
Analysis of Property-Preservation Capabilities of the ROX and ESh
Hash Domain Extenders

Mohammad Reza Reyhanitabar, Willy Susilo, and Yi Mu

Centre for Computer and Information Security Research,
School of Computer Science and Software Engineering

University of Wollongong, Australia
{mrr790, wsusilo, ymu}@uow.edu.au

Abstract. Two of the most recent and powerful multi-property-preserving (MPP) hash domain extension trans-
forms are the Ramdom-Oracle-XOR (ROX) transform and the Enveloped Shoup (ESh) transform. The former
was proposed by Andreeva et al. at ASIACRYPT 2007 and the latter was proposed by Bellare and Ristenpart at
ICALP 2007. In the existing literature, ten notions of security for hash functions have been considered in analysis
of MPP capabilities of domain extension transforms, namely CR, Sec, aSec, eSec (TCR), Pre, aPre, ePre, MAC,
PRF, PRO. Andreeva et al. showed that ROX is able to preserve seven properties; namely collision resistance
(CR), three flavors of second preimage resistance (Sec, aSec, eSec) and three variants of preimage resistance (Pre,
aPre, ePre). Bellare and Ristenpart showed that ESh is capable of preserving five important security notions;
namely CR, message authentication code (MAC), pseudorandom function (PRF), pseudorandom oracle (PRO),
and target collision resistance (TCR). Nonetheless, there is no further study on these two MPP hash domain
extension transforms with regard to the other properties. The aim of this paper is to fill this gap. Firstly, we
show that ROX does not preserve two other widely-used and important security notions, namely MAC and PRO.
We also show a positive result about ROX, namely that it also preserves PRF. Secondly, we show that ESh does
not preserve other four properties, namely Sec, aSec, Pre, and aPre. On the positive side we show that ESh can
preserve ePre property. Our results in this paper provide a full picture of the MPP capabilities of both ROX and
ESh transforms by completing the property-preservation analysis of these transforms in regard to all ten security
notions of interest, namely CR, Sec, aSec, eSec (TCR), Pre, aPre, ePre, MAC, PRF, PRO.

Key words: Hash Functions, Domain Extension, MPP, ROX, ESh

1 Introduction

A cryptographic hash function is a function that can map variable length strings to fixed length strings.
Hash functions have been used in a vast variety of applications, e.g. digital signature, MAC, PRF, and must
provide different security properties depending on the security requirements of the applications. The most
well-known property for a hash function is collision resistance (CR). Nevertheless, hash functions are often
asked to provide many other security properties ranging from merely being a one-way function (i.e. preimage
resistance property) to acting as a truly random function (i.e. a random oracle).

In a formal study of cryptographic hash functions two different but related settings can be considered.
The first setting is the traditional unkeyed hash function setting where a hash function refers to a single
function H :M→ {0, 1}n (e.g. SHA-1) that maps variable length messages to a fixed length output hash
value. In the second setting, a hash function is considered as a family of functions H : K×M→ {0, 1}n, also
called a “dedicated-key hash function” [3], indexed by a key space K. The exact role of the hash function
key is application-dependent; it can be a public parameter, e.g. when the hash function is used in a digital
signature, or a secret key like in MAC and PRF applications. In this paper, we consider hash functions and
their security notions in the dedicated-key hash function setting.

Almost all cryptographic hash functions are designed based on the following two-step approach: first a
compression function is designed which is only capable of hashing fixed-input-length (FIL) messages and
then a domain extension transform is applied to get a full-fledged hash function which can hash variable-
input-length (VIL) or arbitrary-input-length (AIL) messages, depending on the transform. Assume that we

2 M. R. Reyhanitabar, W. Susilo and Y. Mu

have a (dedicated-key) compression function h : {0, 1}k × {0, 1}n+b → {0, 1}n that can only hash messages
of fixed length (n+b) bits. A domain extension transform can use this compression function (as a black-box)
to construct a (dedicated-key) hash function H : K ×M → {0, 1}n, where the message space M can be
either {0, 1}∗ (in which case H is an AIL hash function) or {0, 1}<2λ

, for some huge positive integer λ, e.g.
λ = 64 (in which case H is a VIL hash function). For instance, the strengthened-MD domain extension
transform [12, 8, 3] yields to a VIL hash function while the Prefix-free domain extension transform [7, 3]
yields to an AIL hash function. In practice the difference between being VIL or AIL hash function will not
be of a concern as for typical value of λ = 64 almost all messages will have length less than 264 bits, i.e. will
belong to {0, 1}<264

.
From security viewpoint, the crux sought from a domain extension transform is its property preserving

capability; that is, if the underlying compression function h possesses some security property P, then the
obtained full-fledged hash function H should also provably possess the property P. The most well-known
domain extension transform is the strengthened Merkle-Damg̊ard (MD) construction which was shown by
Merkle [12] and Damg̊ard [8] to be a CR preserving transform. Bellare and Rogaway in [6] showed that
strengthened MD, despite preserving CR property, is unable to preserve UOWHF property (put forth by
Naor and Yung [15]) which is a weaker than CR property. They renamed UOWHF as target collision
resistance (TCR) and provided four domain extension transforms for preserving the TCR property. Shoup
in [17] provided a transform (improving XLH transform of Bellare-Rogaway in [6]), which is shown to be
UOWHF and CR preserving. Mironov [14] showed that Shoup’s transform is optimal from key expansion
viewpoint among masking based serial transforms for TCR preservation. Coron et al. [7] introduced the
notion of random oracle preservation and provided prefix-free MD transform which is capable of preserving
(pseudo-)random oracle, which means that if the compression function is modeled as a random oracle then
the AIL hash function obtained by applying prefix-free MD transform will also be indifferentiable from a
random oracle [7, 11]. A new line of research recently has been initiated by Bellare and Ristenpart in [4], and
followed in several other works, e.g. [3, 1], with the aim of designing multi-property-preserving (MPP) domain
extension transforms. An MPP transform is capable of preserving multiple security properties simultaneously
while extending the domain of a compression function.

Two of the most recent and powerful MPP transforms are the Enveloped Shoup (ESh) transform designed
by Bellare and Ristenpart in [3] and the Random-Oracle XOR (ROX) transform by Andreeva et al. in [1].
Both ESh and ROX are variants of Shoup (Sh) transform proposed in [17].

ESh is a standard model transform and was shown to be the best-performing, in terms of property
preserving capability, among the nine transforms studies in [3]. It is shown in [3] that ESH preserves five
security notions; namely CR, TCR, MAC, PRF, and PRO.

ROX was shown to be the only transform among the twelve transforms investigated in [1] which is able
to preserve seven security notions; namely CR, Sec, aSec, eSec, Pre, aPre, and ePre as put forth by Rogaway
and Shrimpton in [16]. But unlike to other transforms, ROX “..., quite controversially, uses a random oracle
in the iteration.” [1], although Andreeva et al. in [1] provide arguments justifying the merits of such a limited
application of auxiliary FIL random oracles in their construction from practical viewpoint.

Our Contribution. We complete property-preservation analysis of the ROX and ESh transforms by pro-
viding new negative and positive results in regard to their MPP capabilities. Our results complete the
property preservation analysis of ROX and ESh in regard to all ten security notions of interest, namely CR,
Sec, aSec, eSec (TCR), Pre, aPre, ePre, MAC, PRF, PRO. For the ROX transform, we show that it does not
preserve MAC and PRO. This settles the open question of [1] about MAC and PRO preservation capability
of the ROX, in a negative way. On the positive side we notice that the ROX is also a PRF preserving
transform. Regarding the ESh transform, we show that ESh does not preserve Sec, aSec, Pre, and aPre
properties. As a positive result about ESh we show that it also preserves ePre property.

Analysis of Property-Preservation Capabilities of the ROX and ESh 3

The overview of the results are shown in Table 1. A “Yes” means that the property is provably preserved
by the transform. A “No” means that the property is not preserved and this is shown either by showing
a counterexample compression function or by some attacks benefiting from the structural weakness of the
transform in regard to the specific security property. Unreferenced entries are the results shown in this paper.
We leave the question of a ten-property-preserving transform without any random oracle as an interesting
open question.

