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Abstract. Secret handshake allows two members in the same group to
authenticate each other secretly. In previous works of secret handshake
schemes, two types of anonymities against the group authority (GA) of
a group G are discussed: 1)Even GA cannot identify members, namely
nobody can identify them (No-Traceability), 2)Only GA can identify
members (Traceability). In this paper, first the necessity of tracing of
the identification is shown. Second, we classify abilities of GA into the
ability of identifying players and that of issuing the certificate to mem-
bers. We introduce two anonymities Co-Traceability and Strong Detector
Resistance. When a more strict anonymity is required ever for GA, the
case 2) is unfavorable for members. Then, we introduce Co-Traceability
where even if A has GA’s ability of identifying members or issuing the
certificate, A cannot trace members identification. However, if a scheme
satisfies Co-Traceability, GA may be able to judge whether handshake
players belong to the own group. Then, we introduce Strong Detector
Resistance where even if an adversary A has GA’s ability of identifying
members, A cannot make judgments whether a handshaking player be-
longs to G. Additionally, we propose a secret handshake scheme which
satisfies previous security requirements and our proposed anonymity re-
quirements by using group signature scheme with message recovery.
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1 Introduction

1.1 Background

A secret handshake scheme (SHS), introduced by Balfanz et al. [3], allows
two members of the same group to authenticate each other secretly, in
the sense that each party reveals his affiliation information to the other
only if the other party belongs to the same group. For example scenario:
a CIA agent Alice wants to authenticate to Bob, but only if Bob is also
? Supported by JSPS Research Fellowships for Young Scientists.



a CIA agent. In addition, if Bob is not a CIA agent, Alice does not want
to reveal her affiliation information, whether Alice is a CIA agent or not,
for Bob.

Balfanz, et al. [3] constructed a 2-party SHS by adapting the key
agreement protocol of Sakai, et al. [10]. Its security rests on the hardness
of the Bilinear Diffie Hellman (BDH) problem. Subsequently, Castelluccia,
et al. [6] developed a more efficient 2-party SHS through the use of so-
called CA-oblivious encryption. It is secure under Computational Diffie
Hellman (CDH) assumption.

Both previous works satisfy the basic security properties of secret
handshake system; correctness, impersonator resistance, and detector re-
sistance. Recently, the unlinkability is added to the basic security require-
ment. Unlinkability means that two occurrences of handshaking by the
same party cannot be linked with each other by anyone. In [3, 6], however,
the member sends one’s ID information in a handshake protocol. Thus,
the construction of [3, 6] does not satisfy unlinkability unless members use
one-time certificate (i.e. member change IDs whenever members execute
handshake protocol.).

Xu and Yung [11] constructed a secret handshake scheme which achieves
weaker unlinkability “k-anonymity” with reusable certificate, instead of
one-time certificates. Members can reuse their certificate because they
always authenticate as someone among k users.

The work of [1] presented the first construction of SHS with unlinkabil-
ity using reusable certificate in the standard model. The scheme in [1] al-
lows each participant to specify the role and group of the other party and
thus add flexibility to the authentication rules. Moreover, they achieve
attribute-based secret handshakes using fuzzy identity-based-encryption.

1.2 Anonymity against Group Authority

Motivation: Let us consider the case in which whistle-blowing the system
of company is troublesome. In this case the GA is a manager of company
and the members are employees of the company and the authorized per-
sons of the company (e.g. lawyer). When the employee uses this system,
he executes a secret handshake with the lawyer in order to pass on the
whistle-blowing. The employee wants to tell to only his company’s lawyer
about exposure. The lawyer should only know the fact that the employee
belongs to his company. In above scenario, a secret handshake scheme is
very useful.

However, if previous secret handshake schemes are used as above
whistle-blowing system, there is a problem. In previous secret handshake
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schemes, GA can identify handshake players (player’s names, IDs, etc).
In this scenario, the employees, who want to exposure, want to execute a
secret handshake to remain anonymous. If an employee is not guaranteed
anonymity, he will not blow the whistle in the fear of the dismissal etc.
However, for example in [6], a handshake player must send own ID to a
handshake partner. IDs are registered to GA, when a member joins to
the group. So, GA can identify handshake players by referring ID list and
watching the transcript of handshake.

From the above reason, the previous schemes are not applicable to
this case. So in this paper, we will define new security requirements
about anonymities against GA. We introduce two new anonymities Co-
Traceability and Strong Detector Resistance. Strong Detector Resistance
means that even if an adversary A, who does not belong to G, has GA’s
ability of identifying members,A cannot make judgments whether a hand-
shaking player belongs to G. Co-Traceability means that GA alone cannot
reveal members identification.

Co-Traceability can never be satisfied against GA with all of abilities,
since if U belongs to G, U might be revealed identification executing a
handshake protocol with a dummy member D whom GA creates using
an ability to issue a user. Then, GA can identify U by using the informa-
tion of D and the ability of identifying members. Also, Strong Detector
Resistance can never be satisfied against GA with all of the abilities. The
reason is that if U belongs to G, U outputs accept certainly executing a
handshake protocol with a dummy member D whom GA creates using
an ability to issue a user.

Therefore, in order to discuss the anonymity against GA, we split the
role of GA into the two; issue authority and trace authority. The issue
authority (IA) issues the certificate to users. The trace authority (TA)
has an ability to identify a member. Co-Traceability is defined against an
adversary who has an ability of either TA or IA. Strong Detector Resis-
tance is defined against an adversary who has an ability of TA.
Co-Traceability: If a secret handshake scheme adopt whistle-blowing, hand-
shake players do not want to reveal own identification against even GA.
However, tracing of handshake players is useful for the handshake player
in case the evidence of handshaking is required.

