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Abstract. Signcryption is a cryptographic primitive that fulfills both the functions of digital signature

and public key encryption simultaneously, at a cost significantly lower than that required by the tradi-

tional signature-then-encryption approach. In this paper, we address a question whether it is possible to

construct a hybrid signcryption scheme in the certificateless setting. This question seems to have never

been addressed in the literature. We answer the question positively in this paper. In particular, we

extend the concept of signcryption tag-KEM to the certificateless setting. We show how to construct a

certificateless signcryption scheme using certificateless signcryption tag-KEM. We also give an example

of certificateless signcryption tag-KEM.

Keywords: Certificateless signcryption, hybrid signcryption, signcryption tag-KEM, DEM.

1 Introduction

Confidentiality, integrity, non-repudiation and authentication are the important requirements for
many cryptographic applications. A traditional approach to achieve these requirements is to sign-
then-encrypt the message. Signcryption, first proposed by Zheng [38], is a cryptographic primitive
that fulfills both the functions of digital signature and public key encryption simultaneously, at a
cost significantly lower than that required by the traditional signature-then-encryption approach.
Several efficient signcryption schemes have been proposed since 1997 [5,19,22,29,30,32,36,39]. The
original scheme in [38] is based on the discrete logarithm problem but no security proof is given.
Zheng’s original scheme was only proven secure by Baek, Steinfeld, and Zheng [4] who described a
formal security model in a multi-user setting. In above traditional signcryption schemes, the public
key of a user is essentially a random bit string picked from a given set. So, the signcryption does not
provide the authorization of the user by itself. This problem can be solved via a certificate which
provides an unforgeable and trusted link between the public key and the identity of the user by the
signature of a certificate authority (CA), and there is a hierarchical framework that is called public
key infrastructure (PKI) to issue and manage certificates. However, the certificates management
including revocation, storage, distribution and the computational cost of certificates verification is
the main difficulty against traditional PKI.

To simplify key management procedures of traditional PKI, Shamir [33] proposed the concept of
identity-based cryptography (IBC) in 1984. The idea of IBC is to get rid of certificates by allowing
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the user’s public key to be any binary string that uniquely identifies the user. Examples of such
strings include email addresses and IP addresses. Several practical identity-based signature (IBS)
schemes have been devised since 1984 [18,20], but a satisfying identity-based encryption (IBE)
scheme only appeared in 2001 [10]. It was devised by Boneh and Franklin and cleverly uses bilinear
maps (the Weil or Tate pairing) over supersingular elliptic curves. Subsequently, several identity-
based signcryption (IBSC) schemes are also proposed [7,11,12,14,26,27,28]. The main practical
benefit of IBC is in greatly reducing the need for the public key certificates. But IBC uses a trusted
third party called private key generator (PKG). The PKG generates the secret keys of all of its
users, so a user can decrypt only if the PKG has given a secret key to it (so, certification is implicit),
hence reduces the amount of storage and computation. On the other hand, the dependence on the
PKG who can generate all users’ private keys inevitably causes the key escrow problem to the IBC.
For example, the PKG can decrypt any ciphertext in an IBE scheme. Equally problematical, the
PKG could forge any user’s signature in an IBS scheme.

To solve the key escrow problem in the IBC, Al-Riyami and Paterson [2] introduced a new
paradigm called certificateless cryptography. The certificateless cryptography does not require the
use of certificates and yet does not have the built-in key escrow feature of IBC. It is a model
for the use of public key cryptography that is intermediate between traditional PKI and IBC. A
certificateless system still makes use of a trusted third party which is called the key generating
center (KGC). By way of contrast to the PKG in the IBC, the KGC does not have access to
the user’s private key. Instead, the KGC supplies a user with a partial private key that the KGC
computes from the user’s identity and a master key. The user then combines the partial private
key with some secret information to generate the actual private key. The system is not identity-
based, because the public key is no longer computable from a user’s identity. When Alice wants to
send a message to Bob in a certificateless system, she must obtain Bob’s public key. However, no
authentication of Bob’s public key is necessary and no certificate is required. In 2008, Barbosa and
Farshim [6] introduced the notion of certificateless signcryption (CLSC) and proposed an efficient
scheme.

The practical way to perform secrecy communication for large messages is to use hybrid encryp-
tion that separates the encryption into two parts: one part uses public key techniques to encrypt a
one-time symmetric key; the other part uses the symmetric key to encrypt the actual message. In
such a construction, the public key part of the algorithm is known as the key encapsulation mecha-
nism (KEM) while the symmetric key part is known as the data encapsulation mechanism (DEM).
A formal treatment of this paradigm originates in the work of Cramer and Shoup [15]. The resulting
KEM-DEM hybrid encryption paradigm has received much attention in recent years [1,24,25]. It
is very attractive as it gives a clear separation between the various parts of the cipher allowing for
modular design. In [1], Abe, Gennaro, and Kurosawa introduced tag-KEM which takes as input a
tag in KEM. Bentahar et al. [8] extended KEM into identity-based and certificateless settings and
gave generic constructions of identity-based KEM (IB-KEM) and certificateless KEM (CL-KEM).
Chen et al. [13] proposed an efficient IB-KEM based on the Sakai-Kasahara key construction [31].
Kiltz and Galindo [23] proposed a direct construction of IB-KEM in the standard model, based on
Waters’s IBE scheme [35]. Huang and Wong [21] proposed a generic construction of CL-KEM in
the standard model.



The use of hybrid techniques to build signcryption schemes has been studied by Dent [16,17].
He generalized KEM to signcryption KEM which includes an authentication in KEM. However, he
only consider the insider security for authenticity. That is, if the sender’s private key is exposed,
an attacker is able to recover the key generated by signcryption KEM. The full insider security [3]
means that (a) if the sender’s private key is exposed, an attacker is still not able to recover the
message from the ciphertext and (b) if the receiver’s private key is exposed, an attacker is still not
able to forge a ciphertext. In 2006, Bjørstad and Dent [9] showed how to built signcryption schemes
using tag-KEM. However, they also only consider the insider security for authenticity and not for
confidentiality. In 2008, Tan [34] proposed full insider secure signcryption KEM and tag-KEM in
the standard model. Tan’s schemes are insider secure for both authenticity and confidentiality.
Note that the using of tag-KEM yields simpler scheme descriptions and better generic security
reductions.

All the above hybrid signcryption schemes [9,16,17,34] are not in the certificateless setting. In
this paper, we address a question whether it is possible to construct a hybrid signcryption scheme
in the certificateless setting. This question seems to have never been addressed in the literature. We
answer the question positively in this paper. In particular, we extend the concept of signcryption
tag-KEM to the certificateless setting. We show that a CLSC scheme can be constructed by using
a certificateless signcryption tag-KEM (CLSC-TKEM) and a DEM. We also give an example of
CLSC-TKEM. Our scheme is insider secure for both authenticity and confidentiality.

The rest of this paper is organized as follows. We introduce the preliminary work in Section 2.
We give the formal model of CLSC-TKEM in Section 3. We show how to construct a CLSC
scheme using a CLSC-TKEM and a DEM in Section 4. An example of CLSC-TKEM is described
in Section 5. Finally, the conclusions are given in Section 6.

2 Preliminaries

2.1 Certificateless Signcryption (CLSC)

A generic CLSC scheme consists of the following six algorithms.

– Setup: This algorithm takes as input the security parameter 1k and returns the KGC’s master
secret key msk and system parameters params including a master public key mpk and de-
scriptions of message spaceM, ciphertext space C and randomness space R. This algorithm is
executed by the KGC, which publishes params.

– Extract-Partial-Private-Key: This algorithm takes as input params, msk and a user’s
identity ID ∈ {0, 1}∗, and returns a partial private key DID. This algorithm is run by the
KGC, after verifying the user’s identity.

– Generate-User-Keys: This algorithm takes as input params and an identity ID, and outputs
a secret value xID and a public key PKID. This algorithm is run by a user to obtain a public
key and a secret value which can be used to construct a full private key. The public key is
published without certification.

– Set-Private-Key: This algorithm takes as input a partial private key DID and a secret value
xID, and returns the full private key SID. Again, this algorithm is run by a user to construct
the full private key.



– Signcrypt: This algorithm takes as input params, a plaintext message m ∈ M, the sender’s
full private key SIDs , identity IDs and public key PKIDs , and the receiver’s identity IDr and
public key PKIDr , and outputs a ciphertext σ ∈ C.

– Unsigncrypt: This algorithm takes as input params, a ciphertext σ, the sender’s identity IDs

and public key PKIDs , and the receiver’s full private key SIDr , identity IDr and public key
PKIDr , and outputs a plaintext m or a failure symbol ⊥ if σ is an invalid ciphertext.

We make the consistency constraint that if

σ ← Signcrypt(params,m, SIDs , IDs, PKIDs , IDr, PKIDr),

then
m← Unsigncrypt(params, σ, IDs, PKIDs , SIDr , IDr, PKIDr).

Barbosa and Farshim [6] defines the security notions for CLSC schemes. A CLSC scheme should
satisfy confidentiality (indistinguishability against adaptive chosen ciphertext attacks (IND-CCA2))
and unforgeability (existential unforgeability against adaptive chosen messages attacks (UF-CMA)).
For the stronger notion of insider security, we use the notion of strong existential unforgeability
(sUF-CMA). The strong existential unforgeability means that an adversary wins if it outputs a
valid message/signcryption pair (m,σ) for identities IDs and IDr and the signcryption σ was
not returned by the signcryption oracle when queried on the message m. As in [11,12], we do not
consider attacks targeting signcryptions where the identities of the sender and receiver are the same.
That is, we disallow such queries to relevant oracles and do not accept this type of signcryption as
a valid forgery.

There are two types of adversaries, Type I and Type II. A Type I adversary models an attacker
which is a common user of the system and is not in possession of the KGC’s master secret key.
But it is able to adaptively replace users’public keys with (valid) public keys of its choice. A Type
II adversary models an honest-but-curious KGC who knows the KGC’s master secret key. But it
cannot replace users’ public keys.

For the confidentiality, we consider two games “IND-CCA2-I” and “IND-CCA2-II” where a Type
I adversary AI and a Type II adversary AII interact with their “challenger” in these two games,
respectively. Note that the challenger keeps a history of “query-answer” while interacting with the
attackers. Now we describe the two games.

IND-CCA2-I: This is the game in which AI interacts with the “challenger”:
Initial: The challenger runs (params,msk) ← Setup(1k) and gives params to AI . The

challenger keeps master secret key msk to itself.
Phase 1: The adversary AI can perform a polynomially bounded number of queries in an

adaptive manner.

– Extract partial private key: The adversary AI chooses an identity ID. The challenger
computes DID ←Extract-Partial-Private-Key(params,msk, ID) and sends DID to AI .

