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Abstract. Trivium is a hardware-oriented stream cipher, and one of the finally chosen ciphers by
eSTREAM project. Michal Hojsik and Bohuslav Rudolf presented an effective attack to Trivium,
named floating fault analysis, at INDOCRYPT 2008. Their attack makes use of the fault injection
and the fault float. In this paper, we present an improvement of this attack. Our attack is under
following weaker and more practical assumptions.

® The fault injection can be made for the state at a random time.

® The positions of the fault bits are from random one of 3 NFSRs, and from a random area

within 8 neighboring bits.

We present a checking method, by which either the injecting time and fault positions can be
determined, or the state differential at a known time can be determined. Each of these two
determinations is enough for floating attack. After the determination, the attacker can averagely
obtain 67.167 additional linear equations from 82 original quadratic equations, and obtain 66
additional quadratic equations from 66 original cubic equations. A modification of our model is
similarly effective with the model of Michal Hojsik and Bohuslav, for the floating attack.
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1 Introduction

1.1 Background and Results of Our Work

Trivium [1, 2] is a hardware-oriented stream cipher designed in 2005 by De Canniére and Preneel
for eSTREAM project, and has successfully been chosen as one of the final ciphers by eSTREAM.
It has a simple and elegant structure that is composed of 3 non-linear feedback shift registers
(NFSRs) and a linear output function. Although Trivium has attracted a lot of interest [3-8], it
remains unbroken by passive attacks. An obvious weakness of Trivium is that its non-linearization
procedure is over slow, so that the attacker can obtain a large number of low-degree equations of
its initial state, by obtaining a key-stream segment. Such low-degree equations are strong enough
against those passive attacks, but are weak against active attacks, for example, known-differential
attack.

Several active attacks have been presented for stream ciphers [9-15]. Michal Hojsik and
Bohuslav Rudolf presented an attack to Trivium, named differential fault analysis, at FSE 2008
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[16]. This attack is a known-differential attack, and makes use of the fault injection to obtain the
state differential. After that, they presented a more effective attack to Trivium, named floating
fault analysis, at INDOCRYPT 2008 [17]. Besides the fault injection, their attack makes use of
fault floating, another powerful tool. This attack is no doubt successful, but under two strong
assumptions, as the follow.

Assumption 1.1 The fault injection can be made for the state at a fixed time, especially at
the initial time.

Assumption 1.2  After the fault injection, exactly one random bit is changed.

For any stream cipher, the state renewal is extremely fast, so that the attacker can hardly catch
the state at a fixed time. On the other hand, the hardware-oriented stream ciphers are usually under
protection against corruption. According to common comprehension, the fault injection is made by
laser or by magnetic disturbance or by some other brute method. When a bit is corrupted, it is
difficult to keep the neighbor bits not to be corrupted.

In this paper, we present an improvement of the floating fault attack. Our attack is under
following weaker and more practical assumptions.

Assumption 2.1 The fault injection can be made for the state at a random time.

Assumption 2.2 The positions of the fault bits are from random one of 3 NFSRs, and from a
random area within 8 neighboring bits.

We present a checking method, by which either the injecting time and fault positions can be
determined, or the state differential at a known time can be determined. Each of these two
determinations is enough for floating attack. After the determination, the attacker can averagely
obtain 67.167 additional linear equations from 82 original quadratic equations, and obtain 66
additional quadratic equations from 66 original cubic equations. Then we make a modification to
our model, that is, we preserve the floating attack model of Michal Hojsik and Bohuslav, allowing
repeatedly faut injections, except that Assumption 1.2 is changed as Assumption 2.2. Averagely 4
fault injections and averagely 227 X5 key-stream bits will break Trivium. This result is similarly
effective with the primitive model of Michal Hojsik and Bohuslav Rudolf [17].

The contents are organized as follows. In subsection 1.2 we review related work recently about
Trivium. Section 2 is a brief description of Trivium, emphasizing its differential feature and its
differential floating feature. Section 3 is the checking method. In this section we first present, after
the fault injection, the differential features in various cases. Then we present a complete checking
routine, through which either the injecting time and fault positions can be determined, or the state
differential at a known time can be determined. Section 4 is the floating analysis. We show that,
till the time called “the floating end”, the attacker can averagely obtain 67.167 additional linear
equations from 82 original quadratic equations, and obtain 66 additional quadratic equations from
66 original cubic equations. In section 5 we make a modification to our model, and compare with
the primitive model of Michal Hojsik and Bohuslav Rudolf. We show that, for our modified model,
averagely 4 fault injections and averagely 227 X5 key-stream bits will break Trivium.

1.2 Related Work Recently about Trivium

Many previous results in Trivium cryptanalysis have been mensioned by Michal Hojsik and
Bohuslav Rudolf [15, 16], and listed in our refferences. Here we only briefly mension 3 results



obtained recently.

Deik Priemuth-schmid and Alex Biryukov [18] presented slid pairs in Trivium. They showed
that initialization and key-stream generation of Trivium is slidable, that is, one can find distinct
(Key, 1V) pairs that produce identical (or closely related) key-streams. There are more than 2
such pairs in Trivium. Enes Pasalic [19] mainly considered the scenario where the key differential
and/or 1V differential influence the internal state of the cipher. They show that under certain
circumstances a chosen IV attack may be transformed in the key chosen attack. Based on the idea
of cube attack proposed by Itai Dinur and Adi Shamir [20], S. S. Bedi and N. Rajesh Pillai [21]
presented cube attacks on Trivium.

2 Trivium Model and Trivium Features

2.1 Trivium Key-Stream Generation and Original Equations

3 combined NFSRs (Non-linear Feedback Shift Registers) drive the key-stream of Trivium. The
first NFSR is 93 bit long, denoted as (S;, ***, So3). The second NFSR is 84 bit long, denoted as
(Soa, **, S177). The third NFSR is 111 bit long, denoted as (Sizg, ***, Sxgs). Table 1 is an
equivalent algorithm for the key-stream generation.

Table 1. The key-stream generation algorithm
Input: Trivium inner state (S;, -+, Szgs), Number of output bits N<<2%
Output: key-stream (zoz1z2 **“Zn)

1: fori=0to N do

2. Zi=Sept+So3t+S162+S177+S243+S288

3. t1<=See+S91S92+S93+S171

4 to—S162+S1755176+S177+S264

O 13*Sp43+S28652871S288+S60

6:  (S1, ***,S93)~(t3, S1, ***, So2)

70 (So4, ***,S177)~(t1, Sosa, ***, S176)
8.  (S17s, ", S288)<(t2, S178, . S287)
4: end for

In Table 1, the step 2 is output of the key-stream bit, which is a linear function of the state. The
step 3~8 is renewal of the inner state. Let s, j denote the state bit at time t and position j, then
Table 2 presents a clearer description for the state renewal.

Table 2. The inner state renewal



(Sq+1, 1) S(t+1,2)s ***» S(t+1, 93))
=(S(t, 243)+S(t, 286)S(t, 287)FS(t, 288)FS(t, 69)s S(t, 1)+ S(t, 92))

(Se+1, 94), S(t+1,95), *** S(t+1, 177))
=(S, 66)*S(t, 91)S(t, 92)+S(t, 93)FSt, 171), S(t, 94)s *** S(t, 176))

(Sa+1, 178), St+1, 179), ***, S(t+1, 288))
=(Sq, 162)+S(t, 175)S(t, 176)+S(t, 177)FS(t, 264), S(t, 178)s '+ S(t, 287))

Suppose that the attacker obtains a key-stream segment (zizi+1Zt+2 **Z+n) from time t to time
t+N. Then he obtains N+1 equations of (S 1), S, 2),***, S, 288)), the state at time t. These equations
are called original equations, and are respectively ranked equation (0), equation (1), --+, equation
(N).

66 of these original equations are linear equations, ranked from equation (0) to equation (65).
82 of these original equations are quadratic equations, ranked from equation (66) to equation (147).
In each of these quadratic equations, quadratic terms are the products of two neighbor bits s jyS:,
j+1), and two quadratic terms do not have coincident bits. These quadratic terms are called pair
quadratic terms. Because of such special features, equation (66) ~ equation (147) are also called
pair quadratic equations (see [15]). 66 of these original equations are cubic equations, ranked from
equation (148) to equation (213).

The equation (0) ~ equation (147) are presented in Appendix A.

2.2 Trivium Differential Features and Additional Equations

Suppose that the attacker obtains not only the key-stream segment (ziz¢12t+2 **Zi+n) from time t to
time t+N, but also the following two objects.

(1) Another key-stream segment (z;'zu1’Z+2” *Zt+n’) from time t to time t+N, therefore the
differential of the two segments

(Azy, Az, =, Azun)=(@t2, Zwatzisd’,, ZuntZun’).
(2) The differential value of two inner states at time t,
(Asi, 1), DS 2y, "y DS, 288))=(S(t, 1)+S(t. 1) St 2 2" S(t, 288)FS(t, 288) )-

Then he obtains another N+1 equations of (S¢, 1), S¢, 2),**, S 288))- These equations are called
additional equations. From 66 original linear equations, he obtains 66 additional equations which
are identities. From 82 original quadratic equations, he obtains 82 additional equations which are
identities or linear equations. From 66 original cubic equations, he obtains 66 additional equations
which are identities or linear equations or quadratic equations. And so on. Linear equations are
most valuabale for breaking Trivium. Quadratic equations are much less valuabale.