So, we introduce new security requirement Co-Traceability. Intuitively,
Co-Traceability means that TA alone cannot identify handshake players,
but TA can identify players by cooperating with another. In our proposed
secret handshake scheme, another is a handshake player. If Alice and Bob
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execute a secret handshake, TA alone cannot identify Alice and Bob, but
if TA cooperates with Alice, TA could identify Bob.

At the same time, in this paper, we will define this algorithm ”SHS.Co-
Trace”. This new algorithm is useful in the situation which a handshake
player wants to know the other handshake partner when the output of the
protocol is accept. In previous secret handshake schemes, identifications of
handshake players always reveal against everyone. By using SHS.Co-Trace,
a handshake player can execute a handshake protocol hiding own identi-
fication and can know the identification of the other handshake player by
revealing own identification to TA.
Strong Detector Resistance: In previous works, in Secret Handshake sys-
tem, information about the group of the player must not be leaked, if
players does not belong to the same group. There are the cases that a
player wants to hide the information of his own group from TA as well
as members and users. If TA can know whether a handshake player be-
longs to his own group G or not, GA might examine the frequency that
a member of group G executes a handshake protocol. This consideration
leads to the new security property, Strong Detector Resistance.

In this paper, we discuss the anonymity and groups which members
belong to in the case TA or IA is corrupted. Here, “TA (IA) is corrupted”
means that an adversary A can get a secret key of TA (IA). The levels of
trust for each authority for each requirement are summarized in Table1.2.

Table 1. Levels of trust in authorities for each of security requirements

Previous Security Issuer Authority Trace Authority

Impersonator Resistance Uncorrupted Uncorrupted

Detector Resistance Uncorrupted Uncorrupted

Unlinkability Uncorrupted Uncorrupted

Proposed Security Issuer Authority Trace Authority

Co-Traceability (against TA) Uncorrupted Corrupted

Co-Traceability (against IA) Corrupted Uncorrupted

Strong Detector Resistance Uncorrupted Corrupted

In order to realize Strong Detector Resistance and Co-Traceability, we
introduce a new algorithm SHS.Co-Trace. SHS.Co-Trace, given a group
public key, a group authority secret key, and “an internal information of
a player”, outputs ID of the other player. Concretely, we realize SHS.Co-
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Trace and Co-Traceability with a secret key to execute SHS.Co-Trace sep-
arately by GA and a handshake player.

2 Definition of Secret Handshake

2.1 Entity

In SHS, there exist three entities in the group G as follows.

User: the entity which does not belong to the group. A /∈ G means that
the user A does not belong to the group G.

Member: the entity which is made belong to the group, by the Group
Authority. A ∈ G means that the member A belongs to the group G.

GA (Group Authority): the manager of a group. GA is responsible
for adding users into the group he manages. GA maintains a list L,
which includes certificates and registration data of all members.

2.2 The Model of Secret Handshake

A secret handshake scheme SHS consists of the following five algorithms:

SHS.Setup: generates the public parameters param which is common to
all groups.

SHS.CreateGroup: generates a key pair gpk (group public key) and gsk
(private key for GA), using param. SHS.CreateGroup is run by GA.

SHS.AddMember: is executed between a player U and a GA of some
group. Inputs of SHS.AddMember are gsk, param, and gpk, and out-
puts are a membership certificate (certU ) and a secret key (skU )

SHS.Handshake: is the authentication protocol executed between U and
V , based on the public input param. The group public keys (gpkU ,
gpkV ) and certificates ((certU , skU ), (certV , skV )) of U and V are
input to handshake protocol. The result of the algorithm is either
reject or accept. U Handshake←→ V means the above situation.

SHS.Trace: , given gpk, gsk and a transcript T of the handshaking of U
and V , outputs the member U (or V ).

2.3 Security Properties of SHS scheme

A secret handshake protocol must satisfy the following basic security
properties: Correctness, Impersonator Resistance, Detector Re-
sistance, Unlinkability[6].
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– OCG(·) :This oracle, given an identity of GA, outputs gpk, gsk, namely
SHS.CreateGroup.

– OAM(·, ·) : This oracle, given an identity of group G and a user U ,
executes SHS.AddMember.

– OHS(·) :This oracle, given a member U , executes SHS.Handshake as
honest members U between A. The honest members executes accord-
ing to the protocol.

– OCO(·) :This oracle, given a member U , outputs U ’s current internal
information including secrets.

Correctness: If honest members U ,V of the same group run handshake
protocol, then both players always output “accept”.

Impersonator Resistance (IR): IR demands that the adversaryA, who
does not belong to a group G, is not able to authenticate an honest
who belongs to G.
Formally, we say that SHS guarantees IR if the following function
AdvIR

A (k) is negligible for any polynomially-bounded adversary A.

AdvIR
A (k) = Pr[ExpIR

A (k) = 1]

Experiment ExpIR
A (k)

param ← SHS.Setup(k)
(gpk, gsk)←SHS.CreateGroup(param);
(certU , skU )←SHS.AddMember(param, gpk, gsk, U)
(certV , skV )←SHS.AddMember(param, gpk, gsk, V )
honest(param, gpk, skU , certU )

Handshake←→ AO(param, gpk, certV )
If honest outputs accept, outputs 1.
Otherwise outputs 0.

Detector Resistance (DR): DR demands that the adversary A, who
does not belong to a group G, is not able to distinguish whether some
honest is a member of some group G.
Formally, we say that SHS guarantees DR if the following function
AdvDR

A (k) is negligible for any polynomially-bounded adversary A.