– Extract private key: The adversaryAI chooses an identity ID. The challenger first computes
DID ←Extract-Partial-Private-Key(params,msk, ID) and then computes (xID, PKID)←
Generate-User-Keys(params, ID). Finally, it sends the result of SID ←Set-Private-Key(xID, DID)
to AI . The adversary is not allowed to query any identity for which the corresponding public



key has been replaced. This restriction is imposed due to the fact that it is unreasonable to
expect that the challenger is able to provide a full private key for a user for which it does not
know the secret value.

– Request public key: The adversary AI chooses an identity ID. The challenger computes
(xID, PKID)←Generate-User-Keys(params, ID) and sends PKID to AI .

– Replace public key: AI may replace a public key PKID with a value chosen by it.
– Signcryption queries: The adversary AI chooses a m, a sender’s identity IDs and a re-

ceiver’s identity IDr, the challenger finds SIDs from its “query-answer” list, computes σ ←
Signcrypt(params,m, SIDs , IDs, PKIDs , IDr, PKIDr), and returns σ to AI . Note that, it is
possible that the challenger is not aware of the sender’s secret value, if the associated public
key has been replaced. In this case, we require the adversary to provide it. We disallow queries
where IDs = IDr.

– Unsigncryption queries: AI chooses a σ, a sender’s identity IDs and a receiver’s identity
IDr, the challenger finds SIDr from its “query-answer” list, computes Unsigncrypt(params, σ,
IDs, PKIDs , SIDr , IDr, PKIDr), and returns the result to AI . The result is either a plaintext
message m or ⊥. Note that, it is possible that the challenger is not aware of the receiver’s secret
value, if the associated public key has been replaced. In this case, we require the adversary to
provide it. We also disallow queries where IDs = IDr.

Challenge: The adversary AI decides when Phase 1 ends. AI generates two equal length
plaintexts (m0,m1), a sender’s identity ID∗

s , and a receiver’s identity ID∗
r on which it wishes to

be challenged. Note that ID∗
r should not be queried to extract a private key in Phase 1. Note also

that ID∗
r cannot be equal to an identity for which both the public key has been replaced and the

partial private key has been extracted. The challenger picks a random bit δ from {0, 1}, computes
σ∗ ← Signcrypt(params,mδ, SID∗

s
, ID∗

s , PKID∗
s
, ID∗

r , PKID∗
r
), and returns σ∗ to AI .

Phase 2: The adversary AI can ask a polynomially bounded number of queries adaptively
again as in Phase 1. The same rule is applied here: AI cannot extract the private key for ID∗

r . AI

cannot extract the partial private key for ID∗
r if the public key of this identity has been replaced

before the challenge phase. In addition, AI cannot make a unsigncryption query on σ∗ under ID∗
s

and ID∗
r , unless the public key PKID∗

s
or PKID∗

r
has been replaced after the challenge phase.

Guess: AI produces a bit δ′ and wins the game if δ′ = δ.
The advantage of AI is defined to be

AdvIND−CCA2−I
CLSC (AI) = |2Pr[δ′ = δ]− 1|,

where Pr[δ′ = δ] denotes the probability that δ′ = δ.
IND-CCA2-II: This is the game in which AII interacts with the “challenger”:
Initial: The challenger runs (params,msk) ← Setup(1k) and gives both params and msk

to AII .
Phase 1: The adversary AII can perform a polynomially bounded number of queries in an

adaptive manner. Note that we do not need Extract partial private key since AII can com-
putes partial private keys by itself.

– Extract private key: Same to the IND-CCA2-I game.
– Request public key: Same to the IND-CCA2-I game.



– Signcryption queries: Same to the IND-CCA2-I game.
– Unsigncryption queries: Same to the IND-CCA2-I game.

Challenge: The adversary AII decides when Phase 1 ends. AII generates two equal length
plaintexts (m0,m1), a sender’s identity ID∗

s , and a receiver’s identity ID∗
r on which it wishes to be

challenged. ID∗
r should not be queried to extract a private key in Phase 1. The challenger picks a ran-

dom bit δ from {0, 1}, computes σ∗ ← Signcrypt(params,mδ, SID∗
s
, ID∗

s , PKID∗
s
, ID∗

r , PKID∗
r
),

and returns σ∗ to AII .
Phase 2: The adversary AII can ask a polynomially bounded number of queries adaptively

again as in Phase 1. AII cannot extract the private key for ID∗
r . In addition, AII cannot make a

unsigncryption query on σ∗ under ID∗
s and ID∗

r , unless the public key PKID∗
s

or PKID∗
r

has been
replaced after the challenge phase.

Guess: AII produces a bit δ′ and wins the game if δ′ = δ.
The advantage of AII is defined to be

AdvIND−CCA2−II
CLSC (AII) = |2Pr[δ′ = δ]− 1|,

where Pr[δ′ = δ] denotes the probability that δ′ = δ.

Definition 1. A CLSC scheme is said to be IND-CCA2-I secure (resp. IND-CCA2-II secure) if
there is no probabilistic polynomial time (PPT) adversary AI (resp. AII) which wins IND-CCA2-I

(resp. IND-CCA2-II) with non-negligible advantage. A CLSC scheme is said to be IND-CCA2 secure
if it is both IND-CCA2-I secure and IND-CCA2-II secure.

Notice that the adversary is allowed to extract the private key of ID∗
s in the IND-CCA2-I and

IND-CCA2-II games. This condition corresponds to the stringent requirement of insider security for
confidentiality of signcryption [3]. On the other hand, it ensures the forward security of the scheme,
i.e. confidentiality is preserved in case the sender’s private key becomes compromised.

For the strong existential unforgeability, we consider two games “sUF-CMA-I” and “sUF-CMA-II”
where a Type I adversary FI and a Type II adversary FII interact with their “challenger” in these
two games, respectively. Note that the challenger keeps a history of “query-answer” while interacting
with the attackers. These two games are described as follows.

sUF-CMA-I: This is the game in which FI interacts with the “challenger”:
Initial: The challenger runs (params,msk)← Setup(1k) and gives params to FI . The chal-

lenger keeps master secret key msk to itself.
Attack: The adversary FI performs a polynomially bounded number of queries just like in the

IND-CCA2-I game.
Forgery: FI produces a quaternion (m∗, σ∗, ID∗

s , ID
∗
r). Note that ID∗

s should not be queried
to extract a private key. Note also that ID∗

s cannot be equal to an identity for which both the
public key has been replaced and the partial private key has been extracted. In addition, σ∗ was
not returned by the signcryption oracle on the input (m∗, ID∗

s , ID
∗
r) during Attack stage. FI wins

the game if the result of Unsigncrypt(params, σ∗, ID∗
s , PKID∗

s
, SID∗

r
, ID∗

r , PKID∗
r
) is not the ⊥

symbol.
The advantage of FI is defined as the probability that it wins.
sUF-CMA-II: This is the game in which FII interacts with the “challenger”:



Initial: The challenger runs (params,msk) ← Setup(1k) and gives both params and msk

to FII .
Attack: The adversary FII performs a polynomially bounded number of queries just like in the

IND-CCA2-II game.
Forgery: FII produces a quaternion (m∗, σ∗, ID∗

s , ID
∗
r). ID

∗
s should not be queried to extract a

private key. In addition, σ∗ was not returned by the signcryption oracle on the input (m∗, ID∗
s , ID

∗
r)

during Attack stage. FII wins the game if the result of Unsigncrypt(params, σ∗, ID∗
s , PKID∗

s
, SID∗

r
,

ID∗
r , PKID∗

r
) is not the ⊥ symbol.

The advantage of FII is defined as the probability that it wins.

Definition 2. A CLSC scheme is said to be sUF-CMA-I secure (resp. sUF-CMA-II secure) if there
is no PPT adversary FI (resp. FII) which wins sUF-CMA-I (resp. sUF-CMA-II) with non-negligible
advantage. A CLSC scheme is said to be sUF-CMA secure if it is both sUF-CMA-I secure and
sUF-CMA-II secure.

Note that the adversary is allowed to extract the private key of ID∗
r in the above definition.

Again, this condition corresponds to the stringent requirement of insider security for signcryp-
tion [3].

2.2 Date Encapsulation Mechanism (DEM)

A DEM is a symmetric encryption scheme which consists of the following two algorithms.

– Enc: This algorithm takes as input 1k, a key K and a message m ∈ {0, 1}∗, and outputs a
ciphertext c ∈ {0, 1}∗, where K ∈ KDEM is a key in the given key space, and m is a bit string
of arbitrary length. We denote this as c← Enc(K,m).

– Dec: This algorithm takes as input a key K and a ciphertext c, and outputs the message
m ∈ {0, 1}∗ or a symbol ⊥ to indicate that the ciphertext is invalid.

For the purposes of this paper, it is only required that a DEM is secure with respect to indistin-
guishability against passive attackers (IND-PA). Formally, this security notion is captured by the
following game played between a PPT adversary A and a challenger.

Initial: A runs on input 1k and submits two equal length messages, m0 and m1.
Challenge: The challenger chooses a random key K ∈ KDEM as well as a random bit λ ∈ {0, 1},

and sends c∗ ← Enc(K,mλ) to A as a challenge ciphertext.
Guess: The adversary A produces a bit λ′ and wins the game if λ′ = λ.
The advantage of A is defined to be

AdvIND−PA
DEM (A) = |2Pr[λ′ = λ]− 1|,

where Pr[λ′ = λ] denotes the probability that λ′ = λ.

Definition 3. A DEM is said to be IND-PA secure if there is no PPT adversary A which wins
the above game with non-negligible advantage.



3 Certificateless Signcryption Tag-KEM (CLSC-TKEM)

In this section, we extend the concept of signcryption tag-KEM to the certificateless setting. We
give the formal definition for certificateless signcryption tag-KEM (CLSC-TKEM).

3.1 Generic Scheme

A generic CLSC-TKEM consists of the following seven algorithms.

– Setup: Same to CLSC described in Section 2.
– Partial-Private-Key-Extract: Same to CLSC described in Section 2.
– Generate-User-Keys: Same to CLSC described in Section 2.
– Set-Private-Key: Same to CLSC described in Section 2.
– Sym: This is symmetric key generation algorithm which takes as input the params, the sender’s

full private key SIDs , identity IDs and public key PKIDs , the receiver’s identity IDr and public
key PKIDr , and outputs a symmetric key K together with internal state information ω. Here
K ∈ KCLSC−TKEM is a key in the space of possible session keys at a given security level. We
denote this as (K,ω)← Sym(params, SIDs , IDs, PKIDs , IDr, PKIDr).

– Encap: This is key encapsulation algorithm which takes as input the state information ω and
an arbitrary tag τ , and returns an encapsulation ψ ∈ ECLSC−TKEM. We denote this as ψ ←
Encap(ω, τ).

