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Abstract. Recently, the new Multibase Non-Adjacent Form (mbNAF)
method was introduced and shown to speed up the execution of the
scalar multiplication with an efficient use of multiple bases to represent
the scalar. In this work, we first optimize the previous method using
fractional windows, and then introduce further improvements to achieve
additional cost reductions. Moreover, we present new improvements in
the point operation formulae. Specifically, we reduce further the cost
of composite operations such as quintupling and septupling of a point,
which are relevant for the speed up of multibase methods in general. Re-
markably, our tests show that, in the case of standard elliptic curves, the
refined mbNAF method can be as efficient as Window-w NAF using an
optimal fractional window size. Thus, this is the first published method
that does not require precomputations to achieve comparable efficiency
to the standard window-based NAF method using precomputations. On
other highly efficient curves as Jacobi quartics and Edwards curves, our
tests show that the refined mbNAF currently attains the highest per-
formance for both scenarios using precomputations and those without
precomputations.
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1 Introduction

Scalar multiplication, denoted by kP (where k is a scalar and P a point on the
elliptic curve), is the most time consuming operation in Elliptic Curve Cryp-
tosystems (ECC). Although several algorithms to compute kP using efficient
representations of k have been proposed and extensively studied in past years,
it is still a challenge to improve the performance of this operation for further
deployment in embedded systems.

? A version of this paper appears in the 12th International Conference on Practice
and Theory in Public Key Cryptography (PKC2009), LNCS 5443, pp. 443-462, S.
Jarecki and G. Tsudik (eds.). Springer, Heidelberg, 2009.
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In that effort, a strategy that has gained lots of attention in recent years is
the use of representations based on double- and multi-base chains. The use of the
so-called Double Base Number System (DBNS) for cryptographic applications
was first proposed by Dimitrov et al. in [7]. In the setting of ECC, double-base
chains were first applied to the computation of scalar multiplication by Dimitrov
et al. [8], and later extended to multibase chains by [17] and [9].

Although it was empirically shown that double-base chains reduce the cost
of the scalar multiplication, the main drawbacks of the initial approaches using
this strategy were their memory penalty and difficulty to analyze performance
theoretically [8, 11, 1]. To solve these problems, an improved multibase represen-
tation was introduced by Longa in [17]. One of the key features of this represen-
tation is the use of the non-adjacency property (as found in NAF), which makes
the conversion process (from binary to multibase) simple, efficient and with no
memory impact. This new representation is called Multibase NAF (mbNAF).
Its window-based version using an extended set of precomputations appears as a
natural extension and is referred to as Window-w Multibase NAF (wmbNAF)1.

Nevertheless, although Multibase NAF is simple and offers high performance,
it is still possible to find shorter and more efficient multibase chains. In that
direction, this work proposes new algorithms that are able to find highly efficient
multibase chains and thus reduce scalar multiplication costs even further.

In addition, we also propose other several optimizations that aim at improv-
ing the efficiency of multibase methods (and standard methods in some cases).
The contributions of this paper can be summarized as follows2:

– New reductions in the cost of composite (point) operations. We present im-
proved formulas for quintupling and septupling in Jacobian coordinates.

– Improved (w)mbNAF-based algorithms (hereinafter referred to as Refined
mbNAF methods) that ”smartly” trade doublings for triplings/quintuplings
and find shorter chains, reducing further the cost of the scalar multiplication.

– Window-based methods, namely wmbNAF and its refined version, are opti-
mized by using fractional windows.

– The theoretical analysis demonstrating mathematically the performance of
the Multibase NAF methods (and variants) is presented.

– Finally, we carry out a more comprehensive comparison taking into account
most efficient curve shapes and point formulas found in the literature, and
recent and most efficient methods to compute the evaluation and precompu-
tation stages in the scalar multiplication.

Note that we focus here on methods that are efficient if the point P used
to compute kP is not known in advance. In such a context, we analyze the
performance of the proposed methods and compare to that of traditional binary
methods such as NAF and wNAF, and another approaches using double-base

1 In some way, Multibase NAF can be seen as a generalization of the ternary/binary
algorithm by Ciet et al. [6]. The original intention of the author [17], however, was
to insert the concept of double-base chains proposed by [8] into the NAF algorithm.

2 This paper presents formally and expands the results of the technical report [19].
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chains (methods using a ”Greedy” algorithm will be generically referred to as
DB [8, 11, 1]). Our analysis includes the standard form of an elliptic curve over
prime fields, and other very efficient curve forms such as Jacobi quartics [5] and
Edwards curves [12]. It will turn out that the Refined mbNAF is currently the
most cost efficient method for both scenarios with and without precomputations
and for all the studied curve forms.

Our work is organized as follows. In Section 2, we detail some background
about ECC over prime fields, summarizing the state-of-the-art point formulae for
Jacobian coord., Jacobi quartics and Edwards curves. Improvements to these op-
erations are discussed in this section. In the following section, we briefly describe
the original (w)mbNAF methods and discuss their theoretical performance. In
Section 4, we optimize the performance of multibase algorithms by using frac-
tional windows and present a detailed theoretical analysis. We then describe new
improvements to Multibase NAF in Section 5 and propose the Refined mbNAF
method, highlighting its advantages and high performance for computing scalar
multiplication. In Section 6, the performance of various methods for scalar mul-
tiplication is evaluated through extensive tests. Finally, in Section 7 we present
some conclusions summarizing the contributions of this work.

2 Elliptic Curve Cryptography

A brief introduction to ECC is presented in this section. The reader is referred to
[14] for extended details. An elliptic curve E over a prime field IFp (denoted by
E(IFp)) can be defined by the simplified Weierstrass equation E: y2 =x3 + ax+ b
(referred to as the standard EC form in the remainder), where a, b∈ IFp. The
points on the curve E and the point at infinity, denoted by O, form an additive
group on top of which the cryptosystem works. Two basic operations exist to
perform point computations: doubling (2P ) and addition (P +Q) of points.

The representation of points on the curve E using (x, y), known as affine
coordinates, introduces expensive field inversions (I) in the computation of point
operations. Hence, most efficient implementations use representations of the form
(X :Y :Z), known as projective coordinates. For example, an efficient case of the
latter is given by Jacobian coordinates, where each projective point (Xi :Yi :Zi)
corresponds to the affine point (Xi/Z2

i ,Yi/Z3
i ). The reader is referred to [18] for

complete details about most efficient formulae in this system.
Recently, other curve forms with faster group laws have appeared in the liter-

ature. We focus here on two of them: Jacobi quartics and Edwards curves, whose
explicit formulas are highly efficient. We briefly described them in the following.

Jacobi quartic curve. It is defined by the projective curve Y 2 =X4 + 2aX2Z2 +
Z4, where a∈ IFp and a2 6= 1. A given projective point (Xi :Yi :Zi) corresponds
to the affine point (Xi/Zi,Yi/Z2

i ). The most efficient formulae in these curves
have been developed by Hisil et al. [15, 16] using an extended coordinate system
of the form (Xi :Yi :Zi :X2

i :Z2
i ).