2.3 Differential Floating Feature

It is clear that, by Appendix A,
(AS@e, 1), DS, 2,y DS, 93))



=(ASq, 243 A (S, 286)S(t, 287))F S, 288)F St 69), DSt 1)t ASr, 92))
=(A\Sq, 23S, 286) 20 S(t, 287)FS(t, 287) NS, 286)F LN St, 286) 2\ S(t, 287)F NS, 288)F A\ S(t, 69),
AS(t, 1) " AS(t,gz)),

(ASe1, 94, ASet, 05y ***y ASqeen, 177))

=(Asg, 66+ A (Set, 91)S(t, 92)F A8, 93T AS, 171y, ASt, 04y, *t, ASgt, 176))

=(A s, 66)+S(t, 91) (1, 92)FS(t, 92\ S(t, a1+ AS(r, 01) ASt, 02+ ASr, 93+ AS, 172),
ASi oay, *** ASt, 176))s

(ASe1, 178, AS(s1,179) ***y A\S(ee1, 288))

=(Asg, 162+ A (S, 175)5¢, 176)+F AS(t, 177y AS(t, 264y, ASea7g), s St 287))

=(AS(, 162+, 175 2S(t, 176)FS(t, 176) S, 175)F A S, 175) S, 176)F A S, 177H A\ S¢t, 264),
AS(a78), **t, DS, 287))-

It implies that, if the state differential at time t is known, the state differential at time t+1 is
known under one of several weak conditions. This feature is called differential float, or fault float.

3 Determination of the Injecting Time and Fault Positions

Suppose that the attacker obtains an encryption machine. He starts up this machine, and obtains
the key-stream segment (zpz1z; -*-zn). Then he starts up the machine once again, and
simultaneously makes fault injection under Assumption2.1 and Assumption2.2. So that he obtains
the fault injected key-stream segment (zy’z;’z,’ ---zy’), and the differential of the two segments (A
20, A7y, -, AZN)=(20%20", 71+217, "+, Zn+2Zy’). He wants to determine the injecting time and fault
positions.

3.1 Notations and Lemmas

S j) denotes the state bit at time t and position j.

P. denotes the lowest position of injected faults. Py denotes the highest position of injected
faults. According to our Assumption2.2, 1<<Py -P, <7. Again Py and P, are from same set of
indices {1, ---,93} or {94, ---, 177} or {178, ---, 288}.

P is of 9 cases: 1<<P| <66, 67<<P| <<69, 70<<P| <93, 94<<P <162, 163<<P <171, 172<
P <177, 178<<P| <243, 244 <P, <264, 265<P, <288.

T denotes the smallest time t such that Az=1. M denotes the time when the faults are inserted.
The attacker has already known T. He does not know M, but he does know that T-68<M<T.

Lemmal Suppose that
(1) A={a, -+, an} is a set of indices, max{A}-min{A}<7, and
Ac{l, ---,93}orAc{94, -+, 177} or AC {178, ---, 288}.
(2) k is an integer.
(3) Forj=0, 1, ---, k-1, (A+j) N {66, 69, 91, 92, 93, 162, 171, 175, 176, 177, 243, 264, 286, 287,
288}=® (the empty set), where (A+j)={as+j, -+, antj}.
(4) (A+k)Nn {66, 69, 91, 92, 93, 162, 171, 175, 176, 177, 243, 264, 286, 287, 288}+~ D.



(5) tisatime.

Then the following k+1 fault-injections are equivalent. That is, they generate k+1 fault injected
key-streams which are completely same.

Injection O: at time t, the bits at the positions of A are corrupted.

Injection 1: at time t+1, the bits at the positions of A+1 are corrupted.

Injection k: at time t+ k, the bits at the positions of A+k are corrupted.

Lemma 2

(1) In case 1<<P, <66, we can equivalently take M=T, so that P, =66.

(2) In case 94<<P <162, we can equivalently take M=T, so that P=162.

(3) In case 178<<P| <243, we can equivalently take M=T, so that P;=243.

(4) In case 70<<P_ <93, we can equivalently take T-2<<M<T, so that 91<<Py<<93.

(5) In case 172<<P <177, we can equivalently take T-2<<M<T, so that 175<<Py<<177.
(6) In the 265<<P <288, we can equivalently take T-2<<M<T, so that 286 <<P,,;<<288.
(7) In the 67<P_ <69, we can equivalently take As, eg=1, S0 that P;=69.

(8) In the 163<<P <171, we can equivalently take Asg, 171)=1, so that Py=171.

(9) In the 244<P <264, we can equivalently take AS, 264=1, S0 that P,=264.

3.2 Differential Features in VVarious Cases

Proposition 1  Suppose 1<<P, <66. Equivalently take M=T and Py=66. Then there are m
and n, 0OS<Xm<<n<.7, such that

Q) (Azr, Aztag, -, AZrinm)=(1, *---*, 1).

(2) (AzZrsnmet, AZrenmez, = AZrme26)=(0, 0, =+, 0).

(3) (Azrmear, AZrmess, =y AZrage)=(1, *+++*).

(4) (Azrsgr, Azrigg, 0 AZrsnme2n)=(AZr, AZrer, =, AZrinm)=(1, *--+%, 1).

(5) (Azrsnmezsr AZrsnmeze, ***n AZ1se5)=(0,0, ==+, 0).

(6) The fault positions are of the set A={t|]-n+m+66 <<t<<m+66, AZr.t.93=1}.

Proof Denote n=Py-P_, m=Py-66, then n-m=66-P,, 0<xm<n<<7. According to Appendix A,
(Azr, Azrag, o Arinm)=(AS 66y, ASr 65y, ***r AS(T, nemeee)=(1, *+++*, 1),
(AZrenmsr, AZrenmez, =, DZrme26)=(0, 0, -+, 0),

(Azrmear, AZrmezs, *y AZ1426)=(ASr, mres), ASrmess)y, = AS(r e7)=(1, *+++%),
(Azrizr, Alrizs, =y AZrinmean)=(ASre6) ASr 65, 2 AS(T, -nemess))=(1, *+++*, 1),
(Azrinmezs, DZrenmeze, ***, AlZ14e5)=(0, 0, ==+, 0).

Proposition 1 is proved.

Similar to Proposition 1, the following Proposition 2 and Proposition 3 are true.
Proposition 2 Suppose 94<P  <162. Equivalently take M=T and Py=162. Then there are

m and n, 0OSm<<n<.7, such that
(1) (AZTv AZT+:|.1 Yy AZ'|'+I'I-I‘T'I)=(:|-1 *.”*1 l)



(2) (AzZr+nmens AZrenme, AZT-m+14)=(0, 0, -+, 0).

(3) (Azrmits, AZrmess, == AZrera)=(1, *+%).

(4) (AZT+151 NAZri1g, AZT+n-m+15)=(AZT1 NZ14, AZT+n-m)=(1y Feeek 1)-
(5) (Azrinms1s, AZrinmaan, % Az1465)=(0, 0, *=+, 0).

(6) The fault positions are of the set A={t|-n+m+162<t<<m+162, Az177=1}.

Proposition 3  Suppose 178<<P, <243. Equivalently take M=T and Py=243. Then there are
m and n, 0Sm<<n<.7, such that

Q) (Azr, Azger, o+, AZrenm)=(1, *---*, 1).

(2) (Azrenmer, AZrenemez, =ty AZ1meas)=(0, 0, +=+, 0).

(3) (Azrmeas, AZrmess, ***y AZreas)=(1, *+++%).

(4) (Azrsss, Azress, 0 AZrsnmeas)=(AZr, AZrer, =, AZrinm)=(1, *-+%, 1).

(5) (AZrenmeas, DZrenmear, =+, AZ14e5)=(0, 0, +++, 0).

(6) The fault positions are of the set A={t|-n+m+243<<t<<m+243, AZr.t+288=1}.

Proposition 4 Suppose 70<<P; <93. Equivalently take T-2<<M<T and 91<Py<:93. Then
there is n, 0<Xn<.7, such that

(1) (Azr, Azrsa, =, AZran)=(ASer, 93, ASr 92, ***, AST,e3-n)=(1, *+=+*, 1).

(2) If M=T-2 (Pu=91), (Azts67, AZrse8)=(S(r-2, 92)AS(T, 93, A(S(r, 928(T, 93))), and the fault
positions are from the set A={t|91-n<<t<<91, AZr.=1}.

(3) If M=T-1 (Pu=92), (Azt+67, Az1+68)=(0, A(S(r, 92T, 93))), and the fault positions are from
the set A+1.

(4) If M=T (Pu=93), (Azr+67, AZ7+68)=(0, 0), and the fault positions are from the set A+2.

(5) (Azriee, AZrero, ***, AZrinseo)=

(A(S(r, 91yS(T, 92)+S(T, 93))s - AN(S(T, 90)S(T, 91 +S(T, 92))s =y AN(S¢T, 92-m)S(T, 92-)S(T, 93-n)))-
(6) (Azrier, AZrses, =ty AZ1inee)=(AzZriga, AZrigs, **, AZrinisa)=(AZrsazs, AZriaza, o,
AZT+n+135)-

(7) (Azrsaas, Azri1a6, AZ14147)=(DZ1467, AZ1468,NZ1469).