– Decap: This is decapsulation algorithm which takes as input the params, an encapsulation ψ,
a tag τ , the sender’s identity IDs and public key PKIDs , the receiver’s full private key SIDr ,
identity IDr and public key PKIDr , and outputs a keyK or a special symbol⊥ indicating invalid
encapsulation. We denote this as K ← Decap(params, ψ, τ, IDs, PKIDs , SIDr , IDr, PKIDr).

We make the consistency constraint that if

(K,ω)← Sym(params, SIDs , IDs, PKIDs , IDr, PKIDr) and ψ ← Encap(ω, τ),

then
K ← Decap(params, ψ, τ, IDs, PKIDs , SIDr , IDr, PKIDr).

3.2 Security Notions

A CLSC-TKEM should satisfy confidentiality and unforgeability. To define the security notions for
CLSC-TKEM, we simply adapt the security notions of CLSC into the TKEM framework.

Again there are two types of adversary against a CLSC-TKEM: Type I and Type II. A Type I
adversary models an attacker which is a common user of the system and is not in possession of the
KGC’s master secret key. But it is able to adaptively replace users’public keys with (valid) public
keys of its choice. A Type II adversary models an honest-but-curious KGC who knows the KGC’s
master secret key. But it cannot replace users’ public keys.

For the confidentiality, we consider two games “IND-CCA2-I” and “IND-CCA2-II” where a Type
I adversary AI and a Type II adversary AII interact with their “challenger” in these two games,
respectively. Note that the challenger keeps a history of “query-answer” while interacting with the
attackers. Now we describe the two games.



IND-CCA2-I: This is the game in which AI interacts with the “challenger”:
Initial: The challenger runs (params,msk) ← Setup(1k) and gives params to AI . The

challenger keeps master secret key msk to itself.
Phase 1: The adversary AI can perform a polynomially bounded number of queries in an

adaptive manner.

– Extract partial private key: Same to CLSC’s IND-CCA2-I game described in Section 2.
– Extract private key: Same to CLSC’s IND-CCA2-I game described in Section 2.
– Request public key: Same to CLSC’s IND-CCA2-I game described in Section 2.
– Replace public key: Same to CLSC’s IND-CCA2-I game described in Section 2.
– Symmetric key generation queries: AI chooses a sender’s identity IDs and a receiver’s

identity IDr. The challenger finds SIDs from its “query-answer” list and runs (K,ω)← Sym(params,
SIDs , IDs, PKIDs , IDr, PKIDr). The challenger then stores the value ω (hidden from the view
of the adversary, and overwriting any previously stored values), and sends the symmetric key
K to AI . Note that, it is possible that the challenger is not aware of the sender’s secret value,
if the associated public key has been replaced. In this case, we require the adversary to provide
it. We disallow queries where IDs = IDr.

– Key encapsulation queries: AI produces an arbitrary tag τ . The challenger checks whether
there exists a stored value ω. If not, it returns ⊥ and terminates. Otherwise it erases the value
from storage and returns ψ ← Encap(ω, τ) to AI .

– Key decapsulation queries: The adversary AI chooses a sender’s identity IDs, a receiver’s
identity IDr, an encapsulation ψ, and a tag τ . The challenger finds SIDr from its “query-
answer” list and sends the result of Decap(params, ψ, τ, IDs, PKIDs , SIDr , IDr, PKIDr) to AI .
Note that, it is possible that the challenger is not aware of the receiver’s secret value, if the
associated public key has been replaced. In this case, we require the adversary to provide it.
We also disallow queries where IDs = IDr.

Challenge: The adversary AI decides when Phase 1 ends. AI generates a sender’s identity
ID∗

s and a receiver’s identity ID∗
r on which it wishes to be challenged. Note that ID∗

r should not
be queried to extract a private key in Phase 1. Note also that ID∗

r cannot be equal to an identity
for which both the public key has been replaced and the partial private key has been extracted.
The challenger computes (K1, ω

∗)← Sym(params, SID∗
s
, ID∗

s , PKID∗
s
, ID∗

r , PKID∗
r
). Then the chal-

lenger chooses K0 ← KCLSC−TKEM and a bit b ∈ {0, 1} randomly, and sends Kb to AI . When AI

receives Kb, it may ask the same queries as previously. Then AI generates a tag τ∗. The challenger
computes ψ∗ ← Encap(ω∗, τ∗) and sends it to AI as a challenge encapsulation.

Phase 2: The adversary AI can ask a polynomially bounded number of queries adaptively
again as in Phase 1. The same rule is applied here: AI cannot extract the private key for ID∗

r . AI

cannot extract the partial private key for ID∗
r if the public key of this identity has been replaced

before the challenge phase. In addition, AI cannot make a decapsulation query on (Kb, ψ
∗) under

ID∗
s and ID∗

r , unless the public key PKID∗
s

or PKID∗
r

has been replaced after the challenge phase.
Guess: The adversary AI produces a bit b′ and wins the game if b′ = b.
The advantage of AI is defined to be

AdvIND−CCA2−I
CLSC−TKEM(AI) = |2Pr[b′ = b]− 1|,



where Pr[b′ = b] denotes the probability that b′ = b.
IND-CCA2-II: This is the game in which AII interacts with the “challenger”:
Initial: The challenger runs (params,msk) ← Setup(1k) and gives both params and msk

to AII .
Phase 1: The adversary AII can perform a polynomially bounded number of queries in an

adaptive manner. Note that we do not need Extract partial private key since AII can com-
putes partial private keys by itself.

– Extract private key: Same to CLSC’s IND-CCA2-I game described in Section 2.
– Request public key: Same to CLSC’s IND-CCA2-I game described in Section 2.
– Symmetric key generation queries: Same to CLSC-TKEM’s IND-CCA2-I game described

in Section 3.
– Key encapsulation queries: Same to CLSC-TKEM’s IND-CCA2-I game described in Sec-

tion 3.
– Key decapsulation queries: Same to CLSC-TKEM’s IND-CCA2-I game described in Sec-

tion 3.

Challenge: The adversary AII decides when Phase 1 ends. AII generates a sender’s identity
ID∗

s and a receiver’s identity ID∗
r on which it wishes to be challenged. Note that ID∗

r should not be
queried to extract a private key in Phase 1. The challenger runs (K1, ω

∗)← Sym(params, SID∗
s
, ID∗

s ,

PKID∗
s
, ID∗

r , PKID∗
r
). Then the challenger chooses K0 ← KCLSC−TKEM and a bit b ∈ {0, 1} ran-

domly, and sends Kb to AI . When AII receives Kb, it may ask the same queries as previously.
Then AII generates a tag τ∗. The challenger computes ψ∗ ← Encap(ω∗, τ∗) and sends it to AII as
a challenge encapsulation.

Phase 2: The adversary AII can ask a polynomially bounded number of queries adaptively
again as in Phase 1. AII cannot extract the private key for ID∗

r . In addition, AII cannot make a
decapsulation query on (Kb, ψ

∗) under ID∗
s and ID∗

r , unless the public key PKID∗
s

or PKID∗
r

has
been replaced after the challenge phase.

Guess: The adversary AII produces a bit b′ and wins the game if b′ = b.
The advantage of AII is defined to be

AdvIND−CCA2−II
CLSC−TKEM (AII) = |2Pr[b′ = b]− 1|,

where Pr[b′ = b] denotes the probability that b′ = b.

Definition 4. A CLSC-TKEM scheme is said to be IND-CCA2-I secure (resp. IND-CCA2-II se-
cure) if there is no PPT adversary AI (resp. AII) which wins IND-CCA2-I (resp. IND-CCA2-II)
with non-negligible advantage. A CLSC-TKEM scheme is said to be IND-CCA2 secure if it is both
IND-CCA2-I secure and IND-CCA2-II secure.

Notice that the adversary is allowed to extract the private key of ID∗
s in the IND-CCA2-I and

IND-CCA2-II games. This condition corresponds to the stringent requirement of insider security for
confidentiality of signcryption [3]. On the other hand, it ensures the forward security of the scheme,
i.e. confidentiality is preserved in case the sender’s private key becomes compromised.

For the strong existential unforgeability, we consider two games “sUF-CMA-I” and “sUF-CMA-II”
where a Type I adversary FI and a Type II adversary FII interact with their “challenger” in these



two games, respectively. Note that the challenger keeps a history of “query-answer” while interacting
with the attackers. Now we describe the two games.

sUF-CMA-I: This is the game in which FI interacts with the “challenger”:
Initial: The challenger runs (params,msk)← Setup(1k) and gives params to FI . The chal-

lenger keeps master secret key msk to itself.
Attack: The adversary FI performs a polynomially bounded number of queries just like in the

CLSC-TKEM’s IND-CCA2-I game.
Forgery: FI produces a quaternion (τ∗, ψ∗, ID∗

s , ID
∗
r). Note that ID∗

s should not be queried
to extract a private key. Note also that ID∗

s cannot be equal to an identity for which both the
public key has been replaced and the partial private key has been extracted. In addition, ψ∗ was
not returned by the key encapsulation oracle on the input (τ∗, ID∗

s , ID
∗
r) during Attack stage. FI

wins the game if the result of Decap(params, ψ∗, τ∗, ID∗
s , PKID∗

s
, SID∗

r
, ID∗

r , PKID∗
r
) is not the ⊥

symbol.
The advantage of FI is defined as the probability that it wins.
sUF-CMA-II: This is the game in which FII interacts with the “challenger”:
Initial: The challenger runs (params,msk) ← Setup(1k) and gives both params and msk

to FII .
Attack: The adversary FII performs a polynomially bounded number of queries just like in the

CLSC-TKEM’s IND-CCA2-II game.
Forgery: FII produces a quaternion (τ∗, ψ∗, ID∗

s , ID
∗
r). ID

∗
s should not be queried to extract

a private key. In addition, ψ∗ was not returned by the key encapsulation oracle on the input
(τ∗, ID∗

s , ID
∗
r) during Attack stage. FII wins the game if the result of Decap(params, ψ∗, τ∗, ID∗

s ,

PKID∗
s
, SID∗

r
, ID∗

r , PKID∗
r
) is not the ⊥ symbol.

The advantage of FII is defined as the probability that it wins.

Definition 5. A CLSC-TKEM scheme is said to be sUF-CMA-I secure (resp. sUF-CMA-II secure)
if there is no PPT adversary FI (resp. FII) which wins sUF-CMA-I (resp. sUF-CMA-II) with non-
negligible advantage. A CLSC-TKEM scheme is said to be sUF-CMA secure if it is both sUF-CMA-I
secure and sUF-CMA-II secure.

Note that the adversary is allowed to extract the private key of ID∗
r in the above definition.

Again, this condition corresponds to the stringent requirement of insider security for signcryp-
tion [3].

