
Hardware Implementation of the SHA-3
Candidate Skein

Stefan Tillich

Graz University of Technology
Institute for Applied Information Processing and Communications

Inffeldgasse 16a, A–8010 Graz, Austria
Stefan.Tillich@iaik.tugraz.at

Abstract. Skein is a submission to the NIST SHA-3 hash function com-
petition which has been optimized towards implementation in modern
64-bit processor architectures. This paper investigates the performance
characteristics of a high-speed hardware implementation of Skein with
a 0.18 µm standard-cell library and on different modern FPGAs. The
results allow a first comparison of the hardware performance figures of
full Skein with other SHA-3 candidates.

Keywords: SHA-3, Skein, high-speed, hardware, standard-cell library,
FPGA.

1 Introduction

The Skein hash function family has been conceived by Ferguson et al. [3] and
submitted as a candidate for the SHA-3 competition of NIST [5]. The design-
ers of Skein have optimized the hash function towards performance on 64-bit
processors. The first hardware performance figures for Skein have been made
available by Long for the core UBI functionality of an iterated implementation
on FPGAs [4]. In this paper we report the performance results of our full
implementation of all three Skein variants for standard cells and FPGAs.

2 Skein in a Nutshell

Skein is a family of hash functions based on the tweakable block cipher Threefish.
The block and key size of Threefish are equal and can be set to either 256, 512,
or 1,024 bits (designated as Threefish-256, Threefish-512, and Threefish-1024,
respectively). Threefish is used in Matyas-Meyer-Oseas mode to construct the
Skein compression function. Together with the format specification of the tweak
and a padding scheme, this defines the so-called Unique Block Iteration (UBI)
chaining mode. An example of the UBI mode is shown in Figure 1.

In Figure 1, the block TF denotes a Threefish encryption. The message M
consists of three message blocks (M0 to M2). The first Threefish encryption
key (UBI IN) is supplied to UBI, the tweak values depend on the position and



2 S. Tillich

TF
XORUBI_IN

TWEAK(M0)

M0

TF
XOR UBI_OUT

TWEAK(M1)

M1

TF
XOR

TWEAK(M2)

M2

Fig. 1. UBI mode.

bit length of the respective message block. UBI is used in Skein for message
compression and the output transformation, but also for IV generation and other
optional operation modes (e.g., tree hashing, keyed hashing).

For each block size, the message digest can be set to a more or less arbitrary
length. The Skein variant with a block size of X bits and a message digest size of
Y bits is designated as Skein-X-Y. As the message digest size is a minimal tweak
to an hardware implementation, it is sufficient to investigate the performance
characteristics of the three different block sizes X.

The Threefish block cipher is based on three simple operations: Addition
modulo 264, XOR, and bit permutation. These operations are defined on the
intermediate state organized in 64-bit words. The MIX operation depicted in
Figure 2 transforms two of these 64-bit words and is common to all Threefish
variants. The rotation distance (rot dist) depends on the Threefish block size,
the round index and the position of the two 64-bit words in the Threefish state.

<<<

w0

ADD
64

w1

XOR

rot_dist

w’0 w’1

Fig. 2. The Threefish MIX operation.

Threefish is structured in a number of similar rounds which are applied to
the input block. A number of subkeys are derived from the cipher key and tweak



Hardware Implementation of the SHA-3 Candidate Skein 3

in a simple key schedule and are added to the input block and the intermediate
state in each fourth round. The total number of rounds depends on the state
size: 72 rounds for state sizes of 256 and 512 bits, 80 rounds for Threefish-1024.

Apart from the different rotation distances, the rounds of Threefish are
similar, consisting of a layer of MIX operations and a subsequent permutation of
the state words (this permutation is fixed for a specific Threefish variant). Each
fourth round differs slightly as it also includes the addition of a subkey (using
addition modulo 264). Four consecutive rounds of Threefish-256 are depicted in
Figure 3.

w0

ADD64

w1 w2 w3

MIX MIX

PERMUTE

MIX MIX

PERMUTE

MIX MIX

PERMUTE

MIX MIX

PERMUTE

w’0 w’1 w’2 w’3

subkey

Fig. 3. Four rounds of Threefish-256.