ESh ROX

CR (Coll) Yes [3] Yes [1]

Sec No Yes [1]

aSec No Yes [1]

eSec (TCR or UOWHF) Yes [3] Yes [1]

Pre No Yes [1]

aPre No Yes [1]

ePre Yes Yes [1]

MAC Yes [3] No

PRF Yes [3] Yes

PRO Yes [3] No
Table 1. Overview of the MPP capabilities of the ESh and ROX hash domain extension transforms in regard to ten security
notions. Unreferenced entries are the results shown in this paper.

2 Preliminaries

2.1 Notations

If A is a probabilistic algorithm with access to some oracle f(.) then by y
$← Af(.)(x1, · · · , xn) it is meant

that y is the output random variable which is defined by running A, given inputs x1, · · · , xn and having
oracle access to f(.). To show that an algorithm A is run without any input, we use the notation y

$← A().
By time complexity of an algorithm we mean the running time, relative to some fixed model of computation
plus the size of the description of the algorithm using some fixed encoding method. If X is a finite set, by
x

$← X it is meant that x is chosen from X uniformly at random. By X ← Y it is meant that the value
Y is simply assigned to the variable X. Let x||y denote the string obtained from concatenating string y to
string x. Let 1m and 0m, respectively, denote a string of m consecutive 1 and 0 bits, and 1m0n denote the
concatenation of 0n to 1m. By (x, y) we mean an injective encoding of two strings x and y, from which one
can efficiently recover x and y. For a binary string M , let |M | denote its length in bits and |M |b , d|M |/be
denote its length in b-bit blocks. Let M [i] denote the i-th bit of M , and Mi...j denote the bits from i-th to
j-th positions, i.e. Mi...j = M [i] · · ·M [j]. If S is a finite set we denote size of S by |S|. For a positive integer
m, let 〈m〉λ denote its representation as a binary string of length exactly λ bits. The set of all binary strings
of length n bits (for some positive integer n) is denoted as {0, 1}n, the set of all binary strings whose lengths
are variable but upper-bounded by N is denoted by {0, 1}≤N and the set of all binary strings of arbitrary
length is denoted by {0, 1}∗. The set of all functions f : Dom→ Rng (from a domain Dom to a range Rng)
is denoted by Func(Dom, Rng).

2.2 Definition of Security Notions

In this section, we recall definition of ten security notions for hash functions; namely, the seven notions (Coll,
Sec, aSec, eSec, Pre, aPre and ePre) formalized in [16] as well as PRF, MAC, PRO. All definitions are for a

4 M. R. Reyhanitabar, W. Susilo and Y. Mu

dedicated-key hash function H : K ×M → C, where C = {0, 1}n for some positive integer n, the key space
K is some nonempty set and the message space M⊆ {0, 1}∗ such that {0, 1}m ⊆M for at least a positive
integer m. For any M ∈ M and K ∈ K, we use the notations HK(M) and H(K, M) interchangeably. The
advantage measures for an adversary A attacking H are defined in Fig. 1 for the ten security notions.

AdvColl
H (A) = Pr

[
K

$← K; (M,M ′) $← A(K) : M 6= M ′ ∧ HK(M) = HK(M ′)
]

AdvSec[δ]
H (A) = Pr

[
K

$← K;M $← {0, 1}δ ;

M ′ $← A(K, M) : M 6= M ′ ∧ HK(M) = HK(M ′)

]

AdvaSec[δ]
H (A) = Pr

 (K, State) $← A();

M
$← {0, 1}δ ;

M ′ $← A(M,State) : M 6= M ′ ∧ HK(M) = HK(M ′)



AdveSec
H (A) = Pr

 (M,State) $← A();

K
$← K;

M ′ $← A(K, State) : M 6= M ′ ∧ HK(M) = HK(M ′)


AdvPre[δ]

H (A) = Pr

[
K

$← K;M $← {0, 1}δ ;Y ← HK(M);

M ′ $← A(K, Y) : HK(M ′) = Y

]

AdvaPre[δ]
H (A) = Pr

 (K, State) $← A();

M
$← {0, 1}δ ;Y ← HK(M);

M ′ $← A(Y, State) : HK(M ′) = Y


AdvePre

H (A) = Pr
[
(Y, State) $← A();K $← K;M ′ $← A(K, State) : HK(M ′) = Y

]
AdvMAC

H (A) = Pr
[
K

$← K; (M, tag) $← AHK(.)() : HK(M) = tag ∧ M not queried
]

AdvPRF
H (A) =

∣∣∣Pr
[
K

$← K : AHK(.)()⇒ 1
]
− Pr

[
ρ

$← Func(M, C) : Aρ(.)()⇒ 1
]∣∣∣

AdvPRO
H (A) =

∣∣∣Pr
[
K

$← K : AHh
K(.), hK(.)(K)⇒ 1

]
− Pr

[
K

$← K : AF(.), SF (K, .)(K)⇒ 1
]∣∣∣

Fig. 1. Definitions of ten security notions for a hash function family H [16, 3].

We say that H is (t, l, ε)-xxx, for xxx ∈ {Coll, Sec[δ], aSec[δ], eSec, Pre[δ], aPre[δ], ePre}, if the advantage
of any adversary A with time complexity at most t and using messages of length at most l, is less than ε,
in attacking H in xxx sense. Note that four of the notions (namely, Sec[δ], aSec[δ], Pre[δ] and aPre[δ]) are
parameterized by δ where {0, 1}δ ⊆ M. If H is a compression function (i.e. an FIL hash function), then
parameter δ and the resource parameter l for the adversary will be the same as the fixed input length of
the compression function and hence omitted from the notations. It is shown in [16] that the strength of
provisional implications between different notions depends on the relative size of δ and the hash size n. For
more related details we refer to [16].

For xxx ∈ {MAC,PRF}, we say that H is (t, q, l, ε)-xxx if the advantage of any adversary A having time
complexity at most t and making at most q queries with maximum query length of l bits is at most ε.

PRO Notion. The definition of pseudorandom oracle preservation for a hash function was first considered
by Coron et al. in [7] using the indifferentiability framework of Maurer et al. in [11], and further studied in
the following works, e.g. in [4, 3]. The definition for the dedicated-key setting that we consider in this paper,
as shown in Fig. 1, is due to Bellare and Ristenpart [3].

PRO is defined formally as follows. Adversary A is given ‘oracles access’ to either the VIL hash function
Hh

K(.) and FIL random oracle hK(.), or a VIL random oracle F(.) and a simulator SF (K, .). A must
differentiate between these two worlds and the simulator’s goal is to mimic the FIL random oracle hK(.) in
a way that convinces adversary A that Hh

K(.) is F(.) (i.e. the two worlds become indifferentiable from A’s

Analysis of Property-Preservation Capabilities of the ROX and ESh 5

view). The PRO advantage of an adversary A against H is defined as the difference between the probability
that A outputs a one when given oracle access to Hh

K(.) and hK(.) and the probability that it outputs a one
when given oracle access to F(.) and the simulator SF (K, .). We say that H is (tA, tS , q1, q2, l, ε)−PRO, if for
any adversary A having time complexity at most t and making at most q1 queries from its first (left) oracle
and q2 queries from its second (right) oracle with maximal query length of l bits, there exits a simulator S
with time complexity tS such that makes AdvPRO

H (A) < ε.

The Special Case of ROX Construction. In the case of a hash function obtained using ROX construc-
tion, the VIL hash function H utilizes two FIL random oracles RO1 and RO2 in its construction as well as
a compression function h. In this case the definitions should be straightforwardly adapted to consider the
existence of these two auxiliary FIL random oracles, namely adversary A will be also given oracle access to
RO1 and RO2 and the number of queries from these oracles should also be considered as additional resource
parameters for the adversary A. One also must use the generalized PRO notion based on the indifferen-
tiability framework of [11] to involve these additional random oracles. We provide the required generalized
definition in section 3.1 of this paper, following [11, 4]. Briefly saying, the simulator will have to simulate
three random oracles for the adversary, namely the compression function itself (which for PRO notion is
modeled as an FIL random oracle), as well as the two auxiliary random oracles used by the ROX in addition
to h. More details are given in section 3.1 of this paper.