Edwards curve. The projective curve in this setting is given by (X2 +Y 2)Z2 =
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Z4 + dX2Y 2. However, the most efficient explicit formulas in this case correspond
to a new coordinate system known as inverted Edwards coord. [4], for which the
curve equation takes the form (X2 +Y 2)Z2 =X2Y 2 + dZ4 and each projective
point (Xi :Yi :Zi) corresponds to the affine point (Zi/Xi,Zi/Yi).

Note that the basic doubling and addition operations are sufficient to im-
plement traditional methods relying on (signed) binary representations as NAF.
However, new double- and multi-base methods require specialized operations
such as tripling and/or quintupling of a point for their efficient realization.

In this work, we present optimized formulas for quintupling and septupling
using Jacobian coord. (refer to Appendix A for complete details). Furthermore,
certain computations such as those at the beginning of the evaluation stage can
benefit from having specialized formulas with mixed coordinates that accept the
input in affine and output the result in some projective system. Because of page
constrains, formulas using mixed coordinates on standard and Edwards curves
have not been included (the interested reader is referred to [19]). For mixed Ja-
cobi quartic-affine coord., formulas can be easily derived from doubling, tripling,
quintupling and septupling formulas due to [15, 16] by setting Z1 = 1.

In Table 1, we summarize the costs of the state-of-the-art point formulae, in-
cluding the ones described above, for our three curves of interest: standard ellip-
tic curves using Jacobian coordinates (Jacobian, parameter a = −3 in equation
E), Jacobi quartics using the extended coordinate system (JQuartic) and Ed-
wards curves using inverted Edwards coord. (InvEdw). For the remainder, dou-
bling (2P ), tripling (3P ), quintupling (5P ), septupling (7P ), addition (P +Q)
and doubling-addition (2P +Q) are denoted by D, T, Q, S, A and DA, respec-
tively. Operations using mixed coordinates are denoted by mD, mT, mQ, mS,
mA and mDA, corresponding to each of the aforementioned point operations.
For addition, the case in which both inputs are in affine is denoted by mmA.
Costs are expressed in terms of field multiplications (M) and squarings (S), dis-
regarding field addition/subtractions (A) and multiplication/divisions by small
constants for simplification purposes. We also assume that 1S = 0.8M .

In some cases, it is possible to reduce the cost of certain operations if some
values are precalculated in advance. That is the case of addition and doubling-
addition (DA) with stored values in Jacobian coordinates (see Table 1). If, for
instance, values Z2

i and Z3
i are precalculated for each precomputed point in win-

dowed methods the costs of these point operations can be reduced by 1M + 1S.

Table 1. Cost of elliptic curve point operations

Curve D/mD T/mT Q/mQ S/mS A mA/mmA DA/mDA

Jacobian
3M+5S/ 7M+7S/ 10M+12S (1)/ 14M+15S (1)/ 10M+4S (2) 7M+4S/ 13M+8S (2)

1M+5S 5M+7S (1) 8M+12S (1) 12M+15S (1) 11M+5S 4M+2S 14M+9S/

11M+7S

InvEdw
3M+4S/ 9M+4S/

- - 9M+1S
8M+1S/

-
3M+3S 7M+3S (1) 7M

JQuartic
2M+5S/ 8M+4S/ 14M+4S/ 16M+8S/ 7M+3S (2) 6M+3S/

-
6S (1) 5M+5S (1) 11M+5S (1) 13M+9S (1) 7M+4S 4M+3S

(1) Introduced in this work (see Appendix A and [19]); (2) cost of operation with stored values.
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We use the efficient operations discussed in this section for our comparisons
and cost analyses of scalar multiplication methods in Section 6.

3 Multibase Non-Adjacent Form Methods

Following, we briefly describe the original Multibase NAF methods introduced
in Longa [17]. Our main contribution in this section is to provide the theoretical
analysis of the average density of these methods when using bases {2,3} and
{2,3,5} that was deferred in [17].

3.1 Multibase NAF (mbNAF) and Window-w Multibase NAF
(wmbNAF)

Determining and finding the ”optimal” multibase chain in the setting of ECC
seems to be a hard problem, mainly due to the fact that an ”optimal” multi-
base chain is not necessarily the shortest, but the one that requires the ”right”
balance in the number of additions and all the other point operations. Although
finding such an ”optimal” multibase chain remains an open problem, Longa [17]
proposed a representation that allows a better control of the appearance of point
operations in the scalar expansion, and consequently, gets closer to the optimal.
Such a generic multibase representation, known as mbNAF, has the form:

k =
m∑
i=1

si

J∏
j=1

a
ci(j)
j (1)

where a1 6= . . . 6= aJ are prime integers from a set of bases A = {a1, . . . , aJ} (a1:
main base),
m is the length of the expansion,
si are signed digits from a given set D\{0}, i.e., |si| ≥ 1 and si ∈ D\{0},
ci(j) are decreasing exponents, s.t. c1(j) ≥ c2(j) ≥ . . . ≥ cm(j) ≥ 0 for
each j from 2 to J , and
ci(1) are decreasing exponents for the main base a1 (i.e., j = 1), s.t. ci(1)
≥ ci+1(1) + 2 ≥ 2 for 1 ≥ i ≥ m− 1.

The last two conditions above guarantee that an expansion of the form (1)
is efficiently executed by a scalar multiplication using Horner’s method as follows:

kP =
J∏

j=1

a
dm(j)
j

(
J∏

j=1

a
dm−1(j)

j

(
. . .

(
J∏

j=1

a
d1(j)
j (s1P ) + s2P

)
+ . . . + sm−1P

)
+ smP

)
where dm(1) ≥ 0, and di(1) ≥ 2 for 1 ≥ i ≥ m − 1. The latter is equivalent
to the last condition in (1) and incorporates the non-adjacency property in the
multibase representation. Basically, it fixes the minimal number of consecutive
operations with the main base (i.e., a1) between any two additions to 2. Note
that an operation with the main base refers to a doubling if a1 = 2 (this will be
the case for most scenarios where doubling is the most efficient point operation).
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If we relax the previous condition and allow larger window sizes (i.e., allow-
ing 3, 4, or more, consecutive operations with the main base between any two
additions) we can reduce further the average number of nonzero terms in the
scalar representation at the expense of a larger digit set D and, consequently, a
larger precomputed table. The previous technique is known as wmbNAF.

The mbNAF and wmbNAF representations require the following digit set [17]

D =
{

0,±1,±2, . . . ,±
⌊
aw1 − 1

2

⌋}
\
{
±1a1,±2a1, . . . ,±

⌊
aw−1
1 − 1

2

⌋
a1

}
(2)

where w ≥ 2 ∈ ZZ+ (w = 2 for mbNAF). Without considering {O,P}, the
digit set (2) involves precomputing diP , where di ∈ D+\{0, 1} (note that only
positive values diP need to be stored in the table as the inverse of points can be
computed on the fly). Thus, the precomputed table consists of (aw1 −aw−1

1 −2)/2
points. Note that if w = 2 (mbNAF case), the requirement of precomputations
is minimal. For instance, in the case a1 = 2 we need to store nil points besides
{O,P}.

It is important to remark that, obviously, (1) does not involve unique rep-
resentations. In [17], Longa provided algorithms (see Alg. 3.1) that efficiently
find a multibase chain of the form (1) and, given a window width and set of
bases, is unique for each integer. Note that Algorithm 3.1 integrates mbNAF
and wmbNAF.