(8) Azr4=0 for other t such that 0<<t<<147.

(9) Whether M=T-2 or M=T-1 or M=T, the state differential at time T is the follow: (A, 931,
ASE 94y, *tty DS, 03)=(AZran, Aty o0, A1), (AS 04, AS,05)= (AZrses, AZrigr), A
s¢r,j)=0 for other j.

Proof

If M=T (P=93), (Asr, 03, ASm e, ) AS,eam)=(L, *++%, 1), Asr,j=0 for other j.

If M=T-1 (P1=92), (AS(r, 03, ASr 02, s ASer,03m)=(1, *++*, 1), Asr 00=A(ST,925(T, 93),
Asr,j)=0 for other j.

If M=T-2 (P4=91), (AS(r, 03, ASr 02, =y ASr,03m)=(1, *++*, 1), Asr 00=A(S1,925(T, 93),
AS(T,95)=S(T-2, 92y ST, 93), AS(r,jy=0 for other j.

According to Appendix A, Proposition 4 is clear.

Similar to Proposition 4, the following Proposition 5 and Proposition 6 are true.

Proposition 5 Suppose 172<<P, <<177. Equivalently take T-2<M<T and 175<<Py<177.



Then there is n, 0<<n<:5, such that

(1) (Azr, Azrsa, =, Azran)=(AS, 177, ASa78) "0 AS(r, 177-m)=(1, *+++*, 1).

(2) If M=T-2 (Pu=175), (AZrsea, AZ1465)=(S(r-2,176)28(T, 177, LN(S(r,176)S(T, 177))), and the fault
positions are from the set A={t|175-n<<t<<175, Azru175=1}.

(3) If M=T-1 (P4=176), (Azr+es, Az1465)=(0, A(S(r, 176)S(T, 177))), and the fault positions are
from the set A+1.

(4) f M=T (Pu=177), (AZ7+e4, NZ74+65)=(0, 0), and the fault positions are from the set A+2.

(5) (Azriee, AZreer, ot AZrinses)=

(A(S(r, 175)S(T, 176)FS(T, 177)), N(S(T, 174)S(T, 175)+S(T, 176)) ***y N(S(T, 175-0)S(T, 176-n)FS(T, 177-n)))-
(6) (Azreea, Azries, ***, A Zrensee)=( A Zrsr09, A Zrerio, ***y A Zrine1n)=( A Zraazo, A
Zraast, *tty AZrensaz).

(7) Az7=0 for other t such that 0<<t<<147.

(8) Whether M=T-2 or M=T-1 or M=T, the state differential at time T is the follow: (As(r, 177-n),
ASE 1780y 0 AST n)T(AZran, AZrina, =0, Azr), (AS 178, AS(r,179)= (AZ1465, DNZTs64),
Asr,j)=0 for other j.

Proposition 6 Suppose 265<<P, <288. Equivalently take T-2<M<T and 286<<P,<:288.
Then there is n, 0<<n<7, such that

(1) (Azr, Azrsa, =, AZran)=(ASer, 288), AST,287) "0 AS(r, 288-m)=(1, *+++*, 1).

(2) If M=T-2 (P1=286), (AZrsea, AZ1465)=(S(1-2, 287)0S(T, 288), A (S(r, 287)5(T, 288))), and the fault
positions are from the set A={t|286-n<<t<<286, Azt(«286=1}.

(3) If M=T-1 (P4=287), (Azr+es, Az1465)=(0, A(S(r, 287)S(T, 288))), and the fault positions are
from the set A+1.

(4) If M=T (Pn=288), (Az7+e4, NZ7+65)=(0, 0), and the fault positions are from the set A+2.

(5) (Azriee, AZreer, ot AZrinses)=

(AN(S(T, 286)S(T, 287)FS(T, 288)),  LN(S(T, 285)S(T, 286)FS(T, 287)) “**y LN(S(T, 286-n)S(T, 287-n)FS(T, 288-n)))-

(6) (Azrses, AZrees, ***y AZtensee)=(AZrso1, AZrega, ***y AZTens3).

(7) Az7=0 for other t such that 0<<t<<147.

(8) Whether M=T-2 or M=T-1 or M=T, the state differential at time T is the follow: (As, 288-n),
AST, 2890 0y AS(T, 288)=(AZran, AZrina, v, AZr), (ASr 1), AS,2)= (Azrses, AZrses), A
s¢r,j)=0 for other j.

Proposition 7 Suppose 67<P,<69. Equivalently take Asmw,s9=1 and P4=69. Then there
aremand n, m=0, n-2<m<-n<.7, such that

Q) (Azr, Azger, =+, ANzren)=(1, *-+-*, 1), where Az7in=1.

(2) (Azrens1, AZransz, ot AZ1emear)=(0, 0, ==+, 0).

(3) (Azrsmeaz, AZrsmeaz, =ty AZrana)=(AZram, AZrsrem, *** AZran)=(1, *=--*, 1).

(4) (AZrinsaz, DZrinsas, =+, AZ1i66)=(0, 0, +++, 0).

(5) (Azrigz, AZremeroe, ***y AZtame125)=(0,0, ==+, 0).

(6) M=T-24+m, where m is the smallest t such that 0<<t<<7 and  AZt++42=1.

(7) The fault positions are of the set A={t|69-n+m<t<<69+m, AZ1.tsm+s0=1}.

Proof Denote n=Py-P_, m=Py-69, then n-m=69-P , m=0, n-2<<m<<n<:7. According to the
state renewal (Table 2) we know that, from time M to time T, position 69+m shifts to position 93.



So that T-M=24-m. We take close contact with differential floating feature.

At time M, the state differential is the follow.

(AS, 69-nemys =+, ASm, s9em))=(1, *, +=+*, 1), where Asqy, g9)=1.

Asu, jy=0 for other j.

So that, at time T=M+24-m, the state differential is the follow.

(AST,93-n0) " AS(r, 93)=(ASM, 69-n+m)s =% ASw, 69+m))=(1, *+++*, 1), where Asr, g3-m=1.

(As, 20y =y AST, 20m)=(ASM, 69n+m), ***5 ASm, 69)=(L, *, *=+*, 1).

(AS(r, 92y, AS(T, 95))=(A(S(M, 68+m)S(m, 69+m))s - 2N (S, 69+m)S(M, 70+m)))-

Asr j)=0 for each j& {24-n, 25-n, -+, 24-m, 93-n, 94-n, ---, 95}.

According to Appendix A and the state differential at time T, we can partly determine (Azr,
AZ1e1, NZ7e, *+*) as the follow.

(Azr, Azreq, o, AZran)=(AS 93, ASr o2y 0 AS(T, 93-n))=(1, *+++*, 1), where Azpip=1.

(AZrinst, AZrensz, =t AZremear) have no relation with {Asq )| jE€{24-n, 25-n, -+, 24-m,
93-n, 94-n, ---, 95}}, so that (Azrens1, AZrens2, =ty AZ1emear)=(0, -+, 0).

(AZremeaz, AZremeaz, **ty AZrinsa)=(ASE 2a-mpy ASr 23-m)ys ***0 AS(T, 2am)=(L, *, +++*, 1).

(AZrinsaz, DZrinsas, =+, AZrige) have no relation with {Asqr j)| j€{24-n, 25-n, -+, 24-m,
93-n, 94-n, -+, 95}}, so that (Aztineas, AZreneas, =t AZrie6)=(0, 0, -+, 0).

(AZrigz, AZremeros, ***, AZrime1zs) have no relation with {Asqr j)| j€{24-n, 25-n, ---, 24-m,

93_n’ 94_n’ Y 95}}’ SO that (AZT+92| AZT+m+109; Y AZ'|'+m+].25)=(01 01 Y 0)
Proposition 7 is proved.

Lemma 3 Suppose 163<P <171. Equivalently take Asg,171)=1 and Py=171. Then there
are m and n, 0O<SM<<6, m<<n<7, such that M=T-6+m. The fault positions are of the set
A={t|171-n+m<t<<171+m, AZrwum+171=1}. The differential at time T+n+1 is the follow.

(1) (ASrens1, 178 AS(ren+1,179) ***y AS(T4ns1, 178+n))

=(A (S, 169-n+m)S(M, 170-n+m) S, 172-nm))s - 2N (Sm, 170-n+m)SM, 172-nem)FSM, 172-04m))s 05 A (Sqm,
169+m)S(M, 170+m)FS(M, 171+m)))-

(2) If M=T (m=6), (AS(T+n+1, 179+n)s AS(T+n+1, 180+n))=(01 0).

(3) If M=T-1 (m=5), (AS(r+n+1, 179+n)s A\S(r+n+1, 180+n))=(A (Spm, 170+m)S(m, 1714m)), 0)-

(4) If M<T-1 (Mm<5), (AS+n+1, 1794n), ASr+n+1, 180m) =(A (S, 1704m)S(M, 1714m))s S, 1724m) A S(wm,
171+m))-

(5) (ASren+1, 100) ***y ASranst, 100-mn) =(ASm, 172-n4m), =00, ASm 171))=(1, *, ==+, 1).

(6) ASgrn+1,j=0 for each j& {100, 101, ---, 100-m+n, 178, 179, ---, 180+n}.