2.3 Hash Domain Extension

Assume that we have a compression function h : {0, 1}k × {0, 1}n+b → {0, 1}n that can only hash messages
of fixed length (n+b) bits. A domain extension transform can use this compression function (as a black-box)
to construct a hash function H : K ×M → {0, 1}n, where the message space M can be either {0, 1}∗ or
{0, 1}<2λ

, for some positive integer λ (e.g. λ = 64). The key space K is determined by the construction of a
domain extender. Clearly log2(|K|) ≥ k, as H involves at least one invocation of h.

A domain extension transform comprises two functions: an injective ‘padding function’ and an ‘iteration
function’. First, the padding function Pad :M→ DI is applied to an input message M ∈ M to convert it
to the padded message Pad(M) in a domain DI . Then, the iteration function f : K×DI → {0, 1}n uses the
compression function h as many times as required, and outputs the final hash value. The full-fledged hash
function H is obtained by combining the two functions. In the case of ROX transform both the padding
algorithm (rox-pad) and the iteration algorithm need small-input random oracles as well.

The padding functions used in the Sh, ESh and ROX domain extension transforms are ‘Strengthening’,
‘Strengthened Chain Shift’ and ‘rox-pad’ defined as follows, where 2λ is the maximum message length in
bits (typically λ = 64) :

– Strengthening: pads : {0, 1}<2λ

→
⋃

L≥1 {0, 1}Lb, where pads(M) = M ||10p|| 〈|M |〉λ and p is the
minimum number of 0’s required to make the length of pads(M) a multiple of block length.

– Strengthened Chain Shift: padCSs : {0, 1}<2λ

→
⋃

L≥1 {0, 1}Lb+b−n, where padCSs(M) = M ||10r||
〈|M |〉λ ||0p, and parameters p and r are defined in two ways depending on the block length b. If b ≥ n+λ
then p = 0, otherwise p = b − n. Then r is the minimum number of 0’s required to make the padded
message a member of {0, 1}Lb+b−n, for some positive integer L.

– rox-pad: rox-padRO2 : {0, 1}<2λ

→
⋃

L≥1 {0, 1}L.b, where RO2 : {0, 1}k×{0, 1}λ×{0, 1}dlog be → {0, 1}2n

is an auxiliary FIL random oracle, and

rox-padRO2(M) = M ||RO2(M1...k, 〈|M |〉λ , 〈1〉)||RO2(M1...k, 〈|M |〉λ , 〈2〉)|| · · · ,

where the last block of padded message must contain at least 2n bits generated by RO2 which implies
adding a new final block just for padding if necessary.

6 M. R. Reyhanitabar, W. Susilo and Y. Mu

The iteration functions for Sh, ESh and ROX transforms are shown in Fig. 2, where IV, IV1, and IV2 are
some known initial values and IV1 6= IV2. RO1 : {0, 1}k×{0, 1}k×{0, 1}dlog λe → {0, 1}n is a random oracle
used by the ROX iteration function to generate required key masks.

fSh : K × {0, 1}Lb → {0, 1}n, where K = {0, 1}k+tn

t = dlog2(L)e , ν(i) = max {x : 2x|i}

Algorithm fSh(K||K0||K1|| · · · ||Kt−1, M):
C0 = IV
for i = 1 to L do

Ci = hK((Ci−1 ⊕Kν(i))||Mi)
return CL

fESh : K × {0, 1}(L−1)b+b−n → {0, 1}n, where K = {0, 1}k+tn

t = dlog2(L− 1)e + 1, ν(i) = max {x : 2x|i}

Algorithm fESh(K||K0||K1|| · · · ||Kt−1, M):
C0 = IV1; Kµ = Kt−1

for i = 1 to L− 1 do
Ci = hK((Ci−1 ⊕Kν(i))||Mi)

CL = hK((IV2 ⊕K0)||(CL−1 ⊕Kµ)||ML)
return CL

IV hh h

M3 MLM1 M2

CLh

K K2K K K0K1K0 KKv(L)

IV1 h h

M1 M2

K KK1K0

h

ML−1

K KµKν(L−1)

b− n

ML

CLh

KK0

IV2

f
RO1(.)
ROX : K × {0, 1}Lb → {0, 1}n, where K = {0, 1}k

t = dlog2(L)e , ν(i) = max {x : 2x|i}

Algorithm f
RO1(.)
ROX (K, M):

for i = 0 to t− 1 do
Ki = RO1(K, M1...k, 〈i〉)

CL = fSh(K||K0||K1|| · · · ||Kt−1, M)
return CL

IV hh h

M3 MLM1 M2

CLh

K K2K K K0K1K0 KKv(L)

Fig. 2. Iteration functions of Shoup (Sh), Enveloped Shoup (ESh), and ROX transforms

The variable-input-length (VIL) hash function H : K × {0, 1}<2λ

→ {0, 1}n, for H ∈ {Sh,ESh, ROX},
obtained by applying Sh, ESh, or ROX domain extension transforms on a fixed-input-length (FIL) hash
function h : {0, 1}k × {0, 1}n+b → {0, 1}n is defined, respectively, as follows:

Sh(K,M) = fSh(K,pads(M)), where K = K||K0|| · · · ||Kt−1 ∈ {0, 1}k+tn

ESh(K,M) = fESh(K,padCSs(M)), where K = K||K0|| · · · ||Kt−1 ∈ {0, 1}k+tn

ROXRO1,RO2(K, M) = f
RO1(.)
ROX (K, rox-padRO2(.)(M)), where K ∈ {0, 1}k

3 Property Preservation Analysis of the Transforms

In this section we analyze property preserving capability of the ROX and ESh transforms in terms of the
ten security notions defined in section 2.2, namely CR (Coll), Sec, aSec, eSec(TCR), Pre, aPre, ePre, MAC,
PRF, PRO.

ROX was already shown in [1] to be able to preserve seven properties, namely: CR (Coll), Sec, aSec,
eSec, Pre, aPre, and ePre. We complete a property-preservation analysis of ROX in regard to the other
three important security notions (i.e. MAC, PRF, PRO) and gather both negative and positive results. On
the negative side we show that ROX cannot preserve MAC and PRO notions. As a positive result we note
that ROX can also preserve PRF. Next we investigate ESh transform. ESh was already shown in [3] to be

Analysis of Property-Preservation Capabilities of the ROX and ESh 7

able to preserve five properties, namely: CR (Coll), MAC, PRF, PRO, and TCR (eSec). We complete the
property preservation analysis of ESh with respect to the remaining five properties among the ten notions
by showing, as negative results, that ESh does not preserve four properties, namely Sec, aSec, Pre, aPre,
and as a positive result we show that it can also preserve ePre.

3.1 Analysis of the ROX Transform

In this section we provide two negative results about PRO and MAC preservation and one positive result
about PRF preserving capability of the ROX domain extension transform. Among these results, the negative
result showing that ROX does not preserve PRO seems more interesting regarding the fact that ROX, unlike
all other hash domain extension transforms, uses random oracles in its construction.

Indifferentiability Analysis of the ROX Construction. Our aim is to show that ROX transform does
not preserve PRO, i.e., the VIL hash function obtained using ROX transform is differentiable from a true VIL
random oracle. We first provide the required generalization of PRO notion for the case of ROX construction
based on the indifferentiability framework of [11]. Then we provide our negative result in Theorem 1.

