
A Deterministic Approach of Merging of Blocks in

Transversal Design based Key Predistribution

Anupam Pattanayak, B. Majhi

Computer Science & Engineering Department,

National Institute of Technology, Rourkela, India – 769008

{ anupam.pk@gmail.com, bmajhi@nitrkl.ac.in }

Abstract – Transversal Design is a well known combinatorial design that has

been used in deterministic key predistribution scheme. Merging of blocks in a

design sometimes helps to obtain a key predistribution scheme with better

performance. A deterministic merging strategy to merge the blocks has been

discussed. Also, a simple key establishment method for transversal design based

key predistribution scheme has been discussed.

Keywords: Key predistribution, Transversal Design, Deterministic Merging, Key Establishment

1. Introduction

Distributed Wireless Sensor Network consists of several tiny sensors. A sensor has very

limited resources such as processor capability, communication range, memory capacity, and

battery power. In many cases these sensors are deployed without having any control or

sometimes with partial control on the locations of these sensors. It may be sometimes desired

that the communication among these sensors be secured. In that case we need a particular

cryptographic technique to be used. Due to limited resources of sensor nodes, the use of private

key cryptography is advocated mostly. With the amazing advancement of hardware, it would be

a reality in near future that a sensor network would use public key cryptography without

compromising much on their resource front. As we just mentioned, private key cryptography (or

symmetric key cryptography) is mostly used in sensor network. To further reduce load of

symmetric key generation, what is done is predistribute key every sensor node before its

deployment. To make this key predistribution further effective, generally a set of keys are pre

distributed to the sensor nodes, so that they can communicate directly with more number of

sensor nodes. A sensor node has a communication range within which it can communicate with

other node. Now since sensor nodes are generally deployed without any control on their

deployment locations, initially a node is unaware of the identity of its neighbor nodes. So they

broadcast their identification and by some deterministic means they derive the common key of

each other, if they share any such key.

2. Combinatorial Design

The origin of combinatorial design lies in the statistical field design of experiments. But

it has found wide application in various branches of science and engineering. It has been vastly

used in coding theory, and various branches of cryptography such as Boolean function,

authentication code, Key predistribution etc [1]. In the following we first give a brief

introduction to combinatorial design and then describe about transversal design.

2.1 Introduction to Combinatorial Design

Combinatorial Design is the study of set of subsets with various constraints. These

constraints are of numerous types. Depending upon the type of these constraints on the set of

subsets the design is classified. Let us describe some basic terminologies in combinatorial

design. Elements of the universal set S are called treatments or varieties. Subsets considered of

this set S are called blocks. If the length of each block is same and the each element appears

same number of times in the blocks then this design (set of blocks) is regular. The number of

times a treatment appears in the design is called degree of elements. Consider a set S = {1, 2, 3,

4, 5, 6}. Now suppose our family of subsets are {{1,2,3}, {2,4,5}, {3,5,6}, {1,4,6}}. For our

convenience we write the subsets as follows {123, 245, 356, 146}. This family of subsets is an

example of regular design where v = |S| = 6, number of blocks b = 4, degree r = 2, block size b =

3. A regular design is denoted by (v, b, r, k)-design. For a regular design the following

relationship holds:

v.r = b.k (1)

The number of times a pair of treatments (x, y) appears together in the blocks is denoted by λxy

and is called covalency of x and y. If λxy is same for any x, y S, then the design is called (v, b,

r, k, λ)-design. For a (v, b, r, k, λ)-design the following condition holds:

 r.(k-1) = λ.(v-1) (2)

If all the treatment appears in a block then that block is complete. If all the blocks in a regular

design are complete then the design is called complete design. Complete designs are of little

interest unless some further structure is imposed (such as in Latin Square). In a design, if at least

one block is incomplete then that design is an incomplete design. If v = b, the design is called

symmetric.

2.2 Transversal Design

A Group-divisible Design of type g
u
 and block size k is a triplet (X, H, A), where X is a

finite set of cardinality gu, H is a partition of X into u parts (called groups) of size g, and A is a

set of subsets of X (called blocks), that satisfy following properties [2]:

 1) 1ii AH for Hi H and every Ai A.