Algorithm 3.1. Computing the mbNAF (wmbNAF) of a positive integer
INPUT: scalar k, bases A = {a1, . . . , aJ}, where aj ∈ ZZ+ are primes for 1 ≥ j ≥ J,

window w = 2 for mbNAF, and window w > 2 for wmbNAF, where w ∈ ZZ+

OUTPUT: the (a1, a2, . . . , aJ)NAFw(k) = ( . . . , k
(aj)

2 , k
(aj)

1 )

1. i = 1

2. While k > 0 do

2.1. If k mod a1 = 0 or k mod a2 = 0 or . . . or k mod aJ = 0, then ki = 0

2.2. Else:

2.2.1. ki = k mods aw
1

2.2.2. k = k − ki

2.3. If k mod a1 = 0, then k = k/a1, ki = k
(a1)
i

2.4. Elseif k mod a2 = 0, then k = k/a2, ki = k
(a2)
i...

2.(J+2). Elseif k mod aJ = 0, then k = k/aJ , ki = k
(aJ )
i

2.(J+3). i = i + 1

3. Return ( . . . , k
(aj)

2 , k
(aj)

1 )

k
(aj)
i in Algorithm 3.1 represents the digits in the multibase NAF representa-

tion, where ki ∈ D (see (2)) and the superscript (aj) represents the base aj ∈ A
associated to the digit in position i. The function mods represents the following
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If k mod aw1 ≥ aw1 /2, then ki = (k mod aw1 )− aw1
Else, ki = k mod aw1

Let us illustrate the method using Alg. 3.1 with the following example.

Example 1. The mbNAF representation of 9750 according to Algorithm 3.1 is
(2,3)NAF2(9750) = 1(2) 0(2) 0(2) 0(2) 1(2) 0(3) 0(2) -1(2) 0(2) 0(2) 1(2) 0(3) 0(2), which
would allow to compute 9750P as 2 × 3 (23 (22 × 3(24P + P ) − P ) + P ).
The latter involves 1mD+9D+2T+3mA. For instance, using Table 1 (JQuartic,
1S= 0.8M), 9750P would cost 107.2M . Compare this to the cost using NAF,
i.e., 1mD+12D+5mA = 119.6M .

Zero and Nonzero Density of Multibase NAF Methods. One of the
attractive properties of Multibase NAF methods is that the average number
of operations can be precisely determined by using Markov chains. The follow-
ing theorems are presented on this regard (please, refer to Appendix B for the
proofs).

Theorem 1. The average densities of additions, doublings and triplings for the
(w)mbNAF using bases A = {2,3} are approximately

δx = 2w

3(2w−2−s)+2w(w+1) , δ02 = 2w(w+1)
3(2w−2−s)+2w(w+1) and δ03 = 3(2w−2−s)

3(2w−2−s)+2w(w+1) ,

respectively, where s =
⌊
(2w−2 + 1)/3

⌋
and w ≥ 2 ∈ ZZ+ (w = 2 for mbNAF).

Theorem 2. The average densities of additions, doublings, triplings and quin-
tuplings for the (w)mbNAF using bases A = {2,3,5} are approximately

δx = 2w+3

17·2w−1−5r−24s−5t+2w+3(w+1) , δ02 = 2w+3(w+1)
17·2w−1−5r−24s−5t+2w+3(w+1) ,

δ03 = 24(2w−2−s)
17·2w−1−5r−24s−5t+2w+3(w+1) and δ05 = 5(2w−1−r−t)

17·2w−1−5r−24s−5t+2w+3(w+1) ,

respect., where r =
⌊
(2w−2 + 2)/5

⌋
, s=

⌊
(2w−2 + 1)/3

⌋
and t =

⌊
(2w−2 + 7)/15

⌋
.

Let us determine the average number of operations when using the Multibase
NAF method. First, it is known that the expected number of doublings, triplings
and additions is given by #D = δ02 ·digits, #T = δ03 ·digits and #A = δx ·digits,
where digits represents the total number of digits in the expansion (note that
a nonzero digit involves one doubling and one addition). Also, we can assume
that 2#D · 3#T ≈ 2n−1, where n represents the average bitlength of the scalar
k. Thus, #D · log 2 + #T · log 3 ≈ (n− 1) log 2, and replacing #D and #T, we
can estimate digits with the following

digits ≈ (n− 1) log 2
δ02 · log 2 + δ03 · log 3

(3)

which allow us to determine #D, #T and #A using the expressions above. A
similar procedure easily follows for the case of bases {2,3,5}.



8 P. Longa and C. Gebotys

For instance, in the case of mbNAF, bases A = {2,3}, w = 2 and n = 160 bits,
the average densities for doublings, triplings and additions derived from Theorem
1 are 4/5, 1/5 and 4/15. Using (3), we determine that digits = 142.35. Then,
the average cost of a scalar multiplication using Table 1 (JQuartic,1S = 0.8M)
is approx. 113.88D+28.47T+37.96mA = 1321M . Similarly, if we use bases A =
{2,3,5}, the average cost can be estimated as approximately 97.06D+24.27T+
10.11Q+32.35mA = 1299.82M . Compare the previous costs to that offered by
NAF: 159D+53mA = 1399.2M (in this case, δNAF = 1/3). Hence, theoretically,
it is determined that (2,3)NAF and (2,3,5)NAF surpasses NAF (case with no
precomputations) by about 5.6% and 7.1%, respectively.

Despite these results, it is still possible to find more efficient multibase chains
at the expense of some increment in the complexity of the basic Multibase NAF.
The improved multibase algorithms will be discussed in Section 5. Following,
we optimize the basic multibase methods using a recoding based on fractional
windows.

4 The Fractional Window-w Multibase Non-Adjacent
Form (Frac-wmbNAF)

In this section, we apply the concept of ”fractional” windows [24] to the multibase
NAF method to allow a flexible number of points in the precomputed table. The
new representation is called Fractional wmbNAF (denoted by Frac-wmbNAF).

For the remainder, we will assume that the main base a1 is 2 as this value is
expected to achieve the lowest costs with most efficient ECC curve forms. First,
let us establish our ideal table with unrestricted number of points diP , where di
∈ D+\{0, 1} = {3, 5, . . . ,m}, and m ≥ 3 ∈ ZZ+ is an odd integer. If we define
m in terms of the standard windows w, it would be expressed as

m = 2w−2 + s, (4)

where 2w−2 < m < 2w−1 and s ≥ 1 ∈ ZZ+ is odd.
We can now define the rules of our recoding scheme for bases A = {a1, a2, . . . ,

aJ} in the following:

1. If (k mod 2 = 0 or k mod a2 = 0 . . . or k mod aJ = 0), then ki = 0
2. Elseif 0 < r ≤ m, then ki = r
3. Elseif m < r < (3m− 4s), then ki = r − 2w−1

4. Elseif (3m− 4s) ≤ r < 2w, then ki = r − 2w

5. k = k − ki

where r = k mod 2w. Basically, the proposed recoding first detects if k is di-
visible by one of the bases. Else, it establishes a window w and checks if k can
be approximated to the closest extreme of the window using any of the digits
di available. It can be verified that the latter will be accomplished if steps 2
or 4 are satisfied. Otherwise, the established window is too large and, hence,
it is ”reduced” to the immediately preceding window size to which k can be
approximated (condition in step 3).
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An algorithm to convert any integer to Frac-wmbNAF representation can
be easily derived by replacing steps 1-5 above by steps 2.1 and 2.2 in Algo-
rithm 3.1. In this case, we will denote the Frac-wmbNAF of an integer k by
(2, a2, . . . , aJ)NAFw,t(k) = ( . . . , k(aj)

2 , k
(aj)
1 ), where t represents the number of

precomputed points, i.e., m = 2t+ 1.
Let us illustrate the new recoding with the following example.