For the purpose of PRO analysis (in the dedicated key hash setting [3]), the compression function
h : {0, 1}k × {0, 1}n+b → {0, 1}n is modeled as a family of FIL random oracles, i.e. hK : {0, 1}n+b → {0, 1}n
is assumed to be an FIL random oracle for any value of the key K where hK(.) = h(K, .). We note that
the ROX transform itself utilizes two additional FIL random oracles, namely RO1 and RO2 in generation
of the key masks used in the iteration function and padding, respectively. Hence the VIL hash function
ROXhK ,RO1,RO2 : {0, 1}k × {0, 1}<2λ

→ {0, 1}n will have access to three FIL random oracles, namely
hK(.), RO1(.) and RO2(.). According to the general indifferentiability framework of [11] which is used to
define PRO in [7, 4, 3], adversary A will be given access to four oracles; namely, a VIL oracle O1 : {0, 1}<2λ

→
{0, 1}n, and three FIL oracles as O2 : {0, 1}n+b → {0, 1}n, O3 : {0, 1}k×{0, 1}k×{0, 1}dlog λe → {0, 1}n and
O4 : {0, 1}k × {0, 1}λ × {0, 1}dlog be → {0, 1}2n, and must differentiate between the following two worlds:

– World 1: A random key K
$← {0, 1}k is selected. The oracles are set as O1(.) = ROXhK ,RO1,RO2(K, .),

O2(.) = hK(.), O3(.) = RO1(.), O4(.) = RO2(.). A is given K as input and has access to the four oracles.

– World 2: A random key K
$← {0, 1}k is selected. O1(.) = F(.) where F : {0, 1}<2λ

→ {0, 1}n is a true
VIL random oracle. A simulator SF (K) = (SF1 (K),SF2 (K),SF3 (K)), having access to the oracle F(.)
and receiving K as input, simulates the role of the three FIL random oracles for the adversary. That is,
in this world when adversary queries the first oracle (i.e. the VIL oracle) O1 the response comes from the
true VIL random oracle F(.), but when adversary queries any of the three FIL oracles O2(.),O3(.) and
O4(.), the queries are forwarded to the the simulator S. Simulator will respond to these queries trying to
mimic the oracles hK(.), RO1(.) and RO2(.), respectively, by its sub-algorithms S1,S2 and S3 in a way
that convinces A that O1(.) is ROXhK ,RO1,RO2(K, .) although it is now actually F(.).

Let HK(.) = H(K, .) = ROXhK ,RO1,RO2(K, .). The PRO advantage of the adversary in differentiating H
from F is defined as follows:

AdvPRO
H (A) =

∣∣Pr
[
AO1, O2, O3, O4(K)⇒ 1 |World 1

]
− Pr

[
AO1, O2, O3, O4(K)⇒ 1 |World 2

]∣∣
=

∣∣∣Pr
[
AHK(.), hK(.), RO1(.), RO2(.)(K)⇒ 1

]
− Pr

[
AF(.), SF1 (K), SF2 (K), SF3 (K)(K)⇒ 1

]∣∣∣
We say that an adversary A is a (tA, tS , q1, q2, q3, q4, l, ε)-differentiating adversary against H if its PRO
advantage is at least ε against any simulator S having time complexity at most tS , where the time complexity

8 M. R. Reyhanitabar, W. Susilo and Y. Mu

of the adversary is at most tA, the number of queries from i-th oracle is at most qi (for 1 ≤ i ≤ 4) and the
length of each query is at most l bits.

Now we are ready to state our negative result which shows the inability of ROX to preserve PRO.

Theorem 1 (Negative Result: PRO). ROX domain extension transform does not preserve pseudoran-
dom oracle.

Proof. We show a (c, tS , 2, 1, 1, 2, 3b−2n, 1−2−n)-differentiating adversary against H, i.e. A has overwhelming
PRO advantage of 1 − 2−n in differentiating the VIL hash function ROXhK ,RO1,RO2 : {0, 1}<2λ

→ {0, 1}n

from a true VIL random oracle F : {0, 1}<2λ

→ {0, 1}n, with respect to any simulator S with arbitrary time
complexity tS . A has time complexity tA = c, where c is a small constant, and it asks only: two queries from
the first oracle O1, one query from the second oracle O2, one query from the third oracle O3 and two queries
from the fourth oracle O4. The maximum query length is 3b− 2n bits.

Adversary A acts as follows:

1. M
$← {0, 1}2b−2n and Y ← O1(M);

2. IP ← O4(M1...k, 〈2b− 2n〉λ , 〈1〉);
3. M ′ $← {0, 1}b−2n and Z ← O1(M ||IP ||M ′);
4. K0 ← O3(K, M1...k, 〈0〉);
5. OP ← O4(M1...k, 〈3b− 2n〉λ , 〈1〉);
6. Z ′ ← O2

(
(Y ⊕K0)||M ′||OP

)
;

7. If Z = Z ′ then return 1 (i.e. guess that it is World 1) else return 0 (i.e. guess that it is World 2)

From the construction of the ROX hash function and the description of the World 1, it can be seen
that Pr

[
AHK(.), hK(.), RO1(.), RO2(.)(K)⇒ 1

]
= 1. We claim that Pr

[
AF(.), SF1 (K), SF2 (K), SF3 (K)(K)⇒ 1

]
=

2−min{n,2b−2n−k}. This can be seen by noting that in World 2, the only queries that the simulator SF (K) =
(SF1 (K),SF2 (K),SF3 (K)) can see and must respond to are the queries from O2,O3, and O4 oracles. It is
worth reminding that, the simulator cannot see query-response sequence between the adversary A and the
first oracle O1 due to the definition of indifferentiability [7, 4, 3], as these queries are answered directly by
the true VIL random oracle F in World 2. Hence referring to the description of the adversary A, it can
be seen that the simulator S just is given the first k bits of the first message M , i.e. M1...k, and has no
information about the remaining 2b − 2n − k bits of the message M . Hence to make A output a one (i.e.
to fool A), simulator S must either guess these 2b− 2n− k unknown bits of M (with success probability of
2−(2b−2n−k)) or guess the correct value of Z (with success probability of 2−n) in order to be able to provide
a correct value Z ′ at step 6 of A’s differentiating attack. (Note that the success probability of S in guessing
the correct value of these unknown bits is independent of the time complexity of S, i.e. tS , as S has no
information about these bits.) So, we have AdvPRO

H (A) = 1 − 2−min{n,2b−2n−k}. It remains to verify that
2b−2n−k ≥ n. According to the construction of rox−padRO2 it must be the case that b ≥ 2n and referring
to [1], typical values for k and n are suggested as k = 80 bits and n = 160 bits for an 80-bit security level,
i.e. we have k ≈ n/2. Hence min {n, 2b− 2n− k} = n and AdvPRO

H (A) = 1− 2−n as claimed. ut

MAC Preservation Analysis of the ROX. We show that the ROX transform does not preserve MAC
(unforgeability). This is done by providing as a counterexample, a compression function h which is a secure
MAC but for which the VIL hash function obtained by using ROX transform will be insecure in MAC sense.

Assume that there is a compression function g : {0, 1}k × {0, 1}n+b → {0, 1}n−1 which is (t, q, ε)−MAC.
Consider the following construction from [3] for a compression function h : {0, 1}k × {0, 1}n+b → {0, 1}n,
where s = dlog2(n)e:

hK(C||M) =
{

gK(C||M)||C[i] if M = 〈i〉s ||0b−s for i ∈ {1, · · · , n− 1}
gK(C||M)||C[n] otherwise

Analysis of Property-Preservation Capabilities of the ROX and ESh 9

It is shown in [3] that if g is (t, q, ε)−MAC then h will be (t − cq, q, ε)−MAC, where c is a small constant.
Note that h leaks the i-th bit of its chaining variable input C to the output if its input block M equals to
〈i〉s ||0b−s, for i ∈ {1, · · · , n− 1}, and otherwise h leaks the n-th (i.e. the last) bit of C.

We use this counterexample to prove the following negative result.

Theorem 2 (Negative Result: MAC). ROX domain extension transform does not preserve MAC.

Proof. Consider the above counterexample function h as an FIL MAC. We show that the VIL function
H(K, .) = ROXh,RO1,RO2(K, .) obtained by applying the ROX transform on this FIL MAC h will not be
a secure MAC. This is done by describing an adversary A which can break H(K, .) in MAC sense, with
success probability ≈ 1

4 and whose computational resources are only: one query from the random oracle
RO2(.), 2(n − 1) queries from the function HK(.) with maximum length of each query 4b − 2n bits, and a
constant time complexity proportional to n.