Proof Denote n=Py-P., m=Py-171, then n-m=171-P_, 0<Xm<6, m<<n<<7. According to the
state renewal (Table 2) we know that, from time M to time T, position 171+m shifts to position
177. So that T-M=6-m. We take close contact with differential floating feature.

At time M, the state differential is the follow.

(Aspn, 171n4myy 0 ASqw, 1720m)=(1, *, +=+*, 1), where  Asgy, 172)=1.

Asu, jy=0 for other j.

At time T+n+1, the state differential is the follow.

(AS(rens1,178), ASTene1, 179) %y AS(Tan+1, 178+n))

=(A(S(r, 17507, 176:)+S(T, 177-1))s - AN(S(T, 176-m)S(T, 177-0)FS(T, 1780))s 7%y AN(S(T, 175)S(T, 176)FS(T, 177)))

=(A (S, 169-n+m)S(M, 170-n+m)tSM, 172-nm))s AN (Sm, 170-n+m)SM, 172-n+m)HSM, 172-04m))s 05 A (Sqm,



169+m)S(M, 170+m)+FS(M, 171+m)))-
If M=T (m=6),
(ASTene1, 179+n), ASrnst, 180+m) =(AS(r, 178), AS(r, 179))=(0, 0).
If M=T-1 (m=5),
(ASr+n+1, 1794n), ASTan+1, 180+n) =(AS(T, 178), AS(T, 179))=(A (Sm, 1704m)S(w, 1724m)), 0).
If M<T-1 (m<b),
(ASerans1, 179+n), AS(r+n+1, 180+n) =(AS(r, 178), AS(T, 179))
=(A(Sv, 170+m)S(M, 1714m))s SM, 1724m) AS(M, 1724m))-
(ASsn+1, 100y ***y ASeranst, 100-m+n) =(ASM, 172n4mys %5 ASqw, 171))=(1, *, +++*, 1).
ASr+ns1,j)=0 for each j {100, 101, --+, 100-m+n, 178, 179, ---, 180+n}.
Lemma 3 is proved.

Proposition 8 Suppose 163<P,<171. Equivalently take Asu, 171y=1 and Py=171. Then
there are mand n, 0SM<<6, m<<n<:7, such that
(1) M=T-6+m.
(2) The fault positions are of the set A={t|171-n+m<<t<<171+m, AZryme1n=1}.
(3) (Azr, Azrer, =, Azrin)=(ASM, 1724m)y ASw, 1704m) ***y ASu, 172-n4m))=(1, *00*, 1),
where Azrin=1.
(4) (Azrine1, DZtens2, -+, AZ14147) Can be decomposed as
(Aztiner, DZranez, o0 DZ14147)=
(AUtinsz, AUrinsz, o0, AUts1a7)H(AVranss, AVrinsz, =0, AVriaa7).
(AUtsnsr, AUtens, ==+, AUr+147) is of the following shape.
(u1)
(Aurses, Alrses, =, AUrsnses)
=(AUrs109, AUrs110, ***, AUrenernn)
=(AUrs130, AUrsazt, ***, AUrene1sz)
=(AS(T+n+1, 180+n); AS(T+n+1, 179+n)y """ AS(T+n+1, 178))-
(u2) Aury=0 for other je{n+1, n+2, ---, 147}.
(AVrins1, AVrensz, o0, AVre147) is of the following shape.
(v1)
(AVrimsez, AVTimesa, ***, AVrinses)
=(AVrsmeze, AVrimeze, =ty AVrine7s)
=(AVrime129, AVrama1so, *y AVrane120)
=(ASTans1, -men+100), AS(Tan+1, -men+99)s ***y AS(T+n+1, 100))
=(1, *--*, 1).
(v2) (AVrims1a1, AVremsraz, ***, AVrins1as) IS some function of {AS(T+n+1, 100)s AS(T+n+1,
101), %y ASTenet, -man+100) ), Where Avripiig=1.
(v3) Avry=0 for other je{n+1, n+2, ---, 147}
(5) m is the smallest t such that 0<<t<<7 and AZt++7=1.

Proof (1) and (2) have already been proved by Lemma 3. Again (3) is direct. From Lemma 3
we have already known the state differential at time T+n+1.

Now we take the stream differential (AuUtin+1, AUrins2, =+, AUrs147) as generated by such
state differential at time T+n+1: respectively {ASw+n+1,178), ASren+1, 179), ***v A\S(T+n+1, 180+n)} at



positions from {178, 179, ---, 180+n}, and 0 at other positions. Then (AuUtsn+t, AUtens, ==+, A
Ut+147) is Of the following shape.

(Aurses, Alrses, *, AUrsnses)

=(AUrs109, AUtsa0, ***y AUtsensi11)

=(Aurs130, AUtsazt, **, AUtineiso)

=(ASTn+1, 180+n), AS(Tn+1, 1794n), %y AS(T4ne1, 178)-

Aury=0 for other je {n+1, n+2, -+, 147}.

Again we take the stream differential (AVrine, AVrene, ***, AVri47) @S generated by such
state differential at time T+n+1: respectively {A Sqsne1, 100, A Srenst, 101), 0 A S(renst,
-mn+100)={1, *++-*, 1} at positions from {100, 101, ---, 100-m+n}, and O at other positions. Then
(AVrens1, AVrensz, o+, AVre147) is of the following shape.

(AVrimsez, AVremesa, *** AVTinees)

=(AVrimirs, AVremere, ***, AVTiners)

=(AVrime129, AVreme13o, *r AVTans129)

=(AS(T+n+1, -m+n+100) AS(T+n+1, -m+n+99), ", AS(T+n+1, 100))

={1, *---*, 1}.

AVTime1a1=AS(T4n+1, 100+n-m)=1.

(AVrims1a2, AVremeras, ***, AVrins1as) is some function of {ASine, 100, ASeren+t, 101y,
AS(T+n+1, -m+n+100)}-

Avr,=0 for other je{n+1, n+2, ---, 147}.

In each equation of Appendix A, there is no the product of such two factors, one of which is
from the position set {100, 101, ---, 100-m+n}, and another is from the position set {178, 179, ---,
180+n}. This implies that

(AZtsne1, DZranez, oty DZ14147)=
(AUtiner, AUrinsz, =0, AUts1a)H(AVranss, AVrins, =ty AVriaa7).
So that
(Azrizs, Alrize, ==+, AZrigs)=(AVrize, AVrize, ==, AVrags),
and AVri7s=AVri79= = AVrims77=0, AVrimizg=1.
Proposition 8 is proved.

Proposition 9 Suppose 244<P,<264. Equivalently take Asu, 264=1 and Py=264. Then
there are m and n, 0SM<<n<<7, such that

Q) (Azr, Azger, =+, ANzren)=(1, *-+-*, 1), where Az7in=1.

(2) (AZrensr, AZrensz, =ty AZ1emear)=(0, 0, ==+, 0).

(3) (Azrsmeaz, AZrsmeaz, =ty AZrana)=(AZram, AZrsraem, ** AZran)=(1, *=-+*, 1).

(4) (AZrinsaz, DZrensas, ***, AZ1463)=(0,0, *++, 0).

(5) (Azremer0s, AZremaros, ***y AZren+108)=(AZrem, AZrirem, ==y AZran)=(1, *+=-*, 1).

(6) M=T-24+m, where m is the smallest t such that 0<<t<<7 and  AZt++42=1.

(7) The fault positions are of the set A={t|264-n+m<<t<<264+m, AZriim+264=1}.

Proof Denote n=Py-P_, m=Py-264, then n-m=264-P_, 0<<m<n<:7. According to the state
renewal (Table 2) we know that, from time M to time T, position 264+m shifts to position 288. So
that T-M=24-m. We take close contact with differential floating feature.

At time M, the state differential is the follow.



(Asp, 26-n+myy *r ASqw, 26a+m))=(1, *, +=+*, 1), where Ay, 264)=1.
Asu, jy=0 for other j.
So that, at time T=M+24-m, the state differential is the follow.

(A, 288y ) AST, 288)=(AS, 264-nem)s *** ASqw, 26a¢m)=(1, *++=*, 1), where Asq,
288-m)=1.
(AS, 200-m) 5y AS(T, 201-m))=(AS(M, 264-n4mys 0 ASem, 264))=(1, *, +++*, 1).

(AS, 1), AST, 2))=(A(Sm, 263+m)SM, 264+m))s - 2\ (S, 264+m)S(M, 265+m)))-

Asr,j)=0 for each j& {1, 2, 201-n, 202-n, -+, 201-m, 288-n, 289-n, ---, 288}.

According to Appendix A and the state differential at time T, we can partly determine (Azr,
NZ1i1, AZrsp, *-+) as the follow.

(Azr, Azrsr, oo, AZren)=(ASr, 2880y, ) AS(r, 288)=(1, *+++*, 1), where Azqin=1.

(AZrinst, AZrensz, =ty AZremear)=(0, -+, 0).

(Azrimeaz, AZrimeas, oot AZ1nsa2)=(ASe, 200-my == AS(r, 2010)=(1, *, +=+*, 1).
(Azrineas, DZrensas, ***, AZ1463)=(0,0, =+, 0).
(Azrsmeros, AZremea0, ***y AZrin+108)=(AST, 201-my 0 ASr, 200m)=(1, %, =%, 1).