Example 2. If k = 9750 and m = 5, then di ∈ D+\{0, 1} = {3, 5}, and w = 4
and s = 1 by means of (4). Then, the Frac-wmbNAF of 2950 is given by
(2,3)NAF4,2(9750) = 1(2)0(2)0(2)0(2)-3(2)0(2)0(2)0(2)-5(2)0(2)0(2)1(2)0(3)0(2), and
the conversion process can be visualized as 9750

2 → 4875
3 → 1625 − 1 → 1624

8 →
203 + 5→ 208

16 → 13 + 3→ 16
16 → 1.

Observe that, when 1625 is obtained, it requires an addition with 7 to reach
1632 (which is the closest number ≡ (0 mod 24), as required by a standard win-
dow w = 4). However, 7 is not part of our precomputed table, so the window
size is reduced accordingly to w = 3 and the value 1625 is approximated to the
closest value in the new window (i.e., 1624) using an addition with −1. We now
present the following theorem regarding the average density of this method for
the case A = {2, 3}.

Theorem 3. The average densities of nonzero terms, doublings and triplings of
the Frac-wmbNAF using bases A = {2, 3}, window size w and t available points
(represented by (2,3)NAFw,t) are approximately

2w

8(t+1)−3(u+v)+2w−2(4w−1) ,
8(t+1)+2w(w−1)

8(t+1)−3(u+v)+2w−2(4w−1) ,
3(2w−2−(u+v))

8(t+1)−3(u+v)+2w−2(4w−1)

respectively, where u = b(t+ 2)/3c and v = b(2w−2 − t)/3c.

The reader is referred to Appendix C for a proof. With Theorem 3, it is
possible to theoretically estimate the expected number of doublings, triplings
and additions using this method. For instance, following the procedure detailed
in Section 3.1, we can determine the cost of a scalar multiplication (without
including precomputation) for n = 160 bits using t = 2 points (w = 4) as
132.7D+16.6T+29.5mA = 1229.9M (JQuartic). Compare to the cost achieved
by Frac-wNAF, namely 159D+35.3mA = 1250.5M (δFrac−wNAF = 1/4.5 when
using m = 5; see [25]). Further cost reductions are observed for the case of
A = {2, 3, 5}.

5 The Refined Multibase Non-Adjacent Form (Refined
mbNAF)

In this section we present a new methodology to derive algorithms able to find
more efficient multibase chains. Similarly to the original Multibase NAF meth-
ods, we base our approach on the key observation that point operations such
as doublings and triplings have different costs and that any multibase algorithm
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with application to scalar multiplication should not only try to reduce the length
of the expansion but also (and more importantly) find the right balance between
the number of all the point operations involved.

Following the previous criteria, we modify the original Multibase NAF using
the next conditional statements (again, we restrict our analysis to the most
efficient case a1 = 2. Also, q, r are odd integers and {2, a2, . . . , aJ} 6 | q, r):

1. CONDITION1: before every nonzero term, approximate the current partial
value k to the closest value in the established window with k−ki = 2w ·aw2

2 ·
. . . ·awJ

J ·q, where ki ∈ D\{0} = {±1,±3,±5, . . . ,±m}, as usually performed,
if and only if there does not exist some value k− di = 2w

′
1 · aw

′
2

2 · . . . · a
w′J
J · r

in the established window, with wj , w
′
j ≥ 0 for each base from the set A =

{a1, a2, . . . , aJ} and di ∈ D\{0} 6= ki , such that the zero digit sequence to
follow is ”greater” than that guaranteed by the window w (i.e., for practical
purposes, 2w

′
1 · . . . · aw

′
J

J > 2w · . . . · awJ

J + e), in which case (CONDITION1
= true) the approximation k − di is applied instead of k − ki.

2. CONDITION2: before each zero term different than 0(2), we test if there is
a nonzero digit di ∈ D\{0} which would allow an approximation k − di =
2w
′ · aw

′
2

2 · . . . · a
w′J
J · r such that 2w

′ · . . . · aw
′
J

J > aw2
2 · . . . · a

wJ

J + e′, where
k = aw2

2 · . . . · a
wJ

J · q is a partial scalar value and wj , w
′
j ≥ 0 for each base

from the set A. If the latter happens (CONDITION2 = true), the approxi-
mation k − di replaces the testing and dividing by extra bases.

CONDITION1 aims at fulfilling our first criteria, namely, reducing the length
of the expansion. In this case, parameter e guarantees that the new approxima-
tion will yield a much shorter chain such that is justifiable to use more expensive
point operations instead of the usual sequence of doublings after each nonzero
term. Similarly, CONDITION2 is responsible for fixing a good balance between
the different point operations. In particular, it will ”smartly” insert more dou-
blings, as these are the most efficient operations in most common ECC settings.
In this case, e′ is a security parameter that guarantees that the algorithm in fact
trades expensive point operations by a large enough sequence of doublings such
that is justifiable to introduce an extra nonzero term. Both parameters, e and
e′, vary according to the relative cost among point operations and even with
the value of the scalar. Despite this complexity, we have been able to determine
parameter values that are efficient for most cases by performing extensive tests
with random numbers.

We have inserted the modifications above to the Frac-wmbNAF algorithm
(see Section 4), since this representation generalizes the (w)mbNAF methods,
and derived Algorithm 5.1 for bases {2,3} and {2,3,5}.

Notice the addition of CONDITION1 and 2 in steps 2.2.5. and 2.4.1. As can
be seen from the descriptions above, these techniques are quite general and give a
high degree of freedom to adjust the algorithm to different settings with different
constrains in the complexity level. In this work, we have focused on selecting
parameters that achieve high performance without increasing excessively the
complexity of the Multibase NAF algorithms.
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Algorithm 5.1. Computing the Refined mbNAF of a positive integer
INPUT: scalar k, bases {2, 3} or {2, 3, 5}, digit set D\{0}={±1,±3, . . . ,±(m=2t+1)}

w ≥ 2 ∈ ZZ+; m = 2w−2 + s and 2w−2 < m < 2w−1, where m ≥ 3 and s ≥ 1

are odd integers (m = 1, s = 0 for case without precomputations)

OUTPUT: the Refined (2, 3)NAFw,t(k) or (2, 3, 5)NAFw,t(k) = ( . . . , k
(aj)

2 , k
(aj)

1 )

