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Abstract. We propose an efficient blind certification protocol with interesting properties. It falls
in the Groth-Sahai framework for witness-indistinguishable proofs, thus extended to a certified
signature it immediately yields non-frameable group signatures. We use blind certification to
build an efficient (offline) e-cash system that guarantees user anonymity and transferability of
coins without increasing their size. As required for fair e-cash, in case of fraud, anonymity can
be revoked by an authority, which is also crucial to deter from double spending.

1 Introduction

1.1 Motivation

The issue of anonymity in electronic transactions was introduced for e-cash and e-mail in the early
1980’s by Chaum, with the famous primitive of blind signatures [Cha83,Cha84]: a signer accepts to
sign a message, without knowing the message itself, and without being able to later link a message-
signature pair to the transaction it originated from. In e-cash systems, the message is a serial number
to make a coin unique. The main security property is resistance to “one-more forgeries” [PS00], which
guarantees the signer that after t transactions a user cannot have more than t valid signatures.

Blind signatures have thereafter been widely used for many variants of e-cash systems; in particular
fair blind signatures [SPC95], which allow to provide revocable anonymity. They deter from abuse
since in such a case the signer can ask an authority to reveal the identity of the defrauder. In order to
allow the signer to control some part of the message to be signed, partially blind signatures [AO00]
have been proposed.

Another primitive providing anonymity are group signatures [Cv91], enabling a user to sign as
a member of a group without leaking any more information about his identity. The strong security
model in [BSZ05] considers dynamic groups in which the group manager is not fully trusted: one thus
requires that the latter cannot frame honest users.

For e-cash systems, the classical scenario is between a bank, a user and a merchant/shop: the
user withdraws money from the bank and can then spend it in a shop. The latter deposits it at
the bank to get its account credited. Literature tries to improve the withdrawal and the spending
processes, e.g. with divisible e-cash [EO94,CG07]. However, for many applications, such as e-tickets or
coupons [NHS99], transferability [OO90,OO92,CG08] is a more desirable property. It is known that
the size of coins grows linearly in the number of transfers [CP92]—a drawback we will avoid in our
construction by modifying the model (cf. Sect. 1.3).

Classical e-cash requires that as long as a user does not spend a coin twice (double spending), she
remains anonymous. Von Solms and Naccache [vSN92] pointed out that perfect anonymity enables
perfect crimes, and thus suggested fair e-cash, where an authority can trace coins that were acquired
illegally. Necessity to fight money laundering also encourages the design of fair e-cash systems enabling
a trusted party to revoke the anonymity of users, whenever needed.



1.2 Contributions

Our first result is the definition and efficient pairing-based instantiation of a new primitive, which
we call partially-blind certification. A protocol allows an issuer to interactively issue a certificate to a
user, of which parts are then only known to the user and cannot be associated to a particular protocol
execution by the issuer. The certificates are unforgeable in that from q runs of the protocol with the
issuer cannot be derived more than q valid certificates. We then give two applications of the primitive:

– In order to achieve anonymity and unlinkability in group signatures, a common approach is the
following: Using a signing key provided by the group manager, a user produces a signature, encrypts
it and adds a proof of its validity. For this method to work efficiently in the standard model, these
signing keys have to be constructed carefully. In [BW07] for example, it is the group manager that
constructs the entire signing key—which means that he can impersonate (frame) users.
Groth [Gro07] achieves non-frameability by using certified signatures (defined in [BFPW07]): The
user chooses a verification key which is signed by the issuer. A signature produced with the corre-
sponding signing key together with the verification key and the issuer’s signature on it can then
be verified under the issuer’s key. Security of Groth’s instantiation however relies on an unnatural
assumption.
We avoid this by observing the following: it is not necessary that the user choose the verification
key, as long as she can be sure that the private key contains enough entropy. Since the blind
component of our instantiation of our primitive can serve as signing key, our construction applies
immediately to build non-frameable group signatures (see Sect. 4).

– Second, in e-cash, the serial number of a coin needs to contain enough entropy to avoid collisions,
but again the user need not control it entirely. Partially-blind certificates are applicable here too.

1.3 Transferable Anonymous Constant-Size Fair E-Cash

The instantiation we give of our new primitive allows it to be combined with the results of Groth and
Sahai [GS08], which is crucial to our main contribution: an efficient standard-model anonymous fair
e-cash system in the classical three-party scenario with the following novel features:

First, coins are transferable while remaining constant in size. We circumvent the impossibility
results by introducing a new method to trace double spenders: the users keep receipts when receiving
coins instead of storing all information about transfers inside the coin. The amount of data a user has
to deal with is thus proportional to the number of coins he received, rather than the path a coin took
until reaching him.

Second, partial blindness of our certificates provides the strongest possible notion of anonymity:
a user remains anonymous even w.r.t. an entity issuing coins and able to detect double spendings.1

Moreover, coins are unlinkable to anyone except the authority and the double-spending detector. We
give an overview of our model before getting back to its security properties.

– The participants of the system are the following: the system manager (that registers users within
the system), the bank (issuing coins), users (that withdraw, transfer or spend coins), merchants to
which coins are spent, the double-spending detector, and a trusted authority, called tracer, that
can trace coins, revoke anonymity and identify double-spenders.

– In order to get a coin, a user runs a withdrawal protocol with the bank, after which he holds a coin
and a receipt to be kept even after transferring or spending the coin (to defend himself against
wrongful accusation of double-spending).2

1 In fair e-cash, there exists an authority that can trace users (user-tracing) and coins (coin-tracing) under a judge
decision, in case of fraud suspicion (not necessarily double spending). We separate the notions of detection of double
spendings, which is done on a regular basis when a coin is deposited, from that of tracing, which is performed by a
trusted authority only when a fraud was committed.

2 If one assumes a validity period for coins (after which the issuing key is changed), it suffices to keep a receipt only as
long as the respective coin is valid.
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– Another protocol enables users to transfer coins to other users who, besides the coin, also get a
receipt, which they keep too.

– To spend the coin, the user interacts with a merchant. The latter will deposit the coin at the bank
who invokes the double-spending detector to check if it has already been spent. If it is the case,
the tracer is invoked to reveal the double spender. He does so by tracing back the two instances
of the coin by asking the receipts from the users that transferred the coins until identifying the
double spender.

Note that the tracing authority identifies innocent users that merely transferred a coin that has been
used fraudulently before. However, this does not weaken anonymity, which does not hold against the
tracer anyway and since identities are not revealed to anyone else. Moreover, this can be proved to
be unavoidable in order to achieve constant-size transferable coins. An inevitable shortcoming of our
model is that a user who loses a receipt can be accused of double spending, since he cannot prove
legal acquisition of the coin if he transferred it. The system satisfies the following security notions:

– Any user who spends a coin twice is detected.
– As long as a user keeps all his receipts, he cannot be wrongfully accused of double spending, even

if everyone else colludes against him.
– A user is anonymous even against collusions of the manager, the bank, the double-spending detec-

tor, merchants, and other users.
– Transfers of coins are unlinkably anonymous to collusions possibly comprising the manager, the

bank, merchants, and other users. (The double-spending detector must necessarily be able to link
two spendings of the same coin.)

Our construction is secure in the standard security model (i.e., without relying on the random
oracle idealization [BR93])3 and its security is based on a new (though natural) assumption that holds
in the generic group model [Sho97].