The rotation constants for the MIX operation repeat after eight rounds.
Therefore, the output of a hardware block implementing eight consecutive Three-
fish rounds depends only on the intermediate input block and the according two
subkeys. A “natural” design option is thus to unroll a multiple of eight Threefish
rounds [3]. Such a design prevents the need for variable-size rotation in hardware,
which decreases the hardware cost and increases the speed of the implementation.

3 Description of the Hardware Module

We have implemented the main variants of Skein from scratch in a configurable
hardware module. This module can realize either Skein-256-256, Skein-512-512,
or Skein-1024-1024.



4 S. Tillich

Add subkey

Add subkey

4x mix & perm

4x mix & perm

tf_statesk_state

XOR

m
sg

Key schedule
unit

m
sg

ho
ld

ho
ld

tf_
ou

t

Tweak
generator

ubi_type / first /
final / bitpad /
lastblock_size

k_s

k_spp
ze

ro

0

iv

IV

xo
r

MESSAGE BLOCK

MESSAGE DIGEST

Fig. 4. Datapath of the Skein hardware module with eight unrolled Threefish rounds.

The complete datapath of the Skein module is depicted in Figure 4. The core
of the datapath consists of eight unrolled rounds of Threefish and a key schedule
unit which can supply two consecutive subkeys at a time. The advantage of this
architecture is that the Threefish rounds have fixed rotation distances for their
MIX layer, which allows for a compact implementation. Thus, the output of the
Threefish unit only depends on the input block and the two subkeys. As the
critical path of the whole design runs through the Threefish unit, this design
choice helps to improve the overall speed of the design.

The key schedule unit is loaded with an input key (either the IV or the XOR
of the previous message block and its Threefish-encrypted equivalent) and input
tweak at the beginning of each Threefish encryption. Upon the load, both key
and tweak are expanded by a 64-bit word into the extended key and extended
tweak, which are stored in registers. Two subsequent subkeys are derived from
these registers through a number of 64-bit adders. The contents of the registers
can be rotated by a distance of two in order to allow generation of the next pair
of subkeys.

Additionally, the datapath contains two registers of the size of a Threefish
block. One of these registers saves the current message block while the other is
used to hold intermediate values of the Threefish encryption. The XOR of two



Hardware Implementation of the SHA-3 Candidate Skein 5

expanded key

XOR

KEY

0x55..55

TWEAK

expanded tweak

<<< (2 words) XOR<<< (2 words)

Subkey derivation
(5x add64)

SUBKEY(s) SUBKEY(s+1)

index s

+ 20

Fig. 5. Key schedule unit for Threefish-256.

Threefish block-sized values—required for UBI chaining—can be loaded into the
key schedule unit. A simple tweak generator unit delivers the appropriate tweak
for the key schedule unit.

The datapath is controlled by a state machine, which iterates the mes-
sage block the necessary number of times through the Threefish unit, performs
the UBI chaining, loads in new message blocks, keeps track of the number of
processed bytes, delivers necessary input signals to the tweak generator, and
produces some status signals for the module’s external interface.

The external interface of the Skein hardware module has been kept very
simple. The message block input and message digest output are implemented in
full size in order to prevent any possible performance bottlenecks by a narrow
data interface. An interface module could be easily wrapped around the Skein
module in order to cater for different data bus widths of the overall system.

The Skein module is able to perform the complete hash function with the
exception of the message padding. This functionality could be easily implemented
either in software or the interface module, depending of the capabilities of the
overall system.

4 Results

The Skein hardware module has been implemented in VHDL. The 64-bit adders
have been implemented in a generic fashion (using the “+” operator of the
IEEE.std logic unsigned package) in order to allow the synthesizer the greatest



6 S. Tillich

flexibility for optimization1. For Skein-X-X, the processing of an X-bit message
block requires 10 clock cycles for Skein-256-256 and Skein-512-512 and 11 clock
cycles for Skein-1024-10242.

The functionality for all three supported variants has been successfully veri-
fied against the complete set of official short message and long message known-
answer tests (KATs) through HDL simulation with Cadence ncsim. We have
performed synthesis targeting a 0.18 µm standard-cell library and two different
FPGA architectures (Xilinx Virtex 5 and Spartan 3).