1. i = 1, exception = 0

2. While k > 0 do

2.1. If exception = 0 and (k mod 2 = 0 or . . . or k mod aJ = 0), then ki = 0

2.2. Else:

2.2.1. r = k mod 2w

2.2.2. If 0 < r ≤ m, then ki = r

2.2.3. Elseif m < r < (3m− 4s), then ki = r − 2w−1

2.2.4. Elseif (3m− 4s) ≤ r < 2w, then ki = r − 2w

2.2.5. If CONDITION1 = true, then ki = di

2.2.6. k = k − ki, exception = 0

2.3. If k mod 2 = 0, then k = k/2, ki = k
(2)
i

2.4. Elseif ki = 0

2.4.1. If CONDITION2 = true, then exception = 1

2.4.2. Elseif k mod 3 = 0, then k = k/3, ki = k
(3)
i...

2.4.J . Elseif k mod aJ = 0, then k = k/aJ , ki = k
(aJ )
i

2.5. i = i + 1

3. Return ( . . . , k
(aj)

2 , k
(aj)

1 )

The recommended conditional statements for Alg. 5.1 are detailed in Tables
2 and 3 for bases {2,3} and {2,3,5}, respectively. We remark that these are only
recommended parameters, and that CONDITION1 and 2 can be modified to
suit the complexity constrains of a specific implementation, leading to different
performance levels.

It is clear from Tables 2 and 3 that the original conditions of the Multibase
NAF regarding non-adjacency (see (1)) have been relaxed. In particular, accord-
ing to CONDITION1, it can be the case that fewer consecutive doublings are
inserted for a particular window size.

Let us illustrate the proposed method with the following example.

Example 3. Using Algorithm 5.1 and Table 2, we find that the Refined mbNAF
chain for computing 9750P using bases {2,3}, w = 4,m = 5, is 9750 = 5 ×
23 × 35 + 5 × 2 × 3, which has been derived using the sequence 9750

2 → 4875
3 →

1625− 5→ 1620
2 → 810

2 →
405
3 →

135
3 →

45
3 →

15
3 → 5.

Notice that the partial value 1625 is conveniently approximated to 1620, by
means of CONDITION1, instead of 1624 (see Example 2), allowing the efficient
insertion of several triplings to reduce the length of the expansion. If we compare
the performance of the refined method when computing 9750P against the basic
Multibase NAF approach using the same fractional window size (see Example
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2), we can observe that the cost reduces significantly from 12D+1T+3mA =
108.4M to only 3D+5T+1mA = 82.4M (JQuartic, 1S = 0.8M).

Table 2. Recommended parameters for CONDITION1 and 2, bases A = {2, 3}, di ∈
D\{0, ki}.

Window w CONDITION1 CONDITION2

2
If (D mod 9 = 0 and K mod 8 6= 0) If (D mod 16 = 0 and k mod 9 6= 0)

m = 1
or (D mod 27 = 0 and K mod 16 6= 0) or (D mod 32 = 0 and k mod 27 6= 0)

or (D mod 81 = 0 and K mod 32 6= 0) or (D mod 64 = 0 and k mod 81 6= 0)

3 If (D mod 27 = 0 and K mod 16 6= 0)

m = 3 or (D mod 81 = 0 and K mod 32 6= 0)

4 If (D mod 216 = 0 and K mod 32 6= 0)
If (D mod 2w+1 = 0 and k mod 9 6= 0)

m = 5, 7 or (D mod 324 = 0 and K mod 64 6= 0)
or (D mod 2w+2 = 0 and k mod 27 6= 0)

5 If (D mod 144 = 0 and K mod 64 6= 0)
or (D mod 2w+3 = 0 and k mod 81 6= 0)

m = 9, . . . , 15 or (D mod 432 = 0 and K mod 128 6= 0)

6 If (D mod 288 = 0 and K mod 128 6= 0)

m = 17, . . . , 31 or (D mod 864 = 0 and K mod 256 6= 0)

Table 3. Recommended parameters for CONDITION1 and 2, bases A = {2, 3, 5}, di ∈
D\{0, ki}.

Window w CONDITION1 CONDITION2

If (K mod 5 6= 0 and (

2
(D mod 9 = 0 and K mod 8 6= 0)

m = 1
or (D mod 27 = 0 and K mod 16 6= 0)

or (D mod 81 = 0 and K mod 32 6= 0)))

or (D mod 15 = 0 and K mod 8 6= 0) If k mod 3 6= 0

If (K mod 5 6= 0 and ( If (D mod 2w+2 = 0 and k mod 25 6= 0)

3 (D mod 27 = 0 and K mod 16 6= 0) or (D mod 2w+3 = 0 and k mod 125 6= 0)

m = 3 or (D mod 81 = 0 and K mod 32 6= 0))) or (D mod 2w+4 = 0 and k mod 625 6= 0)

or (D mod 45 = 0 and K mod 32 6= 0) else

4
If (K mod 5 6= 0 and ( If K mod 25 6= 0 and (

m = 5, 7
(D mod 108 = 0 and K mod 32 6= 0) or or (D mod 2w+2 = 0 and k mod 9 6= 0)

(D mod 324 = 0 and K mod 64 6= 0))) or (D mod 2w+3 = 0 and k mod 27 6= 0)

5
If (K mod 5 6= 0 and ( or (D mod 2w+4 = 0 and k mod 81 6= 0))

m = 9, . . . , 15
(D mod 144 = 0 and K mod 64 6= 0) or

(D mod 432 = 0 and K mod 128 6= 0)))

6
If (K mod 5 6= 0 and (

m = 17, . . . , 31
(D mod 288 = 0 and K mod 128 6= 0) or

(D mod 864 = 0 and K mod 256 6= 0)))

(*) D = k − di ; K = k − ki

As can be observed, the gain in performance with this method is obtained
by increasing the complexity in the conversion step. This may or may not be a
limiting factor depending on the characteristics of a particular implementation
and the chosen platform. In cases where the conversion to multibase becomes
non-negligible, the method would still remain practical for settings where the
same scalar k is reused several times or the conversion can be carried out during
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an idle time (e.g., between the first and second phase of the ECDH scheme
during data transmission).

To evaluate the performance of this refined methodology for scalar multipli-
cation, we implemented the method and carried out several tests. The results
are summarized in the following section.

6 Performance Comparison

We have carried out several tests to demonstrate the high performance of the
Multibase NAF methods discussed in this work when applied on standard, Ja-
cobi quartic and Edwards curves. We implemented the traditional Frac-wNAF
and the (Refined) Frac-wmbNAF (Algorithm 5.1) and ran the algorithms with
different window sizes for 1000 160-bit scalars chosen randomly. In the case of
Multibase NAF, we evaluated the methods when using the following sets of bases
A : {2, 3} and {2, 3, 5}.

To estimate costs for each method, we first counted the required number of
point operations per scalar, averaged the results and then calculated the cost us-
ing Table 1. Also, for windows w > 2 we included in the overall cost the cost of
calculating the precomputed points. For computing these points, we consider two
cases: points are left in projective coordinates (referred to as case 1), and points
are converted to affine using one inversion (referred to as case 2). As expected,
case 2 is advantageous using Jacobian coordinates, where mDA is significantly
more efficient than the general DA version (see Table 1). Ultimately, the partic-
ular I/M ratio of an implementation will decide which case is more effective on a
standard curve. In the case of JQuartic and InvEdw, we only consider case 1 as
this scheme should be largely preferred because of the minimal difference of costs
between general and mixed additions. Specifically, for Jacobian coordinates, we
use the efficient scheme proposed in [22], and for JQuartic and InvEdw we apply
the recently proposed scheme by the authors [20].