1.4 Organization of the Paper

In the next section, we state the employed assumptions. In Sect. 3, we describe our new Partially-
Blind Certification primitive, and apply it to group signatures in Sect. 4. In Sect. 5, we extend some
techniques of Groth-Sahai, recapitulating re-randomization of commitments and introducing proofs
for relations of values committed under different keys. In Sect. 6, we combine everything to construct
our e-cash system.

2 Assumptions

We present the assumptions on bilinear groups on which our security results build. A bilinear group is
a tuple (p,G,GT , e,G) where (G,+) and (GT , ·) are two cyclic groups of order p, G is a generator of G,
and e : G×G→ GT is a non-degenerate bilinear map, i.e., ∀U, V ∈ G ∀ a, b ∈ Z : e(aU, bV ) = e(U, V )ab,
and e(G,G) is a generator of GT .

The first two of the following assumptions are classical [DH76,BBS04]. The third is a simple
extension of the Hidden Strong Diffie-Hellman Problem proposed by Boyen and Waters in [BW07].

Definition 1. The Computational Diffie-Hellman (CDH) Assumption states that the following prob-
lem is intractable4: given (G,αG, βG) ∈ G3, for α, β ∈ Zp, output αβG.
3 Note that in our context, due to re-randomization of encryptions (cf. Sect. 6.2 for details), it seems even impossible

to replace the Groth-Sahai techniques with the Fiat-Shamir heuristic [FS87] to improve efficiency at the expense of
relying on the random oracle model.

4 We say that a computational problem is intractable if no probabilistic polynomial-time (p.p.t.) adversary can solve it
with non-negligible probability. A decisional problem is intractable if no p.p.t. adversary can decide it with probability
of non-negligibly more than 1/2.

3



Definition 2. The Decisional Linear (DLIN) Assumption states that the following problem is in-
tractable: given (U, V,G, αU, βV, γG) ∈ G6, decide whether γ = α+ β or not.

Definition 3. The q-Double Hidden Strong Diffie-Hellman (DHSDH) Assumption states that the
following problem is intractable: given (G,H,K, Γ = γG) ∈ G4 and q − 1 tuples(

Xi = xiG, X
′
i = xiH, Yi = yiG, Y

′
i = yiH, Ai = 1

γ+xi
(K + yiG)

)
with xi, yi ← Z∗p

for 1 ≤ i ≤ q − 1, output a new tuple
(
X = xG, X ′ = xH, Y = yG, Y ′ = yH, A = 1

γ+x(K + yG)
)
.

Note that a tuple (X,X ′, Y, Y ′, A) has the above format if and only if it satisfies

e(X,H) = e(G,X ′) e(Y,H) = e(G, Y ′) e(A,Γ +X) = e(K + Y,G)

Remark 4. Boneh and Boyen [BB04] introduced the Strong Diffie-Hellman (SDH) assumption in
bilinear groups stating that given a (q+ 1)-tuple (G, γG, γ2G, . . . , γqG) ∈ Gq+1 for a random γ ← Z∗p,
it is infeasible to output a pair (x, 1

γ+xG) ∈ Zp×G. Hardness of SDH implies hardness of the following
two problems (the first implication is proved in [BB04], the second in Appendix B):

(I) Given G, γG ∈ G and q − 1 distinct pairs (xi, 1
γ+xi

G) ∈ Zp × G, output a new pair (x, 1
γ+xG) ∈

Zp ×G.

(II) Given G,K, γG ∈ G and q − 1 distinct triples
(
xi, yi,

1
γ+xi

(K + yiG)
)
∈ Z2

p × G, output a new
triple

(
x, y, 1

γ+x(K + yG)
)
∈ Z2

p ×G.

The Hidden SDH problem defined in [BW07] is a variant of Problem (I), where instead of giving the xi’s
explicitly, they are given as (xiG, xiH). Similarly, the goal is to output a new triple (xG, xH, 1

γ+xG).
Now the Double Hidden SDH assumption (Definition 3) transforms Problem (II) the same way: instead
of being given explicitly, xi and yi are given as (xiG, xiH, yiG, yiH). See Appendix A for a discussion
on the various assumptions derived from SDH and their relations.

3 Partially-Blind Certification

3.1 Model

Definition 5. A partially-blind certification scheme (Setup, Sign,User,Verif) is a 4-tuple of (interac-
tive) probabilistic polynomial-time Turing machines (PPTs) such that:

– Setup is a PPT that takes as input an integer k and outputs a pair (pk, sk) of public (resp. secret)
key. We call k the security parameter.

– Sign and User are interactive PPTs such that User takes as inputs a public key pk and Sign takes
as input the matching secret key sk. Sign and User engage in the certificate-issuing protocol and
when they stop, Sign outputs completed or not-completed while User outputs a pair of bit strings
(σ, τ) or ⊥.

– Verif is a deterministic polynomial-time Turing machine that on input a public key pk and a pair
of bit strings (σ, τ) outputs either accept or reject.

For all k ∈ N, all pairs (pk, sk) output by Setup(k), if Sign and User follow the certificate issuing
protocol with input sk and pk respectively, then Sign outputs completed and User outputs a pair (σ, τ)
that satisfies Verif(pk, (σ, τ)) = accept.
A pair (σ, τ) is termed valid with regard to pk if on input (pk, (σ, τ)) Verif outputs accept, in which
case, we say that (σ, τ) is a certificate for pk and τ is termed the blind component of the certificate.
We denote T ⊂ {0, 1}∗ the set of bit-strings which are blind component of some certificate.
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Experiment Expblindness−b
A (k)

(pk, state)← A(FIND, k)
τ0 ← T
(σ1, τ1) ( 6=⊥)← UserA(state)(pk)
b′ ← A(GUESS, τb)
RETURN b′

Experiment Expforge
A (k)

(pk, sk)← Setup(k)
((σ1, τ1), . . . , (σ`, τ`))← ASign(sk,·)(pk)
IF ∀i ∈ [1, `],Verif(pk, (σi, τi)) = accept

AND ∀(i, j) ∈ [1, `]2, i 6= j: (σi, τi) 6= (σj , τj)
AND ` > m RETURN 1

where m is the number of executions of the certificate
issuing protocol where Sign outputs completed.

(1) Partial Blindness (2) Unforgeability

Fig. 1. Security experiments for partially-blind certificates

Partial Blindness. To define partial blindness, we consider the real-or-random game (i.e., random
experiment) among an adversarial signer A and a challenger presented in Fig. 1 (1).

– We define the advantage of A in breaking partial blindness by its advantage in distinguishing the
two above experiments (with b = 0 or b = 1):

Advblindness
A (k) := Pr[Expblindness−1

A (k) = 1] − Pr[Expblindness−0
A (k) = 1] ,

where the probability is taken over the coin tosses made by the challenger and A.
– The scheme (Setup,Sign,User,Verif) is said to be partially blind if no adversary A running in

probabilistic polynomial time has a non-negligible advantage Advblindness
A .

Unforgeability. To define unforgeability, we introduce the game among an adversarial user A and
an honest signer Sign depicted in Fig. 1 (2).