 2) Each pair of elements of X from different groups occurs in exactly one block

in A.

A Transversal Design TD(k,n) is a group-divisible design of type n
k
 and block size k. So Hi

 Ai = 1 Hi H, Ai A.

3. Key Predistribution Scheme based on Transversal Design

The first key predistribution scheme that used combinatorial design is by Camtepe and

Yener [3]. They have used projective plane and generalized quadrangle to predistribute keys.

Key predistribution scheme proposed by Lee and Stinson uses Transversal design [4].

Transversal Design is a special kind of group-divisible design. Here, any two distinct blocks

intersect in zero or one point. A very good article by Martin on applicability of combinatorial

designs in key predistribution can be found in [5]. To get overview of all combinatorial design

based key predistribution schemes one can refer the article by Pattanayak and Majhi [6]. In the

below we write the algorithm for obtaining a Transversal Design.

3.1 Algorithm To Derive TD(k, p)

 We write the algorithm to construct transversal design as given in [4].

Step 1. Define X = { 0, 1, … , k-1} x Zp.

Step 2. For 0 ≤ x ≤ k-1, define Hx = { x } x Zp.

Step 3. Define H= { Hx | 0 ≤ x ≤ k-1 }.

Step 4. For every ordered pair (i, j) Zp x Zp,

define a block Ai,j = { (x, ix+j mod q) | 0 ≤ x ≤ k-1 }.

Step 5. Obtain A = { Ai,j | (i, j) Zp x Zp}.

Step 6. (X, H, A) is a TD(k, p).

3.2 Example of Transversal Design based KPS

To understand the above algorithm, we give the following example showing how do the

blocks are formed. In this example number of blocks = 24, block size = 4, a prime power = 5.

Now the blocks are constructed as below:

Node ID Key-chain Node ID Key-chain Node ID Key-chain

1 (0,0), (1,0), (2,0), (3,0) 2 (0,1), (1,1), (2,1), (3,1) 2 (0,2), (1,2), (2,2), (3,2)

4 (0,3), (1,3), (2,3), (3,3) 5 (0,4), (1,4), (2,4), (3,4) 6 (0,0), (1,1), (2,2), (3,3)

7 (0,1), (1,2), (2,3), (3,4) 8 (0,2), (1,3), (2,4), (3,0) 9 (0,3), (1,4), (2,0), (3,1)

10 (0,4), (1,0), (2,1), (3,2) 11 (0,0), (1,2), (2,4), (3,1) 12 (0,1), (1,3), (2,0), (3,2)

13 (0,2), (1,4), (2,1), (3,3) 14 (0,3), (1,0), (2,2), (3,4) 15 (0,4), (1,1), (2,3), (3,0)

16 (0,0), (1,3), (2,1), (3,4) 17 (0,1), (1,4), (2,2), (3,0) 18 (0,2), (1,0), (2,3), (3,1)

19 (0,3), (1,1), (2,4), (3,2) 20 (0,4), (1,2), (2,0), (3,3) 21 (0,0), (1,4), (2,3), (3,2)

22 (0,1), (1,0), (2,4), (3,3) 23 (0,2), (1,1), (2,0), (3,4) 24 (0,3), (1,2), (2,1), (3,0)

Table 1. Key-chains for a TD(4,5)-based KPS, with block ID are of one-dimension.

Node ID Key-chain Node ID Key-chain Node ID Key-chain

(0,0) (0,0), (1,0), (2,0), (3,0) (0,1) (0,1), (1,1), (2,1), (3,1) (0,2) (0,2), (1,2), (2,2), (3,2)

(0,3) (0,3), (1,3), (2,3), (3,3) (0,4) (0,4), (1,4), (2,4), (3,4) (1,0) (0,0), (1,1), (2,2), (3,3)

(1,1) (0,1), (1,2), (2,3), (3,4) (1,2) (0,2), (1,3), (2,4), (3,0) (1,3) (0,3), (1,4), (2,0), (3,1)