For ASIC synthesis, we have used the 0.18 µm standard-cell library (FSA0A C)
from Faraday [2]. Synthesis has been performed with the Cadence PKS-Shell
(v05.16) [1]. Different target clock frequencies for worst-case conditions have
been used for different synthesis runs. Only the results of successful runs (i.e.,
where the set target was met) are reported. The results are given in Table 13.
For each Skein variant, we report two different synthesis results:

– Small: Relaxed constraints for the critical path delay to minimize silicon
area.

– Fast: Tight timing constraints for maximum throughput.

Table 1. Implementation results for 0.18 µm standard-cell technology.

Area Clock freq. Throughput
Implementation GE MHz Gbit/s

Skein-256-256 (small) 44,287 34.46 0.882
Skein-256-256 (fast) 53,871 68.82 1.762

Skein-512-512 (small) 80,870 34.19 1.751
Skein-512-512 (fast) 102,346 48.85 2.501

Skein-1024-1024 (small) 178,793 24.46 2.277
Skein-1024-1024 (fast) 195,789 33.56 3.124

For synthesis targeting the Xilinx FPGAs, the ISE tools (v10.1.03) have been
used. The target devices were a Xilinx Virtex 5 LX100, speed grade 3, package
FF1760 (xc5vlx110-3ff1760) and a Xilinx Spartan 3 5000, speed grade 5, pack-
age FG676 (xc3s5000-5fg676). The device resource usage and clock frequency
estimation after synthesis are reported in Table 2.

For both FPGA architectures, the number of used Configurable Logic Block
(CLB) slices is reported. For Virtex 5, a CLB slice contains four 6-input look-up
tables (LUTs) and four configurable flip-flops [7], while for Spartan 3, a slice

1 Hand-optimized adder implementations could be dropped in to try to increase the
speed of the module.

2 The latency equals the number of rounds divided by eight plus an extra cycle for
the loading of the block.

3 The reported clock frequency and throughput are for typical operating conditions
at 25 ℃.



Hardware Implementation of the SHA-3 Candidate Skein 7

consists of two 4-input LUTs and two flip-flops [6]. No other functional blocks
(e.g., Block RAMs) have been used by our implementations.

Table 2. Implementation results for FPGAs.

Area Clock freq. Throughput
Implementation FPGA Slices MHz Gbit/s

Skein-256-256 Xilinx Spartan 3 2,421 26.14 0.669
Skein-256-256 Xilinx Virtex 5 937 68.40 1.751

Skein-512-512 Xilinx Spartan 3 4,273 26.66 1.365
Skein-512-512 Xilinx Virtex 5 1,632 69.04 3.535

Skein-1024-1024 Xilinx Spartan 3 8,198 27.33 2.482
Skein-1024-1024 Xilinx Virtex 5 2,994 68.90 6.414

5 Conclusions

In this work we presented the design of our high-speed hardware implementation
of the hash function Skein. We also reported the performance figures of our imple-
mentation for all three block sizes both for 0.18 µm standard-cell implementation
and two modern FPGA architectures.

References

1. Cadence Design Systems. The Cadence Design Systems Website. http://www.

cadence.com/.
2. Faraday Technology Corporation. Faraday FSA0A C 0.18 µm ASIC Standard Cell

Library, 2004. Details available online at http://www.faraday-tech.com.
3. N. Ferguson, S. Lucks, B. Schneier, D. Whiting, M. Bellare, T. Kohno, J. Callas,

and J. Walker. The Skein Hash Function Family. Available online at http://www.

skein-hash.info/sites/default/files/skein1.1.pdf, November 2008.
4. M. Long. Implementing Skein Hash Function on Xilinx Virtex-5 FPGA Platform.

Available online at http://www.skein-hash.info/sites/default/files/skein_

fpga.pdf, February 2009.
5. National Institute of Standards and Technology (NIST). Cryptographic Hash

Algorithm Competition Website. http://csrc.nist.gov/groups/ST/hash/sha-3.
6. Xilinx, Inc. Spartan-3 FPGA Family Data Sheet, June 2008. Available online at

http://www.xilinx.com.
7. Xilinx, Inc. Virtex-5 FPGA User Guide, March 2009. Available online at http:

//www.xilinx.com.