Proposition 9 is proved.

3.3 Case Checking

By Proposition 1~3 and Proposition 7~9 we know that, if the attacker knows which case is
from {1<<P <66, 67<<P <69, 94<<P, <162, 163<<P, <171, 178<<P| <243, 244<P <264},
the injection time M and the fault positions can be determined. By Proposition 4~6 we know that,
if the attacker knows which case is from {70<<P <93, 172<<P, <177, 265<<P, <288}, the
injection time M has three possibilities, correspondingly the fault positions are of a floating set.
But in each of these three cases the state differential at time T can be determined. This is enough
for floating attack. So that we need only to check the cases by the key-stream differential (Azr,
AZ7+1, 149, +**). We consider 10 cases {1<<P <66, 67<P; <69, 70<<P, <93, 94<P <162,
163<<P <171, 172<<P <177, 178<<P| <243, 244 <P <264, 265<P <288, Injection Failure},
with an additional case called Injection Failure. Injection Failure is described as that Azrg/A
Z1+9°++=00--- is a 0 sequence. Injection Failure has no help for breaking Trivium, because the
attacker can not obtain any useful equation. The following facts, about Injection Failure, are easy
to be proved. Injection Failure overlaps each one of 3 cases {7T0<<P <93, 172<<P, <177, 265<

<288 }. Injection Failure does not overlap any one of 6 cases {1<<P <66, 67<<P <69, 94<<
PL\162 163<<P <171, 178<<P <243, 244<P <264}, If Az7ig/A\Z149°*"AZ14147 15 @ 0 string,
the case is Injection Failure. If one is in case 70<<P, <93, he is not in case Injection Failure if and
only if (Azrigo, AZregz, ***, AzZ1insga)7=(0, 0, -+, 0), according to Proposition 4. If one is in
case 172<<P, <177, he is not in case Injection Failure if and only if (Azri100, AZ74110, 0 A
Zr+n+111) 7~ (0, O, -+, 0) , according to Proposition 5. If one is in case 265<<P <288, he is not in
case Injection Failure if and only if (Azrior, AZ7+g, ***, AZrinsez)7(0, 0, ---, 0) , according to
Proposition 6.

In this subsection we use the following notations.

® nisthe largest t such that 0<<t<<7 and Azr=1.

® | isthe smallest t such that t>n and Azr=1.



® kisthe largest t such that ISt<<I+7 and Azr.=1.
By Proposition 1~9, the following Proposition 10 and Proposition 11 are clear.

Proposition 10

(1) The value of k-n comes from {27, 15, 45, 42, [55, +<=]}.

(2) If k-n=27, the case is 1<<P <66.

(3) If k-n=15, the case is 94<<P <162.

(4) If k-n=45, the case is 178<<P <243.

(5) If k-n=42, the case is from {67<<P <69, 244<<P <264}.

(6) If k-nE[55, +<], the case is from {70<<P <93, 163<<P <171, 172<<P <177, 265<<P_
<288, Injection Failure}.

Proposition 11 Suppose the case is from {67<<P <69, 244<P <264}. If (AZrs108, A
Z1+109, ***, DZ1en+108)=(0, 0, ---, 0), the case is 67<<P <69, or else 244 <P, <264.

Proposition 12 Suppose the case is from {70<PL<93 163<<P <171, 172<P <177, 265
<P, <288, Injection Failure}. If (Azri1a0, AZ74141, ***, DNZ14147)7(0, 0, -+, 0), the case is
from {70<<P_ <93, 163<<P <171}, or else the case is from {70<<P <93, 172<P <177, 265<
P <288, Injection Failure}.

Proof Consider Proposition 4, Proposition 5, Proposition 6 and Proposition 8. (Azri140, 2\
Zreaa1, oty AZrar)7(0, 0, <o+, 0) in case 163<<P <<171. (Azri140, AZrsr41, ***, AZr4147)=(0,
0, *-+, 0) in each case from {172<<P <177, 265<<P; <288, Injection Failure}. It is not certain
whether (Azrii40, AZre1a1, =, ANZr4147)=(0, 0, ---, 0) in case 70<<P <93 (more detailed
analysis shows that, in case 70<<P; <93, (AZrs140, AZ14141, ***, AZ14147)=(0, 0, -+, 0) with
small probability).

Proposition 13 Suppose the case is from {70<<P <93, 172<<P <177, 265<P <288,
Injection Failure}.

Q)  (Azre109, AZe110, 00 AZ7+118)7(0, 0, -+, 0), the case is 172<<P <177.

(@) If (Azrs100, AZrinro, =+, Azre118)=(0, 0, ==+, 0), and (Azrsizs, AZreaza, ***, AZrwar) 7
(0,0, -+, 0), the case is 70<<P <<93.

() If (Azrraoe, Azriazo, *++, Azraie)=(0, 0, +=+, 0), (AZrsazs, AZrsrza, -+, AZri1a7)=(0,

-, 0), and (Azt+o1, AZregz, =+, AZ1+100)7(0, 0, -+, 0), the case is 265<P <288.

(4) If (Azriaoe, Azriazo, o, Azraie)=(0, 0, ==+, 0), (AZrsazs, AZrsrza, o, AZri1a7)=(0,

-, 0), and (Azt+o1, AZreon, ***, AZ7+100)=(0, 0, -+, 0), the case is Injection Failure.

Proof (1), (2), and (3) of Proposition 13 are clear. If the case is from {70<<P <93, 172<P,
<177, 265<P, <288, Injection Fallure} and all conditions of (4) of Proposition 13 hold, (A
Z1en+1, DZrane2, **, AZ1e147)=(0, 0, ==+, 0) is a 0 string. So that (AZrener, AZens2, =2)=(0,
0, --+)is a0 stream.

We say the string Azt Azt A zteot+ AZ14147 POSSesses the features of the case 70<P <93, if
each of the following 3 conditions is true.



Condition 1: (Azt+e7, AZtees, ***y AZen+ee)=(AZ1eg2, AZ74gs, ***y AZrinesa)=(AZri1zs, A
Zrsaza, *t* A\ZTinsiss).

Condition 2: (Azt+145, AZ7+1460 AZ14147)=(AZ1467, DNZ1168, NZT460).

Condition 3: Az7+=0 for other t such that n+1<\t<<147.

Lemma 4 Suppose the case is 163<<P <171, and AzrAz1+1 A\ Z1+p°** A\ Z14147 POSSESSES the
features of the case 70<<P; <93. Then we have

(1) 4<n<T7.

(2) There is m, 4<m<n<7, such that (Azr+ez+my AZrssasms ***y ANZ1ee3en)=(AZ1+784m, A
Zrszoems 0y AZrargn)=(AZreazom AZrsazosm, 0 AZrerzgen)=(1, *+++%, 1).

(3) (Azrsezim, AZrsearm, ***y AZ1s0)=(AZrsra1em AZrsrazem, ** AZraar)=(1, *, %)

(4) Az1+=0 for other t such that n+1<<t<<147.

Proof According to Proposition 8,

(Aztiner, DZranez, o0 DZ11a7)=

(AUtinsr, AUrinsz, oty AUts1a7)H(AVrinss, AVrinsz, o0, AVriaa7).
Because

(Avri00, AVrazio, =ty AVrinaanr) =(0, 0, +++, 0),

(Azria00, AZrsano, =, AZrens111)=(AUrer0e, AUrsato, ***, AlUrensiar).
Again because

(Azria0e, AZrinio, =+ AZrin1)=(0, 0, +=+, 0),

(AUrs109, Alrstzo, =+t AUrine)=(0, 0, «++, 0).

So that (AUtin+1, AUrins2, *°*, AUTreg7) is a 0 string, and that
(Azriner, AZrensz, =ty AZrs1a7)=(AVrsns, AVrins, =ty AVria7).
Notice that (AVrimses, AVremesa, **y AVTinegz)=(1, *=++*, 1) for m<n<<7. Again notice that (A

Z1+63, AN\ZTeear ANZTee5, NZ1466)=(0, 0, 0, 0). So that 4<m<n<7. By Proposition 8, Lemma 4 is
proved.

Proposition 14  Suppose (A zZt+140, ANZ7+141, ***, AZ14147)7(0, 0, -++, 0), so that the case is
from {70<<P <93, 163<<P <171}.

1) If Azr Az Az1ep 7+ AZ74147 dOES NOt possess the features of case 70<<P| <93, the case is
163<<P, <171.

(2) If AzrAz1e1\ 2149+ AZ14147 POSSesses the features of the 70<<P, <93, and at least one of
the features of Lemma 4 does not hold, the case is 70<<P < 93.

(3) If Azt Az AZ14p+* N 214147 POSSesses features of the case 70<<P, <93, and all features
of Lemma 4 hold, we can not check which case is from {70<<P, <<93, 163<<P, <<171}. But the
state differential at time T+n+1 can be uniquely determind as the follow: (AS+n+1, 100, ASrens1,
101yt ASrenst, 100-mn) =(AZezen, AZepen, **y AZgzem)=(1, *, *=**, 1), ASrsns1, j=0 for other

J-

Proof (1) and (2) of Proposition 14 are clear.