AdvDR
A (k) =

∣∣∣Pr[ExpDR
A (1, k) = 1]− Pr[ExpDR

A (0, k) = 1]
∣∣∣

6



Experiment ExpDR
A (b, k)

param← SHS.Setup(k)
(gpk, gsk)←SHS.CreateGroup(param);
(skU , certU )←SHS.AddMember(param, gpk, gsk, U)
playerb := honest(param, gpk, skU , certU );
player1−b := SIM(param)

player0
Handshake←→ AO(param, gpk)

player1
Handshake←→ AO(param, gpk)

b′ ← AO(param, gpk)
Return b′

Unlinkability (Unlink): Unlink demands that the adversary A, who does
not belong to a group G, is not able to decried whether two executions
of the handshake protocol were performed by the same party or not,
even if both of them were successful.
Formally, we say that SHS guarantees Unlink if the following function
AdvUnlink

A (k) is negligible for any polynomially-bounded adversary A.

AdvUnlink
A (k) =

∣∣∣Pr[ExpUnlink
A (1, k) = 1]− Pr[ExpUnlink

A (0, k) = 1]
∣∣∣

Experiment ExpUnlink
A (b, k)

param← SHS.Setup(k)
(gpk, gsk)←SHS.CreateGruop(param);

If b = 0 then playerU =playerV ;
Otherwise playerU 6= playerV ;

playerU
Handshake←→ AO(param, gpk)

playerV
Handshake←→ AO(param, gpk)

b′ ← AO(param, gpk)
Return b′

3 Anonymity against Group Authority

In previous works of secret handshake schemes, anonymities against GA
have not been discussed. In this section we will define two new anonymity
requirements against GA, Co-Traceability and Strong Detector Resistance
of secret handshake schemes.
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3.1 Issue authority and Trace authority

In this subsection, let us classify the GA from the view point of abilities.
GA has the two abilities. First ability is to issue the certificate to users.
Second ability is to trace handshake players. We call the authority with
the former ability Issue authority (IA). and the authority with the latter
ability Trace authority (TA). IA has a public and secret key (ipk, isk) and
TA has a public and secret key (tpk, tsk) 1.

3.2 Co-Traceability

In previous works of secret handshake schemes, two types of anonymities
against the GA are discussed from the view point of revealing the identi-
fication of handshake players: 1)Even GA cannot identify players, namely
nobody can identify them, 2)Only GA can identify players.

Tracing of handshake players is useful for the handshake player in case
the evidence of handshaking is required. However when the anonymity is
preferred as the case of prosecution from inside, a more strict anonymity
is required ever for GA.

In the way of SHS.Trace, members except TA cannot join SHS.Trace
process. From the view point of power of TA, this situation could be
troublesome for members. Then, we introduce a new security requirement
Co-Traceability. Intuitively, Co-traceability means that TA alone cannot
identify handshake players.

Co-Traceability can never be satisfied against GA with all abilities,
since if U belongs to G, U might be revealed identification executing a
handshake protocol with a dummy member D who GA creates using an
ability to issue a user. So, two different types of adversarys, AT and AI ,
should be concerned. The difference between AT and AI is the input. The
input of AT is param, gpk and tsk. The input of AI is param, gpk and
isk. The formal definition of Co-traceability is as follow:

Definition 1 (Co-Traceability). Co-Traceability (Co-Trace) means that
an adversary A who has GA’s secret key (isk or tsk) cannot identify the
player which execute SHS.Handshake even though A is not a member of
G. Formally, we say that SHS guarantees Co-Trace if the following func-
tion AdvCo−Trace

A (k)is negligible. Let a member which executes according
to the protocol be honest. We consider a PPT adversary A that can access
to the oracles O.
1 In previous definition, gpk = (ipk, tpk), gsk = (isk, tsk).
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Formally, we say that SHS guarantees Co-Trace if the following func-
tion AdvCo−Trace

A (k) is negligible for any PPT adversary A = (AT ,AI).

AdvCo−Trace
A (k) = Pr[ExpCo−Trace

A (k) = 1]

Experiment ExpCo−Trace
A (k)

param← SHS.Setup(k)
(ipk, tpk, isk, tsk)←SHS.CreateGroup(param);
(certU , skU )← SHS.AddMember(param, ipk, tpk, isk, U)
honest(param, gpk, skU , certU ) Handshake←→ AO

U ′ ← AO

If U = U ′, outputs 1. Otherwise outputs 0.

3.3 Strong Detector Resistance

If a secret handshake scheme satisfies Co-Traceability, TA alone cannot
identify handshake players. However, GA may be able to identify whether
handshake players belong to the own group. Then, GA can know the
frequency that members of own group execute handshake. In order to
achieve high anonymity against GA, even the frequency of handshake
should be hidden for GA.

We then introduce the concept of Strong Detector Resistance in order
to cope with this requirement. Intuitively, Strong Detector Resistance
means that even if an adversary A /∈ G has all the ability of revealing the
identity of members, A cannot make judgment whether a handshaking
player belongs to G or not.

Strong Detector Resistance never satisfies against IA, since if U be-
longs to G, U outputs accept executing a handshake protocol with a
dummy member who GA creates using an ability to issue a user. The
formal definition of Strong Detector Resistance is as follow:

Definition 2 (Strong Detector Resistance). Strong Detector Resis-
tance (SDR) demand that an adversary A who have “the all ability of
revealing the identity of members” (e.g. trace key, member-list L) cannot
distinguish whether some honest player, who is a member of group G,
even though A is not a member of G. SDR is easier security goal than
SDR for an adversary A.

Formally, we say that SHS guarantees SDR if the following function
AdvSDR

A (k) is negligible for any polynomially-bounded adversary A.

AdvSDR
A (k) =

∣∣∣Pr[ExpSDR
A (1, k) = 1]− Pr[ExpSDR

A (0, k) = 1]
∣∣∣
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SDR has a close relationship to the SHS.Trace algorithm. If GA can re-
veal an identify ID of a member [6, 3], an adversary can break SDR by
executing SHS.Trace. On the other hand, if SHS does not have algorithm
revealing an identify [1], SDR is equivalent to DR.