4 Certificateless Hybrid Signcryption

We can combine a CLSC-TKEM with a DEM to form a CLSC scheme. We describe it in Figure 1.
Note that the tag is the ciphertext output by the DEM. Such construction yields simpler scheme
descriptions and better generic security reductions.

We give the security results for such construction in Theorems 1 and 2.

Theorem 1. Let CLSC be a certificateless hybrid signcryption scheme constructed from a CLSC-
TKEM and a DEM. If the CLSC-TKEM is IND-CCA2 secure and the DEM is IND-PA secure,



CLSC.Setup: On input 1k:

1. (params,msk)← CLSC-TKEM.Setup(1k)

2. Output the system parameters params and the master secret key msk

CLSC.Partial-Private-Key-Extract: On input the params, msk, and an identity ID ∈ {0, 1}∗:

1. DID ← CLSC-TKEM.Partial-Private-Key-Extract(params,msk, ID)

2. Output the partial private key DID of the identity ID

CLSC.Generate-User-Keys: On input the params and an identity ID ∈ {0, 1}∗:

1. (xID, PKID)← CLSC-TKEM.Generate-User-Keys(params, ID)

2. Output the secret value xID and the public key PKID of the identity ID

CLSC.Set-Private-Key: On input the partial private key DID and the secret value xID:

1. SID ← CLSC-TKEM.Set-Private-Key(DID, xID)

2. Output the full private key SID

CLSC.Signcrypt: On input the params, a message m ∈ {0, 1}∗, the sender’s full private key SIDs ,

identity IDs and public key PKIDs , the receiver’s identity IDr and public key PKIDr :

1. (K,ω)← CLSC-TKEM.Sym(params, SIDs , IDs, PKIDs , IDr, PKIDr )

2. c← DEM.Enc(K,m)

3. ψ ← CLSC-TKEM.Encap(ω, c)

4. Output the ciphertext σ ← (ψ, c)

CLSC.Unsigncrypt: On input the params, a ciphertext σ, the sender’s identity IDs and public key

PKIDs , the receiver’s full private key SIDr , identity IDr and public key PKIDr :

1. K ←CLSC-TKEM.Decap(params, ψ, c, IDs, PKIDs , SIDr , IDr, PKIDr )

2. If K = ⊥, then output ⊥ and stop

3. m←DEM.Dec(K, c)

4. Output the message m

Fig. 1. Certificateless hybrid signcryption

then CLSC is IND-CCA2 secure. In particular, we have

AdvIND−CCA2−i
CLSC (A) ≤ 2AdvIND−CCA2−i

CLSC−TKEM(B1) + AdvIND−PA
DEM (B2),

where i ∈ {I, II}

Proof. See the appendix A. ut

Theorem 2. Let CLSC be a certificateless hybrid signcryption scheme constructed from a CLSC-
TKEM and a DEM. If the CLSC-TKEM is sUF-CMA secure, then CLSC is sUF-CMA secure. In



particular, we have
AdvsUF−CMA−i

CLSC (F) ≤ AdvsUF−CMA−i
CLSC−TKEM(B),

where i ∈ {I, II}, AdvsUF−CMA−i
CLSC (F) is the advantage of the sUF-CMA adversary against CLSC,

and AdvsUF−CMA−i
CLSC−TKEM(B) is the advantage of the resulting sUF-CMA adversary against CLSC-

TKEM.

Proof. See the appendix B. ut

5 An Example of CLSC-TKEM

The Barbosa-Farshim CLSC scheme [6] fits the new generic framework. Here we give an example
of CLSC-TKEM based on the Barbosa-Farshim scheme. If we combine the CLSC-TKEM with a
DEM as Figure 1, we can get a scheme that is very similar to the Barbosa-Farshim scheme. Since
the Barbosa-Farshim scheme uses the bilinear pairings, we describe some basic knowledge about
bilinear pairings in the appendix C.

5.1 CLSC-TKEM

The CLSC-TKEM consists of the following seven algorithms.

– Setup: Define G1, G2 and ê as in appendix C. Let H1, H2, H3, and H4 be four cryptographic
hash functions where H1 : {0, 1}∗ → G1, H2 : {0, 1}∗ → {0, 1}n, H3 : {0, 1}∗ → G1, and
H4 : {0, 1}∗ → G1. Here n is the key length of a DEM. Let P be a generator of G1. The PKG
chooses a master secret key s ∈ Z∗

q randomly and computes Ppub ← sP . The PKG publishes
system parameters {G1, G2, n, ê, P, Ppub,H1,H2,H3,H4} and keeps the master key s secret.

– Partial-Private-Key-Extract: Given an identity ID ∈ {0, 1}∗, the PKG computes QID ←
H1(ID) and returns the partial private key DID ← sQID.

– Generate-User-Keys: A user with identity ID chooses a random element xID from Zq as the
secret value, and sets PKID ← xIDP as the public key.

– Set-Private-Key: Given a partial private key DID and a secret value xID, this algorithm
returns the full private key SID ← (xID, DID).

– Sym: Given the sender’s full private key SIDs , identity IDs and public key PKIDs , the receiver’s
identity IDr and public key PKIDr , this algorithm works as follows.

1. Choose r ∈ Z∗
q randomly.

2. Compute U = rP and T ← ê(Ppub, QIDr)r.
3. Compute K ← H2(U, T, rPKIDr , IDr, PKIDr).
4. Output K and set ω ← (r, U, SIDs , IDs, PKIDs , IDr, PKIDr).

– Encap: Given the state information ω and an arbitrary tag τ , this algorithm works as follows.
1. Compute H ← H3(U, τ, IDs, PKIDs).
2. Compute H ′ ← H4(U, τ, IDs, PKIDs).
3. Compute W ← DIDs + rH + xIDsH

′

4. Output ψ ← (U,W )



– Decap: Given the the sender’s identity IDs and public key PKIDs , the receiver’s full private
key SIDr , identity IDr and public key PKIDr , an encapsulation ψ and a tag τ , this algorithm
works as follows.
1. Compute H ← H3(U, τ, IDs, PKIDs).
2. Compute H ′ ← H4(U, τ, IDs, PKIDs).
3. If ê(Ppub, QIDs)ê(U,H)ê(PKIDs ,H

′) = ê(P,W ), compute T = ê(DIDr , U) and output the
K ← H2(U, T, xIDrU, IDr, PKIDr). Otherwise, output symbol ⊥.

5.2 Security

We give the security results for the CLSC-TKEM in Theorems 3 and 4.

Theorem 3. In the random oracle model, the above CLSC-TKEM is IND-CCA2 secure under the
assumption that the gap bilinear Diffie-Hellman problem is intractable.

Proof. See the appendix D. ut

Theorem 4. In the random oracle model, the above CLSC-TKEM is sUF-CMA secure under the
assumption that the GDH′ problem is intractable.

Proof. See the appendix E. ut

6 Conclusions

In this paper, we extended the concept of signcryption tag-KEM to the certificateless setting. We
showed that a certificateless signcryption scheme can be constructed by combining a certificateless
signcryption tag-KEM with a DEM. To show that our framework is reasonable, we also gave
an example of certificateless signcryption tag-KEM based on the Barbosa-Farshim certificateless
signcryption scheme.
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Appendix

A Proof of Theorem 1

Proof. Our proof strategy is as follows. We define a sequence Game0, Game1, Game2 of modified attack
games. The only difference between games is how the environment responds to A’s oracle queries.

Let σ∗ ← (ψ∗, c∗) be the challenge ciphertext submitted to A by its challenge oracle that
encrypts either m0 or m1 according to a bit b. Let K∗ denote the symmetric key used by the
challenge oracle in the generation of the challenge ciphertext, or alternatively, the decapsulation of
ψ∗ using the identities ID∗

s and ID∗
r that are chosen by the adversary. For any i = 0, 1, 2, we let

Si be the event that δ′ = δ in game Gamei, where δ is the bit chosen by A’s challenge oracle and
δ′ is the bit output by A. This probability is taken over the random choices of A and those of A’s
oracles.

We will use the following useful Lemma 1 from [37].

Lemma 1. Let E, E′, and F be events defined on a probability space such that Pr[E ∧ ¬F ] =
Pr[E′ ∧ ¬F ]. Then we have

|Pr[E]− Pr[E′]| ≤ Pr[F ].

Game0: We simulate the view of the adversary in a real attack by running the suitable key
generation algorithms and using the resulting keys to respond to A’s queries. So the view of A is
the same as it would be in a real attack. Therefore, we have

|Pr[S0]−
1
2
| = 1

2
AdvIND−CCA2−i

CLSC (A),

where i ∈ {I, II}.
Game1: In this game, we slightly modify how the unsigncryption oracle responds to queries

from A. When a sender’ identity IDs, a receiver’s identity IDr, and (ψ, c) is presented to the



unsigncryption oracle after the invocation of the challenge signcryption oracle, if IDs = ID∗
s ,

IDr = ID∗
r and ψ = ψ∗, and in the case of a Type I adversary, the public keys of ID∗

s and ID∗
r

have not been replaced, then the unsigncryption oracle does not use the genuine unsigncryption
procedure for the hybrid scheme, instead it uses the key K∗ to decrypt c and returns the result to
the adversary A.

Clearly this change has no impact on the adversary and so

Pr[S1] = Pr[S0].

Game2: In this game, we modify Game1 by replacing K∗ with a random key K ′ from KDEM. The
result then follows from the following Lemmas 2 and 3. ut

Lemma 2. There exists a PPT algorithm B1, whose running time is essentially the same as that
of A, such that

|Pr[S2]− Pr[S1]| = AdvIND−CCA2−i
CLSC−TKEM(B1),

where i ∈ {I, II}.

Proof. To prove this we demonstrate how to construct an adversary B1 of the CLSC-TKEM to
violate the IND-CCA2-I (resp. IND-CCA2-II) attack.

Adversary B1 is constructed by running adversary A. We respond to A’s queries as follows.

– WhenA calls any oracle, bar its signcryption, unsigncryption and challenge signcryption oracles,
B1 simply relays these queries to its own equivalent oracle.

– When A make a signcryption query with a sender’s identity IDs, a receiver’s identity IDr and
a plaintext m, B1 follows the steps below.
1. Make a symmetric key generation query on (IDs, IDr) to its own symmetric key generation

oracle to obtain K.
2. Compute c← DEM.Enc(K,m).
3. Make a key encapsulation query on c to its own key encapsulation oracle to obtain ψ.
4. Return the ciphertext σ ← (ψ, c) to A.

– When A make a unsigncryption query with a sender’s identity IDs, a receiver’s identity IDr

and a ciphertext σ ← (ψ, c), B1 follows the steps below.
1. Make a key decapsulation query on (ψ, c, IDs, IDr) to its own key decapsulation oracle to

obtain K.
2. If K = ⊥, return ⊥ and stop.
3. Compute m←DEM.Dec(K, c) and return m.