Suppose the case is 163<<P, <171, Az1AzrA\Zrip -+ AZ14147 POSsesses features of the case
70<<P; <93, and all features of Lemma 4 hold. Then the state differential at time T+n+1 is the
follow: (ASns1, 100, ASrens1, 101, ***y ASren+t, 100-men)=(ADZegen, AZeosn, ***, AZezem)=(1,



* eee* 1), ASrans, j=0 for other j.

Again suppose the case is 70<<P <93, and all features of Lemma 4 hold. Then the state
differential at time T+n+1 can be determined, as the follow: (ASr+n+1, 91y, ASrens1, 05), ***y A
S(ren+1, 96+n)=(AZegsn, AZegen, ***, AZg7), ASerens1, jy=0 for other j. On the other hand, Lemma 4
tells us (Azegen, AZggn, vy AZeaen)=(0, 0, *=+, 0), (AZegsn, NZepen, ***, ANZgzem)=(1, *, =%,
1), (Azgoem DZorem, **n Azg7)=(0, 0, -+, 0).

Proposition 14 is proved.

3.4 Summarization for Case Checking

Subsection 3.3 presents a complete checking routine for determining the case. If the case is
determined, either the injecting time and fault positions are determined, or the state differential at
time T is determined. The unique circumstance in which the case can not be determind is
Proposition 14 (3). In this circumstance the state differential at time T+n+1 is determined. Each
result of subsection 3.3 is sufficient for floating attack, except Injection Failure.

On the other hand, Injection Failure occurs with a small probability about 1/256.

4 Floating Fault Analysis Under Our Assumptions

4.1 Preparing for Floating

Michal Hojsik and Bohuslav Rudolf presented an effective attack to Trivium, named floating fault
analysis. The idea of this attack is to find an appropriate time. At this time, the state differential is
heavy enough (from point of Hamming weight) and even enough (from point of distribution).
Generally speaking, the heavier and the more even the state differential is, the more additional
equations will be linear equations, from 82 original quadratic equations. At fault injection time M,
the state differential is only distributed within an 8 bits area. So that it needs to float the state
differential. The weakness of Trivium makes such floating possible. Michal Hojsik and Bohuslav
presented an algorithm for floating. The input of this algorithm is the follow.

® The two key-stream segments (zoz12; *--zn) and (20’21’22 **Zn’).

® (Asg 1y, **, AS(, 2g), foreachie{0, 1, ---, t}, where tis an integer, t=3.

®  {A(SG 9m56,92), A(SG 17556, 176)), A (S, 286)(, 287)) ) for each i€{0, 1, ---, t-1}.

The process of this algorithm is the follow.

Step 1: try to compute {A (S, 018, 92)): A (S¢t, 175)S, 176))s 2\ (S(t, 286)S(t, 287)) -

Step 2: compute (AS(+1,1), *** A\S(1, 288))-

It is said that the state differential is floatable at time t, if the algorithm can succeed. We know
that Step 2 is immediate from the Step 1, by considering subsection 2.3. Step 1 is a computation
which includes many cases, and needs many skills. For the sake of the simplicity of our analysis,
we present two conditions, described in the following Lemma 5. The combination of these two
conditions is sufficient for the floatablility.



Lemma 5 The state differential is floatable at time t, if each of the following two conditions
holds.

(1) (Asq, 288), S, 287)=(0, 0) or (Asg, 175), A, 176))=(0, 0).

(2) (Asg, 01y, As,92)=(0, 0)

or (A, 172, AS(, 173, AS,283), A5, 284)=(0, 0, 0, 0)

or (Asg, 76), DS, 77y, AS(t, 157, DS, 158), DS, 268y, ASgr, 269))=(0, 0, 0, 0, 0, 0).

Proof Lemma 5 is clear by considering equation (66), equation (69) and equation (84) of
Appendix A.

We call j the floating end, if j is the smallest t such that, at time t, the two conditions of Lemma
5 can not be assured. In fact, the state differential may still be floatable at or beyond the floating
end, but it is much more complicated to analyze such floatability.

In next subsections we will make floating. Here are our assumptions. At each time, the state is
uniformly distributed. At time M, random faults appear in the positions {m, m+1, ---, m+7},
where m is uniformly distributed in the set {1, 2, ---, 86}U{94, 95, ---, 170} U {178, 179, ---,
281}. At each of 8 positions{m, m+1, ---, m+7}, the fault value is uniformly distributed between 1
and 0. Faults at different positions are independent with each other. So that the average weight of
the faults is 4.

Faults shift rightward as 3 NFSRs drive. When faults pass across the positions {66, 69, 91, 92,
93, 162, 171, 175, 176, 177, 243, 264, 286, 287, 288}, they are diffused to the positions {1, 94,
178}. 6 positions {66, 69, 162, 171, 243, 264} are simple positions because, when faults pass
across them, these faults are directly diffused to the positions {1, 94, 178}. 9 positions {91, 92, 93,
175, 176, 177, 286, 287, 288} are key positions because, when faults pass across them, diffusion
features are more complicated. Lemma 6 and Lemma 7 present diffusion features at these
positions.

Lemma 6 Take n as a non-negative integer. Suppose that, at time t, the state differential
possesses the following feature.
® At positions {91-n, 92-n, -+, 91}, the values are {Xg1.n, Xoz-n, ***, Xo1}, Where {Xo1.n,

Xo2-n, ***, Xg1} are uniformly distributed, and independent with each other.

® At each position from {92, 93} U {64-n, 65-n,---, 66} U {169-n, 170-n, ---, 171}, the
value is 0.

{Y173-n, Y1740, **, Y175} denotes the state differential values at time t+n+3 and positions {94,

95, -+, 96+n}. Then
® Y5 has a biased distribution, taking 1 with the probability 0.25.
® Y4 has a biased distribution, taking 1 with the probability 0.375.
® {Yi73.n, Y174, -, Y173} are uniformly distributed and independent with each other.

Lemma 7 Take m as a non-negative integer, m<<n. As a result of Lemma 6, at time t+82 and
positions {173-m, 174-m, ---, 175}, the state differential values are such {Y173.m, Y174-m, ***, Y175}.
Suppose that, at time t+82, the state differential possesses the following feature.

® At each position from {176, 177} U {158-m, 159-m,---, 162} U {260-m, 261-m, ---,

264}, the value is 0.



{Z282-my Zagam, **» Zage} denotes the state differential values at time t+m+87 and positions
{178,179, --+, 182+m}. Then
® 7, has a biased distribution, taking 1 with the probability 0.125.
Zogs has a biased distribution, taking 1 with the probability 0.25.
Zg4 has a biased distribution, taking 1 with the probability 0.375.
Zg3 has a biased distribution, taking 1 with the probability 0.453125.
{Z282-m» Zaga-m, ***, Z2g2} are uniformly distributed and independent with each other.

Lemma 6 and Lemma 7 are easy to be verified by simple search. They describe such shift:
faults firstly pass across the positions {91, 92, 93}, and secondly {175, 176, 177}. They imply
some increase of average Hamming weight of differential. Symmetrical conclusion keeps true if
we consider such shift: faults firstly pass across the positions {175, 176, 177}, and secondly {286,
287, 288}. Another symmetrical conclusion keeps true if we consider such shift: faults firstly pass
across the positions {286, 287, 288}, and secondly {91, 92, 93}.

4.2 Floating Analysis for Case 1<<P| <66

In case 1<<P, <66, the floating end is about T+163. Let (u;, Uy, **, Uygg) denote the state
differential at the floating end. Then the major features of (uy, Uz, -+, Uxgg) are the follow.
® Each of 141 entries {us~Us, Upg~Ugs, Ugz~Ugs, U101, U110, U119~U143, U163~U170, U194, Uz03~U221,

U234~Ug36, Uz47~Ugag, Uzsg~Uoe3, Up7o~Uzgg} iS 0.

® Entry u,3;3 takes 1 with the probability 0.125.

® Each of 5 entries {us, Uisp, U2s2, Uage, Uzsg} takes 1 with the probability 0.25.

® Each of 7 entries {Uy, U4, U1sp, U1s1, Uza1, Uass, Uzs7} takes 1 with the probability 0.375.

® Entry u,3 takes 1 with the probability 0.453125.

® Each of other 133 entries is uniformly distributed. (But these 133 entries are not
independent with each other)

® From these 133 entries, {ug4, Ugs, ***, Ug1} are independent with each other.

®  From these 133 entries, (Ugg, Ugs, ***, Ug1)=(U102, U103, ***, U109)=(U111, U112, **, U118)=(U1ss,
Usgs, ***, U202)=(U264, Uzes, ***, U271).

® From these 133 entries, (Ugs, Ugs, ***, Ug1)=(U1e, U17, ***, U22)=(Ugs, Ugs, ***, U1gp).

® From these 133 entries, (Ugg, Ug7, ***, Ug1)=(U23, Uz4, ***, Ugg).

® From these 133 entries, (Ugs, Ugg, Ugg, Ug1)=(U190, U1o1, U192, U1ga)-

® From these 133 entries, (Ugs, Ugs, ***, Ugg)=(U171, U172, ***, U177).

® From these 133 entries, (U144, Ugs, ***, U1s1)=(Uz37, Uzzg, ***, Uz4s).

® Average differential Hamming weights of 3 NFSRs are respectively 17.5, 24.5 and
30.453125.