Experiment ExpSDR
A (b, k)

param← SHS.Setup(k)
(ipk, tpk, isk, tsk)←SHS.CreateGroup(param);
(certU , skU )← SHS.AddMember(param, ipk, tpk, isk, U)
playerb := honest(param, gpk, skU , certU );
player1−b := SIM(param)

player0
Handshake←→ AO(param, gpk, tsk)

player1
Handshake←→ AO(param, gpk, tsk)

b′ ← AO(param, gpk, tsk) Return b′

4 Proposed Scheme

4.1 Preliminaries

Definition 3 (Bilinear map). This paper follows the notation regard-
ing bilinear groups Let (G1,G2) be bilinear groups as follows:

– G1,G2 are two cyclic groups of prime order p.
– G1 is a generator of G1 and G2 is a generator of G2.
– ψ is a computable isomorphism from G2 to G1, with ψ(G2) = G1.
– e is a non-degenerate bilinear map e : G1 ×G2 → GT .
– e, ψ and the group action in G1, G2 and GT can be computed effi-

ciently.

In this paper, we adopt a setup algorithm Set on input a security param-
eter, outputs G1 = 〈G1〉,G2 = 〈G2〉 of prime order p that have a bilinear
map e and e(G1, G2) generates GT .

Definition 4 (Descrete Logarithm (DL) Assumption).
For all PPT algorithm A, the following function AdvDL

A (l) is negligible.

AdvDL
A (l) = Pr [A(param, xP, P ) = x : x ∈ Zp, P ∈ G1]

where param=(p,G1,G2,GT , G1, G2, G, ψ, e)←Set(k).
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Definition 5 (Decisional Linear Diffie-Hellman (DLDH) assump-
tion [5]).
For all PPT algorithm A, the following function AdvDLDH

A (l) is negligible.
Here, U, V,H,Q←R G1, a, b← Zp

AdvDLDH
A (l) =|Pr [(A(param,U, V,H, aU, bV, (a+ b)H) = yes]

− Pr [(A(param,U, V,H, aU, bV,Q)) = yes] |

where param=(p,G1,G2,GT , G1, G2, G, ψ, e)←Set(k).

4.2 Group Signature with Message Recovery (GSMR) [12]

Our proposed SHS, including SHS.Co-Trace algorithm and satisfied Co-
Traceability and Strong Detector Resistance, is based on the SHS using
GSMR (Group Signature with Message Recovery) [12].

A group signature, first introduce by Chaum and van Heyst [7] and
followed by [2, 8], allows a member which belong to a group to sign mes-
sages on behalf of the group without a member reveal own identity. In
group signature system, as the same secret handshake systems, there ex-
ists a manager (authority) of group. A manager, in the case of a dispute,
can reveal an identity of any group signature make valid group signa-
tures A standard group signature scheme involves consists of five algo-
rithms GS.KeyGen, GS.Join, GS.Sign, GS.Verify, GS.Open. GS.KeyGen ,is
a key generation algorithm, is given security parameter and outputs a
group public key gpk and a group manager secret key gmsk. GS.Join,
given gmsk and a member secret key sk, outputs membership certificate.
GS.Sign, given gpk, a member secret key sk and a message m, outputs a
group signature σ. GS.Verify, given gpk, m, and σ, outputs accept if σ is
valid for m with respect to gpk. GS.Open, given m,σ, and gmsk, outputs
signer’s identity. The security requirements of a group signature scheme
are traceability, anonymity, and non-frameability[4].

Intuitively, [12] achieve Unlink by using group signature (more pre-
cisely, anonymity of group signatures) and realized SHS.Trace by SHS.Open.
In [12], a group signature with message recovery (GSMR) is constructed
from the standard group signature[2]. In order to apply GSMR to SHS,
GSMR can be forged a signature corresponding to an arbitrary message
using a valid signature and gpk. If GSMR does not this property, anyone
can be convinced of handshake players’ groups by carrying out GS.Verify.
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4.3 Construction of Proposed Scheme

We show the construction of proposed SHS scheme. Our GSMR scheme
is based on [8]. We assume that G1 = 〈G1〉,G2 = 〈G2〉 of prime order p
that have a bilinear map e and e(G1, G2) generates GT . Here, (G1,G2) is
bilinear groups.
SHS.Setup: Given a security parameter k, generates (p,G1,G2,GT , G1, G2, e)
and chooses hash functions H : {0, 1}∗ → G1 and G : {0, 1}∗ → Zp.
SHS.CreateGroup: First, IA chooses w ←R Zp and H ←R G1 and gen-
erates W = wG2. IA outputs isk = w, ipk = (H,W ). Next, TA chooses
(t, s) ←R (Zp)2 and generates T, S such that H = sS = tT . TA outputs
tsk = (t, s), tpk = (T, S).
SHS.AddMember: First, user U , who wants to join to the group, chooses
(x′, z) ←R (Zp)2 and generates H ′ = x′H + zG1. U sends H ′ to IA.
Next, IA chooses (x′′, z′) ←R (Zp)2 and sends (x′′, z′) to U . U generates
xU = x′x′′ + z′ and HU = xUH. U sends HU to IA. U proves in zero-
knowlege to IA the knowledge of xU and x′′z satisfying HU = xUH and
x′′H ′ + z′H −HU = x′′zG1. Finally, IA chooses yU ←R Zp and generates
AU = 1

w+yU
(G1 − HU ). IA sends (AU , yU ) to U . IA adds (U,AU , yU ) to

the group member-list L.
GSMR(param, gpk, sk, cert,m)→ σ:

1. U chooses s′, t′, S′, T ′,H ′ s.t. s′S′ = t′T ′ = H ′ ((s′, t′) ∈ (Zp)2,
(S′, T ′,H ′) ∈ (G1)3). If U will want to execute SHS.Co-Trace, U has
to memorize their parameters.