– When A calls its challenge signcryption oracle with two equal length plaintexts m0,m1, a
sender’s identity ID∗

s , and a receiver’s identity ID∗
r , B1 follows the steps below.

1. Submit ID∗
s and ID∗

r to its challenger to obtain Kb, where b ∈ {0, 1}.
2. Pick a random bit δ from {0, 1}.
3. Compute c∗ ← DEM.Enc(Kb,mδ).
4. Submit c∗ to its challenger to obtain ψ∗.
5. Return the ciphertext σ∗ ← (ψ∗, c∗) to A.



– To respond to A’s unsigncryption query for a sender’s identity IDs, a receiver’s identity IDr

and a ciphertext σ ← (ψ, c) after A has queried its challenge signcryption oracle, B1 proceeds
as follows.
• If (IDs, IDr, ψ) 6= (ID∗

s , ID
∗
r , ψ

∗) then it uses the same procedure that it used before A’s
call to its challenge signcryption oracle.
• In the case of a Type I adversary against a CLSC scheme, if (IDs, IDr, ψ) = (ID∗

s , ID
∗
r , ψ

∗)
and the public keys have been replaced, then B1 responds by calling the key decapsulation
oracle provided to it by A with input (ID∗

s , ID
∗
r , ψ

∗, c∗) to obtain K. It then uses K to
decrypt c and relays the response to A.

• Otherwise, B1 uses Kb to decrypt c and relays the result to A.

At the end of the simulation, A outputs δ′. If δ′ = δ, B1 outputs b′ = 1 indicating Kb is the real
key; otherwise it outputs b′ = 0 indicating Kb is a random key.

When Kb is the real key, A is run exactly as it would be run in Game1. This means that

Pr[S1] = Pr[δ′ = δ|b = 1] = Pr[b′ = 1|b = 1].

When Kb is the random key, A is run exactly as it would be in Game2. This means that

Pr[S2] = Pr[δ′ = δ|b = 0] = Pr[b′ = 1|b = 0].

From the definition of security for CLSC-TKEM, we have

AdvIND−CCA2−i
CLSC−TKEM(B1) = |2Pr[b′ = b]− 1| = |Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]|.

So the result holds. ut

Lemma 3. There exists a PPT algorithm B2, whose running time is essentially the same as that
of A, such that

|Pr[S2]−
1
2
| = 1

2
AdvIND−PA

DEM (B2).

Proof. To construct such a B2 we simply run A as it would be run in game Game2. We run the
suitable CLSC-TKEM algorithms so we can respond to A’s queries before it calls its challenge
signcryption oracle. When A calls its challenge signcryption oracle with a sender’s identity ID∗

s , a
receiver’s identity ID∗

r , and messages (m0,m1), we simply relay (m0,m1) to the challenge encryption
oracle of B2 to obtain c∗. We then make a symmetric key generation query and a key encapsulation
query to obtain K∗ and ψ∗, respectively. We discard K∗ and return (ψ∗, c∗) to A. We continue to
respond to A’s queries as before except if it a makes unsigncryption query on (ID∗

s , ID
∗
r , ψ

∗, c) for
some c. In this instance there are two cases:

– If we are dealing with a Type I adversary A of a CLSC scheme, and the public keys have been
replaced, then B2 decapsulates (ID∗

s , ID
∗
r , ψ

∗, c) using the provided secret key to obtain K,
decrypts c and relays the response to A.

– Otherwise we query B2’s decryption oracle with c and relay the response to A.

In this simulation A is run by B2 in exactly the same manner as the former would be run in
game Game2; moreover, Pr[S2] corresponds exactly to the probability that B2 correctly determines
the hidden bit of its challenge encryption oracle since B2 outputs whatever A outputs. The result
follows. ut



B Proof of Theorem 2

Proof. Suppose that F is an adversary that breaks the CLSC scheme with probability AdvsUF−CMA−i
CLSC (F),

where i ∈ {I, II}. We use this to construct an algorithm B that breaks the sUF-CMA-i for the
CLSC-TKEM with probability at least AdvsUF−CMA−i

CLSC (F) too.
Adversary B is constructed by running adversary F . We respond to F ’s queries as follows.

– When F calls any oracle, bar its signcryption and unsigncryption oracles, B simply relays these
queries to its own equivalent oracle.

– When F make a signcryption query with a sender’s identity IDs, a receiver’s identity IDr and
a plaintext m, B follows the steps below.
1. Make a symmetric key generation query on (IDs, IDr) to its own symmetric key generation

oracle to obtain K.
2. Compute c← DEM.Enc(K,m).
3. Make a key encapsulation query on c to its own key encapsulation oracle to obtain ψ.
4. Return the ciphertext σ ← (ψ, c) to F .

– When F make a unsigncryption query with a sender’s identity IDs, a receiver’s identity IDr

and a ciphertext σ ← (ψ, c), B follows the steps below.
1. Make a key decapsulation query on (ψ, c, IDs, IDr) to its own key decapsulation oracle to

obtain K.
2. If K = ⊥, return ⊥ and stop.
3. Compute m←DEM.Dec(K, c) and return m.

Finally, F outputs a forgery (m∗, σ∗, ID∗
s , ID

∗
r), where (ψ∗, c∗)← σ∗. B outputs (τ∗, ψ∗, ID∗

s , ID
∗
r),

where τ∗ = c∗.
Clearly, this algorithm perfectly simulates the environment in which F should be running. If

F wins the sUF-CMA-i for the CLSC, B have the same probability to win the sUF-CMA-i for
CLSC-TKEM. ut

C Bilinear Pairings

Let G1 be a cyclic additive group generated by P , whose order is a prime q, and G2 be a cyclic
multiplicative group of the same order q. A bilinear pairing is a map ê : G1 × G1 → G2 with the
following properties:

1. Bilinearity: ê(aP, bQ) = ê(P,Q)ab for all P,Q ∈ G1, a, b ∈ Zq.
2. Non-degeneracy: There exists P and Q ∈ G1 such that ê(P,Q) 6= 1.
3. Computability: There is an efficient algorithm to compute ê(P,Q) for all P ,Q ∈ G1.

The modified Weil pairing and the Tate pairing [10] are admissible maps of this kind. The
security of our scheme described here relies on the hardness of the following problems.

Definition 6. We say the gap bilinear Diffie-Hellman (GBDH) assumption holds if the advantage
of any PPT adversary as defined below is negligible.

AdvGBDH(A, qDBDH) = Pr[T = ê(P, P )abc|a, b, c← Zq;T ← AO(P, aP, bP, cP )]



In the above equation, O denotes a decision bilinear Diffie-Hellman oracle which on input (P, aP, bP, cP, T )
outputs 1 if T = ê(P, P )abc and 0 otherwise. By qDBDH we denote the maximum number of queries
that A asks its decision oracle.

The following weaker assumption is implied by the above.

Definition 7. We say the computational Diffie-Hellman assumption in the presence of a decision
bilinear Diffie-Hellman oracle (GDH′) holds in G1 if the advantage of any PPT adversary as defined
below is negligible.

AdvGDH′(A, qDBDH) = Pr[Q = abP |a, b← Zq;Q← AO(P, aP, bP )]

Here O and qDBDH are as in the above definition.

This assumption in turn implies:

Definition 8. We say the computational Diffie-Hellman (CDH) assumption holds in G1 if the
advantage of any PPT adversary as defined below is negligible.

AdvCDH(A) = Pr[Q = abP |a, b← Zq;Q← A(P, aP, bP )]

D Proof of Theorem 3

Proof. In the Barbosa-Farshim CLSC scheme [6], they use a weaker formulation of Type I adversary
which they refer to as Type I′. In confidentiality games, the Type I′ adversary is not allowed to
extract the partial private key of ID∗

r . They proved that If a CLSC scheme is IND-CCA2 secure
against Type II and Type I′ attackers, then it is also IND-CCA2 secure against Type I attackers.
It is easy to extend this conclusion to CLSC-TKEM setting. That is, we have the following Lemma
4.

Lemma 4. If a CLSC-TKEM is IND-CCA2 secure against Type II and Type I′ attackers then it
is also IND-CCA2 secure against Type I attackers. In particular, we have

AdvIND−CCA2−I
CLSC (A) ≤ 2AdvIND−CCA2−I′

CLSC (C1) + AdvIND−CCA2−II
CLSC (C2).

This theorem follows from Lemmas 4, 5 and 6. ut

Lemma 5. Under the GBDH assumption, no PPT attacker A has non-negligible advantage in win-
ning the IND-CCA2-I′ game against the above CLSC-TKEM, when all hash functions are modeled
as random oracles. More precisely, there exists an algorithm C which uses A to solve the GBDH
problem such that:

AdvIND−CCA2−I′

CLSC (A) ≤ qT AdvGBDH(C, q2D + 2qDq2 + q2),

where qT = q1 + qP + qK +2qD +2. Here q1, q2, qP , qK and qD are the maximum number of queries
that the adversary can ask H1, ask H2, extract partial private key, extract private key and make
key decapsulation queries.



Proof. The challenger C takes as input (P, aP, bP, cP ) and attempts to compute ê(P, P )abc. C will
run A as a subroutine and act as A’s challenger in the IND-CCA2-I′ game for CLSC-TKEM. During
the game, A will consult C for answers to the random oracles H1, H2, H3 and H4. Roughly speaking,
these answers are randomly generated, but to maintain the consistency and to avoid collision, C
keeps three lists L1, L2, L3, L4 respectively to store the answers. The following assumptions are
made.

1. A will ask for H1(ID) before ID is used in any partial private key extraction, private key
extraction, symmetric key generation, key encapsulation and key decapsulation queries.

2. Key encapsulation returned from a key encapsulation query will not be used by A in a key
decapsulation query.

At the beginning of the game, C gives A the system parameters with Ppub ← aP . Note that a
is unknown to C. This value simulates the master secret key for the KGC in the game. C chooses a
random number j ∈ {1, 2, . . . , qT } and answers various oracle queries as follows.

H1 queries: A asks a polynomially bounded number of H1 queries on identities of his choice. At
the j-th H1 query, C answers by H1(IDj)← bP and puts (IDj ,⊥) to list L1. For queries H1(IDi)
with i 6= j, C chooses ei ∈ Z∗

q randomly, puts (IDi, ei) in list L1 and answers H1(IDi)← eiP .
Extract partial private key: When A asks a partial private key extraction query on identity

IDi, if IDi = IDj , then C fails and stops. If IDi 6= IDj , then the list L1 must contain (IDi, ei) for
some ei (this indicates C previously answered H1(IDi) ← eiP on a H1 query on IDi). C returns
the partial private key DIDi ← eiaP .

Request public key: When A asks a public key query on identity IDi, C checks the list LK ,
which is initially empty. If there is a tuple (IDi, PKIDi , xIDi), then C returns PKIDi . Otherwise,
C generates a new key pair, updates the list LK , and returns the public key.