The costs using the various methods are summarized in Table 4. Costs with
the label Optimized correspond to methods that have been slightly optimized
by saving some initial computations. This technique is similar to that proposed
in [13, Section 4.2.2] plus some additional savings gained with the use of com-
posite operations (i.e., tripling, quintupling).

The ”basic” operation count (without the aforementioned optimization) is de-
tailed per method. In the case of windowed methods, the count is given separately
for 7 and 6 precomputations (the latter case always corresponds to Jacobian co-
ordinates only). Also, note that for Jacobian coord. we use doubling-addition
(DA) operations instead of traditional additions. Hence, in this case, the total
number of doublings is obtained by subtracting the number of doublings listed
by that of additions. Finally, for case 2 (Jacobian), the total number of mDA
operations is obtained by adding numbers listed in mDA and DA, as precom-
puted points are in affine and all the additions involve mixed coordinates.

As can be seen, in scenarios without precomputations, the basic Multibase
NAF using bases {2,3} and {2,3,5} achieve better performance than the original
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DB method based on the ”Greedy” algorithm [8]. That is in addition to the
attractive features of Multibase NAF such as simplicity and memory efficiency.
More recently, Doche et al. [10] introduced a new method that also finds double-
base chains without using the ”Greedy” algorithm, although using a somewhat
more complex search-based approach in comparison with the basic Multibase
NAF. This method’s cost is comparable to (2,3)NAF, but slightly higher than
that achieved by (2,3,5)NAF. More importantly, the proposed Refined Multibase
NAF method presents even lower costs in all the cases, bases {2,3} and {2,3,5}.
The improvement is especially significant in the case without precomputations,
which makes our method especially interesting for applications on constrained
devices. With Jacobi quartics, the advantage of the Refined mbNAF using bases
{2,3,5} is as large as 9.3% over the traditional NAF. In Jacobian coord., that
advantage rises to 9.8%.

Interestingly enough, in the case of windowed methods, we observe that
the refined multibase algorithms surpass the performance of traditional binary
methods for all the curve shapes analyzed, contradicting conclusions by [1] and
[10]. Most remarkably, if we consider the ”basic” operation count, the Refined
(2,3,5)NAF with no precomputations is comparable and/or surpasses the per-
formance of the fastest NAF method using an optimal window with 7 and 6
precomputed points for Jacobi quartics and Jacobian coordinates, respectively.
For the latter, the multibase method is superior always that 1I > 23M . Even
if we consider the optimized version of the NAF method, the multibase method
achieves higher performance always that 1I > 40M .

For the record, we also include results by [2] and [1]. These works use highly
optimized radix-2 and double-base (DB) scalar multiplications. We can see that
both the basic Multibase NAF using precomputations and the refined version
offer lower computing costs for the cases when precomputations include one or
nil field inversions. Moreover, our optimized implementations of wNAF and Frac-
wNAF are also superior in performance to these works. The latter is due to a
combination of improved precomputation schemes, more efficient point formulas
and the inclusion of the technique to save initial computations.

In particular, the Refined mbNAF using 6 and 7 precomputed points achieves
the highest performance using bases {2,3,5} in the case of standard curves and
Jacobi quartics. In the case of Edwards curves using inverted Edwards coordi-
nates the lowest cost is achieved by the same method using bases {2,3} and 7
points. (The lowest costs per curve are highlighted in bold.) Also, note that for
Jacobian the highest speed up is achieved with a table of the form {3,5,. . . ,13} (6
points; 160 bits), which corresponds to a fractional window and, thus, highlights
the importance of this recoding for Jacobian coordinates.

7 Conclusion

We have introduced a refined multibase method and other several optimiza-
tions, including improved point operation formulas, that have been efficiently
applied to speed up (multibase) methods for scalar multiplication. In particular,
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we have applied the concept of ”fractional” windows to the multibase scenario,
generalizing Multibase NAF methods to any number of precomputations. Also,
we have presented a more comprehensive analysis of scalar multiplications meth-
ods and tested their performance in comparison with Multibase NAF methods
using different elliptic curve shapes. The conclusion is that currently the pro-
posed Refined mbNAF achieves the lowest costs found in the literature among
methods without precomputations, independently of the curve selected. Using
bases {2,3,5} and {2,3} we can perform a scalar multiplication with costs of only
1459M (field multiplications) and 1350M in Jacobian and inverted Edwards co-
ordinates (respect.). With Jacobi quartics, that cost can be as low as 1267M
using bases {2,3,5}. Similar results are attained by the same method when us-
ing precomputations. In this case, we present the lowest costs reported in the
literature: 1425M or 1I + 1393M in Jacobian, 1265M in inverted Edwards and
1214M in extended Jacobi quartic coordinates.

Finally, we have included the theoretical analysis of Multibase NAF and its
different variants, detailing the average zero and nonzero density characterizing
these representations. This analysis has been confirmed with our extensive tests.

Acknowledgments. We would like to thank the Natural Sciences and Engi-
neering Research Council of Canada (NSERC) and the Ontario Centres of Ex-
cellence (OCE) for partially supporting this work. We would also like to thank
the reviewers for their useful comments.

References

1. Bernstein, D., Birkner, P., Lange, T., Peters, C.: Optimizing Double-Base Elliptic-
Curve Single-Scalar Multiplication. INDOCRYPT 2007, LNCS, vol. 4859, pp. 167–
182. Springer, Heidelberg (2007)

2. Bernstein, D., Lange, T.: Analysis and Optimization of Elliptic-Curve Single-Scalar
Multiplication. Cryptology ePrint Archive, Report 2007/455 (2007)

3. Bernstein, D., Lange, T.: Faster Addition and Doubling on Elliptic Curves. ASI-
ACRYPT 2007, LNCS, vol. 4833, pp. 29–50. Springer, Heidelberg (2007)

4. Bernstein, D., Lange, T.: Inverted Edwards Coordinates. AAECC 2007, LNCS,
vol. 4851, pp. 20–27. Springer, Heidelberg (2007)

5. Billet, O., Joye, M.: The Jacobi Model of an Elliptic Curve and Side-Channel
Analysis. AAECC 2003, LNCS, vol. 2643, pp. 34–42. Springer, Heidelberg (2003)

6. Ciet, M., Joye, M., Lauter, K., Montgomery, P.L.: Trading Inversions for Multi-
plications in Elliptic Curve Cryptography. Designs, Codes and Cryptography, vol.
39(2), pp. 189–206 (2006)

7. Dimitrov, V., Jullien, G., Miller, W.: Theory and Applications for a Double-Base
Number System. ARITH 1997, pp. 44 (1997)

8. Dimitrov, V., Imbert, L., Mishra, P.K.: Efficient and Secure Elliptic Curve Point
Multiplication using Double-Base Chains. ASIACRYPT 2005, LNCS, vol. 3788,
pp. 59–78. Springer, Heidelberg (2005)