(1,4) (0,4), (1,0), (2,1), (3,2) (2,0) (0,0), (1,2), (2,4), (3,1) (2,1) (0,1), (1,3), (2,0), (3,2)

(2,2) (0,2), (1,4), (2,1), (3,3) (2,3) (0,3), (1,0), (2,2), (3,4) (2,4) (0,4), (1,1), (2,3), (3,0)

(3,0) (0,0), (1,3), (2,1), (3,4) (3,1) (0,1), (1,4), (2,2), (3,0) (3,2) (0,2), (1,0), (2,3), (3,1)

(3,3) (0,3), (1,1), (2,4), (3,2) (3,4) (0,4), (1,2), (2,0), (3,3) (4,0) (0,0), (1,4), (2,3), (3,2)

(4,1) (0,1), (1,0), (2,4), (3,3) (4,2) (0,2), (1,1), (2,0), (3,4) (4,3) (0,3), (1,2), (2,1), (3,0)

Table 2. Key-chains for a TD(4,5)-based KPS, with block ID are of two-dimension.

4. Previous Work on Merging of Blocks

In KPS based on transversal design, common key between any two nodes is

atmost one. Chakraborty et al observed this and thought of increasing this connectivity. For this

they devised a hybrid scheme based on transversal design [7]. In this scheme a merging factor z

is decided. And z many blocks are merged to form a merged-block and this forms the key-chain

for a sensor node. In this way not only they increased the connectivity provided by the KPS but

also improved the resiliency offered. Below we present their heuristic algorithm for merging of

blocks which works better than the scenario when blocks are merged randomly [7].

1. flag = true; count = 0; all the blocks are marked as unused;

2. an array node[..] is available, where each element of the array can also store z many blocks;

3. while(flag) {

 (a) choose a random block, mark it as used and put it in node[count];

 (b) for(i=1; i<z; i=i+1) {

 i. search all the unused blocks in random fashion and put the first available on

one in node[count] which has no common key with the existing blocks already

in node[count];

 ii. mark this block as used;

 iii. if such a block is not available then break the for loop and assign flag = false;

(c) } (end for)

(d) if flag = true then count = count + 1;

4. } (end while)

5. report that count many nodes are formed such that there is no intra node connectivity;

6. for rest of the (r
2
 – count.z) many blocks, merge z blocks randomly to form a node (they may

have intra-node connectivity) to get () many extra nodes. This constitutes the

initial configuration;

7. calculate the adjacency matrix;

8. make 1000 moves in succession, choose the one that gives rise to the maximum increase in

connectivity and make the corresponding change in the configuration. Call it an iteration;

9. perform 1000 such iteration;

10. end;

The subroutine move has been defined as follows:

1. From the list of pair of nodes sharing maximum number of common keys, select one pair of

nodes randomly. Call them a and b;

2. From the list of pair of nodes sharing no common key, select one pair of nodes randomly.

Call them c and d;

3. Select one block each from a and b, and remove them such that the removed blocks intersect

each other and a and b are still connected upon their removal. Let the removed blocks be

and respectively.

4. Select one block each from a and b. Let the removed blocks be and respectively.

5. Put in a, in b, Put in c, in d.

6. Undo the above changes.

5. Our Approach for Merging Blocks

The above merging approach is heuristic, and not deterministic. The way blocks are

chosen for merging are initially random with the condition that there should be no common key

among the merged blocks. When one cannot proceed with merging with this condition of no

inter-node connectivity, but still nodes are remaining for merging, the above said approach

merges the remaining node without satisfying the inter-node connectivity. Then it applies

mutation to the merged blocks to bring inter-node connectivity close to minimum.

To merge the blocks to form key-chain we first need to decide the merging factor, z. We should

choose the merging factor in such a way that the increased load on memory of sensor node to

store enlarged key-chain is not too high as well as the connectivity of the overall network

improves considerably.

Recall that p is the prime power chosen for the transversal design. We observe that every

consecutive p blocks, starting from block zero, don’t have any common key among themselves.