2. U chooses (α, β, α′, β′)←R Z∗
p and generates R1 = αT,R2 = βS,R3 =

α′T ′, R4 = β′S′ and R5 = (α+ β)H + (α′ + β′)H ′ +AU

3. U chooses (rx, ry, rα, rβ , ryα, ryβ , rα′ , rβ′ , ryα′ , ryβ′)←R (Z∗
p)

10 and gen-
erate R′

1 = rαT,R
′
2 = rβS,R

′
3 = rα′T ′, R′

4 = rβ′S′,

R′
5 = e(R5, G2)rye(H,W )−(rα+rβ)e(H ′,W )−(rα′+rβ′ )e(H,G2)−(ryα+ryβ)+rx

e(H ′, G2)−(ryα′+ryβ′ ), R′
6 = ryR1 − ryαT,R

′
7 = ryR2 − ryβS,R

′
8 =

ryR3 − ryα′T ′ and R′
9 = ryR4 − ryβ′S′

4. U generates c′ = H(param, gpk,R1, R2, R3, R4, R5, R
′
1, R

′
2, R

′
3, R

′
4, R

′
5,

R′
6, R

′
7, R

′
8, R

′
9) and c = c′ ⊕m.

5. U generates sx := rx + cxU , sy := ry + cyU , sα := rα + cα, sβ :=
rβ + cβsyα := ryα + c(yα), syβ := ryβ + c(yβ), sα′ := rα′ + cα′, sβ′ :=
rβ′ + cβ′, syα′ := ryα′ + c(yα′) and syβ′ := ryβ′ + c(yβ′)

6. U outputs σ = (R1, R2, R3, R4, R5, sx, sy, sα, sβ , syα, syβ , sα′ , sβ′ , syα′ , syβ′ , c)

MR:(param, gpk, σ)→ m

1. V is given param, gpk, and σ.
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2. V generates R′
1 = sαT − cR1, R

′
2 = sβS− cR2, R

′
3 = sαT

′− cR3, R
′
4 =

sβS
′ − cR4, R

′
5 = e(R5, G2)sye(H,W )−(sα+sβ)e(H,G2)−(syα+syβ)+sx

e(H ′,W )−(sα′+sβ′ )e(H,G2)−(syα′+syβ′ )
(

e(R5,G2)
e(G1,G2)

)c
, R′

6 = syR1−syαT,

R′
7 = syR2 − syβS,R

′
8 = syR3 − syα′T ′, and R′

9 = syR4 − syβ′S′

3. V generates c′ = H(param, gpk,R1, R2, R3, R4, R5, R
′
1, R

′
2, R

′
3, R

′
4, R

′
5,

R′
6, R

′
7, R

′
8, R

′
9) and m = c⊕ c′. V outputs m.

SHS.Handshake: Suppose the member U with certificate certU = (AU , yU )
and secret key skU = xU , and the member V with certificate certV =
(AV , yV ) and secret key skV = xV , engage in handshake protocol.

1. U and V generates (s′U , t
′
U , S

′
U , T

′
U ,H

′
U ), (s′V , t

′
V , S

′
V , T

′
V , H

′
V )

s.t. s′USU = t′UT = H ′
U , s

′
V SV = t′V T = H ′

V

(s′U , t
′
U , s

′
V , t

′
V ∈ (Zp)4, S′

U , T
′
U ,H

′
U , S

′
V , T

′
V , H

′
V ∈ G1).

2. U chooses rU ←R Z∗
p and generates mU := rUG1 and

σU←GSMR(param, gpkU , skU , certU ,mU ). U send σU to V．
3. V chooses rV ←R Z∗

p and generates mV := rVG1,
σV←GSMR(param, gpkV , skV certV ,mV ) andm′

U←MR(param, gpkV ,
σU ). V send σV to U．

4. U generates m′
V←MR(param, gpkU , σV ) and respU := G(rUm′

V ,mU )
and send respU to V .

5. V generates respV := G(rVm′
U ,mV ). If respU = G(rVm′

U ,m
′
U ), V

outputs accept and send respV to U . Otherwise V outputs reject.
6. If respV = G(rUm′

V ,m
′
V ), U outputs accept. Otherwise U outputs

reject.

SHS.Co-Trace: Suppose the member U with certU = (AU , yU ), secret key
skU = xU , and the parameters (s′U , t

′
U , S

′
U , T

′
U ,H

′
U ) used in SHS.Handshake.

1. TA is given certU = (AU , yU ), skU = xU from U .
If e(A,W )e(H,G2)xe(A,G2)y = e(G1, G2), TA executes the following.
Otherwise TA outputs ⊥.

2. TA is given σV (= RV 1, RV 2, RV 3, RV 4, RV 5, sV x, sV y, sV α, sV β , sV yα,
sV yβ , sV α′ , sV β′ , sV yα′ , sV yβ′ , cV ) (in the transcript of SHS.Handshake)
and computes RV 5− (tRV 1sRV 2 + t′RV 3s

′RV 4) = AV and outputs V
such that (V,AV , yV ) ∈ L.

Among SHS, we show the comparisons with respect to important factors
in Table4.3. [3], [1] and proposed scheme use bilinear maps. We assume
that G1 6= G2 such that the representation of G1 can be a 172-bit prime
when |p| = 171. Also, we assume that [6] are instantiated on a 160-bits
prime order subgroup of a prime finite field of 1024 bits. In [3], [6] and
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proposed scheme, a member has own ID. On the other hand, in [1], a
member does not have ID, so [1] can not include both SHS.Trace and
SHS.Co-Trace.

Table 2. Comparison among SHS

Scheme [3] [6] [1] Proposed Scheme

Underlying Assumption CBDH CDH SXDH and BDH DL and DLDH

Number of rounds 3 4 2 4

Communication complexity (bits) 640 8512 684 5804

IR security Yes Yes Yes Yes

DR security Yes Yes Yes Yes

Unlink security No No Yes Yes

SDR security No No Yes Yes

Co-Trace security No No No Yes

SHS.Trace algorithm Yes Yes No No

SHS.Co-Trace algorithm No No No Yes

Our proposed scheme is secure under discrete logarithm assumption
and Decisional Linear Diffie-Hellman (DLDH) assumption[5].

