corrupts at most Qc parties (and q > 2`) we have that

accB ≥
ε

n
− Qc(Q)

2`
.

which is still non-negligible, since ε is non-negligible.
Once we have described the algorithm B we can now show how to build a solver algorithm S

that can exploit FB, the forking algorithm associated with the above B.
The algorithm S plays the role of a CDH solver under the Strong-DH Assumption. It receives

in input a CDH tuple (G, g, U, V ) where U = gu, V = gv and u, v are random exponents in Zq. S
is also given access to a decision oracle DH(U, ·, ·) that on input (V̂ , Ŵ ) answers “yes” if (U, V̂ , Ŵ )
is a valid DH tuple .

Algorithm SDH(U,·,·)(G, g, U, V )
(b, τ, τ ′) $← F

DH(U,·,·)
B (G, g, U, V )

If b = 0 then return 0 and halt
Parse σ as (τ, h) and σ′ as (τ ′, h′)

5 We say that B accepts if it outputs (J, σ) such that J ≥ 1.
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Return W = (τ/τ ′)(h−h
′)−1

If the forking algorithm FB has success, this means that there exist random coins ρ, an index
J ≥ 1 and h1, . . . , hQ, h

′
J , . . . , h

′
Q ∈ Zq with h = hJ 6= h′J = h′ such that: the first execution of

B(G, g, U, V, h1, . . . , hQ; ρ) outputs τ = ρvBW
h where H1[B, ρB] = h; the second execution of

B(G, g, U, V, h1, . . . , hJ−1, h
′
J , . . . , h

′
Q; ρ) outputs τ ′ = (ρ′B′)

vW h′ where H1[B′, ρ′B′ ] = h′. Since the
two executions of B are the same until the response to the J-th query to H1, then we must have B =
B′ and ρB = ρ′B′ . Thus it is easy to see that S achieves its goal by computing W = (τ/τ ′)

1
h−h′ = guv.

Finally, by the General Forking Lemma, we have that if A has non-negligible advantage into
breaking the security of IB-KA , then S’s success probability is also non-negligible.

4.1 Additional Security Properties of IB-KA

In addition to the notion of session key security, any key-agreement protocol should satisfy other
important properties. Below we describe the additional security properties enjoyed by IB-KA .

Forward secrecy We say that a KA protocol has forward secrecy, if after a session is completed
and its session key erased, the adversary cannot learn it even if it corrupts the parties involved in
that session. In other words, learning the private keys of parties should not jeopardize the security
of past completed sessions.

A relaxed notion of forward secrecy (which we call weak) assumes that only past sessions in
which the adversary was passive (i.e. did not choose the messages) are not jeopardized.

The following theorem shows that the protocol IB-KA satisfies this notion of weak forward
secrecy.

Theorem 4. Let A be a PPT adversary that is able to break the weak forward secrecy of the IB-KA
protocol with advantage ε. Let n be the an upper bound to the number of sessions of the protocol
run by A and Q1 and Q2 be the number of queries made by the adversary to the random oracles
H1, H2 respectively. Then we can solve the CDH problem with probability at least ε/(nQ2).

Proof. For sake of contradiction let us suppose there exists a PPT adversary A that is able to break
the weak forward secrecy of the protocol IB-KA with non-negligible advantage ε. Then we show how
to build a simulator S that uses A to solve the CDH problem with probability at least ε/nQ2. S
receives in input a tuple (G, g, U, V ) where U = gu, V = gv and u, v are random exponents in Zq.
The simulator plays the role of the CDH solver and its goal it to compute the value W = guv.

Setup. S sets up a simulated execution of the protocol, with simulated KGC, users and sessions.
First of all S defines the public parameters of the protocol simulating the KGC. So it chooses a
random x

$← Zq and sets y = gx. Then it provides the adversary with input (G, g, y) and oracle
access to H1 and H2. Since H1 and H2 are modeled as random oracles, S can program their output.
For each input (ID, rID) S chooses a random eID

$← Zq and sets H1(ID, rID) = eID.
Since S knows the master secret key x, it can simulate the KGC in full, and give secret keys to

all the parties in the network, including answering private key queries from the adversary.
At the beginning of the game S guesses the test session and its peers Alice and Bob.