One can easily verify this observation in Table 1. Whenever we will be referring ‘consecutive

blocks of p blocks’ or ‘p consecutive blocks’, we must remember that we have started with the

first block only. For example if p=5, then we will have a transversal design with 25 blocks. So

first group of consecutive blocks are block 0 – block 4, next group of consecutive blocks are

block 5 – block 9, and so on. So in other words whenever we are referring the word ‘consecutive

blocks’ or ‘group of consecutive blocks’, the condition is that block-id % p must be zero. If the

block id is of the form (x, y) where 0 p-1, then the condition is that y must be zero of a

block for being the starting block of consecutive p blocks.

we merge consecutive blocks (merging factor z) taken from consecutive p blocks. but if z<p then

z%p blocks will be left out of merging consideration, and we get z/p (integer division) number of

merged blocks. We have to consider different scenarios.

1. If p%z=0 (this happens when p=x
y
 where x is a prime, and z=x) then we can simply take every

consecutive group of z blocks and then merge them to form merged-blocks and assign to sensor

nodes.

2. p%z=1. We know, among p consecutive blocks (if we start from the first block itself) there

will be no common key. So we try to form p/z number of merged-blocks in such a way that

remaining blocks, one from every group of p blocks will not have any common key. Say there

are x such remaining blocks. In reality, this x is always equal to p. Then we can form x/z number

of merged blocks with no common key. If we want to eliminate possibility of having common

key or a node with less than z*k number of keys then we will stop here only, and do not try to

use the remaining blocks.

3. p%z=2. In this case from every group of p consecutive blocks we will have two remaining

blocks. So we first take two groups of p blocks from all the group of consecutive p blocks such

that there is no inter-group common key. After this, we take the remaining p/z blocks from each

group and merge them to form the p.(p/z) merged blocks. Among each of the two groups of p

blocks which were taken out at first, we continue with merging any z number of blocks to form

p/z merged-blocks. Although there is a possibility of still remaining more than z number of

blocks in total, our observation suggests that they always have common key among them. That

is, we can not proceed to have another z number of blocks with no common key. So we can

either leave those blocks or to allow few merged-blocks with inter-block common key.

4. for p%z >2 we can proceed with the same logic as above but, our observation suggests that in

that cases the number of nodes that will be remaining after taking all merged-blocks will be little

bit higher. So either we have to compromise with few merged-blocks with inter-block common

key, or just leave those blocks unused which may turn little bit disadvantageous.

Now we formally present the algorithm for merging of blocks:

1. Start.

2. If p=x
y
 and p%z=0 (i.e., z=x) then

a. For i=0;i<p;i++

i. For j=0;j<p/z;j++

1. Take any z number blocks from the i-th group og consecutive

blocks and form a merged-block.

[end of inner-for loop]

 [end of outer-for loop]

3. If p%z > 0 then

a. For i=0;i<p%z;i++

i. Take a counter j and initialize with any value between 0 and p; i.e., 0

p-1.

ii. For k=0;k<p;k++

1. Choose (j+1)-th block from the k-th consecutive blocks. If this

(j+1)-th block is the last block in this group then in the next

iteration we will select 0-th block from next group instead of (j+1)-

th block.

[end of inner-for loop]

 [end of outer-for loop]

b. Out of these each group of p blocks, form p/z merged-blocks, with each merged-

block is made following the next step.

c. By taking any z blocks together and merging them to get a merged-block with no

inter-block common key.

d. for i=0;i<p;i++

i. From each of the group of consecutive blocks choose any unused z blocks

and merge them to form a merged-block with no inter-block common key.

[end of for loop]

e. To deal with remaining blocks that are still not used for merging, either

compromise to have merged-blocks with common inter-block key, or simply

scrap these blocks depending upon given options.

4. In case we decided to allow few merge-blocks with common key it may happen that at

last there will x number be blocks left where x<z. Depending upon the options, here also

we can choose to have either a merged-block consists of x number of blocks, or not to use

these x number of blocks.