– We define the success of A in this game by

Succunforge
A (k) := Pr[Expforge

A (k) = 1] ,

where the probability is taken over the coin tosses made by A, Setup and Sign.
– The scheme (Setup, Sign,User,Verif) is said to be unforgeable if no adversary A running in proba-

bilistic polynomial time has a non-negligible success Succunforge
A .

Remark 6. In the random experiment Expforge
A , depending on the security model, the executions of

the certificate issuing protocol are run sequentially or in a concurrent and interleaving way.

3.2 Instantiation

Let (p,G,GT , e,G) be a bilinear group and G,H,K ∈ G be public parameters; define the signer’s key
pair as sk := ω ← Zp and pk = Ω := ωG. A certificate is defined as

Crt(ω ; x, y) :=
{
A =

1
ω + x

(K + yG)
X = xG
X ′ = xH

Y = yG
Y ′ = yH

for x, y ← Zp, with σ := (A,X,X ′, Y ) and the blind component τ := Y ′ ∈ G. It satisfies:

e(X,H) = e(G,X ′) e(Y,H) = e(G, Y ′) e(A,Ω +X) = e(K + Y,G) (1)

Fig. 2 depicts an efficient protocol to interactively generate such a certificate between the signer
(issuer) that controls x and the user that partially controls y: at the end, the signer has no information
about y, except that it is uniformly distributed.
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(1) User Choose r, y1 ← Zp, compute and send: R1 := r(K + y1G), T := rG
and zero-knowledge proofs of knowledge of r and y1 satisfying the relations (cf. Remark 7).

(2) Sign Choose x, y2 ← Zp and compute R := R1 + y2T (note that R = r(K + yG) with y := y1 + y2.)

Send
(
S1 := 1

ω+xR, S2 := xG, S3 := xH, S4 := y2G, S5 := y2H
)

(3) User Check whether (S1, S2, S3, S4, S5) is correctly formed:

e(S2, H) ?= e(G,S3) e(S4, H) ?= e(G,S5) e(S1, Ω + S2) ?= e(R,G)

If so, compute a certificate(
A := 1

rS1, X := S2, X
′ := S3, Y := y1G+ S4 = yG, Y ′ := y1H + S5 = yH

)
Fig. 2. Partially-blind certificate-issuing protocol.

Remark 7. In the first round of the User protocol, one can use interactive Schnorr-like zero-knowledge
proofs of knowledge (ZKPoK) [Sch90]. Extraction is then only possible for constant-depth concur-
rency [Oka06]. To achieve full concurrency, and at the same time reduce interactivity to 2 moves, one
can use the following technique: Make linear commitments [GOS06] (cf. Sect. 5.1) to the bits of r and
y1 (which are extractable) and use the proof techniques from [FP08, Appendix A.3 of the full version].
The drawbacks of this approach are that security holds in the common reference string (CRS) model
and we incur a loss of efficiency.

3.3 Security Results

Theorem 8. Under the DHSDH assumption, the above certificates are unforgeable.

Proof. Let A be an adversary impersonating corrupt users running the issuing protocol up to q − 1
times and then outputting q different valid certificates. We build B solving q-DHSDH with the same
probability by simulating the signer: B gets a q-DHSDH-instance

(
G,H,K,Ω, (Ai, Xi, X

′
i, Yi, Y

′
i )q−1
i=1

)
.

If the ZKPoK are non-interactive, it sets the CRS so that it can extract r and y1 used in R1 and
T—if they are interactive, B rewinds A to extract. In each issuing, A first sends (R1,i, Ti) and proofs
of knowledge. If the proofs are correct, B extracts ri, y1,i from them and sends

(
S1,i := riAi, S2,i :=

Xi, S3,i := X ′i, S4,i := Yi − y1,iG, S5,i := Y ′i − y2,iH
)
. Finally, B checks the q certificates and forwards

one different from those in the DHSDH-instance to its own challenger. ut

Theorem 9. Under the DLIN assumption, the above certificates are partially blind.

Proof. Consider A, which after an execution of the blind issuing protocol can decide whether the blind
component τ = Y ′ is real or random in G. We build B deciding DLIN with the success probability of
A. The algorithm B gets a DLIN-instance (H,G, T, Z,K,R1), i.e., it has to decide whether

R1
?= (logH Z + logGK) T (2)

It gives A the triple (G,H,K) as public parameters (and a simulating CRS in case we use non-
interactive ZKPoK) and gets Ω, the issuer’s public key from A. B runs the protocol User with A,
starting by sending R1, and T from its DLIN instance and simulating the PoK.

After getting back (S1, . . . , S5), B checks its correctness and gives A the following: Y ′ := Z + S5,
with Z from its DLIN instance. (B can verify correctness of S without knowledge of y1 and r by
checking e(S2, H) = e(G,S3), (S4, H) = e(G,S5) and e(S1, Ω + S2) = e(R,G). Also note that B only
needs to produce the last (blind) component of the certificate.) Finally A outputs a guess b′, which B
forwards to its DLIN challenger.
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Let (Ui)n
i=0 ∈ Gn+1 be part of the public parameters; let Ω be the issuer’s public key.

Certificate Generation. Run the certificate-creation protocol in Fig. 2, except that the issuer running
Sign sends an extractable commitment of S4 = y2G before phase (1) and opens it in phase (2).

Signing. For a message M = (m1, . . . ,mn) ∈ {0, 1}n, denote F(M) := U0+
∑n

i=1miUi. Given a certificate
C = (A,X,X ′, Y, Y ′), a signature on M using randomness s ∈ Zp is defined as

Sig(C,M ; s) := (A,X,X ′, Y, Y ′ + sF(M),−sG) .

Verification. A certified signature (A,X,X ′, Y, Z, Z ′) on message M is verified by checking

e(X,H) = e(G,X ′) e(Y,H) = e(G,Z) e(Z ′,F(M)) e(A,Ω +X) = e(K + Y,G)

Fig. 3. Chosen-message secure certified signature

– If the DLIN instance is not a linear tuple then Z and therefore Y ′ is independently random.
– If (H,G, T, Z,K,R1) is linear, then with y1 := logH Z, κ := logGK, and r := logG T , we have
R1 = (y1 + κ)T by (2). Furthermore, for public parameters (G,H,K), we have

T = rG R1 = (y1 + κ)T = (y1 + κ)rG = r(K + y1G) Z = y1H

which means that Y ′ = Z + S5 is the blind component of a correctly produced certificate.

If B outputs the bit returned by A, its success probability is equal to Advblindness
A . ut

4 A Fully-Secure Group Signature from Partially-Blind Certificates

As a first application of the certification protocol from Sect. 3.2, we construct fully-secure dynamic
group signatures (in the sense of [BSZ05], in particular satisfying non-frameability and CCA-anonym-
ity) without random oracles. We construct a certified-signature scheme, to which can then be applied
Groth’s [Gro07] methodology of transforming certified signatures that respect a certain structure into
group signatures using Groth-Sahai NIZK proofs [GS08] and Kiltz’ tag-based encryption [Kil06], both
relying exclusively on the DLIN assumption.

The resulting scheme is less efficient than that from [Gro07]; however, it is based on a more natural
assumption, while at the same time being of the same order of magnitude—especially compared to
the first instantiations of fully-secure signatures in the standard model (e.g., [Gro06]). We think of the
scheme as somehow being the “natural” extension of [BW07] in order to satisfy non-frameability.