Simulating protocol sessions. Sessions different from the test session are easily simulated since
S knows all the information needed to compute the session keys and answer any query (including
session key and state reveal queries) from the adversary.

11



Simulating the test session. We now show how to simulate the test session in order to extract
W = guv from the adversary. Since in this game the adversary is assumed to be passive during
the test session, the parties (i.e. the simulator in this case) choose the messages exchanged in this
session.

Let (A, rA, sA), (B, rB, sB) be the identity information and the secret keys of Alice and Bob
respectively (S knows these values). The simulator sets Alice’s message as (A, rA, uA = U) while
the one from Bob is (B, rB, uB = V ). S is implicitly setting tA = u, tB = v. In this case the
correct session key is Z = H2(g(sA+u)(sB+v), guv). Since H2 is modeled as a random oracle, if A has
success into distinguishing Z from a random value, it must have queried H2 on the correct input
(z1 = g(sA+u)(sB+v), z2 = guv). Thus S can choose a random value among all the queries that it
received from the adversary. Since the number of queries Q2 is polynomially bounded, S can find
the correct z2 = W with non-negligible probability ε/nQ2. This completes the proof of this case6.

Resistance to reflection attacks A reflection attack occurs when an adversary can compromise
a session in which the two parties have the same identity (and the same private key). Though, at
first glance, this seems to be only of theoretical interest, there are real-life situations in which this
scenario occurs. For example consider the case when Alice is at her office and wants to establish a
secure connection with her PC at home, therefore running a session between two computers with
the same identity and private key.

Here we extend the proof of security given in Section 4 to support reflection attacks. We observe
that in the case when the test session has a matching session the proof remains valid even if the
test session is between Bob and himself.

On the other hand, when there is no matching session we have to show a little modification of
the proof. In fact the current proof actually does not work when the adversary sends a message
with the same value rB provided by the KGC (for which the simulator knows the discrete logarithm
kB, but cannot compute the corresponding sB). The issue is that the knowledge of sB would be
needed to extract the solution of the CDH problem.

We point out that a reflection attack using a value ρB 6= rB is captured by the current proof.
Moreover it is reasonable to assume that a honest party refuses connections from itself that use a
“wrong” key.

However it is possible to adapt the proof in this specific case. In particular we can show that
a successful run of the adversary enables the simulator to compute gu

2
instead of guv. As showed

in [27] by Maurer and Wolf, such an algorithm can be easily turned into a solver for CDH. For lack
of space this is deferred to the full version of the paper.

In this section we show how to adapt the proof in this specific case. In particular, we show that
a successful run of the adversary enables the simulator to compute gu

2
instead of guv. As showed

in [27] by Maurer and Wolf, such an algorithm can be easily turned into a solver for CDH.
Let us consider the following modification of the proof given in Section 4. If in the test session

the adversary sends a message from Bob to Bob of type 〈B, rB, uB = gtB 〉 then the simulator picks
a random e

$← Zq and replies with message 〈B, rB, u′B = U e〉. Let h∗ be the random oracle response
to H1(B, rB). We observe that in this case the correct session key is the hash Z = H2(z1, z2) where
z1 = g(kB+uh∗+ue)(kB+uh∗+tB) and z2 = guetB . If the adversary has success into distinguishing Z

6 We could give the simulator access to the Strong-DH oracle DH, and then S could use it to “test” all queries to H2

to find the correct W . The reduction would be tighter (removing the factor of Q−1
2 from the success probability)

but would require the Strong-DH Assumption also in this case.
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from a random value it must necessarily query the correct pair (z1, z2) to the random oracle H2.
This means that S can efficiently find the pair (z1, z2) in the table H2 using the Strong-DH oracle.
Once it has recovered these values, it can compute:

gu
2

=

(
z1

gk
2
BU2kBh∗U ekBukB

B z2z
h∗/e
2

) 1
h∗(h∗+e)

.

Resistance to Key Compromise Impersonation Suppose that the adversary learns Alice’s
private key. Then, it is trivial to see that this knowledge enables the adversary to impersonate
Alice to other parties. A key compromise impersonation (KCI) attack can be carried out when the
knowledge of Alice’s private key allows the adversary to impersonate another party to Alice.