Theorem 1. The proposed scheme has Impersonator Resistance prop-
erty, if the discrete logarithm problem is hard to solve.

Theorem 2. The proposed scheme has Strong Detector Resistance, Un-
linkability and Co-Traceability property, if the Decisional Linear Diffie-
Hellman (DLDH) problem is hard to solve.
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A Security Proof

Theorem 1.The proposed scheme has Impersonator Resistance property,
if the discrete logarithm problem is hard to solve.

Proof. We show that if there exists an adversary A breaks Imperson-
ator Resistance, then an algorithm B which solves the discrete logarithm
problem can be constructed using A as a black-box. We show the descrip-
tion of B as follow:

Algorithm B is given (param,H, Y = xUH). First, B generates (isk, ipk) =
(w, (H,W = wG2)) s.t. w ∈ Zp,H ∈ G1 and (tsk, tpk) = ((s, t), (S, T ))
s.t. s, t ∈ Zp, sS = tT = H ∈ G1 according to SHS.CreateGroup. Next, B
generates a member-list L. B chooses (xU , yU , yV )←R (Zp)3 and (xi, yi)←R

(Zp)2(i = 1, ..., n) and generatesAU = 1
w+yU

(G1−xUH), AV = 1
w+yV

(G1−
Y ), and Ai = 1

w+yi
(G1−xiH). B adds (i, Ai, yi)(i = 1, ..., n), (U,AU , yU ),

and (V,AV , yV )to L. Also B generates a list L′ including a secret key
ski = xi and an internal information Ii (e.g. random numbers which were
used when a member i executed SHS.Handshake). Elements of list L′ is
(i, xi, Ai, yi, Ii)(i = 1, ...n, U) and (V,⊥, AV , yV ,⊥).
A is given (param,H,W, S, T, certV (= yV , AV )) by B. When A access

OAM, OCG , OHS , OCO, random oracle OH, and random oracle OG , B
behaves as follow:

– OAM: When A querys a group identity G and a user name A, B
executes SHS.AddMember using isk = w.
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– OCG : When A querys an identity of GA, B executes SHS.CreateGroup.
– OHS : When A querys a member ID i, B executes SHS.Handshake as

a member i according to the scheme. If (i, ∗, ∗) /∈ L, B outputs ⊥. If
A query V , B abort. The probability that this case occurs is 1

2k .
– OCO When A querys a member ID i, B return a secret key ski and an

internal information Ii s.t. (i, xi, Ai, yi, Ii) ∈ L′. If (i, xi, Ai, yi, Ii) /∈
L′, B return ⊥. If A query V , B abort. The probability that this case
occurs is 1

2k .
– OH: When A querys (param, gpki, Ri1, ..., Ri5, R

′
i1, ..., R

′
i9),

if its query is first, B chooses c′i ←R Zp and return it to A and add
(i, gpki, Ri1, ..., Ri5, R

′
i1, ..., R

′
i9, c

′
i) in H-List. if (i, gpki, Ri1, ..., Ri5,

R′
i1, ..., R

′
i9, c

′
i) ∈H-List, B return c′i.

– OG : WhenA querys (M1i,M2i), if its query is first, B chooses respi ←R

G1 and return it to A and add (i, respi,M1i,M2i) in G-List.
If (i, respi,M1i,M2i) ∈G-List, B return respi.

When B, as honest, executes SHS.Handshake with A, B behaves as
follow:

– B generates (s′B, t
′
B, S

′
B, T

′
B,H

′
B) s.t. s′BSB = t′BT = H ′

B.
– B chooses rU ←R Zp and generates mU = rUG1 and generate
– B receives σA = (RA1, ..., RA5, sAx, sAy, sAα, sAβ, sAyα, sAyβ , sAα′ ,
sAβ′ , sAyα′ , sAyβ′ , cA) and executesm′

A ← MR(param, gpk, σA). B gen-
erate respB = G(rBm′

A,mB) and sends it to A.
– B receives respA = G(rAmV ,mA) = G(rVm′

A,m
′
A). (Since A can

break IR, respA = G(rAmV ,mA) = G(rVm′
A,m

′
A).)

If (rAmV ,mA, respA) /∈ G-List or , (i, gpk,RA1, ..., RA5, R
′
A1, ..., R

′
A9, c

′
A) /∈

H-List B abort.
Then, from the Forking Lemma [9] by rewinding A and choosing other

random oracle OH, B is given two set as follows:

{R1, R2, R3, R4, R5, R
′
1, R

′
2, R

′
3, R

′
4, R

′
5, R

′
6, R

′
7, R

′
8, R

′
9,

s(1)
x , s(1)

y , s(1)
α , s

(1)
β , s(1)

yα , s
(1)
yβ , s

(1)
α′ , s

(1)
β′ , s

(1)
yα′ , s

(1)
yβ′ , c

(1)}

{R1, R2, R3, R4, R5, R
′
1, R

′
2, R

′
3, R

′
4, R

′
5, R

′
6, R

′
7, R

′
8, R

′
9,

s(2)
x , s(2)

y , s(2)
α , s

(2)
β , s(2)yα , s

(2)
yβ , s

(2)
α′ , s

(2)
β′ , s

(2)
yα′ , s

(2)
yβ′ , c

(2)}

such that
(s(1)

x , s
(1)
y , s

(1)
α , s

(1)
β , s

(1)
yα , s

(1)
yβ , s

(1)
α′ , s

(1)
β′ , s

(1)
yα′ , s

(1)
yβ′ , c(1))
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6= (s(2)
x , s