The idea behind the construction of the adversary A is the same “length reduction attacks” used in [3]
to show that Sh transform is not MAC preserving. We adapt the attack for the case of ROX transform by
considering the special padding function rox-padRO2 used by the ROX. The algorithm for the adversary A
is shown in Fig. 3. It has oracle access to HK(.) and RO2(.). Note that in definition of the MAC security
notion, the key K is considered secret from the adversary and hence A cannot compute HK(.) directly.

It selects an all zero string of length 2b − 2n bits as M = 02b−2n, for which it tries to return a valid
tag T under HK(.). To this aim, A first queries RO2 as IP ← RO2(M1...k, 〈2b− 2n〉λ , 〈1〉) to get the 2n-bit
response IP (IP stands for ‘internal padding’). It then queries oracle HK(.) on n−1 messages, each of length
4b − 2n bits, constructed as QHi = M ||IP || 〈i〉s ||0b−s||0b−2n, and it receives the response Yi = HK(QHi),
for i ∈ {1, · · · , n− 1} . Let yi denote the last bit of Yi, i.e. yi = Yi[n]. According to the ROX construction
and the structure of the counterexample compression function h, the value of the bit yi will be computed
as yi = HK(M)[i]⊕K0[i]⊕K2[n] with overwhelming probability of at least 1− 2−min{2n,b−s}. This can be
seen from (the Top-Right diagram in) Fig. 3 noting that the final block contains 2n bits of random padding
string (denoted by OP) as its last bits and hence this final block input to the compression function h is not
equal to 〈i〉s ||0b−s with probability at least 1 − 2−min{2n,b−s}, for i ∈ {1, · · · , n− 1}, and therefore h will
leak the last bit (i.e. n-th bit) of its chaining variable input to the output Yi. Therefore with probability at
least 1− 2−min{2n,b−s}, the variable yi (for 1 ≤ i ≤ n− 1) contains the i-th bit of the tag T for the message
M (i.e. T [i] = HK(M)[i]) masked with the unknown key bits K0[i] and K2[n]. For any typical value of
b and n (say b = 512, n = 160) we have 1 − 2−min{2n,b−s} ≈ 1 and so we assume that this probability is
approximately one, to prevent unnecessary complexity in the analysis.

Now A tries to peel off the unknown key bits K0[i], for 1 ≤ i ≤ n − 1. It queries HK(.) on n − 1
messages, each of length 2b − 2n bits, constructed as qHi = 〈i〉s ||0b−s||0b−2n and receives the response
Zi = HK(qHi), for i ∈ {1, · · · , n− 1}. Let zi denote the last bit of the Zi, i.e. zi = Zi[n]. According to
the description of HK(.) and the structure of the counterexample function h, the value of bit zi will be
computed as zi = HK(qHi)[i] = IV [i] ⊕K0[i] ⊕K1[n] with overwhelming probability of at least 1 − 2−2n.
This can be seen from (the Bottom-Right diagram in) Fig. 3 noting that the final block contains 2n bits of
random padding string (denoted by OP ′

i) as its last bits and hence this final block input to the compression
function h is not equal to 〈i〉s ||0b−s with probability at least 1− 2−2n, for any i ∈ {1, · · · , n− 1}, and hence
h will leak the last bit (i.e. n-th bit) of its chaining variable input to the output Zi. For any typical value of
n (say n = 160 as in SHA-1) we have 1− 2−2n ≈ 1 and so we assume that this (overwhelming) probability
is approximately one.

Now for each i ∈ {1, · · · , n− 1} adversary builds a variable ti = yi ⊕ zi ⊕ IV [i] whose value will be
ti = HK(M)[i] ⊕ K1[n] ⊕ K2[n] (with overwhelming probability of at least (1 − 2−2n)2 ≈ 1 for typical
values of n, say n = 160). Note that the value of the remaining unknown masking bit K1[n] ⊕ K2[n] is
independent of the index i, i.e. it is the same for all ti and therefore adversary can guess this unknown value
with probability 1/2. That is, for a random guess α

$← {0, 1} with probability 1/2 the value ti ⊕ α will be

10 M. R. Reyhanitabar, W. Susilo and Y. Mu

equal to HK(M)[i] = T [i] (i.e. the correct tag value), for all i ∈ {1, · · · , n− 1}. It just remains to compute
the last bit of the tag T , i.e. T [n], but A just guesses this one bit and with probability 1/2 this guess will
be correct. Hence the adversary A computes a correct MAC tag T for the message M under HK(.) with
probability 1/4 (or more precisely with probability 1

4(1− (n−1)2−2n+1), which for any typical value of hash
size n, say n = 160, will be ≈ 1/4). Note that the message M never is queried from HK(.) in the attack and
so this is a valid forgery attack.

Referring to the algorithm for A it is seen that A is quite efficient as its computational resources are: one
query from the random oracle RO2(.), 2(n − 1) queries from the function HK(.) with maximum length of
each query 4b− 2n bits, and a constant time complexity proportional to n which can be easily determined
from the description of A.

Algorithm AHK(.),RO2(.):
M ← 02b−2n

IP ← RO2(M1...k, 〈2b− 2n〉λ , 〈1〉)
for i = 1 to n− 1 do

Yi ← HK(M ||IP || 〈i〉s ||0b−s||0b−2n)
yi ← Yi[n]

for i = 1 to n− 1 do
Zi ← HK(〈i〉s ||0b−s||0b−2n)
zi ← Zi[n]

α
$← {0, 1}

for i = 1 to n− 1 do
ti ← yi ⊕ zi ⊕ IV [i]
T [i]← ti ⊕ α

T [n]
$← {0, 1}

T ← T [1] · · ·T [n]
return (M, T)

IV hh h

< i >s ||0b−s
0b 0b−2n||IP

KK K K0K1K0

0b−2n||OP

h

KK2

Yi

M = 02b−2n

yi = Yi[n] = HK(M)[i]⊕K0[i]⊕K2[n]
OP = RO2(0k, 〈4b− 2n〉 , 〈1〉)

zi = Zi[n] = IV [i]⊕K0[i]⊕K1[n]
OP ′

i = RO2(〈i〉s ||0k−s, 〈2b− 2n〉 , 〈1〉)

IV h h

K KK1K0

Zi

< i >s ||0b−s 0b−2n||OP ′
i

Fig. 3. (Left) Description of the algorithm for an adversary A against the VIL function HK(.) = ROXRO1,RO2(K, .) based on
the (counterexample) FIL MAC function h. (Right) The structure of the queries from HK(.) and computation of the responses
according to the ROX construction.

ut

Theorem 3 (Positive Result: PRF). ROX domain extension transform preserves PRF.

Proof. This result is just a straightforward corollary of a theorem in [3] (Theorem 5, page 407) showing
that in the dedicated-key hash function setting (where the compression function is a keyed hash function)
Merkle-Damg̊ard transform and all of its variants including Shoup are PRF preserving transforms. As shown
in [3, 5] even if the key masks (K0,K1, · · ·) in Shoup construction are made public and only the key (K) for
the compression function is kept secret then Shoup transform will still be PRF preserving. Clearly a special
case will be putting the value of all key masks to zero in which case Shoup iteration will be the same as
Merkle-Damg̊ard iteration which is a PRF preserving transform in the dedicated-key hash setting [5]. We
note that the iteration function of the ROX transform is exactly the same as Shoup where the key masks
are generated using a random oracle (Refer to Fig. 2). ut

Analysis of Property-Preservation Capabilities of the ROX and ESh 11

3.2 Analysis of the ESh Transform

The following theorems show our results about the ESh. We show both negative results and a positive result
about property preservation capability of ESh.

Theorem 4 (Negative Results: Sec, aSec, Pre, and aPre). ESh domain extension transform does not
preserve any of the Sec, aSec, Pre, and aPre security properties.

Proof. The proof is done by showing, as a counterexample, a compression function which is secure in xxx
sense for xxx ∈ {Sec, aSec, Pre, aPre} but for which the full-fledged hash function obtained using ESh
domain extension transform is completely insecure in xxx sense for xxx ∈ {Sec[δ], aSec[δ], Pre[δ], aPre[δ]}
and for any value of the parameter δ < 2λ (remember that 2λ is the maximum input message length in bits).