To see that the protocol IB-KA is resistant to KCI attacks it suffices to observe that in the proof
of security, when the adversary tries to impersonate Bob to Alice, we are able to output Alice’s
private key whenever it is asked by the adversary. It means that the proof continues to be valid
even in this case.

Ephemeral Key Compromise Impersonation A recent paper by Cheng and Ma [14] shows
that our protocol is susceptible to an ephemeral key compromise attack. Roughly speaking this
attack considers the case when the adversary can make state-reveal queries (in order to learn the
ephemeral key of a user) even in the test session. Though the paper is correct, we point out that
this kind of attack is not part of the standard Canetti-Krawczyk security model that is considered
in this paper.

5 A protocol secure under CDH

The protocol IB-KA given in section Section 3 is proven secure under the Strong-DH Assumption.
In this section we show how to modify that protocol so that its security can be based directly on
CDH. The cost is a few more exchanged elements and a few more exponentiations.

The basic idea is to use the Twin Diffie-Hellman (2DH) Assumption introduced by Cash et al.
in [11]. Informally 2DH states that an adversary which is given in input random U1, U2, V ∈ G,
should not be able to compute a pair (W1,W2) such that W1 and W2 are the DH of U1, V and
U2, V respectively. It is easy to see that this assumption is equivalent to the well known CDH. The
valuable contribution of [11] was to show that its “strong” version is equivalent to CDH too.

Informally the Strong-2DH assumption says that 2DH holds even in the presence of an oracle
2DH(U1, U2, ·, ·, ·) that solves its decisional version for fixed U1, U2.

Therefore we modify the IB-KA protocol in such a way it can be proven secure under the Strong-
2DH Assumption. Then, since Cash et al. proved in [11] that Strong-2DH and CDH are equivalent,
we obtain a protocol secure under CDH.

In order to modify the protocol we apply the idea of “twinning” some elements so that the
construction can be proven under the Strong-2DH assumption. The new protocol is almost the
same as IB-KA except for the following:

– the master public key consists of two group elements y1, y2. This means that each user ID owns
a secret key (r1ID, s

1
ID, r

2
ID, s

2
ID) which are two Schnorr’s signatures of its identity corresponding

to public keys y1, y2 respectively.
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– each user ID generates two elements u1
ID = gt

1
ID , u2

ID = gt
2
ID and sends 〈r1ID, r2ID, u1

ID, u
2
ID〉.

– the session key of a session between users with identities A and B is

K = H(z11, z12, z21, z22, ω11, ω12, ω21, ω22)

where z11 = g(s1A+t1A)(s1B+t1B), z12 = g(s1A+t1A)(s2B+t2B), z21 = g(s2A+t2A)(s1B+t1B), z22 = g(s2A+t2A)(s2B+t2B),
ω11 = gt

1
At

1
B , ω12 = gt

1
At

2
B , ω21 = gt

2
At

1
B and ω22 = gt

2
At

2
B .

It is also possible to instantiate a simpler version of this protocol in which the public key is only y
as in IB-KA . This is slightly more efficient since a user has to send one less element. This variant
can also be proven secure under the CDH provided that the adversary is not allowed to issue
state-reveal queries.

The proof of security of this protocol will appear in an extended version of this paper.

6 Comparisons with other IB-KA Protocols

In this section we compare IB-KA with other id-based KA protocols from the literature. In particu-
lar, we consider the protocol by Chen and Kudla [13] (SCK-2) (which is a modification of Smart’s
[35]) and two protocols proposed very recently by Boyd et al. [7] (BCNP1, BCNP2).

For our efficiency comparisons we consider a security parameter of 128 and implementations of
SCK-2, BCNP1 and BCNP2 with Type 3 pairings 7, which are the most efficient pairings for this
kind of security level (higher than 80). Our protocol is assumed to be implemented in an elliptic
curves group G with the same security parameter. In this scenario elements of G and G1 need 256
bit to be represented, while 512 bits are needed for G2 elements and 3072 bits for an element of
GT .

We estimate the computational cost of all the protocols using the costs per operation for Type
3 pairings given by Chen et al. in [12]. The bandwidth cost is expressed as the amount of data in
bits sent by each party to complete a session of the protocol8.