(2)
y , s

(2)
α , s

(2)
β , s

(2)
yα , s

(2)
yβ , s

(2)
α′ , s

(2)
β′ , s

(2)
yα′ , s

(2)
yβ′ , c(2))

and

R′
1 = s(1)

α T − c(1)R1 = s(2)
α T − c(2)R1

R′
2 = s

(1)
β S − c(1)R2 = s

(2)
β S − c(2)R2

R′
3 = s(1)α T − c(1)R3 = s(2)α T − c(2)R3

R′
4 = s

(1)
β S − c(1)R4 = s

(2)
β S − c(2)R4

R′
5 = e(R5, G2)s

(1)
y e(H,W )−(s

(1)
α +s

(1)
β )e(H,G2)

−(s
(1)
yα+s

(1)
yβ )+s

(1)
x

e(H ′,W )−(s
(1)

α′ +s
(1)

β′ )
e(H,G2)

−(s
(1)

yα′+s
(1)

yβ′ )
(
e(R5, G2)
e(G1, G2)

)c(1)

= e(R5, G2)s
(2)
y e(H,W )−(s

(2)
α +s

(2)
β )e(H,G2)

−(s
(2)
yα+s

(2)
yβ )+s

(2)
x

e(H ′,W )−(s
(2)

α′ +s
(2)

β′ )
e(H,G2)

−(s
(2)

yα′+s
(2)

yβ′ )
(
e(R5, G2)
e(G1, G2)

)c(2)

R′
6 = s(1)

y R1 − s(1)
yαT = s(2)

y R1 − s(2)
yαT

R′
7 = s(1)y R2 − s(1)

yαS = s(2)
y R2 − s(2)yαS

R′
8 = s(1)

y R1 − s(1)
yαT

′ = s(2)
y R1 − s(2)yαT

′

R′
9 = s(1)

y R2 − s(1)
yαS

′ = s(2)
y R2 − s(2)yαS

′

then B can compute xV = s
(1)
x −s

(2)
x

c(1)−c(2)
. This solves the discrete logarithm

problem.

The success probability of B is as followes; Here, εA and εB are success
probabilities of A and B, and qh is the number of query to OH. From
similar discussion of [9], εB = 1

4ε
2
A

1
qh

(1− 1
2k )− 1

2k−1 . 2

Theorem 2.The proposed scheme has Strong Detector Resistance, Un-
linkability and Co-Traceability property, if the Decisional Linear Diffie-
Hellman (DLDH) problem is hard to solve.

Lemma 1. The proposed scheme has Strong Detector Resistance prop-
erty, if the Decisional Linear Diffie-Hellman (DLDH) problem is hard to
solve.

Proof. We show that if there exists an adversary A breaks Strong
Detector Resistance, then an algorithm B which solves the DLDH problem
can be constructed using A as a black-box. We show the description of B
as follow:
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An algorithm B is given (param, T ′, S′,H ′, aT ′, bS′, Q). Here, (T ′, S′,
H ′, aT ′, bS′, Q) is DLDH instance. First, B generates (isk, ipk) = (w, (H,
W = wG2)) s.t. w ∈ Zp,H ∈ G1 and (tsk, tpk) = ((s, t), (S, T )) s.t.
s, t ∈ Zp, sS = tT = H ∈ G1 according to SHS.CreateGroup. B chooses
(xU , yU )←R (Zp)2 and (xi, yi)←R (Zp)2(i = 1, ..., n) and generates AU =

1
w+yU

(G1−xUH) and Ai = 1
w+yi

(G1−xiH). B adds (i, Ai, yi)(i = 1, ..., n)
and (U,AU , yU ) to a member-list L. Also B generates a list L′ including
a secret key ski = xi and an internal information Ii . Elements of list L′
is (i, xi, Ai, yi, Ii)(i = 1, ...n, U).
A is given (param,H,W, S, T, s, t) and L by B. When A access OAM,

OCG , OHS , random oracle OH, and random oracle OG , B simulates them
by the way same as the proof of IR. The method of simulating OCO is as
follows (A querys i). if i = U , B abort. If the length of ID is k bits, the
probability that this case occurs is 1

2k . If (i, xi, Ai, yi, Ii) ∈ L′, B returns
ski, Ii. If (i, xi, Ai, yi, Ii) /∈ L′, B returns ⊥.
B picks up b←R {0, 1}. B executes handshake with A, 1) when b = 0

as U for the first time and as SIM for the second time, 2) when b = 1 as
SIM for the first time and as U for the second time.

When B, as honest U , executes SHS.Handshake with A, B behaves as
follow:

– B sends (T ′, S′,H ′) to A and receives (T ′
A, S

′
A, H

′
A) from A.

– B chooses chooses rU ←R Zp and generates mU = rUG1. When B gen-
erates σB using GSMR, B generates R3 := aT ′, R4 := bS′, R5 = (α +
β)H+Q+AU . So, B generates σB ← GSMR(param, gpk, certU , skU ,mU ).
B sends it to A.

– B receives σA and executes m′
A ← MR(param, gpk, σA).B generate

respB = G(rBm′
A,mB) and sends it to A.

– B receives respA.

When B, as SIM, executes SHS.Handshake with A, B behaves as follow:

– B chooses (T ′
SIM , S

′
SIM ,H

′
SIM ) ←R (G1)3 and sends it to A and re-

ceives (T ′
A, S

′
A,H

′
A) from A.

– B chooses (RSIM1, RSIM2, RSIM3, RSIM4, RSIM5, cSIM )←R (G1)6 and
(sSIMx, sSIMy, sSIMα, sSIMβ , sSIMyα, sSIMyβ , sSIMα′ , sSIMβ′ , sSIMyα′ ,
sSIMyβ′)←R (Zp)10.
B sends it to A.