Certified Signatures. A certified-signature scheme consists of a setup algorithm, a key-generation
algorithm for the certification authority, an interactive protocol between the authority (“issuer”) and a
user letting the latter obtain a triple (cert, vk, sk), where vk is a verification key for a signature scheme,
sk is the corresponding signing key (unknown to the issuer) and cert is a certificate on vk.

Besides correctness, Groth [Gro07] gives two security criteria that a certified signature must satisfy
to be transformable into a secure group signature scheme: Unfakeability requires that no user can
create a certificate for and a signature under a verification key that was not certified by the issuer.
Unforgeability means that even a corrupt authority issuing a tuple (cert, vk, sk) cannot forge a signature
under vk.

Our Instantiation. Our certified signature is constructed from a certificate (A,X,X ′, Y, Y ′) by using
(Y, Y ′) as a pair of public and secret key for Waters’ signature scheme [Wat05]. A certified signature
consists thus of the first four components of the certificate prepended to a Waters signature. Note that
what is called cert above corresponds to (A,X,X ′) here, and (vk, sk) would be (Y, Y ′). The scheme
is given in Fig. 3. Our construction satisfies the security requirements given by Groth:
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Theorem 10. The certified-signature scheme in Fig. 3 is perfectly correct, unfakeable under DHSDH,
and existentially unforgeable under chosen-message attack under CDH.

Proof. Correctness follows by inspection. The two other properties are proved similarly to Theorems 8
and 9, we thus highlight the differences.

(1) Unfakeability means that after running various instances of the issuing protocol with the issuer,
no user is able to produce a valid tuple (A,X,X ′, Y, Z, Z ′) with Y different from those in the obtained
certificates. The proof works similarly to that of Theorem 8 with the following modifications: For
0 ≤ i ≤ n, B chooses µi ← Zp and sets the public parameters Ui := µiG. In the issuing protocol, B
simulates the additional commitment at the beginning. From a valid (A,X,X ′, Y, Z, Z ′) returned by
A, B can then extract a new certificate by setting Y ′ := Z + (µ0 +

∑
miµi)Z ′.

(2) Existential unforgeability under chosen-message attack (EUF-CMA) follows from partial blind-
ness of certificates and security of Waters signatures, which is implied by CDH (Def. 1): Let A be an
adversary impersonating the issuer and mounting a chosen-message attack. We construct B against
EUF-CMA of Waters signatures. B is given a Waters public key V ∈ G and a signing oracle.
B runs the certificate-generation protocol playing the role of User with A. When A sends a com-

mitment to S4 in the first phase of the protocol, B extracts S4 from it. It then chooses r, sends
R1 := r(K+V −S4) and T := rG and simulates the zero-knowledge proofs. (Note that this implicitly
sets V = (y1 + y2)G.) If A returns a valid tuple (S1, S2, S3, S4, S5), B can compute an (incomplete)
certificate (A := 1

rS1, X := S2, X
′ := S3, Y := V ) which suffices to answer A’s signing queries, as B

can get the last two components by querying its own oracle. When A returns a successful forgery, B
returns the last two components, i.e., a Waters signature under public key V . ut

5 New Techniques For Groth-Sahai Proof Systems

5.1 Preliminaries

We briefly review the results of [GS08] relevant to our paper: witness-indistinguishable (WI) proofs
that elements in G that were committed to via linear commitments satisfy pairing-product equations.
We refer to the original work for more details and proofs.

Let P ∈ G be a generator. We define a key for linear commitments. Choose α, β, r1, r2 ∈ Zp and
define U = αP , V = βP , and

u1 := (U, 0, P ) u2 := (0, V, P ) u3 := (W1,W2,W3) (3)

where W1 := r1U , W2 := r2V , and W3 is either

– soundness setting: W3 := (r1 + r2)P (which makes ~u a binding key); or
– witness-indistinguishable setting: W3 := (r1 + r2 − 1)P (which makes ~u a hiding key).

A commitment to a group element X ∈ G under commitment key ck = (U, V,W1,W2,W3) using
randomness (s1, s2, s3)← Z3

p is defined as (with ι(X) := (0, 0, X))

Com
(
ck, X; (s1, s2, s3)

)
:= ι(X) +

∑3
i=1 siui

= (s1U + s3W1, s2V + s3W2, X + s1P + s2P + s3W3) .

Note that in the soundness setting, given the extraction key ek := (α, β), the committed value can be
extracted from a commitment c = (c1, c2, c3):

Extr((α, β), c) := c3 − 1
αc1 −

1
β c2

= X + (s1 + s2 + s3(r1 + r2))P − 1
α(s1 + s3r1)U − 1

β (s2 + s3r2)V ) = X ,

8



since 1
αU = P and 1

βV = P . On the other hand, in the WI setting we have (with s′1 := s1 + s3r1 and
s′2 = s2 + s3r2): c = (s′1U, s

′
2V,X + (s′1 + s′2 − s3)P ), which is equally distributed for every X. The

two settings are indistinguishable by DLIN since for soundness (W1,W2,W3) is linear w.r.t. (U, V, P ),
whereas in the WI setting it is not.

For the sake of readability and consistency with the work of [GS08], we stick to their abstract
notation, which we sketch briefly:

– For a vector ~X = (X1, . . . ,Xn)> ∈ Gn, let ~X · ~Y :=
∏n
i=1 e(Xi,Yi).

– Bold letters denote triples, e.g., d = (d1, d2, d3) ∈ G1×3, ~d denotes a column vector of triples, thus
a matrix in Gn×3. Furthermore, define F̃ (c,d) :=

[
e(ci, dj)]i,j=1,3 ∈ G3×3

T . In G3×3
T , “+” denotes

entry-wise multiplication of matrix elements. Define c • d :=
∑n

i=1

(
1/2 F̃ (ci, di) + 1/2 F̃ (di, ci)

)
.

A pairing-product equation is an equation for variables Y1, . . . ,Yn ∈ G of the form

n∏
i=1

e(Ai,Yi)
n∏
i=1

n∏
j=1

e(Yi,Yj)γi,j = tT ,

with Ai ∈ G, γi,j ∈ Zp and tT ∈ GT . Setting Γ :=
[
γi,j
]
i,j=1,...,n

∈ Zn×np , this can be written as

( ~A · ~Y) (~Y · Γ ~Y) = tT . (4)

Define H1 :=

 0 1 0
−1 0 0
0 0 0

 , H2 :=

 0 0 1
0 0 0
−1 0 0

 , H3 :=

0 0 0
0 0 1
0 −1 0

, and ιT (tT ) :=

1 1 1
1 1 1
1 1 tT

 for tT ∈ GT .

Let ~d be a vector of commitments to ~Y, i.e., ~d := ι(~Y)+S~u with S ← Zn×3
p and ι(~Y) := [ι(Yi)]i=1,...,n.

The proof that the values committed in ~d satisfy (4) is defined as

Φ := S>ι( ~A) + S>Γι(~Y) + S>Γ>ι(~Y) + S>ΓS~u +
∑3

i=1 riHi~u , (5)

with r1, r2, r3 ← Zp, and is verified by

ι( ~A) • ~d + ~d • Γ~d = ιT (tT ) + ~u • Φ . (6)

Soundness and WI of the proofs. In the soundness setting, if ~d satisfies (6) for some Φ, then Extr
extracts ~Y satisfying (4). In the WI setting, let ~c and ~d be commitments to ~X and ~Y, resp., which
both satisfy (4). Then Φ and Φ′ constructed as in (5) for ~c and ~d, resp., are equally distributed.