5. Assign each of these merged-blocks to a sensor node.

6. Stop.

Now let us illustrate the above example with an example. Suppose p=5, and z=3. Other

parameters are as follows- N =25, k=4, as it was earlier.

Node ID Key-chain Node ID Key-chain Node ID Key-chain

1 (0,0), (1,0), (2,0), (3,0) 2 (0,1), (1,1), (2,1), (3,1) 2 (0,2), (1,2), (2,2), (3,2)

4 (0,3), (1,3), (2,3), (3,3) 5 (0,4), (1,4), (2,4), (3,4) 6 (0,0), (1,1), (2,2), (3,3)

7 (0,1), (1,2), (2,3), (3,4) 8 (0,2), (1,3), (2,4), (3,0) 9 (0,3), (1,4), (2,0), (3,1)

10 (0,4), (1,0), (2,1), (3,2) 11 (0,0), (1,2), (2,4), (3,1) 12 (0,1), (1,3), (2,0), (3,2)

13 (0,2), (1,4), (2,1), (3,3) 14 (0,3), (1,0), (2,2), (3,4) 15 (0,4), (1,1), (2,3), (3,0)

16 (0,0), (1,3), (2,1), (3,4) 17 (0,1), (1,4), (2,2), (3,0) 18 (0,2), (1,0), (2,3), (3,1)

19 (0,3), (1,1), (2,4), (3,2) 20 (0,4), (1,2), (2,0), (3,3) 21 (0,0), (1,4), (2,3), (3,2)

22 (0,1), (1,0), (2,4), (3,3) 23 (0,2), (1,1), (2,0), (3,4) 24 (0,3), (1,2), (2,1), (3,0)

Here, p%z=5%3=2. First, we choose j=0, which satisfies the condition 0 p-1. So we choose the block

0, block 6, block 12, block 18, and block 24. This forms a group of 5 blocks (blocks 0, 6, 12, 18, and 24)

with no inter-block common key. Next, we choose j=2. So in the process of forming a group of 5 blocks

with no common key we first choose block 2, then block 8, next block 14. Now since 14 is the last block

of the group consecutive 5 blocks starting at block 11, we choose the next block as the first block in the

next group which is block 15, and next we choose block 21. So we form another group of 5 blocks

(blocks 2, 8, 14, 15 and 21) with no inter-block common key. From these two groups of blocks we choose

any 3 blocks and make merged-blocks. Say, we take blocks {0, 6, 12} to form a merged-block, and then

take blocks {2,8, 14} to form the next merged block. Next we form p merged-blocks as follows: First

merged-block consists of blocks {1, 3, 4}, second merged-block consists of blocks {5, 7, 9}, third

merged-block consists of {10, 11, 13}, fourth merged-block consists of {16, 17, 19}, and fifth merged-

block consists of {20, 22, 23}. So we obtain total 2+5=7 merged blocks. Still we have 3remaining blocks

– namely block 15, 18, 21, and 24. We see that we can merge any three of these to get a new merged-

block but that would give us a merged-block with inter-block common key. So depending upon our

constraints either we consider this merged-block with inter-block common key, or we leave these four

blocks as unusable. Note that even if we consider this merged-block, say blocks {15, 18, 21}, we will still

have one block left unused namely block 24. We can assign this single block to a sensor node but then it

will have small common key-chain.

6. Key Establishment in Transversal Design based KPS

We first illustrate our proposal by an example. In transversal design the each block

consists of keys (i.e., treatments or varieties) of components. If we consider the whole design as

a two-dimensional object, we can see that first component of any key in column i is of the form

(i, x) where 0 x . Let us again take the same example of previous section. We see that

the second component of first column always repeats after a cycle of four digits - 0 to 4. In other

words we can restate it as follows. The distance between two second component elements in the

i-th (0 i blocks in every group of p consecutive blocks is zero. In the second column, this

distance increases by one. In this example, the first block in first group (i.e., block 0) contains

the element 0 as the second component of second column, then the corresponding element in first

block of second group (i.e., block 5) is 1, and in the first block of third group (i.e., block 10) is 2.