Replace public key: On input (IDi, PKIDi), C inserts/updates LK with tuple (IDi, PKIDi ,⊥).
Extract private key: When A asks a private key extraction query on identity IDi, C calls H1

on IDi and obtains (IDi, ei). If IDi = IDj , then C fails and stops. Otherwise, C searches LK

for the entry (IDi, PKIDi , xIDi), generating a new key pair if this does not exist, and returns
SIDi ← (xIDi , eiaP ).

H3 Queries: When A asks a H3 query on (Ui, τi, IDi, PKIDi), C checks if the list L3 contains
a tuple (Ui, τi, IDi, PKIDi , ti, tiP ). If such a tuple is found, C answers tiP . Otherwise, C chooses a
random value t ∈ Zq, puts the (Ui, τi, IDi, PKIDi , t, tP ) into L3, and returns tP .

H4 Queries: When A asks a H4 query on (Ui, τi, IDi, PKIDi), C checks if the list L4 contains
a tuple (Ui, τi, IDi, PKIDi , li, liP ). If such a tuple is found, C answers liP . Otherwise, C chooses a
random value l ∈ Zq, puts the (Ui, τi, IDi, PKIDi , l, lP ) into L4, and returns lP .

H2 queries: For each new query (Ui, Ti, Ri, IDi, PKIDi), C proceeds as follows:

1. It checks if the decision bilinear Diffie-Hellman oracle returns 1 when queried with the tuple
(aP, bP, cP, Ti). If this is the case, C returns Ti and stop.

2. C goes through the list L2 with entries (Ui, ?, Ri, IDi, PKIDi , hi), for different values of hi,
such that the decision bilinear Diffie-Hellman oracle returns 1 when queried on the tuple
(aP, bP, Ui, Ti). Note that in this case IDi = IDj . If such a tuple exists, it returns hi (and
replaces the symbol ? with Ti)



3. If C reaches this point of execution, it returns a random h and updates the list L2, which is
initially empty, with a tuple containing the input and return values.

Symmetric key generation queries: Let IDs, IDr be the identity of the sender and that of the
receiver respectively used byA in a symmetric key generation query. For each new query (IDs, IDr),
C proceeds as follows:

1. If IDs 6= IDj , C computes the private key SIDs corresponding to IDs by running the private key
extraction query algorithm. Then C runs (K,ω)← Sym(params, SIDs , IDs, PKIDs , IDr, PKIDr)
and sends K to A. Note that C needs to store ω and to overwrite any previous value.

2. If IDs = IDj (and hence IDr 6= IDj), C chooses u, v ∈ Z∗
q , sets U ← vaP , and computes

T ← ê(U,DIDr)(C could obtain DIDr from a partial private key extraction query because
IDr 6= IDj). Note that the ω is (u, v, U, IDs, PKIDs , IDr, PKIDr) in this case.

3. It goes through list L2 looking for an entry (U, T,R, IDr, PKIDr , h) for some R such that
ê(U,PKIDr) = ê(P,R), where PKIDr is obtained by calling the request public key oracle on
IDr. If such an entry exists, it computes K ← h. Otherwise it uses a random h and updates
the list L2 with (U, T, ?, IDr, PKIDr , h).

Key encapsulation queries: A produces a arbitrary tag τ . C checks whether there exists a stored
value ω. If there is not, it returns ⊥ and terminates. Otherwise C proceeds as follows.

1. If IDs 6= IDj , C answers the query by a call to Encap(ω, τ).
2. If IDs = IDj (and IDr 6= IDj), C defines the hash value H3(U, τ, IDs, PKIDs) as H ←
v−1(uP − QIDs). If a such a hash queries has been responded with a different value before, it
aborts the simulation. This means that C updates list L3 with tuple (U, τ, IDs, PKIDs ,⊥,H). Fi-
nally, C setsW = uaP+lPKIDs , where l is the value obtained by queryingH4 on (U, τ, IDs, PKIDs).
C returns ψ ← (U,W ).

Key decapsulation queries: For a key decapsulation query on a (ψ′, τ ′) for identities IDs and
IDr, C proceeds as follows.

1. It executes the verification part of the decapsulation algorithm by obtaining QIDs and PKIDs

by calling H1 and request public key oracles. It returns ⊥ if the verification does not succeed.
2. It computes R ← xIDrU , obtaining xIDr (and hence PKIDr) from either the adversary or by

calling the request public key oracle.
3. If IDr 6= IDj , C computes the partial private key DIDr corresponding to IDr by running the

partial private key extraction query algorithm. Then C computes T ← ê(DIDr , U), and returns
K ← H2(U, T,R, IDr, PKIDr).

4. If IDr = IDj , then the pairing cannot be computed. In order to return a consistent answer, C
goes through L2 and looks for a tuple (U, T,R, IDr, PKIDr , h), for different values of T , such
that the decision bilinear Diffie-Hellman oracle returns 1 when queried on (aP, bP, U, T ). If such
an entry exists, the correct pairing value is found and returns K ← h.

5. If C reaches this point of execution, it places the entry (U, ?,R, IDr, PKIDr , h) for a random h

on list L2 and returns K ← h. The symbol ? denotes an unknown value of pairing. Note that
the identity component of all entries with a ? is IDj .



After the first stage, A picks two identities ID∗
s and ID∗

r on which it wishes to be challenged. If
ID∗

r 6= IDj , C fails and stops. Otherwise it proceeds to construct a challenge as follows. It obtains
the public key PKID∗

s
corresponding to ID∗

s form the list LK . Then it sets U∗ = cP , chooses
a random hash value h∗ and sets K1 ← h∗. C chooses K0 ← KCLSC−TKEM and a bit b ∈ {0, 1}
randomly, and sends Kb to A. A then sends a tag τ∗ to C. C computes W ∗ = DID∗

s
+rH+xID∗

s
H ′ =

DID∗
s

+ tcP + lPKID∗
s
, where t is obtained from L3, l is obtained from L4 and DID∗

s
is computed

by calling the partial private key extraction oracle on ID∗
s . Note that, since ID∗

s 6= ID∗
r the partial

private key extraction oracle simulation always give C the correct value of DIDs . C sends the
challenge encapsulation ψ∗ ← (U∗,W ∗) to A.
A then performs a second series of queries which is treated in the same way as the first one.

At the end of the simulation, it produces a bit b′ for which it believes the relation (Kb, ω
∗) ←

Sym(params, SID∗
s
, ID∗

s , PKID∗
s
, ID∗

r , PKID∗
r
) and ψ∗ ← Encap(ω∗, τ∗) hold.

Since IDj is independent of adversary’s view, and the list L1 can be easily seen to have at
most qT elements, with probability 1/qT the adversary will output an identity IDj . If this event
occurs, the simulation is perfect unless the adversary queries H2 on the challenge-related tuple
(U∗, T ∗, R∗, ID∗

r , PK
∗
IDr

). Since the hash function H2 is modeled as a random oracle, the adversary
will not have any advantage if this tuple does not appear on L2. However, if this happens, C will win
the game due to the first step in the simulation of H2. The Lemma follows from this observation
and the fact that the total number of decision bilinear Diffie-Hellman oracle calls that C makes is
at most q2D + 2qDq2 + q2. ut

Lemma 6. Under the CDH assumption in G1, no PPT attacker A has non-negligible advantage
in winning the IND-CCA-II game against the above CLSC-TKEM, when all hash functions are
modeled as random oracles. More precisely, there exists an algorithm C which uses A to solve the
CDH problem such that:

AdvIND−CCA2−II
CLSC (A) ≤ qT AdvCDH(C),

where qT = qRK +qPK +qK +2qD +2. Here qRK and qPK are the maximum number of queries that
the adversary can request public key and replace public key, respectively. qK and qD are as before.

Proof. The challenger C takes as input (P, aP, bP ) and attempts to compute abP . C will run A as
a subroutine and act as A’s challenger in the IND-CCA2-II game for CLSC-TKEM. During the
game, A will consult C for answers to the random oracles H1, H2, H3 and H4. Roughly speaking,
these answers are randomly generated, but to maintain the consistency and to avoid collision, C
keeps three lists L1, L2, L3, L4 respectively to store the answers. The following assumptions are
made.

1. A will ask forH1(ID) before ID is used in any private key extraction, symmetric key generation,
key encapsulation and key decapsulation queries.

2. Key encapsulation returned from a key encapsulation query will not be used by A in a key
decapsulation query.

At the beginning of the game, C generates a master secret key s and system parameters params
including a master public key Ppub ← sP . Then C gives both params and s to A. C first chooses a
random number j ∈ {1, 2, . . . , qT }, and answers various oracle queries as follows.



H1 queries: For a query on H1(IDi), C chooses ei ∈ Z∗
q randomly, puts (IDi, ei) in list L1 and

answers H1(IDi)← eiP .
Request public key: When A asks a public key query on identity IDi, if IDi 6= IDj , C generates

a new key pair (xIDi , PKIDi), updates the list LK with (IDi, PKIDi , xIDi), and returns the public
key. If IDi = IDj , C returns aP and adds (IDj , aP,⊥) to LK .

Extract private key: When A asks a private key extraction query on identity IDi, C calls request
public key on IDi and obtains (IDi, PKIDi , xIDi). If IDi = IDj , then C fails and stops. Otherwise,
C calls H1 on IDi and gets (IDi, ei). It returns (xIDi , seiP ).

H3 Queries: When A asks a H3 query on (Ui, τi, IDi, PKIDi), C checks if the list L3 contains
a tuple (Ui, τi, IDi, PKIDi , ti, tiP ). If such a tuple is found, C answers tiP . Otherwise, C chooses a
random value t ∈ Zq, puts the (Ui, τi, IDi, PKIDi , t, tP ) into L3, and returns tP .

H4 Queries: When A asks a H4 query on (Ui, τi, IDi, PKIDi), C checks if the list L4 contains
a tuple (Ui, τi, IDi, PKIDi , li, liP ). If such a tuple is found, C answers liP . Otherwise, C chooses a
random value l ∈ Zq, puts the (Ui, τi, IDi, PKIDi , l, lP ) into L4, and returns lP .

H2 queries: For each new query (Ui, Ti, Ri, IDi, PKIDi), C proceeds as follows:

1. It checks if ê(aP, bP ) = ê(P,Ri). If so, C returns Ri and stops.
2. C goes through the list L2 looking for entries (Ui, Ti, ?, IDi, PKIDi , hi) such that ê(Ui, aP ) =
ê(P,Ri). Note that in this case IDi = IDj . If such a tuple exists, it returns hi (and replaces
the symbol ? with Ri).

3. If C reaches this point of execution, it returns a random h and updates the list L2, which is
initially empty, with a tuple containing the input and return values.