9. Dimitrov, V., Mishra, P.K.: Efficient Quintuple Formulas for Elliptic Curves and
Efficient Scalar Multiplication using Multibase Number Representation. ISC 2007,
LNCS, vol. 4779, pp. 390–406. Springer, Heidelberg (2007)



Fast Multibase Methods and Other Several Optimizations 17

10. Doche, C., Habsieger, L.: A Tree-Base Approach for Computing Double-Base
Chains. ACISP 2008, LNCS, vol. 5107, pp. 433–446. Springer, Heidelberg (2008)

11. Doche, C., Imbert, L.: Extended Double-Base Number System with Applications to
Elliptic Curve Cryptography. INDOCRYPT 2006, LNCS, vol. 4329, pp. 335–348.
Springer, Heidelberg (2006)

12. Edwards, H.: A Normal Form for Elliptic Curves. Bulletin of the American Math-
ematical Society 44, 393–422 (2007)

13. Elmegaard-Fessel, L.: Efficient Scalar Multiplication and Security against Power
Analysis in Cryptosystems based on the NIST Elliptic Curves over Prime Fields.
Master Thesis, University of Copenhagen (2006)

14. Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography.
Springer-Verlag (2004)

15. Hisil, H., Wong, K., Carter, G., Dawson, E.: Faster Group Operations on Elliptic
Curves. Cryptology ePrint Archive, Report 2007/441 (2007)

16. Hisil, H., Wong, K., Carter, G., Dawson, E.: An Intersection Form for Jacobi-
Quartic Curves. Personal communication (2008)

17. Longa, P.: Accelerating the Scalar Multiplication on Elliptic Curve Cryptosys-
tems over Prime Fields. Master Thesis, University of Ottawa (2007). Available at
http://patricklonga.bravehost.com/publications.html

18. Longa, P.: ECC Point Arithmetic Formulae (EPAF). Available at
http://patricklonga.bravehost.com/jacobian.html

19. Longa, P., Gebotys, C.: Setting Speed Records with the (Fractional) Multibase
Non-Adjacent Form Method for Efficient Elliptic Curve Scalar Multiplication.
CACR Technical Report, CACR 2008-06, University of Waterloo (2008)

20. Longa, P., Gebotys, C.: Novel Precomputation Schemes for Elliptic Curve Cryp-
tosystems. (To appear) ACNS 2009, LNCS, vol. 5536, pp. 71–88, Springer, Heidel-
berg (2009)

21. Longa, P., Miri, A.: Fast and Flexible Elliptic Curve Point Arithmetic over Prime
Fields. IEEE Trans. Comp. 57(3), 289–302 (2008)

22. Longa, P., Miri, A.: New Composite Operations and Precomputation Scheme for
Elliptic Curve Cryptosystems over Prime Fields. PKC 2008, LNCS, vol. 4939, pp.
229–247. Springer, Heidelberg (2008)

23. Meloni, N.: New Point Addition Formulae for ECC Applications. WAIFI 2007,
LNCS, vol. 4547, pp. 189–201. Springer, Heidelberg (2007)
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25. Möller, B.: Fractional Windows Revisited: Improved Signed - Digit Representa-
tions for Efficient Exponentiation. ICISC 2004, LNCS, vol. 3506, pp. 137–153.
Springer, Heidelberg (2005)

A Derivation of composite operations of form dP

Consider the following formula due to [23] to add two points P = (X1, Y1, Z)
and Q = (X2, Y2, Z) with the same coordinate Z in Jacobian coordinates:

X3 = (Y2 − Y1)2 − (X2 −X1)3 − 2X1(X2 −X1)2, Z3 = Z(X2 −X1)
Y3 = (Y2 − Y1)(X1(X2 −X1)2 −X3)− Y1(X2 −X1)3 .

(5)
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To derive composite operations of the form dP , where d > 2 is a small prime,
we follow the next scheme using (5) to perform additions:

dP = (2P + ( . . . (2P + (2P + P )) . . . )) . (6)

According to (6), we first compute 2P with the following [21]:

X2 = [3(X1 + Z2
1 )(X1 − Z2

1 )]2 − 8X1Y
2
1 , Z2 = 2Y1Z1 = (Y1 + Z1)2 − Y 2

1 − Z2
1 ,

Y2 = [3(X1 + Z2
1 )(X1 − Z2

1 )](4X1Y
2
1 −X2)− 8Y 4

1 .

And then, we perform the addition 3P = 2P+P = (X2, Y2, Z2)+(X(1)
1 , Y

(1)
1 ,

Z
(1)
1 ) = (X3, Y3, Z3) using formula (5), where (X(1)

1 , Y
(1)
1 , Z

(1)
1 ) = (X1(4Y 2

1 ),
Y1(8Y 3

1 ), Z1(2Y1)) ≡ (X1, Y1, Z1), as follows:

X3 = (Y (1)
1 − Y2)2 − (X(1)

1 −X2)3 − 2X2(X(1)
1 −X2)2,

Y3 = (Y (1)
1 −Y2)[X2(X(1)

1 −X2)2−X3]−Y2(X(1)
1 −X2)3, Z3 = Z2(X(1)

1 −X2) .

After scaling and replacement of some multiplications by squarings, compu-
tation of 3P takes the form:

X3 = ω2 − 4θ3 − 8X2θ
2, Y3 = ω[4X2θ

2 −X3]− 8Y2θ
3, Z3 = 2Z(1)

1 θ, (7)

where α = 3(X1 + Z2
1 )(X1 − Z2

1 ), θ = 4X1Y
2
1 − X2, ω = 16Y 4

1 − 2Y2, X2 =
α2 − 8X1Y

2
1 , 2Y2 = (α + θ)2 − α2 − θ2 − 16Y 4

1 , Z
(1)
1 = (Y1 + Z1)2 − Y 2

1 − Z2
1 .

Following the same approach for the next addition in (6), it is easy to derive the
formula for the quintupling of a point 5P = (X5, Y5, Z5) in Jacobian coordinates
(special case a = −3). The new formula is given by:

X5 = γ2 − 4φ3 − 8X(1)
2 φ2, Y5 = γ[4X(1)

2 φ2 −X5]− 8Y (1)
2 φ3,

Z5 = 2Z2[(θ + φ)2 − θ2 − φ2],
(8)

where α = 3(X1 + Z2
1 )(X1 − Z2

1 ), θ = X
(1)
1 − X2, ω = 2Y (1)

1 − 2Y2, X2 =
α2 − 2X(1)

1 , 2Y2 = (α+ θ)2 −α2 − θ2 − 2Y (1)
1 , Z2 = (Y1 +Z1)2 − Y 2

1 −Z2
1 , γ =

ω2+φ2−(ω+φ)2−4Y (1)
2 , X

(1)
1 = 4X1Y

2
1 , 2Y (1)

1 = 16Y 4
1 , X

(1)
2 = 4X2θ

2, Y
(1)
2 =

8Y2θ
3, φ = ω2 − 4θ3 − 3X(1)

2 .
This quintupling formula costs 10M + 12S. In the general case (random

a), the cost is fixed at 9M + 15S with the following change of parameters:
α = 3X2