5.2 New Techniques I: Commitment Re-randomization and Proof Updating

As observed by [FP08] and [BCC+09], commitments of this form can be re-randomized and the
corresponding proofs adapted without knowledge of the committed values nor the used randomness:
given a commitment ~d, set ~c := ~d + S̃~u, for S̃ ← Zn×3

p , and update the proof Φ for ~d to Φ̃ for ~c:

Φ̃ := Φ+ S̃>ι( ~A) + S̃>Γ~d + S̃>Γ>~d + S̃>Γ S̃~u +
∑3

i=1r̃iHi~u (7)

with r̃i ← Zp. The pair (~c, Φ̃) satisfies (6) and some calculation shows that Φ̃ is constructed as in (5)
for ~c being a commitment to ~Y using randomness S + S̃. (In particular (7) yields the same Φ̃ as (5) if
in the latter the randomness used for the proof is (ri +αi + r̃i)3i=1, where (r1, r2, r3) is the randomness
of Φ and α1, α2, α3 are such that A := S̃>Γ>S − S>Γ S̃ =

∑3
i=1 αiHi; such αi exist since A satisfies

~u •A~u = 0 and the Hi’s form a basis for the matrices of this form; cf. [GS08, Chapter 4].)
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5.3 New Techniques II: Linear Equations and Different Commitment Keys

Consider two commitments c,d of Y, Z under different commitment keys ~u and ~u′, respectively. We
construct a re-randomizable WI proof that the committed values satisfy

e(H,Y ) = e(G,Z) . (8)

Let c be a commitment to Y w.r.t. key ~u: c := (sY 1U+sY 3W1, sY 2V +sY 3W2, Y +sY 1P +sY 2P +
sY 3W3). The proof that the committed value Y satisfies equation (8) (in which Z is considered as a
constant) is5 π := (sY 1H, sY 2H, sY 3H), which is verified by

e(π1, U) e(π3,W1) = e(H, c1) (9a)
e(π2, V ) e(π3,W2) = e(H, c2) (9b)

e(Z,G) e(π1, P ) e(π2, P ) e(π3,W3) = e(H, c3) (9c)

Regarding (9) as a set of equations over variables c1, c2, c3, Z, π1, π2, π3, we could just use the Groth-
Sahai proof system a second time by committing to the new variables under key ~u′ and making proofs
for the equations in (9). However, this can be optimized, since we need not commit to c1, c2 and c3.
Correctness and soundness follow from a simple hybrid argument.

Let us consider witness indistinguishability. We show that every pair (Y,Z) satisfying (8) generates
the same distribution of proofs once both keys ~u and ~u′ are replaced by hiding keys. Let (Y,Z)
satisfying (8) be arbitrarily fixed. Since u is perfectly hiding, for any given c there exist (s1, s2, s3)
s.t. c = ι(Y ) +

∑3
i=1 siui. Now WI under key ~u′ (of the second layer of commitments/proofs) ensures

that every (Z, π1, π2, π3) satisfying (9) (with the ci’s fixed!) generates identically distributed proofs.
Thus for Z := (logG Y )H, πi := siH, the proof does not leak anything. We present the details:

We make commitments to Z, π1 = sY 1H, π2 = sY 2H, π3 = sY 3H w.r.t. key ~u′:

d :=

 sZ1U
′ + sZ3W

′
1

sZ2V
′ + sZ3W

′
2

Z+sZ1P
′+sZ2P

′+sZ3W
′
3

 pi :=

 ti,1U
′ + ti,3W

′
1

ti,2V
′ + ti,3W

′
2

sY iH+ ti,1P
′+ ti,2P

′+ ti,3W
′
3

 (10)

for 1 ≤ i ≤ 3. The proof ψi for the i-th equation in (9) is defined as follows:

ψ1 :=

t1,1U + t3,1W1

t1,2U + t3,2W1

t1,3U + t3,3W1

 ψ2 :=

t2,1V + t3,1W2

t2,2V + t3,2W2

t2,3V + t3,3W2

 ψ3 :=

sZ1G+ t1,1P + t2,1P + t3,1W3

sZ2G+ t1,2P + t2,2P + t3,2W3

sZ3G+ t1,3P + t2,3P + t3,3W3

 (11)

The final verification relations are the following:

For (9a): e(p1,1, U) e(p3,1,W1) = e(ψ1,1, U
′) e(ψ1,3,W

′
1)

e(p1,2, U) e(p3,2,W1) = e(ψ1,2, V
′) e(ψ1,3,W

′
2)

e(p1,3, U) e(p3,3,W1) = e(H, c1) e(ψ1,1, P
′) e(ψ1,2, P

′) e(ψ1,3,W
′
3)

For (9b): e(p2,1, V ) e(p3,1,W2) = e(ψ2,1, U
′) e(ψ2,3,W

′
1)

e(p2,2, V ) e(p3,2,W2) = e(ψ2,2, V
′) e(ψ2,3,W

′
2)

e(p2,3, V ) e(p3,3,W2) = e(H, c2) e(ψ2,1, P
′) e(ψ2,2, P

′) e(ψ2,3,W
′
3)

For (9c): e(d1, G) e(p1,1, P ) e(p2,1, P ) e(p3,1,W3) = e(ψ3,1, U
′) e(ψ3,3,W

′
1)

e(d2, G) e(p1,2, P ) e(p2,2, P ) e(p3,2,W3) = e(ψ3,2, V
′) e(ψ3,3,W

′
2)

e(d3, G) e(p1,3, P ) e(p2,3, P ) e(p3,3,W3) = e(H, c3) e(ψ3,1, P
′) e(ψ3,2, P

′) e(ψ3,3,W
′
3)

5 Groth-Sahai proofs for linear equations reduce to 3 group elements; see Sect. 6.1 of the full version of [GS08].
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Re-randomization. Given commitments c,d,p1,p2,p3 and proofs ψ1, ψ2, ψ3, we can re-randomize
the commitments by choosing s′Y i, s

′
Zi, t

′
i,j ← Zp for 1 ≤ i, j ≤ 3 and setting (cf. Sect. 5.2)

c̃ :=

 c1 + s′Y 3U
′ + s′Y 3W

′
1

c2 + s′Y 2V
′ + s′Y 3W

′
2

c3 + s′Y 3P
′ + s′Y 2P

′ + s′Y 3W
′
3

 d̃ :=

 d1 + s′Z1U
′ + s′Z3W

′
1

d2 + s′Z2V
′ + s′Z3W

′
2

d3 + s′Z1P
′ + s′Z2P

′ + s′Z3W
′
3



p̃i :=

 pi,1 + t′i,1U
′ + t′i,3W

′
1

pi,2 + t′i,2V
′ + t′i,3W

′
2

pi,3 + s′Y iH + t′i,1P
′ + t′i,2P

′ + t′i,3W
′
3

 for 1 ≤ i ≤ 3

Note that p̃i not only re-randomizes pi but at the same time updates the committed proofs πi to the
new randomness for the commitments to Y . The proofs ψi are updated as follows:

ψ̃1,j := ψ1,j + t′1,jU + t′3,jW1

ψ̃2,j := ψ2,j + t′2,jV + t′3,jW2 for 1 ≤ j ≤ 3

ψ̃3,j := ψ3,j + s′ZjG+ t′1,jP + t′2,jP + t′3,jW3

5.4 New Techniques III: Proofs that Commitments Open to the Same Value

Given the extraction key, one can prove that two commitments open to the same value without knowl-
edge of the randomness used when committed. We start by showing how to prove that a commitment
(c1, c2, c3) opens to zero: given the extraction key ek = (α, β) define the proof as (π1 := 1

αc1, π2 := 1
β c2).