Symmetric key generation queries: Let IDs, IDr be the identity of the sender and that of the
receiver respectively used byA in a symmetric key generation query. For each new query (IDs, IDr),
C proceeds as follows:

1. If IDs 6= IDj , C computes the private key SIDs corresponding to IDs by running the private key
extraction query algorithm. Then C runs (K,ω)← Sym(params, SIDs , IDs, PKIDs , IDr, PKIDr)
and sends K to A. Note that C needs to store ω and to overwrite any previous value.

2. If IDs = IDj (and hence IDr 6= IDj), C chooses u, v ∈ Z∗
q , sets U ← vaP , and computes

T ← ê(U,DIDr)(C could computes DIDr because it knows the master secret key s). Note that
the ω is (u, v, U, IDs, PKIDs , IDr, PKIDr) in this case.

3. It goes through list L2 looking for an entry (U, T,R, IDr, PKIDr , h) for some R such that
ê(U,PKIDr) = ê(P,R), where PKIDr is obtained by calling the request public key oracle on
IDr. If such an entry exists, it computes K ← h. Otherwise it uses a random h and updates
the list L2 with (U, T, ?, IDr, PKIDr , h).

Key encapsulation queries: A produces a arbitrary tag τ . C checks whether there exists a stored
value ω. If there is not, it returns ⊥ and terminates. Otherwise C proceeds as follows.

1. If IDs 6= IDj , C answers the query by a call to Encap(ω, τ).
2. If IDs = IDj (and IDr 6= IDj), C defines the hash value H3(U, τ, IDs, PKIDs) as H ←
v−1(uP − H4), where H4 is the output of H4(U, τ, IDs, PKIDs). If a such a hash queries has
been responded with a different value before, it aborts the simulation. This means that C
updates list L3 with tuple (U, τ, IDs, PKIDs ,⊥,H). Finally, C sets W = DIDs +uaP . C returns
ψ ← (U,W ).



Key decapsulation queries: For a key decapsulation query on a (ψ′, τ ′) for identities IDs and
IDr, C proceeds as follows.

1. It executes the verification part of the decapsulation algorithm obtaining QIDs and PKIDs by
calling H1 and request public key oracles. It returns ⊥ if the verification does not succeed.

2. It calculates T = ê(U, erPpub), where (IDr, er) is obtained from H1.
3. If IDr 6= IDj , it computes R← xIDrU , where xIDr is obtained (and hence PKIDr) from either

the adversary or by calling the request public key oracle. Then C returnsK ← H2(U, T,R, IDr, PKIDr).
4. If IDr = IDj , the correct value of R cannot be computed. To return a consistent answer, C goes

through L2 and looks for a tuple (U, T,R, IDr, PKIDr , h), for different values of R, such that
ê(U, aP ) = ê(P,R). If such an entry exists, the correct value of R is found and returns K ← h.

5. If C reaches this point of execution, it places the entry (U, T, ?, IDr, PKIDr , h) for a random h

on list L2 and returns K ← h. The symbol ? denotes an unknown value of R.

After the first stage, A picks two identities ID∗
s and ID∗

r on which it wishes to be challenged. If
ID∗

r 6= IDj , C fails and stops. Otherwise it proceeds to construct a challenge as follows. It obtains
the public key PKID∗

s
corresponding to ID∗

s form the list LK . Then it sets U∗ = bP , chooses
a random hash value h∗ and sets K1 ← h∗. C chooses K0 ← KCLSC−TKEM and a bit b ∈ {0, 1}
randomly, and sends Kb to A. A then sends a tag τ∗ to C. C computes W ∗ = DID∗

s
+rH+xID∗

s
H ′ =

DID∗
s

+ tcP + lPKID∗
s
, where t is obtained from L3, l is obtained from L4 and DID∗

s
is computed

by calling the partial private key extraction oracle on ID∗
s . C sends the challenge encapsulation

ψ∗ ← (U∗,W ∗) to A.
A then performs a second series of queries which is treated in the same way as the first one.

At the end of the simulation, it produces a bit b′ for which it believes the relation (Kb, ω
∗) ←

Sym(params, SID∗
s
, ID∗

s , PKID∗
s
, ID∗

r , PKID∗
r
) and ψ∗ ← Encap(ω∗, τ∗) hold.

Since IDj is independent of adversary’s view, and the list L1 can be easily seen to have at
most qT elements, with probability 1/qT the adversary will output an identity IDj . If this event
occurs, the simulation is perfect unless the adversary queries H2 on the challenge-related tuple
(U∗, T ∗, R∗, ID∗

r , PK
∗
IDr

). Since the hash function H2 is modeled as a random oracle, the adversary
will not have any advantage if this tuple does not appear on L2. However, if this happens, C will
win the game due to its simulation of H2. The Lemma follows from this observation and the fact
that the maximum length of the list LK is qT , as stated in the Lemma. ut

E Proof of Theorem 4

Proof. In the Barbosa-Farshim CLSC scheme [6], they use a weaker formulation of Type I adversary
which they refer to as Type I′. In unforgeability games, the Type I′ adversary is not allowed to
extract the partial private key of ID∗

s . They proved that If a CLSC scheme is sUF-CMA secure
against Type II and Type I′ attackers, then it is also sUF-CMA secure against Type I attackers. It
is easy to extend these conclusions to CLSC-TKEM setting. That is, we have the following Lemma
7.

Lemma 7. If a CLSC-TKEM is sUF-CMA secure against Type II and Type I′ attackers then it is
also sUF-CMA secure against Type I attackers. In particular, we have

AdvsUF−CMA−I
CLSC (F) ≤ 2AdvsUF−CMA−I′

CLSC (C1) + AdvsUF−CMA−II
CLSC (C2).



This theorem follows from Lemmas 7, 8 and 9.
ut

Lemma 8. Under the GDH′ assumption in G1, no PPT attacker F has non-negligible advantage
in winning the sUF-CMA-I′ game against the above CLSC-TKEM, when all hash functions are
modeled as random oracles. More precisely, there exists an algorithm C which uses F to solve the
GDH′ problem such that:

AdvsUF−CMA−I′

CLSC (F) ≤ qT AdvGDH′(C, q2D + 2qDq2) + (qSK(qSK + qD + q3 + 1) + 2)/2k,

where qT = q1 + qP + qK + 2qD + 2qSK + 1. Here q3 and qSK are the maximum number of queries
that the adversary could ask H3 and make symmetric key generation queries, respectively. q1, qP ,
qK , and qD are as before.

Proof. The challenger C takes as input (P, aP, bP ) and attempts to compute abP . C will run A as a
subroutine and act as A’s challenger in the sUF-CMA-I′ game for CLSC-TKEM. During the game,
A will consult C for answers to the random oracles H1, H2, H3 and H4. Roughly speaking, these
answers are randomly generated, but to maintain the consistency and to avoid collision, C keeps
three lists L1, L2, L3, L4 respectively to store the answers. The following assumptions are made.

1. F will ask for H1(ID) before ID is used in any partial private key extraction, private key
extraction, symmetric key generation, key encapsulation and key decapsulation queries.

2. Key encapsulation returned from a key encapsulation query will not be used by F in a key
decapsulation query.

At the beginning of the game, C gives F the system parameters with Ppub ← aP . Note that a
is unknown to C. This value simulates the master key value for the KGC in the game. C chooses a
random number j ∈ {1, 2, . . . , qT } and answers various oracle queries as follows.

H1 queries: Same to Lemma 5.
Extract partial private key: Same to Lemma 5.
Request public key: Same to Lemma 5.
Replace public key: Same to Lemma 5.
Extract private key: Same to Lemma 5.
H3 Queries: Same to Lemma 5.
H4 Queries: Same to Lemma 5.
H2 queries: For each new query (Ui, Ti, Ri, IDi, PKIDi), C proceeds as follows:

1. It checks if ê(aP, bP ) = ê(P,Ri). If this is the case, C returns Ri and stop.
2. C goes through the list L2 with entries (Ui, ?, Ri, IDi, PKIDi , hi), for different values of hi,

such that the decision bilinear Diffie-Hellman oracle returns 1 when queried on the tuple
(aP, bP, Ui, Ti). Note that in this case IDi = IDj . If such a tuple exists, it returns hi (and
replaces the symbol ? with Ti)

3. It goes through the list L2 with entries (Ui, Ti, ?, IDi, PKIDi , hi), for different values of hi, such
that ê(Ui, PKIDi) = ê(P,Ri). If such a tuple exists, it returns hi (and replaces the symbol ?
with Ri).



4. If C reaches this point of execution, it returns a random h and updates the list L2, which is
initially empty, with a tuple containing the input and return values.

Symmetric key generation queries: Let IDs, IDr be the identity of the sender and that of the
receiver respectively used by F in a symmetric key generation query. For each new query (IDs, IDr),
C proceeds as follows:

1. If IDs 6= IDj , C computes the private key SIDs corresponding to IDs by running the private key
extraction query algorithm. Then C runs (K,ω)← Sym(params, SIDs , IDs, PKIDs , IDr, PKIDr)
and sends K to F . Note that C needs to store ω and to overwrite any previous value.

2. If IDs = IDj (and hence IDr 6= IDj), C chooses u, v ∈ Z∗
q , sets U ← vaP , and computes

T ← ê(U,DIDr)(C could obtain DIDr from a partial private key extraction query because
IDr 6= IDj). Note that the ω is (u, v, U, IDs, PKIDs , IDr, PKIDr) in this case.

3. It goes through list L2 looking for an entry (U, T,R, IDr, PKIDr , h) for some R such that
ê(U,PKIDr) = ê(P,R), where PKIDr is obtained by calling the request public key oracle on
IDr. If such an entry exists, it computes K ← h. Otherwise it uses a random h and updates
the list L2 with (U, T, ?, IDr, PKIDr , h).

Key encapsulation queries: F produces a arbitrary tag τ . C checks whether there exists a stored
value ω. If there is not, it returns ⊥ and terminates. Otherwise C proceeds as follows.

1. If IDs 6= IDj , C answers the query by a call to Encap(ω, τ).
2. If IDs = IDj (and IDr 6= IDj), C defines the hash value H3(U, τ, IDs, PKIDs) as H ←
v−1(uP − QIDs). If a such a hash queries has been responded with a different value before, it
aborts the simulation. This means that C updates list L3 with tuple (U, τ, IDs, PKIDs ,⊥,H). Fi-
nally, C setsW = uaP+lPKIDs , where l is the value obtained by queryingH4 on (U, τ, IDs, PKIDs).
C returns ψ ← (U,W ).

Key decapsulation queries: For a key decapsulation query on a (ψ′, τ ′) for identities IDs and
IDr, C proceeds as follows.

1. It executes the verification part of the decapsulation algorithm obtaining QIDs and PKIDs by
calling H1 and request public key oracles. It returns ⊥ if the verification does not succeed.