Referring to the description of the strengthened chain shift padding function (padCSs) used in ESh
transform, we consider the following two cases depending on the sizes of the parameters b, n and λ (note
that for ESh, b ≥ n and typical value of λ = 64):

– Case 1: if b ≥ n + λ then padCSs(M) = M ||10r|| 〈|M |〉λ
– Case 2: if b < n + λ then padCSs(M) = M ||10r|| 〈|M |〉λ ||0b−n

Assume that there is a compression function g : {0, 1}k×{0, 1}n+b → {0, 1}n−1 which is (t, ε)-xxx, where
xxx is any of the four properties in {Sec, aSec, Pre, aPre}. For Case 1 and Case 2, respectively, consider the
following two compression functions h1 : {0, 1}k×{0, 1}n+b → {0, 1}n and h2 : {0, 1}k×{0, 1}n+b → {0, 1}n:

h1(K, M) =
{

0n if Mn+b−λ+1...n+b = 〈δ〉λ
g(K, M)||1 otherwise

h2(K, M) =
{

0n if M2n+1...n+b = 0b−n

g(K, M)||1 otherwise

Construction of the counterexamples h1 and h2 are inspired from the CE3 counterexample in [1] where
we make some modifications in the conditions defining these two functions as it is necessary to consider the
effect of padCSs padding in ESh transform. To complete the proof of the theorem we prove and combine
the following two lemmas. The first lemma shows that the compression functions h1 and h2 inherit security
properties xxx ∈ {Sec, aSec, Pre, aPre} from the compression function g and the second lemma shows that
ESh transform cannot preserve these four properties while extending the domain of h1 or h2 compression
functions. Note that only one of these compression functions are used depending on which of the two
conditions specified in Case 1 and Case 2 above are the case.

Lemma 1. If g is (t, ε)-xxx then h1 is (t, ε + 2−λ)-xxx and h2 is (t, ε + 2−(b−n))-xxx, for any of the notions
xxx ∈ {Sec, aSec, Pre, aPre}.

Proof. The proof is provided in Appendix 1.

Lemma 2. For any xxx ∈ {Sec[δ], aSec[δ], Pre[δ], aPre[δ]}, and for any value of δ < 2λ, there is a simple
adversary which can break the domain extended hash function ESh(K,M) = fESh(K, padCSs(M)) using h1

or h2 as the compression function.

Proof. Considering the description of the padCSs and counterexample compression functions h1 and h2,
we have ESh(K,M) = 0 for any M ∈ {0, 1}δ . Hence, in Pre[δ] and aPre[δ] attacks adversary A just
needs to output any arbitrary M ′ ∈ {0, 1}δ and wins with probability one. Similarly, in Sec[δ] and aSec[δ]
attacks A only needs to output any M ′ ∈ {0, 1}δ which is different from the challenge message M ∈
{0, 1}δ and wins with probability one. That is, the VIL hash function ESh : K × {0, 1}<2λ

→ {0, 1}n,
defined as ESh(K,M) = fESh(K,padCSs(M)) using h1 or h2 is completely insecure in xxx sense for xxx
∈ {Sec[δ], aSec[δ], Pre[δ], aPre[δ]} and for any value of the parameter δ, where δ < 2λ.

12 M. R. Reyhanitabar, W. Susilo and Y. Mu

ut

Theorem 5 (Positive Result: ePre). If the compression function h : {0, 1}k × {0, 1}n+b → {0, 1}n is
(t, ε)−ePre then the full-fledged hash function ESh : K × {0, 1}<2λ

→ {0, 1}n defined as
ESh(K,M) = fESh(K, padCSs(M)) will be (t′, ε)−ePre, where t′ = t− c, for a small constant c.

Proof. Assume that there is an adversary A against ePre property of the hash function ESh with time
complexity t′ and advantage ε′. We construct an adversary B which can break the compression function h
in ePre sense with the same advantage (i.e. ε = ε′) and whose time complexity is that of A plus a small
constant time (i.e. t = t′ + c). Adversary B runs A and on receiving the value of Y from A outputs the
same value Y as its own target hash value in the first phase of ePre game. B receives K (the random key

for h), generates K0|| · · · ||Kt−1
$← {0, 1}t.n, where t =

⌈
log2(2λ/b)

⌉
+ 1 and sends the key K||K0|| · · · ||Kt−1

to adversary A as the key for the full-fledged hash function ESh. Note that because B by this phase just
knows the Y and does not know the length of the input message to the hash function ESh, it generates
a key string of maximum required length for the XOR masks, i.e. t.n bits, for t =

⌈
log2(2λ/b)

⌉
+ 1 where

2λ/b is the maximum possible input length in blocks and n is the hash size. Now on receiving the message
M ′ from A (which is to be a preimage for Y under ESh, i.e. Y = ESh(K||K0|| · · · ||Kt−1, M ′)), adversary
B simply outputs the value (IV2 ⊕ K0)||(CL−1 ⊕ Kµ)||M ′

L as a preimage for Y (refer to Fig. 2) which is
the input to the final application of the compression function h in the construction of ESh hash function.
Clearly B wins whenever A wins. The time complexity of B is that of A plus the time required to generate
t random n-bit keys, where t = O(λ) (typically λ = 64), and the time to compute the hash function ESh
on a message of length |M ′|. ut

4 Can We Preserve All Properties?

In the previous section we showed that the ROX transform, which is a random oracle variant of Shoup, does
not preserve MAC and PRO notions and also we showed that the Enveloped Shoup (ESh) transform does
not preserve Sec, aSec, Pre, aPre notions. An immediate question arises from this analysis is that whether
we can preserve all the ten properties simultaneously by a new domain extension transform.

4.1 Using FIL Random Oracles

If we are allowed to use some FIL Random Oracles in our construction in the same way that ROX does
(i.e. uses FIL random oracles just for padding and generation of masking keys), then our analysis in the
previous section hints us towards a candidate for such a ten-property-preserving transform by just mixing
components from both ESh and ROX. We notice that, as shown in Fig. 2, ROX utilizes Shoup’s iteration as
its underlying iteration function and uses FIL random oracles for generation of masking keys and padding
function. Hence the natural candidate for a ten property preserving transforms seems to be a random oracle
variant of ESh with some necessary adaptation in a similar way that ROX is obtained from Sh. We call such
a transform as Random-Oracle Enveloped Shoup (RO-ESh). The construction of RO-ESh can be seen as a
mixture of ESh and ROX elements and like the ROX construction, RO-ESh also needs two “small-input”
FIL random oracles. The FIL random oracles in RO-ESH are used only, logarithmic number of times in
message length, for message padding and generation of masking keys from a single key, but the compression
function h itself is not modeled as a random oracle.

The padding function of the RO-ESh domain extension transforms is defined as follows, where 2λ is the
maximum message length in bits (typically λ = 64) :

RO-ESh-pad : {0, 1}<2λ

→
⋃

L≥1 {0, 1}L.b+b−n

RO-ESh-padRO2(M) = M ||10r||RO2(M1...k, 〈|M |〉λ)

Analysis of Property-Preservation Capabilities of the ROX and ESh 13

, where r is the minimum number of 0’s required to make the padded message a member of {0, 1}L.b+b−n,
for some positive integer L, and RO2 : {0, 1}k × {0, 1}λ → {0, 1}b−n is an FIL random oracle.

The iteration function for RO-ESh transform is shown in Fig. 4, where IV1 and IV2 are known initial
values and IV1 6= IV2. RO1 : {0, 1}k×{0, 1}k×{0, 1}dlog λe → {0, 1}n is a random oracle used by the RO-ESh
iteration function to generate required key masks.

f
RO1(.)
RO−ESh : K × {0, 1}(L−1).b+b−n → {0, 1}n, where K = {0, 1}k

t = dlog2(L − 1)e + 1, ν(i) = max {x : 2x|i}

Algorithm f
RO1(.)
RO−ESh(K, M):

for i = 0 to t − 1 do
Ki = RO1(K, M1...k, 〈i〉)

CL = fESh(K||K0||K1|| · · · ||Kt−1, M)
return CL

IV1 h h

M1 M2

K KK1K0

h

ML−1

K KµKν(L−1)

b− n

ML

CLh

KK0

IV2

Fig. 4. Iteration function of the RO-ESh transform. The structure of the iteration is the same as ESh and only the key masks
are generated using an FIL random oracle RO1. fESh is the iteration function of ESh as shown by the diagram on the left and
described in Fig. 2.