It satisfies the following relations: e(π1, U) = e(c1, P ), e(π2, V ) = e(c2, P ), c3 = π1 + π2.
It is easily seen that the proofs are perfectly correct and perfectly sound. In addition, they do not

leak information about the opener’s secret key, since they can be produced without knowledge of ek,
given the randomness used to commit and the “trapdoor” (r1, r2) for the Wi’s: c1 = s1U + s3W1 =
α(s1 + s3r1)P , thus π1 = (s1 + s3r1)P , and similarly π2 = (s2 + s3r2)P . Now to show that c and d
are two commitments to the same value, it suffices to prove that c− d opens to 0.

6 Transferable Anonymous Constant-Size Fair E-Cash from Certificates

6.1 Formal Model

In our model for e-cash, there are the following protagonists: users Ui that—after registering—can
withdraw, transfer and spend coins; the system manager S, authorizing users to join the system; the
bank B, able to issue coins; merchants Mi who deposit the coins at the bank; the double-spending
detector D, that can detect if a coin was spent twice; and the tracing authority T , able to trace users
that misbehave in some way (e.g., tracing of a double spender or prosecution of criminal activities).
The system comprises the following protocols and algorithms:

Setup A protocol between S (who gets the manager key mk), B (who gets the issuing key ik), D
(who gets dk), and T (who gets tk). The protocol also outputs the public parameters pp.

Join A protocol between a user and S that registers the user in the system and gives him usk.
Withdraw A protocol permitting a user to withdraw a coin from B.
Transfer A protocol between two users Ui and Uj , where Uj gets a coin and a receipt from Ui.
Spend A protocol between a user and a merchant to spend a coin.
Detect An algorithm enabling D to check for double spendings (without identifying the de-

frauder).
TraceDS A protocol conducted by T in order to trace a double spender.
TraceC An algorithm enabling T to match a withdrawal and a spending transcript of the

same coin.
TraceS An algorithm that lets T reveal the identity of a spender from a spending transcript.
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Expanon-with
A (k)

• Experiment plays: honest users U0 and U1

• A impersonates: S, B, D, users
• U0, U1 run Join and Withdraw with A imperson-

ating S and B, resp.
• b← {0, 1}; A receives the coin of Ub

• A wins if it guesses b correctly

Exptrace-DS
A (k)

• Experiment plays: honest S, B
• A impersonates: users
• A gets keys: tk,dk (thus T , D semi-honest)
• A gets oracles Join, Withdraw, Spend to commu-

nicate with S, B and D, resp.
• The experiment runs Detect and Trace on the

spent coins
• Let q and d be the number of Withdraw and Spend

queries, resp.; let a be the number of accusations
by Trace. Then A wins if a < d− q

Expdetect-DS
A (k)

• Experiment plays: honest B
• A impersonates: users, S, T
• A gets keys: dk (thus D semi-honest)
• A gets oracles Withdraw, Spend to communicate

with B and D, resp.
• The experiment runs Detect on the spent coins
• A wins if there where more accepted Spend than

Withdraw calls and D does not detect double
spending.

Expanon-trans
A (k)

• Experiment plays: honest users U0 and U1

• A impersonates: S, B, users
• U0 and U1 run Join with A impersonating S
• A can ask withdrawals, transfers and spendings of
U0 and U1.

• b← {0, 1}, Ub runs Transfer with A playing a user.
• A wins if it guesses b correctly.

Exptrace-C/S
A (k)

• Experiment plays: honest S, B
• A impersonates: users, D
• A gets keys: tk (thus T semi-honest)
• Oracles for A: Join, Withdraw

• A spends a coin and wins if
− the spending cannot be matched to a with-

drawal (traceability of coins); or
− TraceS returns ⊥ (spender traceability)

Expnon-fram
A (k)

• Experiment plays an honest user U∗
• A can impersonate: S, B, D, T , users
• U∗ runs Join with A impersonating S
• A can ask the user to withdraw coins, transfer and

receive them and spend coins
• A wins if
− it outputs a proof accusing U∗ of double

spending, which U∗ cannot contest.
− U∗ is accused of a spending it did not perform

Fig. 4. Security experiments for constant-size e-cash

Besides correctness, which requires that honestly issued coins are accepted when transferred or
spent by honestly registered users, and that the tracing algorithms work correctly, we define the fol-
lowing security notions for our model: Anonymity of withdrawal means that not even the bank colluding
with the (double-spending) detector can tell to which withdrawal a coin corresponds. Anonymity of
transfer (or spending) ensures that when transferring/spending a coin a user remains anonymous even
with respect to the bank and malicious users the coin was transferred by.

Traceability of double spenders states that for each time a user spends a coin more than once
he will be accused, whereas Detectability of double spending means that Detect will determine if a
coin was spent multiple times. Non-frameability guarantees that even if everyone else colludes against
an honest user, he cannot be wrongfully accused of a spending he did not perform, nor of double
spending. See Fig. 4 for the details of the experiments. As for the BSZ-model of group signatures,
we call protagonists semi-honest if A impersonates them but however follows protocols as prescribed.
Note that in the experiment for non-frameability, U∗ behaves honestly, so if he is asked to spend more
coins than he withdrew he refuses; moreover, a malicious tracer can always accuse an honest user of
not having a receipt, which the latter counters by showing it.
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We say an e-cash system is traceable, non-frameable, etc., if no p.p.t. adversary can win the respec-
tive game with non-negligible probability (non-negligibly more than 1/2 for the anonymity notions).

6.2 Instantiation

Overview. The core of a coin in our system is a certificate from Sect. 3.2. Defining withdrawal as
partially blind issuing guarantees that the bank does not know the last component C5. Certificates were
designed to consist of elements of G so that their verification relations are paring-product equations; the
user can thus encrypt (in Groth-Sahai terminology: commit to) the coin and prove validity. Moreover,
each time the coin is transferred, the receiver can re-randomize the encryption (cf. Sect. 5.2), which
guarantees unlinkable anonymity.

To check for double spendings, the detector will get the decryption key to compare encrypted
certificates. However, this straight-forward approach would not guarantee user anonymity when bank
and detector cooperate. The blind component C5 is thus encrypted under a different key than the rest
(in Sect. 5.3 we showed how to construct the corresponding proofs). The detector gets only the key to
decrypt C5, which suffices to detect double spending. Since the the first 4 components remain hidden
from the detector, partial blindness of certificates suffices. The other decryption key is given to the
tracer, which enables tracing of a coin by comparing C3 which is known to the bank.