According to the work of Chen et al. [12] SCK-2 is the most efficient protocol with a proof of
security in the CK model for all types of pairings. It is proved secure using random oracles under the
Bilinear Diffie-Hellman Assumption and requires one round of communication with only one group
element sent by each party. To be precise, we point out that the protocol of Boyd et al. (BMP) [8]
would appear computationally more efficient than SCK-2, but unfortunately it works only in type
1 and type 4 pairings and is proven secure only in symmetric pairings. BCNP1 and BCNP2 are
generic constructions based on any CCA-secure IB-KEM. When implemented (as suggested by the
authors of [7]) using one of the IB-KEMs by Kiltz [23], Kiltz-Galindo [24] or Gentry [20] they lead
to a two-pass single-round protocol with (CK) security in the standard model. BCNP2 provides
weak FS and resistance to KCI attacks, while BCNP1 satisfies only the former property.

The results are summarized in Table 1 assuming protocols BCNP1 and BCNP2 to be imple-
mented with Kiltz’s IB-KEM (the most efficient for this application according to the work of Boyd
et al. [7]). We defer to the original papers of SCK-2 [13] and BCNP1, BCNP2 [7] for more details
about these costs. As described in the table, our protocol has a reasonable bandwidth requirement
and achieves the best computational efficiency among the other id-based KA protocols.
7 This classification of pairing groups into several types is provided by Galbraith et al. in [18].
8 We do not consider the identity string sent with the messages as it can be implicit and, in any way, appears in all

the protocols.
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weak
KCI

Standard Efficiency
FS model Bandwidth Cost per party

BCNP1 7 3 3 768 56
BCNP2 3 3 3 1024 59
SCK-2 3 3 7 256 43
IB-KA 3 3 7 512 6

Table 1. Comparisons between IB-KA protocols.

Comparison with PKI-based protocols. We also compare our protocol to MQV [26], and
its provably secure version HMQV [25], which is the most efficient protocol in the public-key
setting. When comparing our protocol to a PKI-based scheme, like MQV, we must also consider
the additional cost of sending and verifying certificates.

We measure the computation costs of the protocols in terms of the number of exponentiations
in the underlying group needed to compute the session key. If the exponentiations is done with an
exponent that is half the length of the group size, then obviously we count it as 1/2 exponentiation.
Also if an exponentiation is done over a fixed basis, we apply precomputation schemes to speed up
the computation, e.g. [19].

Our protocol requires each party to send a single message consisting of two group elements. To
compute the session key, the parties perform 2 full exponentiations over variable basis, and one
half exponentiation over a fixed basis9. For our security parameter, following [19], the latter half
exponentiation can be computed with less than 20 group multiplications, with a precomputation
table of moderate size.

In MQV, each party sends a single message consisiting of one group element, and performs 1.5
exponentiations to compute the session key. Moreover, in HMQV certificates are sent and verified.
Here we distinguish two cases: the certificate is based either on an RSA signature, or on a discrete-
log signature, e.g. Schnorr’s.

In the RSA case, a short exponent e.g. e = 216 + 1, is typically used, and the verification cost
is basically equivalent to the cost of the half exponentiation with precomputation in our protocol
above. Therefore in this case, MQV is faster, but by a mere half exponentiation. The price to pay
however is a massive increase in bandwidth to send the RSA signature (i.e. 3072 bits), and the
introduction of the RSA Assumption in order to prove security of the entire scheme.

If we use a Schnorr signature for the certificate, then MQV require sending two more group
elements, and therefore its bandwidth requirement is already worse than our protocol (by one group
element). The parties then must compute one full and one half exponentiation, both with fixed
basis10 to verify the certificate. This extra computational cost can be compared to an additional half
exponentiation, making the computation requirement of MQV with Schnorr certificates equivalent
to that of our protocol.

In conclusion, when comparing our protocol with MQV with certificates we find that our pro-
tocol: (i) has comparable computational cost; (ii) has better bandiwdth (by far in the case of RSA
certificates) and (iii) simplifies protocol implementation by removing entirely the need to manage
certificates and to interact with a PKI11.

9 Indeed since the input to the hash function H1 is randomized, we can set its output length to be half of the length
of the group size.

10 Though different basis, which means that in order to apply precomputation techniques, the parties need to maintain
two tables.

11 In the above, we did not account for the cost of verifying group membership for the elements sent by the parties,
which is necessary both in the case of MQV and our protocol, and is the same in both protocols.
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