The VIL hash function H : {0, 1}k × {0, 1}<2λ

→ {0, 1}n, obtained by applying the RO-ESh domain
extension transform on an FIL hash function h : {0, 1}k × {0, 1}n+b → {0, 1}n is defined as follows:

H(K, M) = RO-EShRO1, RO2(K, M) = fRO1
RO−ESh(K, RO-ESh-padRO2(M))

The proof of the following Theorem is obtained by a straightforward (but lengthy) adaptation of the
previous results proved in [1] and [3], for the security of ROX and ESh transforms, respectively.

Theorem 6. If the compression function h : {0, 1}k × {0, 1}n+b → {0, 1}n has security property P ∈
{CR, Sec, aSec, TCR, Pre, aPre, ePre, MAC,PRF,PRO}, then the hash function H obtained by RO-ESh
transform will also possess property P, with the following concrete-security reductions and relations between
the resources:

1. if h is (t, ε)-CR then H will be (t′, l, ε′)-CR, where ε′ = ε +
q2
RO2

2b−n and t′ = t− 2τ(l)Th

2. if h is (t, ε)-TCR then H will be (t′, l, ε′)-TCR, where ε′ = τ(l)ε + qRO1

2k +
q2
RO2

2b−n and t′ = t− 2τ(l)Th

3. if h is (t, ε)-aSec then H will be (t′, l, ε′)-aSec[m], where ε′ = τ(l)ε + qRO1

2k +
q2
RO2

2b−n and t′ = t− 2τ(l)Th

4. if h is (t, ε)-Sec then H will be (t′, l, ε′)-Sec[m], where ε′ = τ(l)ε +
q2
RO2

2b−n and t′ = t− 2τ(l)Th

5. if h is (t, ε)-aPre then H will be (t′, l, ε′)-aPre[m], where ε′ = ε + qRO1

2k and t′ = t− 2τ(l)Th

6. if h is (t, ε)-Pre then H will be (t′, l, ε′)-Pre[m], where ε′ = ε and t′ = t− τ(l)Th

7. if h is (t, ε)-ePre then H will be (t′, l, ε′)-ePre, where ε′ = ε and t′ = t− τ(l)Th

8. if h is (t, q, ε)-MAC then H will be (t′, q′, l, ε′)-MAC, where ε′ = (q2/2 + 3q/2 + 1)ε, t′ = t− c(q′ + 1)τ(l)
and q′ = (q − τ(l) + 1)/τ(l)

14 M. R. Reyhanitabar, W. Susilo and Y. Mu

9. if h is (t, q, ε)-PRF then H will be (t′, q′, l, ε′)-PRF, where ε′ = ε + q2τ(l)2/2n, t′ = t − cqτ(l) and
q′ = q/τ(l)

10. if hK = RFn+b, n be a random oracle for any arbitrary K, then H will be (tA, tS , q1, q2, q3, q4, l, ε)-PRO,
where running time of adversary tA is arbitrary, time complexity for simulator tS = O(q2

2), qi is the
number of queries by adversary from i-th oracle (for 1 ≤ i ≤ 4) and

ε′ =
τ(l)2q2

1 + τ(l)q1q2 + q2
2

2n
+

τ(l)q1 + q2 + q2
3

2n

In above relations: τ(l) = d(l + 1)/be+1 = L is the number of blocks after applying RO-ESh-pad function
on an l-bit message M , Th is the time to compute compression function h, qRO1 and qRO2 are, respectively,
the number of queries from RO1(.) and RO2 oracles.

ut

4.2 Without Any Random Oracle

As it was shown in analysis of ESh, as a standard model transform, the four properties, namely; Pre,
aPre, Sec, and aSec are not preserved by ESh. It appears to be a crux to preserve these four properties
(simultaneously) in the standard model.

Sec. Andreeva and Preneel in SAC 2008 [2] proposed a keyed transform to extend the domain of a keyless
compression function. The proposed transform yields to a dedicated-key VIL hash function which is CR
and Sec secure (where CR and Sec notions are defined for a dedicated-key hash function) based on the
assumptions that underlying keyless compression function is, respectively, CR or Sec (here CR and Sec
are defined for a keyless compression function). The setting is called “keyless compression function - keyed
iteration”’ in [2]. We note that the nature of Sec notion for the keyless compression function and that of
keyed hash function is different. Unfortunately the proposed scheme cannot be shown to be Pre secure in
standard model and only a random oracle argument is provided in [2] for its security in Pre sense .

Pre. To the best of our knowledge, the only transform in the standard model that is pointed out in [1] to
be Pre preserving (in the dedicated-key hash setting) is the XOR Tree scheme, but it does not preserve aPre
and aSec as shown in [1].

aSec and aPre. There is currently no transform in the literature that can preserve aSec and aPre in the
standard model. Such an aSec and aPre preserving transform in dedicated-key hash setting will also yield to
a construction in keyless hash setting capable of preserving the Second Preimage Resistance and Preimage
Resistance (a.k.a One-wayness) of the underlying keyless compression function.

Remark. It is worth reminding that we call a hash domain extension transform (either in dedicated-key or
keyless settings) capable of preserving a security property P (defined either for a dedicated-key or keyless
hash function) if the constructed VIL hash function provably possesses the property P assuming that the
underlying compression function satisfies the same property P. This is different from a scenario where one
proves that the VIL hash function has property P if its underlying compression function satisfies a different
property P′, e.g. [18], or a collection of different assumptions, e.g. [10, 9].

Analysis of Property-Preservation Capabilities of the ROX and ESh 15

5 Conclusion

In this paper, we analyzed two recently proposed MPP hash domain extension transforms, namely the
Random-Oracle-XOR (ROX) transform and the Enveloped Shoup (ESh) transform. We showed that ROX
does not preserve MAC and PRO notions, but it preserves PRF. We also showed that ESh does not preserve
Sec, aSec, Pre, and aPre, but it preserves ePre. Our results complete the MPP analysis of both ROX and
ESh transforms in regard to all ten security notions of interest, namely CR, Sec, aSec, eSec (TCR), Pre,
aPre, ePre, MAC, PRF, PRO, and provide the full picture of their MPP capabilities.

References

[1] Andreeva, E., Neven, G., Preneel, B., Shrimpton, T.: Seven-Property-Preserving Iterated Hashing: ROX. In: Kaoru
Kurosawa (ed.): ASIACRYPT 2007. LNCS, vol. 4833, pp. 130–146. Springer (2007)

[2] Andreeva, E., Preneel, B.: A Three-Property-Secure Hash Function. In: Avanzi, R., Keliher, L., Sica, F. (eds.): SAC 2008.
Workshop Records, pp. 208–224. (2008)

[3] Bellare, M., Ristenpart, T.: Hash Functions in the Dedicated-Key Setting: Design Choices and MPP Transforms. In Arge,
L., Cachin, C., Jurdzinski, T., Tarlecki, A. (eds.): ICALP 07. LNCS, vol. 4596, pp. 399–410. Springer (2007)

[4] Bellare, M., Ristenpart, T.: Multi-Property-Preserving Hash Domain Extension and the EMD Transform. In Lai, X.,
Chen, K. (eds.): ASIACRYPT 2006. LNCS, vol. 4284, pp. 299–314. Springer (2006)

[5] Bellare, M., Ristenpart, T.: Hash Functions in the Dedicated-Key Setting: Design Choices and MPP Transforms. Cryp-
tology ePrint Archive, Report 2007/271, 2007. http://eprint.iacr.org/.