The receipts, given when transferring and spending coins, are group signatures on them, the signing
keys for which the users get when joining the system. This guarantees user traceability, while preserving
anonymity (only the tracer, holding the group-signature opening key, can reveal users’ identities). To
identify a double spender, the tracer follows backwards the paths the certificate took before reaching
the spender, by opening the receipts. A user that spent or transferred a coin twice is then unable to
show two receipts. To guarantee soundness of tracing, we must ensure that each signature corresponds
to at most one transfer. We achieve this by having the receiver choose a nonce which is added to the
message the sender must sign.

Details. Let GS = (SetupGS , JoinGS ,GSignGS ,GVerGS) be a dynamic non-frameable group-signature
scheme.6 Let H : G∗ → {0, 1}n be a collision-resistant hash function.

Setup. − Set up a group signature scheme GS such that S is the group’s issuer (group manager)
and T gets opening key ok. The group verification key gvk is added to pp.

– Produce two keys for linear commitments ckT and ckD. The corresponding extraction keys ekT
and ekD are given to T (thus tk = (ekT , ekD, ok). D receives dk := ekD.

– Set up the CRS (if any) for the blind certificate-issuing scheme from Sect. 3.2. B picks issuing
key ik := ω ← Zp, adds Ω := ωG to pp, and gets a group signing key gskB by joining GS.

Join. A user Ui joins the system by running JoinGS with S to obtain her group signing key gski.

Withdraw. User Ui runs the issuing protocol (Fig. 2) with B to get (C1, . . . C5) ∈ G5 satisfying

e(C1, Ω + C2) = e(K + C4, G)
e(C2, H) = e(G,C3)
e(C4, H) = e(G,C5)

(12)

Additionally, the bank gives the user a “receipt” RB ← GSignGS(gskB,H(C1, C2, C3,Ui)).7
Ui verifies the certificate and the signature RB and makes the following commitments:

ci := Com(ckT , Ci), for 1 ≤ i ≤ 4 c5 := Com(ckD, C5)

6 Encrypting the certified signatures from Sect. 4 and proving validity by adding a Groth-Sahai proof yields a (CPA-
anonymous) non-frameable group signature scheme that does not require any further assumptions.

7 Abusing notation slightly, we let Ui be a unique encoding of the user’s identity in G. Note that for the receipts from
the issuer, no nonce is required, since the user contributes to the randomness of the certificate.
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and proofs Φ1, Φ2, Φ3 for the committed values satisfying each of the equations in (12). Φ1 and
Φ2 are regular Groth-Sahai proofs; for the last equation on commitments under different keys, see
Sect. 5.3. We call (~c, ~Φ) a coin, and refer to Appendix C for its concrete construction.

Transfer / Spend. When Ui transfers a coin (~c, ~Φ) to Uj , she sends R← GSigGS(gskUi
,H(~c,Uj , N))

as well, where N is a nonce set by Uj . The receiver Uj checks correctness of (~c, ~Φ) and R, re-
randomizes ~c and updates ~Φ (cf. Sects. 5.2 and 5.3). Spending is defined as transferring.

Detect. After receiving new a coin, D uses extraction key ekD to open c5: C5 := Extr(ekD, c5) (cf.
Sect. 5.1). He compares the tag C5 with that of previously received coins to see if a coin was spent
twice, in which case he charges T to trace the double spender.

Tracing of DS.
– If multiple spendings (~c(i), ~Φ(i), R(i)) with Extr(ekD, c5

(i)) = C∗5 for all i were detected, the
tracer uses the key ok to open the signatures R(i) in order to reveal users U (i)

0 .

– Each U (i)
0 has to prove legal acquisition of his coin, which a user U does as follows:

• If the coin was obtained from the bank, show C = (C1, . . . , C5) and the receipt RB.
T accepts if C is valid, GVerGS(gvk,H(C1, C2, C3,U), RB) = 1 and C5 = C∗5 .

• If the coin was received from a user, show the receipt R received with it, and show (~c′, ~Φ′),
the received coin (i.e., before re-randomizing it), and the nonce N .
T accepts if (~c′, ~Φ′) is valid, GVerGS(gvk,H(~c′,U , N), R) = 1 and Extr(ekD, c′5) = C∗5 .

– In the second case (receipt produced by a user), T opens R to U (i)
1 , who in turn has to prove

legal acquisition of the coin. Moreover, the tracer only accepts a receipt if it has not been given
to him before.

– Continuing this process for every i produces a chain of users U (i)
0 ,U (i)

1 , . . . which either ends
with the bank, or with a user failing to prove legal acquisition—in which case that user is
accused.

– Correctness of tracing is proved by proving correctness of opening of group signatures and
proving that two commitments contain the same certificate using the techniques from Sect. 5.4.

Tracing of coins and users. Given ekT , the tracer can recover C3 from a coin and thus match
withdrawn coins to spent coins. Spender anonymity is revoked by opening the group signature.

6.3 Security Results

We briefly argue why our instantiation satisfies the security definitions from Sect. 6.1. Each property
follows by a straight-forward reduction to the security of the underlying building blocks.

Detectability and traceability of double spenders. (I) Assuming an honest bank, every cer-
tificate is only issued once with all but negligible probability; (II) by unforgeability of certificates
(Theorem 8) and soundness of the WI proofs, opening all d spent coins leads to at most q different
certificates, where q is the number of Withdraw queries. This proves detectability.

For every i let s(i) be the number of times certificate C(i) was spent. Then the tracing algorithm
produces s(i) lists of users, beginning with the spenders and linked by their certificates. Unforgeability
of group signatures and (I) guarantees that only one such list ends with the bank. Since s(i) − 1 users
are thus accused and by (II), we have a =

∑q
i=1(s(i) − 1) = d− q, which proves traceability.

Non-frameability. If U∗ uses a random nonce each time then by collision resistance of H, the
probability of receiving the same valid receipt twice is negligible. The user can only be provably
accused if he spent/transferred a coin of which he cannot justify acquisition. Non-frameability of
group signatures guarantees that U∗ only has to justify coins he actually transferred—and for each
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such coin he possesses a valid receipt. Note that if a malicious user transfers the same coin (possibly
as two different randomizations) twice to U∗ then U∗ has two different signatures (due to the nonce)
and can thus justify both coins.

Anonymity. Anonymity of withdrawal follows from partial blindness of issuing (indistinguishability
of C5) and witness indistinguishability of the commitments (c1, . . . , c4) under key ckT . Anonymity of
transfer follows from WI of commitments under ckT and ckD and anonymity of group signatures.

Traceability. Traceability of coins follows from soundness of the WI proofs and unforgeability of
certificates; traceability of spenders follows from traceability of group signatures.
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A The Strong Diffie-Hellman Assumptions and the Hidden Variants

We present the Strong Diffie-Hellman Problem for G1 = G2 and variants of it whose hardness follows
from that of the original problem.

Definition 11 (The Strong Diffie-Hellman Problem I (SDH-I)).
Given a (q+1)-tuple (G, γG, γ2G, . . . , γqG), for a random element γ ∈ Zp, output a pair

(
x,A = 1

γ+xG
)

,
with x ∈ Zp. It satisfies e(A,Γ + xG) = e(G,G) with Γ = γG.

Definition 12 (The Strong Diffie-Hellman Assumption). The q-SDH assumption states that
this problem is intractable for a given q.