By equation (66) of Appendix A, the additional equation is a linear equation (other than an
identity) with the probability 0.75. Similarly by equation (67) of Appendix A, the additional
equation is a linear equation (other than an identity) with the probability 0.75, etc. Table 3 presents
each probability, with which the additional equation is a linear equation (other than an identity) by
original quadratic equation. According to Appendix A, original quadratic equations are equation
(66), equation (67), --+, equation (147). In Table 3, “Rank i”” denotes equation (i) of Appendix A, i



e {66, 67, ---, 147}, “Prob.” denotes corresponding probability with which the additional
equation is a linear equation. Most probabilities in Table 3 are exact. A small number of these
probabilities are conservative estimations, because we are not very clear what detailed correlation
is between some entries of the state differential.

Table 3. The probability with which the additional equation is a linear equation
Rank | 66 67 68 69 70 71 72 73 74 75
Prob. | 0.75 | 0.75 | 0.75 | 0.875 | 0.938 | 0.875 | 0.75 | 0.75 | 0.75 | 0.75
Rank 76 77 78 79 80 81 82 83 84 85
Prob. | 0.75 0.5 0 0.25 | 0.531 | 0.844 | 0.938 | 0.938 | 0.969 | 0.984
Rank 86 87 88 89 90 91 92 93 94 95
Prob. | 0.984 | 0.984 | 0.984 | 0.938 | 0.922 | 0.938 | 0.875 | 0.75 | 0.875 | 0.938
Rank 96 97 98 99 100 101 102 103 104 105
Prob. | 0.938 | 0.938 | 0.875 | 0.75 0.75 0.75 0.75 0.75 0.5 0
Rank | 106 | 107 | 108 | 109 | 110 111 112 113 | 114 | 115
Prob. | 0.25 | 0.531 | 0.844 | 0.938 | 0.938 | 0.984 | 0.984 | 0.984 | 0.984 | 0.984
Rank | 116 117 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125
Prob. | 0.875 0 0 0.125 | 0.344 | 0.648 | 0.839 | 0.957 | 0.984 | 0.984
Rank 126 127 128 129 130 131 132 133 134 135
Prob. | 0.984 | 0.984 | 0.984 | 0.984 | 0.984 | 0.969 | 0.969 | 0.984 | 0.984 | 0.984
Rank | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145
Prob. | 0.984 | 0.984 | 0.996 | 0.996 | 0.996 | 0.992 | 0.996 | 0.992 | 0.938 | 0.953
Rank | 146 | 147
Prob. | 0.968 | 0.984

According to Table 3 we can induce that, from 82 original quadratic equations, the attacker
averagely obtains 66.6 additional equations, which are linear equations (other than identities).

4.3 Floating Analysis for Other 8 Cases

By the same procedure with subsection 4.2, we can obtain floating features in other 8 cases. In this
subsection we omit the detailed discussion, and only present major results.

In case 94<<P <162, the floating end is about T+169. From 82 original quadratic equations,
the attacker averagely obtains 70.6 additional equations which are linear equations.

In case 178<<P <243, the floating end is about T+134. From 82 original quadratic equations,
the attacker averagely obtains 62.9 additional equations which are linear equations.

In case 70<<P <<93, the floating end is about T+236. From 82 original quadratic equations, the
attacker averagely obtains 74.9 additional equations which are linear equations.

In case 172<<P <177, the floating end is about T+198. Notice Py-P_<:6 in this case. So that,
at the floating end, the differential is more sparsely distributed. From 82 original quadratic
equations, the attacker averagely obtains 54.1 additional equations which are linear equations.



In case 265<<P, <288, the floating end is about T+227. From 82 original quadratic equations,
the attacker averagely obtains 72.9 additional equations which are linear equations.

In case 244<P, <264, the floating end is about T+195. From 82 original quadratic equations,
the attacker averagely obtains 70.6 additional equations which are linear equations.

In case 163<<P; <171, the floating end is about T+161. The analysis is much more complicated
than other cases. We can still estimate that averagely no less than 50 additional equations are
linear equations, from 82 original quadratic equations.

Case 67<P_ <69 is another complicated case. We can only estimate that the floating end is not
smaller than T+130, and that averagely no less than 40 additional equations are linear equations,
from 82 original quadratic equations. Notice that the probability of this case is about 3/280, so that
it can be neglected.

4.4 Summarization and Notes for Floating Analysis

From the discussion in last subsections we have the following result. At the floating end,
averagely no less than 67.167 additional equations are linear equations, from 82 original quadratic
equations. This result is quite satisfactory for the attacker.

These additional linear equations have a side function. Notice that 82 original quadratic
equations are pair quadratic equations, and pair quadratic terms are sparsely distributed. 67.167
additional linear equations may combine with 66 original linear equations, to solve some bits of
the state, so that some pair quadratic terms are changed into linear terms. This side function is
helpful for Guess-and-Determine attack (see [15]).

There are 66 original equations which are cubic equations, and are not included in Appendix A.
We call these equations equation (148), equation (149), -+, equation (213), respectively. From
each of these 66 original cubic equations, the additional equation is almost certainly a quadratic
equation (neither a linear equation nor an identity). In other words, almost 66 additional quadratic
equations are obtained from 66 original cubic equations, at the floating end. It is hard to evaluate
the power of these additional quadratic equations for breaking Trivium. If an additional quadratic
equation is a pair quadratic equation, it is quite useful for Guess-and-Determine attack (see [15]).

5 A Comparison between Michal Hojsik’s Model and Ours

5.1 Result and Guess of Michal Hojsik and Bohuslav

Besides their Assumption 1.1 and Assumption 1.2, Michal Hojsik and Bohuslav Rudolf [14, 15]
allowed repeated fault injections. They had Assumption 1.3, as the follow.
Assumption 1.3 The attacker can make such fault injection many times for the same initial
state.
Michal Hojsik and Bohuslav Rudolf then presented their result [15] under Assumption 1.1,
Assumption 1.2 and Assumption 1.3. Averagely 3.2 fault injections will break Trivium, by using
averagely 800X 4.2 key-stream bits (they said they use averagely 800 original key-stream bits, so



that they use averagely 800<3.2 fault-injected key-stream bits). They guessed [14] the attak
would be more effective if one-bit-fault-injection could be changed as multi-bit-fault-injection
(that is, Assumption 1.2 could be changed, for example, as Assumption 2.2).

5.2 Our Modified Model and Result

To compare Hojsik’s model and ours, we must make some modification to our model.
Assumption 1.3 is needed, that is, injection/floating procedure can be repeated. For different fault
injections, we hope to solve the state at same time, other than to solve the states at various floating
ends. By this reason, faults must be injected into initial state, and that floating must be started
from the initial time. So that Assumption 1.1 is needed, other than Assumption 2.1. In a word, we
make injection and floating under Assumption 1.1, Assumption 2.2 and Assumption 1.3. We try to
solve the state at such time that is the minimal value of various floating ends.

Suppose the case is 1<<P <66. By subsection 4.2 we know that the floating end is about
T+163. Now we can estimate the probabilistic distribution of T. T takes values from {0, 1, ---, 65}.
T takes values from {0, 1, ---, 8} with descending probabilities. T takes any value from {8, 9, ---,
58} with the same probability. T takes values from {58, 59, ---, 65} with descending probabilities.
A simple and approximate description is that T tends to be uniformly distributed in {0, 1, ---, 65}.
So that the floating end tends to be uniformly distributed in {163, 164, ---, 228}.

Slmllarly, if the case is 94<<P; <162, the floating end tends to be uniformly distributed in
{169, 170, ---, 237}, ect. Lemma 8 presents approximately probabilistic distribution of the
floating end in each of 9 cases, and presents the probability of each case.

Lemma8 Let end denote the floating end.

(1) In case 1<<P_ <66, end tends to be uniformly distributed in {163, 164, ---, 228}. The
probability of case 1<<P <66 tends to be 66/288.

(2) In case 94<<P <162, end tends to be uniformly distributed in {169, 170, ---, 237}. The
probability of case 94<<P; <162 tends to be 69/288.

(3) In case 178<<P <243, end tends to be uniformly distributed in {134, 135, ---, 199}. The
probability of case 178<<P| <243 tends to be 66/288.

(4) In case 70<<P <93, end tends to be uniformly distributed in {236, 237, -+, 259}. The
probability of case 70<<P <<93 tends to be 24/288.

(5) In case 172<<P_ <177, end has a biased distribution in {198, 199, ---, 203}, with
descending probabilities. The probability of case 172<<P <177 tends to be 6/288.

(6) In case 265<<P| <288, end tends to be uniformly distributed in {227, 228, ---, 250}. The
probability of case 265<<P| <288 tends to be 24/288.

(7) In case 67<<P_ <69, the distribution of end is complicated, but the probability of case 67 <
P <69 is 3/288.

(8) In case 163<<P, <171, end has a biased distribution in {161, 162, ---, 169}, with
descending probabilities. The probability of case 172<<P <177 tends to be 9/288.

(9) In case 244<<P <264, end tends to be uniformly distributed in {195, 196, ---, 215}. The
probability of case 244<P| <264 tends to be 21/288.