2. It checks if IDi = IDj and if this is the case then C can solve the GDH′ problem as described
below.

3. It computes R ← xIDrU , obtaining xIDr (and hence PKIDr) from either the adversary or by
calling the request public key oracle.

4. If IDr 6= IDj , C computes the private key DIDr corresponding to IDr by running the partial
private key extraction query algorithm. Then C computes T ← ê(DIDr , U), and returns K ←
H2(U, T,R, IDr, PKIDr).

5. If IDr = IDj , then the pairing cannot be computed. In order to return a consistent answer, C
goes through L2 and looks for a tuple (U, T,R, IDr, PKIDr , h), for different values of T , such
that the decision bilinear Diffie-Hellman oracle returns 1 when queried on (aP, bP, U, T ). If such
an entry exists, the correct pairing value is found and returns K ← h.

6. If C reaches this point of execution, it places the entry (U, ?,R, IDr, PKIDr , h) for a random h

on list L2 and returns K ← h. The symbol ? denotes an unknown value of pairing. Note that
the identity component of all entries with a ? is IDj .



Finally, F outputs a produces a quaternion (τ∗, ψ∗, ID∗
s , ID

∗
r). C checks if ID∗

s = IDj . If not,
it aborts execution. Otherwise, it obtains PKID∗

s
by calling the request public key oracle on ID∗

s

and retrieves t∗ and l∗ from lists L3 and L4 by querying H3 and H4 on (U∗, τ∗, ID∗
s , PKID∗

s
). Note

that if C succeeded, then the verification condition holds:

ê(P,W ∗) = ê(Ppub, QID∗
s
)ê(U∗,H∗)ê(PKID∗

s
,H ′∗)

ê(P,W ∗) = ê(aP, bP )ê(U∗, t∗P )ê(PKID∗
s
, l∗P )

ê(P, abP ) = ê(P,W ∗ − t∗U − l∗PKID∗
s
)

and thus C can compute
abP = W ∗ − t∗U − l∗PKID∗

s

Let us now analyze the probability that C succeeds in solving the GDH′ problem instance. For
this to happen, the simulation must run until the end of the game, the adversary must pick a
specific identity as ID∗

j , and it must query the hash functions H3 and H4 to properly construct the
forgery. The probability that F is able to produce a forgery without querying both hash functions
is upper bounded by 2/2k.

The probability that C aborts the simulation is related with the following events:

– F places a partial key extraction on IDj .
– F places a full private key extraction on IDj .
– C wants to simulate a key encapsulation query and this leads to an inconsistency in the H3

simulation.

Note that if F places either of the first two fatal queries, then it could not possibly use IDj

as the sender identity in the forgery it produces at the end of the game, so we can pinpoint the
probability that C does not abort the simulation due to these events and F picks the only useful
case for solving GDH′ as 1/qT . Note that the maximum length of the list L1 is qT , as stated in the
Lemma

The latter fatal event occurs if C’s simulation triggers a collision in its simulation of H3. Since
the maximum size of L3 is qSK + qD + q3 + 1, we can upper bound the probability that this occurs
as qSK(qSK +qD +q3 +1)/2k. The result follows by noting that C makes at most q2D +2qDq2 queries
to its decision bilinear Diffie-Hellman oracle. ut

Lemma 9. Under the CDH assumption in G1, no PPT attacker F has non-negligible advantage
in winning the sUF-CMA-II game against the above CLSC-TKEM, when all hash functions are
modeled as random oracles. More precisely, there exists an algorithm C which uses F to solve the
CDH problem such that:

AdvsUF−CMA−II
CLSC (F) ≤ qT AdvCDH(C) + (qSK(qSK + qD + q3 + 1) + 2)/2k,

where qT = qRK + qPK + qK + 2qD + 2qSK + 1 and various q’s are as before.

Proof. The challenger C takes as input (P, aP, bP ) and attempts to compute abP . C will run F as a
subroutine and act as F ’s challenger in the sUF-CMA-II game for CLSC-TKEM. During the game,
F will consult C for answers to the random oracles H1, H2, H3 and H4. Roughly speaking, these
answers are randomly generated, but to maintain the consistency and to avoid collision, C keeps
three lists L1, L2, L3, L4 respectively to store the answers. The following assumptions are made.



1. F will ask forH1(ID) before ID is used in any private key extraction, symmetric key generation,
key encapsulation and key decapsulation queries.

2. Key encapsulation returned from a key encapsulation query will not be used by F in a key
decapsulation query.

At the beginning of the game, C generates a master secret key s and system parameters params
including a master public key Ppub. Then C gives both params and s to F . C first chooses a random
number j ∈ {1, 2, . . . , qT }, and answers various oracle queries as follows.

H1 queries: Same to Lemma 6.
Request public key: Same to Lemma 5.
Extract private key: Same to Lemma 5.
H3 Queries: Same to Lemma 6.
H4 Queries: When F asks a H4 query on (Ui, Vi, IDi, PKIDi), C checks if the list L4 contains

a tuple (Ui, Vi, IDi, PKIDi , li, libP ). If such a tuple is found, C answers libP . Otherwise, C chooses
a random value l ∈ Zq, puts the (Ui, Vi, IDi, PKIDi , l, lbP ) into L4, and returns lbP .

H2 queries: For each new query (Ui, Ti, Ri, IDi, PKIDi), C proceeds as follows:

1. It checks if ê(aP, bP ) = ê(P,Ri). If so, C returns Ri and stops.
2. C goes through the list L2 looking for entries (Ui, Ti, ?, IDi, PKIDi , hi) such that ê(Ui, PKIDi) =
ê(P,Ri). If such a tuple exists, it returns hi (and replaces the symbol ? with Ri).

3. If C reaches this point of execution, it returns a random h and updates the list L2, which is
initially empty, with a tuple containing the input and return values.

Symmetric key generation queries: Let IDs, IDr be the identity of the sender and that of the
receiver respectively used by F in a symmetric key generation query. For each new query (IDs, IDr),
C proceeds as follows:

1. If IDs 6= IDj , C computes the private key SIDs corresponding to IDs by running the private key
extraction query algorithm. Then C runs (K,ω)← Sym(params, SIDs , IDs, PKIDs , IDr, PKIDr)
and sends K to F . Note that C needs to store ω and to overwrite any previous value.

2. If IDs = IDj (and hence IDr 6= IDj), C chooses u, v ∈ Z∗
q , sets U ← vaP , and computes

T ← ê(U,DIDr)(C could computes DIDr because it knows the master secret key s). Note that
the ω is (u, v, U, IDs, PKIDs , IDr, PKIDr) in this case.

3. It goes through list L2 looking for an entry (U, T,R, IDr, PKIDr , h) for some R such that
ê(U,PKIDr) = ê(P,R), where PKIDr is obtained by calling the request public key oracle on
IDr. If such an entry exists, it computes K ← h. Otherwise it uses a random h and updates
the list L2 with (U, T, ?, IDr, PKIDr , h).

Key encapsulation queries: F produces a arbitrary tag τ . C checks whether there exists a stored
value ω. If there is not, it returns ⊥ and terminates. Otherwise C proceeds as follows.

1. If IDs 6= IDj , C answers the query by a call to Encap(ω, τ).
2. If IDs = IDj (and IDr 6= IDj), C defines the hash value H3(U, τ, IDs, PKIDs) as H ←
v−1(uP − H4), where H4 is the output of H4(U, τ, IDs, PKIDs). If a such a hash queries has
been responded with a different value before, it aborts the simulation. This means that C
updates list L3 with tuple (U, τ, IDs, PKIDs ,⊥,H). Finally, C sets W = DIDs +uaP . C returns
ψ ← (U,W ).



Key decapsulation queries: For a key decapsulation query on a (ψ′, τ ′) for identities IDs and
IDr, C proceeds as follows.

1. It executes the verification part of the decapsulation algorithm obtaining QIDs and PKIDs by
calling H1 and request public key oracles. It returns ⊥ if the verification does not succeed.

2. It checks if IDs = IDj and if this is the case then C can solve the CDH problem as described
below.

3. It calculates T = ê(U, erPpub), where (IDr, er) is obtained from H1.
4. If IDr 6= IDj , it computes R← xIDrU , where xIDr is obtained (and hence PKIDr) from either

the adversary or by calling the request public key oracle. Then C returnsK ← H2(U, T,R, IDr, PKIDr).
5. If IDr = IDj , the correct value of R cannot be computed. To return a consistent answer, C goes

through L2 and looks for a tuple (U, T,R, IDr, PKIDr , h), for different values of R, such that
ê(U, aP ) = ê(P,R). If such an entry exists, the correct value of R is found and returns K ← h.

6. If C reaches this point of execution, it places the entry (U, T, ?, IDr, PKIDr , h) for a random h

on list L2 and returns K ← h. The symbol ? denotes an unknown value of R.

Finally, F outputs a produces a quaternion (τ∗, ψ∗, ID∗
s , ID

∗
r). C checks if ID∗

s = IDj . If not, it
aborts execution. Otherwise, it obtains PKID∗

s
by calling the request public key oracle on ID∗

s and
retrieves t∗ and l∗ from lists L3 and L4 by querying H3 and H4 on (U∗, τ∗, ID∗

s , PKID∗
s
). Note that

if C succeeded, then the verification condition holds:

ê(P,W ∗) = ê(Ppub, QID∗
s
)ê(U∗,H∗)ê(PKID∗

s
,H ′∗)

ê(P,W ∗) = ê(Ppub, QID∗
s
)ê(U∗, t∗P )ê(aP, l∗bP )

ê(P, l∗abP ) = ê(P,W ∗ −DID∗
s
− t∗U∗)

and thus C can compute
abP = (W ∗ −DID∗

s
− t∗U)/l∗.

Let us now analyze the probability that C succeeds in solving the CDH problem instance. For
this to happen, the simulation must run until the end of the game, the adversary must pick a
specific identity as ID∗

j , and it must query the hash functions H3 and H4 to properly construct the
forgery. The probability that F is able to produce a forgery without querying both hash functions
is upper bounded by 2/2k.

The probability that C aborts the simulation is related with the following events:

– F places a full private key extraction on IDj .
– C wants to simulate a key encapsulation query and this leads to an inconsistency in the H3

simulation.

Note that if F places the first fatal query, then it could not possibly use IDj as the sender
identity in the forgery it produces at the end of the game, so we can pinpoint the probability that
C does not abort the simulation due to these events and F picks the only useful case for solving
CDH as 1/qT . Note that the maximum length of the list LK is qT , as stated in the Lemma

The latter fatal event occurs if C’s simulation triggers a collision in its simulation of H3. Since
the maximum size of L3 is qSK + qD + q3 + 1, we can upper bound the probability that this occurs
as qSK(qSK + qD + q3 + 1)/2k. The result follows. ut
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