[6] Bellare, M., Rogaway, P.: Collision-Resistant Hashing: Towards Making UOWHFs Practical. In Kaliski Jr., B.S. (ed.)
CRYPTO 1997. LNCS, vol. 1294, pp. 470–484. Springer (1997)

[7] Coron, J.S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damg̊ard Revisited: How to Construct a Hash Function. In
Shoup, V. (ed.): CRYPTO 2005. LNCS, vol. 3621, pp. 430–448. Springer (2005)

[8] Damg̊ard, I.: A Design Principle for Hash Functions. In Brassard, G. (ed.): CRYPTO 1989. LNCS, vol. 435, pp. 416–427.
Springer (1990)

[9] Dodis, Y., Puniya, P.: Getting the Best Out of Existing Hash Functions; or What if We Are Stuck with SHA?. In: Bellovin,
S. M., Gennaro, R., Keromytis, A. D., Yung, M. (eds.): ACNS 2008. LNCS, vol. 5037, pp. 156–173. Springer (2008)

[10] Halevi, S., Krawczyk, H.: Strengthening Digital Signatures Via Randomized Hashing. In: Dwork, C. (ed.): CRYPTO 2006.
LNCS, vol. 4117, pp. 41–59. Springer (2006)

[11] Maurer, U. M., Renner, R., Holenstein, C.: Indifferentiability, Impossibility Results on Reductions, and Applications to
the Random Oracle Methodology. In Naor, M. (ed.): TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer (2004).

[12] Merkle, R.C.: One Way Hash Functions and DES. In Brassard, G. (ed.): CRYPTO 1989. LNCS, vol. 435, pp. 428–446.
Springer (1990)

[13] Mironov, I.: Collision-Resistant No More: Hash-and-Sign Paradigm Revisited. In Yung, M., Dodis, Y., Kiayias, A., Malkin,
T. (eds.): PKC 2006. LNCS, vol. 3958, pp. 140–156. Springer (2006)

[14] Mironov, I.: Hash Functions: From Merkle-Damg̊ard to Shoup. In Pfitzmann, B. (ed.): EUROCRYPT 2001. LNCS, vol.
2045, pp. 166–181. Springer (2001)

[15] Naor, M., Yung, M.: Universal One-Way Hash Functions and Their Cryptographic Applications. In: STOC 1989, pp.
33–43. ACM (1989)

[16] Rogaway, P., Shrimpton, T.: Cryptographic Hash-Function Basics: Definitions, Implications, and Separations for Preimage
Resistance, Second-Preimage Resistance, and Collision Resistance. In Roy, B.K., Meier, W. (eds.): FSE 2004. LNCS, vol.
3017, pp. 371–388. Springer (2004)

[17] Shoup, V.: A Composition Theorem for Universal One-Way Hash Functions. In: Preneel, B. (ed.): EUROCRYPT 2000.
LNCS, vol. 1807, pp. 445–452. Springer (2000)

[18] Yasuda, K.: How to Fill Up Merkle-Damg̊ard Hash Functions. In: Pieprzyk, J. (ed.): ASIACRYPT 2008. LNCS, vol. 5350,
pp. 272–289. Springer (2008)

A Proof of Lemma 1

A.1 The case of h1

We want to show that if g is (t, ε)-xxx then h1 is (t, ε + 2−λ)-xxx, where xxx ∈ {Sec, aSec, Pre, aPre}. Let
A be an adversary attacking h1 in xxx sense with time complexity t′ and advantage ε′, we construct an

16 M. R. Reyhanitabar, W. Susilo and Y. Mu

adversary B that can attack g in the xxx sense with the same time complexity as A, i.e. t = t′ and with
advantage ε = ε′− 2−λ. Briefly saying, adversary B plays in xxx game by using A as a subroutine. B simply
forwards challenges to A and after receiving responses from A simply outputs them as its own responses. As
we show for all cases below, B wins the xxx game whenever A wins and a specific event, called Bad, does
not happen. Bad is defined as the event that Mn+b−λ+1...n+b = 〈δ〉λ in which case h1 always outputs ‘0’
irrespective of the output value of g (refer to the definition of the counterexample h1). Clearly for a random
message M ∈ {0, 1}n+b we have Pr[Bad] = 2−λ. For definitions of Sec, aSec, Pre and aPre games refer to
Fig. 1. The details of reductions are as follows:

The case of xxx=Sec: Adversary B on receiving the key K and the first message M (where K
$← {0, 1}k

and M
$← {0, 1}n+b) checks whether Bad has happened, i.e. Mn+b−λ+1...n+b = 〈δ〉λ or not. If Bad happens

then B returns ‘Fail’ and aborts here, otherwise it forwards K and M to A, gets the second preimage M ′

from A for h1, and outputs M ′ as its own second preimage for g. We note that if Bad does not happen, then
according to the construction of h1 adversary B wins (i.e. M ′ is a second preimage for M under g) whenever
A wins (i.e. if M ′ is a second preimage for M under h1). Hence, we have Pr[B wins]=Pr[A wins and Bad] ≥
Pr[A wins]-Pr[Bad] = ε′− 2−λ. The time complexity of B is the same as A, as it just runs A by forwarding
the messages.

The Case of xxx=aSec: Adversary B runs A, receives the key K from it and outputs K as its own key in
the first stage of aSec game. On receiving the first message M (where M

$← {0, 1}n+b), B checks whether
Bad has happened, i.e. Mn+b−λ+1...n+b = 〈δ〉λ or not. If Bad happens then B returns ‘Fail’ and aborts here,
otherwise it sends M to A, receives the second preimage M ′ from A for h1, and outputs M ′ as its own second
preimage for g. It is easy to see from the construction of h1 that if Bad does not happen then adversary
B wins (i.e. M ′ is a second preimage for M under g) whenever A wins (i.e. if M ′ is a second preimage for
M under h1). Hence, we have Pr[B wins]=Pr[A wins and Bad] ≥ Pr[A wins]-Pr[Bad] = ε′− 2−λ. The time
complexity of B is the same as A, as it just runs A and forwarding the messages.

The Case of xxx=Pre: Adversary B on receiving the key K and the hash value Y (where K
$← {0, 1}k ,M

$←
{0, 1}n+b and Y = g(K, M)), runs A by sending the same key K together with Y ′ = Y ||1 (as the hash value
under h1) to A. On receiving the preimage M ′ (for Y ′ under h1) from A, adversary B returns M ′ as its own
preimage (for Y under g). It is easy to see from the construction of h1 that if Bad does not happen (i.e.
Mn+b−λ+1...n+b 6= 〈δ〉λ) then B wins (i.e. M ′ is a preimage for Y under g) whenever A wins (i.e. if M ′ is a
preimage for Y ′ = Y ||1 under h1). Hence, we have Pr[B wins]=Pr[A wins and Bad] ≥ Pr[A wins]-Pr[Bad] =
ε′ − 2−λ. The time complexity of B is the same as A, as it just runs A by forwarding the messages.

The Case of xxx=aPre: Adversary B runs A, receives the key K from it and outputs K as its own key
in the first stage of aPre game. When B receives the (challenge) hash value Y (where M

$← {0, 1}n+b and
Y = g(K, M)) it runs A by sending to it Y ′ = Y ||1 (as the challenge hash value under h1). On receiving the
preimage M ′ (for Y ′ under h1) from A, adversary B returns M ′ as its own preimage (for Y under g). It can
be seen from the construction of h1 that if Bad does not happen (i.e. Mn+b−λ+1...n+b 6= 〈δ〉λ) then B wins
(i.e. M ′ is a preimage for Y under g) whenever A wins (i.e. if M ′ is a preimage for Y ′ = Y ||1 under h1).
Hence, we have Pr[B wins]=Pr[A wins and Bad] ≥ Pr[A wins]-Pr[Bad] = ε′− 2−λ. The time complexity of
B is the same as A, as it just runs A by forwarding the messages.

A.2 The case of h2

The proof for this case (that is, to show that if g is (t, ε)-xxx then h2 is (t, ε + 2−(b−n))-xxx, where xxx
∈ {Sec, aSec, Pre, aPre}) is almost the same as the previously proved case for h1 and the only difference is
that now in this case the event Bad is defined as the event that M2n+1...n+b = 0b−n in which case h2 always

Analysis of Property-Preservation Capabilities of the ROX and ESh 17

outputs ‘0’ irrespective of the output value of g (refer to the definition of the counterexample h2). Clearly
for a random message M ∈ {0, 1}n+b we have Pr[Bad] = 2−(b−n).