1 + aZ4
1 , X

(1)
1 = 2[(X1 + Y 2

1 )2 −X2
1 − Y 4

1 ].
Again, following the same procedure for the next addition in (6), it is straight-

forward to derive the formula for the septupling 7P = (X7, Y7, Z7) in Jacobian
coord. (case a = −3). The new septupling formula is given by:

X7 = ϕ2 − 4σ3 − 8X(2)
2 σ2, Y7 = ϕ[4X(2)

2 σ2 −X7]− 8Y (2)
2 σ3, Z7 = 2Z(2)

2 σ, (9)

where ϕ = γ2+σ2−(γ+σ)2−4Y (2)
2 , σ = γ2−4φ3−3X(2)

2 , γ = ω2+φ2−(ω+φ)2−
4Y (1)

2 , X
(2)
2 = 4X(1)

2 φ2, Y
(2)
2 = 8Y (1)

2 φ3, Z
(2)
2 = 2Z2[(θ + φ)2 − θ2 − φ2], φ =
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ω2 − 4θ3 − 3X(1)
2 , ω = 2Y (1)

1 − 2Y2, θ = X
(1)
1 − X2, α = 3(X1 + Z2

1 )(X1 −
Z2

1 ), X(1)
2 = 4X2θ

2, Y
(1)
2 = 8Y2θ

3, X2 = α2 − 2X(1)
1 , X

(1)
1 = 4X1Y

2
1 , 2Y (1)

1 =
16Y 4

1 , 2Y2 = (α + θ)2 − α2 − θ2 − 2Y (1)
1 , Z2 = (Y1 + Z1)2 − Y 2

1 − Z2
1 . This

septupling formula costs 14M + 15S. In the general case (parameter a ran-
dom), the cost is fixed at 13M + 18S with the following change of parameters:
α = 3X2

1 + aZ4
1 , X

(1)
1 = 2[(X1 + Y 2

1 )2 −X2
1 − Y 4

1 ].

B Proof of the average zero and nonzero densities of
(w)mbNAF using bases {2,3} and {2,3,5}

The method can be modeled as a Markov chain with three states (caseA={2, 3}) :
”0(2)”, ”0(3)” and ” 0(2) . . . 0(2)︸ ︷︷ ︸

w−1

k
(2)
i ”, with the following probability matrix:


”0(2)” : 1/2 2w−2−b(2w−2+1)/3c

2w

2w−2+b(2w−2+1)/3c
2w

”0(3)” : 0 1/3 2/3

” 0(2) . . . 0(2)︸ ︷︷ ︸
w−1

k
(2)
i ” : 1/2 2w−2−b(2w−2+1)/3c

2w

2w−2+b(2w−2+1)/3c
2w


This Markov chain is irreducible and aperiodic, and hence, it has stationary

distribution, which is given by:0(2) . . . 0(2)︸ ︷︷ ︸
w−1

k
(2)
i , 0(2), 0(3) : 2w

2w+1+3(2w−2−s)
2w

2w+1+3(2w−2−s)
3(2w−2−s)

2w+1+3(2w−2−s) )


Thus, nonzero digits ki appear 2w out of w·2w+2w+3(2w−2 − b(2w−2 + 1)/3c),

which proves our assertion about the nonzero density. Doublings and triplings
(i.e., number of zero and nonzero digits with base 2 and 3, respect.) appear 2w ·
w+2w and 3(2w−2 − b(2w−2 + 1)/3c) out of w·2w+2w+3(2w−2 − b(2w−2 + 1)/3c),
respectively. This proves our assertion about the average density of doublings
and triplings.

In the case of A = {2, 3, 5}, there are four states: ”0(2)”, ”0(3)”, ”0(5)” and
” 0(2) . . . 0(2)︸ ︷︷ ︸

w−1

k
(2)
i ”. The probability matrix in this case is as follows (see Theorem

2 for notation):

”0(2)” : 1/2 2w−2−s
2w

2w−2−r+s−t
2w+2

3·2w−2+r+3s+t
2w+2

”0(3)” : 0 1/3 1/6 1/2

”0(5)” : 0 0 1/5 4/5

” 0(2) . . . 0(2)︸ ︷︷ ︸
w−1

k
(2)
i ” : 1/2 2w−2−s

2w
2w−2−r+s−t

2w+2
3·2w−2+r+3s+t

2w+2


This Markov chain is irreducible and aperiodic with stationary distribution:
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w−1

k
(2)
i ”, ”0(2)”, ”0(3)”, ”0(5)” : 2w+3

ω
2w+3

ω
24(2w−2−s)

ω
5(2w−1−r−t)

ω


where ω = 49 · 2w−1 − 5r − 24s − 5t. Therefore, nonzero digits ki appear 2w+3

out of 2w+3 · w + 2w+3 + 24(2w−2 − s) + 5(2w−1 − r − t), which proves our as-
sertion about the nonzero density. Doublings, triplings and quintuplings appear
2w+3 · w + 2w+3, 24(2w−2 − s) and 5(2w−1 − r − t) out of 2w+3 · w + 2w+3 +
24(2w−2 − s) + 5(2w−1 − r − t), respectively. This proves our assertion about
the average density of the aforementioned operations.

C Proof of the average zero and nonzero densities of Frac-
tional wmbNAF using bases {2,3}

Let us consider the following states to model this fractional windows method
using Markov chains: ”0(2)”, ”0(3)”, ” 0(2) . . . 0(2)︸ ︷︷ ︸

w−2

k
(2)
i ”, and ” 0(2) . . . 0(2)︸ ︷︷ ︸

w−1

k
(2)
i ”.

Then, the probability matrix is as follows (see Theorem 3 for notation):

”0(2)” : 1/2 t−b(t+1)/3c
4t

(2w−2−t)(t+b(t+1)/3c)
2wt

t+b(t+1)/3c
2w

”0(3)” : 0 1/3 2w−2−t
3·2w−3

t
3·2w−3

” 0(2) . . . 0(2)︸ ︷︷ ︸
w−2

k
(2)
i ” : 0 α β 1− α− β

” 0(2) . . . 0(2)︸ ︷︷ ︸
w−1

k
(2)
i ” : 1/2 t−b(t+1)/3c

4t
(2w−2−t)(t+b(t+1)/3c)

2wt
t+b(t+1)/3c

2w


where α = (2w−2−t)−b(2w−2−t+1)/3c

2(2w−2−t) and β = (2w−2−t)+b(2w−2−t+1)/3c
2w−1 . This Markov

chain is irreducible and aperiodic with the following stationary distribution:0(2) . . . 0(2)︸ ︷︷ ︸
w−1

k
(2)
i , 0(2) . . . 0(2)︸ ︷︷ ︸

w−2

k
(2)
i , 0(2), 0(3) : 16t

µ
12((u+v)−2w−2)

µ
16(t−2w−2)

µ
16t
µ


where µ = 16t−12(u+v)+7 ·2w. Therefore, the nonzero digits ki appear 2w out
of 8t − 3(u+ v) + 2w−2(4w − 1), which proves our assertion about the nonzero
density. Doublings and triplings appear 8t + 2w(w − 1) and 3(2w−2 − (u+ v))
out of 8t−3(u+ v)+2w−2(4w − 1), respectively. This proves our assertion about
the average density of doublings and triplings.