In the third column, this distance increases by two. And this pattern holds true for all the

columns. Let us present the algorithm. To make the algorithm easy to understand we have

presented the algorithm for KPS with block size four, which can be generalized easily with little

bit of extra effort.

1. Input: key-id, KEY_ID of a sensor node

2. if (key-id is one-dimensional)

a. Take an integer variable x, and initialize x=KEY_ID

b. Take another integer variable y, and initialize y=x%p

c. Take another integer variable z, and initialize z=x/p

d. a=y

e. initialize b=0

f. for(j=1;j≤z;j++)

i. b=b+1

[end of for loop]

g. b=b%p

h. for(j=1;j≤y;j++)

i. b=b+1

[end of for loop]

i. b=b%p

j. initialize c=0

k. for(j=1;j≤z;j++)

i. c=c+2

[end of for loop]

l. c=c%p

m. for(j=1;j≤y;j++)

i. c=c+1

[end of for loop]

n. c=c%p

o. initialize d=0

p. for(j=1;j≤z;j++)

i. d=d+3

[end of for loop]

q. d=d%p;

r. for(j=1;j≤y;j++)

i. d=d+1

[end of for loop]

s. d=d%p

t. so the keys of node with id KEY_ID are (0,a), (1,b),(2,c),(3,d)

[end of if]

3. if(KEY_ID two-dimensional of the form (w,x))

a. y=x

b. z=w

c. go to step 2 d.

[end of if]

4. stop

So to establish the common key with other node y, a node x should know the id of node

y. Given that, node x can compute all the keys of x by itself and then compare with its own to

determine if x has any common key with y. There exists method that directly computes the

common key, if that exists, by using multiplicative inverse operation [1]. Our method is lengthy,

but does not use multiplicative inverse operation.

7. Conclusion

We have presented the deterministic strategy for merging of blocks. The existing work on

this was not deterministic, but heuristic one. One can further investigate the difference it

makes on the resiliency and connectivity of the distributed wireless sensor network.

8. References

[1] C. J. Colbourn and P. C. Van Oorschot, Applications of Combinatorial Design in Computer Science, ACM

Computing Surveys, Vol. 21, No. 2, pp 223-250, June 1989.

[2] D. R. Stinson, Combinatorial Designs: Constructions and Analysis. Springer-Verlag, New York (2004).

[3] S. A. Camtepe & B. Yener, Combinatorial Design of Key Distribution Mechanisms for Wireless Sensor

Networks, IEEE/ACM Transactions on Networking, Vol. 15, No. 2, April 2007.

[4] J. Lee & D. R. Stinson, A Combinatorial Approach to Key Predistribution for Distributed Sensor

Networks,. Wireless Communications and Networking Conference, IEEE vol. 2 pp 1200-1205, March 2005

[5] K. M. Martin. On the Applicability of Combinatorial Designs to key predistribution for wireless sensor

networks. arXiv e-print Archive Report. 2009.

[6] Anupam Pattanayak, B. Majhi. Key Predistribution Schemes in Distributed Wireless Sensor Network using

Combinatorial Designs Revisited. Cryptology eprint Archive. Report 2009/131. 2009.

[7] D Chakrabarti, S Maitra, B Roy. A key pre-distribution scheme for wireless sensor networks: merging

blocks in combinatorial design. International Journal of Information Security, Vol. 5, No. 2, pp 105-114, 2006.

Springer.

http://portal.acm.org/citation.cfm?id=66443.66446#abstract
http://portal.acm.org/citation.cfm?id=66443.66446#abstract
http://portal.acm.org/citation.cfm?id=66443.66446#abstract
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1424679&isnumber=30729
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1424679&isnumber=30729
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1424679&isnumber=30729
http://arxiv.org/PS_cache/arxiv/pdf/0902/0902.0458v1.pdf
http://arxiv.org/PS_cache/arxiv/pdf/0902/0902.0458v1.pdf
http://eprint.iacr.org/2009/131
http://www.springerlink.com/content/aw7kvq3j64616052/fulltext.pdf
http://www.springerlink.com/content/aw7kvq3j64616052/fulltext.pdf