– B receives σA and executes m′
A ← MR(param, gpk, σA). B chooses

respSIM ←R Zp and sends it to A.
– B receives respA.
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A outputs b′. If (T ′, S′,H ′, aT ′, bS′, Q) is satisfied Q = (a + b)H ′, A
can distinguish U and SIM, since B can completely simulate honest U .
Then, if b = b′, B outputs yes, otherwise outputs no. This solves the
DLDH problem.

Here, εA and εB are success probabilities ofA and B. If (T ′, S′,H ′, aT ′, bS′, Q)
is the random tuple, the probability that b = b′ is 1

2 . Also, if (T ′, S′,H ′, aT ′, bS′, Q)
is the DLDH tuple, the probability that b = b′ is εA+ 1

2 . So, the advantage
of B is εB = εA + 1

2 −
1
2 −

1
2k = εA − 1

2k . So, if εA is non-negligible, εB is
non-negligible. 2

Lemma 2. The proposed scheme has Unlinkability property, if the Deci-
sional Linear Diffie-Hellman (DLDH) problem is hard to solve.

Proof. We show that if there exists an adversary A breaks Unlinkability,
then an algorithm B which solves the DLDH problem can be constructed
using A as a black-box. We show the description of B as follow:

Algorithm B is given (param, T, S,H, aT, bS,Q). First, B generates
(isk, ipk) = (w, (H,W = wG2)) s.t. w ∈ Zp,H ∈ G1 according to
SHS.CreateGroup and tpk = (S, T ) (itk is unknown by B).

Next, B generates a member-list L. B chooses (xU , yU , xV , yV ) ←R

(Zp)4 and (xi, yi) ←R (Zp)2(i = 1, ..., n) and generates Ai = 1
w+yi

(G1 −
xiH)(i = 1, . . . , n, U, V ). B adds (i, Ai, yi)(i = 1, ..., n), (U,AU , yU ) and
(V,AV , yV ) to a member-list L. Also B generates a list L′ including a
secret key ski = xi and an internal information Ii Elements of list L′ is
(i, xi, Ai, yi, Ii)(i = 1, ...n, U, V ).
A is given (param,H,W, S, T ) by B. When A access OAM, OCG , OHS ,

OCO random oracle OH, and random oracle OG , B simulates them by the
way same as the proof of SDR.
B picks up b←R {0, 1}. B executes handshake with A, 1) when b = 0

twice as U , 2) when b = 1 as U for the first time and as V for the second
time.

When B, as honest, executes SHS.Handshake with A, B behaves as
follow: (In the following behavior, B carries out SHS.Handshake as U.
When B carry it out as V, it is similar.)

– B generates (s′B, t
′
B, S

′
B, T

′
B,H

′
B) s.t. s′BSB = t′BT = H ′

B.
– B chooses chooses rU ←R Zp and generates mU = rUG1. When B gen-

erates σB using GSMR, B generates R3 := aT ′, R4 := bS′, R5 = (α +
β)H+Q+AU . So, B generates σB ← GSMR(param, gpk, certU , skU ,mU ).
B sends it to A.

– B receives σA and executes m′
A ← MR(param, gpk, σA). B generate

respB = G(rBm′
A,mB) and ]sends it to A.
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– B receives respA.

Finally, A output b′. If b = b′, B outputs yes, otherwise outputs no.
This solves the DLDH problem.

Here, εA and εB are success probabilities of A and B. By the same
discussion of Lemma 1, The advantage of B is εB = εA + 1

2 −
1
2 −

1
2k =

εA − 1
2k . So, if εA is non-negligible, εB is non-negligible.

2

Lemma 3. The proposed scheme has Co-Traceability property, if the De-
cisional Linear Diffie-Hellman (DLDH) problem is hard to solve.

Proof. We show that if there exists an adversaryA breaks Co-Traceability,
then an algorithm B which solves the DLDH problem can be constructed
using A as a black-box. We show the description of B as follow:

An algorithm B is given (param, T ′, S′,H ′, aT ′, bS′, Q). First, B gener-
ates (isk, ipk) = (w, (H,W = wG2)) s.t. w ∈ Zp,H ∈ G1 and (tsk, tpk) =
((s, t), (S, T )) s.t. s, t ∈ Zp, sS = tT = H ∈ G1 according to SHS.CreateGroup.

Next, B generates a member-list L. B chooses (xU , yU )←R (Zp)2 and
(xi, yi)←R (Zp)2(i = 1, ..., n) and generates AU = 1

w+yU
(G1 − xUH) and

Ai = 1
w+yi

(G1−xiH). B adds (i, Ai, yi)(i = 1, ..., n) and (U,AU , yU ) to L.
Also, B generates a list L′ including a secret key ski = xi and an internal
information Ii. Elements of list L′ is (i, xi, Ai, yi, Ii)(i=1,...n,U).
A is given (H,W,S, T, w, s, t,L) by B. When A access OAM, OCG ,

OHS , OCO random oracle OH, and random oracle OG , B simulates them
by the way same as the proof of SDR.

When B, as honest, executes SHS.Handshake with A, B behaves as
follow:

– B sends (T ′, S′,H ′) to A and receives (T ′
A, S

′
A, H

′
A) from A.

– B chooses chooses rU ←R Zp and generates mU = rUG1. When B gen-
erates σB using GSMR, B generates R3 := aT ′, R4 := bS′, R5 = (α +
β)H+Q+AU . So, B generates σB ← GSMR(param, gpk, certU , skU ,mU ).
B sends it to A.

– B receives σA and executes m′
A ← MR(param, gpk, σA). B generate

respB = G(rBm′
A,mB) and sends it to A.

– B receives respA = G(rAmV ,mA) = G(rVm′
A,m

′
A).

A output (U ′, AU ′ , yU ′) ∈ L. If U ′ = U , B outputs yes, otherwise
outputs no. This solves the DLDH problem.
2
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