Lemma 8 implies that the expectation of the end is about 195. Now suppose that the
injection/floating procedure is repeated 4 times, with the floating ends end;, end,, endz and end,
respectively. Each of {end;, end,, ends, ends} has an appropriate distribution as described in
Lemma 8, and {end;, end,, ends, end,} are independent each other. We try to solve the state at the
time min{end;, end,, ends, end,}. It is easy to compute that the expectation of min{end;, end,,
ends, end4} is about 163.

For an injection/floating procedure, we consider the state at time 163. Let L denote the number
of additional linear equations, about the state at time 163, obtained from 82 original quadratic
equations. In the follow we list our analyzing results about L in 9 cases.

(1) In case 1<<P <66, the average value of L is no less than 56.

(2) In case 94< P <162, the average value of L is no less than 59.

(3) In case 178<<P <243, the average value of L is no less than 51.

(4) In case 70<<P <93, the average value of L is no less than 63.

(5) In case 172<<P <177, the average value of L is no less than 43.

(6) In case 265<P, <288, the average value of L is no less than 61.

(7) In case 67<<P <69, the average value of L is no less than 30.

(8) In case 163<<P <171, the average value of L is no less than 40.

(9) In case 244 <P <264, the average value of L is no less than 60.

In fact, these results are quite conservative from our analysis.

Then it is easy to compute that averagely no less than 55.823 additional equations are linear
equations, about the state at time 163, obtained from 82 original quadratic equations. If
injection/floating procedure is repeated 4 times, averagely no less than 55.823 X 4=223.292
additional equations are linear equations, from 82 original quadratic equations. By considering 66
original linear equations, averagely no less than 289.292 linear equations, about the state at time
163, are obtained. There is a rank reduction in 289.292 linear equations, but these linear equations
are enough for breaking Trivium, by careful soving skill, a small number of guesses, and a large
number of pair quadratic equations (original and additional).

For obtaining min{end,, end,, ends, end,}, we must obtain {end;, end,, ends, end,}. So that, for
each injection/floating procedure, the floating should be stoped at the same time max{end;, end,,
ends, ends}. It is easy to compute that the expectation of max{end;, end,, ends, ends} is about 227.
This implies that 4 injection/floating procedures should be stoped at a same time, which is
averagely 227. In other words, we need averagely 227X5 key-stream bits to obtain min{end,,
end,, ends, end,}.

5.3 Comparison of Results and Notes

Under the model of Michal Hojsik and Bohuslav Rudolf, averagely 3.2 fault injections and
averagely 800X 4.2 key-stream bits will break Trivium. Under our modified model, averagely 4
fault injections and averagely 227 X 5 key-stream bits will break Trivium. From these comparison
results, we can say that our modified model is similarly effective with the model of Michal Hojsik
and Bohuslav Rudolf, for the floating attack.

Against their guess, our modified model is not more effective than the model of Michal Hojsik
and Bohuslav Rudolf, for the floating attack. The follows are several reasons for that.



Our floating end is defined as “the smallest time when the two conditions of Lemma 5 can not
be assured”, other than “the smallest time when the two conditions of Lemma 5 do not hold”. In
fact, even in the circumstance “the two conditions of Lemma 5 do not hold”, there are some other
methods for floatability. Our conservative definition reduces the difficulty of our analysis, but
makes our modified model less effective.

In their model, Michal Hojsik and Bohuslav Rudolf seemed to make full use of skills for
solving equations. We are not interested in how to solve the equations, and only try to obtain
enough equations, especially linear equations. Therefore we can not present better result.

Multi-bit-fault-injection is never more effective than one-bit-fault-injection for floating attack.
We find that, if the Hamming weight of the state differential is larger than 288/3, it is quite
possible that the float has to be stoped soon. Therefore multi-bit-fault-injection can not generate
more linear equations than one-bit-fault-injection. It can only reduce the number of needed
key-stream bits.

6 Future Work

Trivium will lead us to continue our work. The first future work is the fault injection in larger
scale. Advances in micro-electronics make the components smaller, so that fault positions should
be in a larger scale. We find that, if the fault positions are from the area within 15 neighboring
bits, a modified checking method will be valid. But the fault floating analysis seems more
complicated.

The second future work is the combination of fault floating analysis and power analysis. A
simple example will illustrate the function of such combination. Suppose that, after injection, the
bit at position j is changed. Suppose {j-1, j, j+1} N {66, 69, 91, 92, 93, 162, 171, 175, 176, 177,
243, 264, 286, 287, 288}=D (the empty set). If the power consumed for the state renewal is
larger, the bits at the positions j-1 and j+1 are equal to original bit at position j. If this power is
smaller, the bits at the positions j-1 and j+1 are different with original bit at position j. If this
power is equall, the bit at one position from {j-1, j+1} is different with original bit at position j,
and at another position is equal to original bit at position j.

The third future work is hard fault injection, that is, after the fault injection, bits at some
positions of the state will be permanently 1 or 0. Hard fault injection may be considered a great
reduction to the cipher, but there are still some problems, for example, how to determine the fault
positions.
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Appendix

Appendix A Trivium Original Equations

By the key-stream (zoz1z,--<), the attacker can obtain the original equations of the initial state
(s1, **, S2s8), described as following.

Zp=Se6tSg3tS1621S1771S2431S288 (0)
21=Sg5+S92+S1611S1761S2421S287 1)
Zg5=S1+S28+Sg7+S1121S17815223 (65)
Zg6=S271S69TS96HS111FS1621S1755176 T S177+ 5222152435264 152865287 S288 (66)
Z67=S26TSe81S951S1101 5161151745175 S176 75221 F5242F 5263528552861 S287 (67)
Z68=S251Se71S94+S109S1601S1735174F 5175152201241 5262152845285+ S286 (68)
Z69=S2471S91S02FS031S108 151501 S171+51725173FS174+S219FS240FS261 152835284 FS285 (69)
Z70=S231S90S01S92S107+S158 5170+ 51715172 S173+S218+S2391S260 5282528315284 (70)
Z71=S221S89S001S011S106TS157+S169+S170S171FS172FS217FS238FS250 1528152821 S283 (71)
Z272=5211Sg8S891S00S105+S1561S168 1516951701 S171+S216FS237S258TS2805281 15282 (72)
273=S201Sg7S881S891S1041S1551S167+ 516851691 S170+S215FS236 1525752795280 S281 (73)
Z74=S197Sg6S871Se8S1031S1541S166F 516751681 S169FS214 15235+ S256TS2785279FS280 (74)
Z75=S181Sg5586 T Sg71S1021S1531S165+ 516651671 S1681S2131S234FS2551S2775278 15279 (75)
Z76=S171S84S851Sg6TS101TS152FS164 516551661 S1671 5212152331 5254527652771 S278 (76)
Z77=S161 5835841 Sg51S1001S151+S163+S1645165F S166F 5211152325253 +52755276FS277 (77)
Z78=S151 5825831 Sg4Sg9+S1501S 16211635164 S165S2101S231FS252+5274S275+S276 (78)
Z79=S1471Sg1S821Sg31S98TS149F 5161151625163 S1641S209FS230+S2511527352741S275 (79)
Zg0=S131Sg0S811Ss21S971S148FS1601 161516251631 S208 15220152501 52725273 15274 (80)
Zg1=5121S79S801S81S96+S1471S159FS160S1611S1621S207FS2281S249F52715272FS273 (81)
Z2=5111578579FSg0 1 So5+S146+S158 515951601 S161FS206FS227FS2481S270S271FS272 (82)

Z33=S10+S77S78+S79+Sga+S145+S157+S1585159S1601S205+S226F 524752695270 S271 (83)



Zg4=Sg+See+S765771S78+S01S021S93+S144 5156515751581 S159FS171 520415225+ S246+ 526852691 S270
Zg5=Sg+Sg5+S75576S77+S00S01 S92+ 514315155+ S1565157FS158+S1701S203S224FS245+ 526752681 S269
Zgg=S7+Se4+S574S751S76+Sg9S001S91+S142FS154 81555156+ S157FS169F 520215223 +S244+ 526652671 S268
Zg7=Sp+Sp3+573574S75+Sg8Sg91S90+S141 515351545155 S156+S168+S201 15222+ S243 152655266 S267
Zgg=S5+Sg2+5725731S74+Sg7S88+S89+S1401 152181535154+ S155+ 5167520015221 FS242F 526452651266
Zg9=S4+Sg1+S71572S73+Sg6Sg71Sg8+S139FS151 1515281531 S154+S166F 519975220+ S241+52635264 15265
Z9p=S31Sg0+S70S71TS72FSg55861Sg7+S138FS150TS1515152FS153+S165+S1081S219FS2401 5262526315264
291=S7+S59+S69S701S71+S84S851Sg6+S137 5149515051511 S152FS164FS197S218+S239F 5261526215263
292=S1+S58+S68S691S70+ 583584+ Sg5+S1361 5148151495150+ S151F 5163151065217 5238152605261 15262

293=S571S67S681 5825831 SgaTS13551471 514851491 S150S162
+S195FS216F5237FS2431 5259526015261 528652871 S288
Z94=S561S665671581582Sg3+51341S1461S1475148FS149FS161
81945215+ 52365242+ S2585259FS260 1 S2855286 T S287
Z95=S551S65566TSg0S81TSg21 5133151451 51465147 S148S160
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