Definition 13 (The Strong Diffie-Hellman Problem II (SDH-II)). Given (G,Γ = γG) and
q − 1 pairs

(
xi, Ai = 1

γ+xi
G
)

, with xi ∈ Zp for i = 1, . . . , q − 1, output a new pair
(
x,A = 1

γ+xG
)

,
with x ∈ Zp.
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Lemma 14. If one can solve the Strong Diffie-Hellman Problem II, then one can solve the Strong
Diffie-Hellman Problem I.

See Appendix B for the proof.

Definition 15 (The Strong Diffie-Hellman Problem III (SDH-III)). Given (G,Γ = γG,K)
and q− 1 triples

(
xi, yi, Ai = 1

γ+xi
(K + yiG)

)
, with xi, yi ∈ Z for i = 1, . . . , q− 1, output a new triple(

x, y,A = 1
γ+x(K + yG)

)
, with x, y ∈ Zp. It satisfies e(A,Γ + xG) = e(K,G) · e(G,G)y.

Lemma 16. If one can solve the Strong Diffie-Hellman Problem III, then one can solve the Strong
Diffie-Hellman Problem I.

See Appendix B for the proof.
In [BW07], a “hidden” version of SDH-II is defined, where in the pairs (xi, Ai), the scalar xi is not

given in the clear but as (xiG, xiH) for a fixed group generator H. It is easily seen that under the
Knowledge of Exponent Assumption [Dam92,BP04], the following problem is equivalent to SDH-II.

Definition 17 (The Hidden Strong Diffie-Hellman Problem (HSDH)). Given (G,H, Γ = γG)
and q − 1 triples

(
Xi = xiG,X

′
i = xiH,Ai = 1

γ+xi
G
)
, with xi ∈ Z∗p for i = 1, . . . , q − 1, output a new

triple
(
X = xG,X ′ = xH,A = 1

γ+xG
)
, with x ∈ Z∗p. It satisfies both

e(X,H) = e(G,X ′) e(A,Γ +X) = e(G,G).

Definition 18 (The Hidden Strong Diffie-Hellman Assumption). The q-HSDH assumption
states that the Hidden Strong Diffie-Hellman II Problem is intractable for a given q.

We now apply the same methodology to SDH-III, i.e., we give (and expect in a forgery) the two
scalars x and y in a hidden form analogously to HSDH.

Definition 19 (The Double Hidden Strong Diffie-Hellman Problem (DHSDH)). Given
(G,H,K, Γ = γG) and q − 1 tuples

(
Xi = xiG,X

′
i = xiH,Yi = yiG, Y

′
i = yiH,Ai = 1

γ+xi
(K + yiG)

)
,

with xi, yi ∈ Z∗p for i = 1, . . . , q − 1, output a new tuple(
X = xG,X ′ = xH, Y = yG, Y ′ = yH,A =

1
γ + x

(K + yG)
)
,

with x ∈ Z∗p. It satisfies

e(X,H) = e(G,X ′) e(Y,H) = e(G, Y ′) e(A,Γ +X) = e(K,G) · e(Y,G).

Definition 20 (The Double Hidden Strong Diffie-Hellman Assumption). The q-DHSDH as-
sumption states that the Double Hidden Strong Diffie-Hellman Problem is intractable for a given q.

B Proofs

Similar proofs can be found in [Oka06], but we recall them for completeness.

Proof (of Lemma 14). Let us be given a (q + 1)-tuple (P, γP, γ2P, . . . , γqP ), for random elements
P ∈ G and γ ∈ Zp. We now generate the input for the SDH-II problem: we
– randomly choose α ∈ Zp and xi ∈ Zp, for i = 1, . . . , q − 1, such that the xi’s are pairwise distinct;
– set

G← α

[
q−1∏
i=1

(γ + xi)

]
P Γ ← γG;
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– simulate the elements, for i = 1, . . . , q − 1: Ai ← α

q−1∏
j=1
j 6=i

(γ + xj)

P .

Since G = (γ + xi)Ai, we have

e(Ai, Γ + xiG) = e(Ai, γG+ xiG) = e(Ai, (γ + xi)G) = e(G,G).

Finally, the forgery (x,A) satisfies

x 6= xi (i = 1, . . . , q − 1), A =
1

γ + x
G =

α

γ + x

[
q−1∏
i=1

(γ + xi)

]
P =

f(γ)
γ + x

P,

with
f(γ) = α

q−1∏
i=1

(γ + xi) = α

q−1∏
i=1

((γ + x) + (xi − x)) = α

q−1∏
i=1

(xi − x) + (γ + x)g(γ + x)

Therefore,
A =

α
∏q−1
i=1 (xi − x)
γ + x

P + g(γ + x)P

Since g is a polynomial of degree at most q − 2, one can compute R = g(γ + x)P from the SDH-I
input. If one sets

A′ =
1

α
∏q−1
i=1 (xi − x)

(A−R) =
1

γ + x
P

the pair (x,A′) is a solution to the SDH-I problem. ut

Proof (of Lemma 16). There are two ways of solving SDH-III by outputting (x, y,A): Either x 6= xi
for all i = 1, . . . , q − 1 or y 6= yi for all i.

A new x. Let us first assume that the adversary is more likely to solve the SDH-III Problem with an
x that is different from all the xi of the input. Then the analysis is similar to the proof of Lemma 14.

Let us be given a (q + 1)-tuple (P , γP , γ2P ,. . . , γqP ), for random elements P ∈ G and γ ∈ Zp.
We now generate the input for the SDH-III problem: we

– randomly choose α, β ∈ Zp and xi, yi ∈ Zp, for i = 1, . . . , q− 1, such that the (xi, yi)’s are pairwise
distinct;

– set

G← α

[
q−1∏
i=1

(γ + xi)

]
· P K ← βG Γ ← γG

– simulate the certificates, for i = 1, . . . , q − 1:

Ai ← α(β + yi)

q−1∏
j=1
j 6=i

(γ + xj)

P
Since (γ + xi)Ai = (β + yi)G = K + yiG, we have

e(Ai, Γ + xiG) = e(Ai, γG+ xiG) = e(Ai, (γ + xi)G) = e(K + yiG,G) = e(K,G)e(G,G)yi .

Finally, a successful output satisfies

x 6= xi (i = 1, . . . , q), A =
1

γ + x
(K + yG) =

β + y

γ + x
G =

α(β + y)
γ + x

[
q−1∏
i=1

(γ + xi)

]
P =

f(γ)
γ + x

P,
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where

f(γ) = α(β+ y)
q−1∏
i=1

(γ+xi) = α(β+ y)
q−1∏
i=1

((γ+x) + (xi−x)) = α(β+ y)
q−1∏
i=1

(xi−x) + (γ+x)g(γ+x)

Therefore,

A =
α(β + y)

∏q
i=1(xi − x)

γ + x
P + g(γ + x)P

Since g is a polynomial of degree at most q − 2, one can compute R = g(γ + x)P from the SDH-I
input. If one sets

A′ =
1

α(β + y)
∏q
i=1(xi − x)

(A−R) =
1

γ + x
P

the pair (x,A′) is a solution to the SDH-I problem.

An already known x. Let us now assume that the adversary most likely solves the SDH-III Problem
with x ∈ {x1, . . . , xq−1} from the input.

Let us be given a (q + 1)-tuple (P , γP , γ2P ,. . ., γqP ), for random elements P ∈ G and γ ∈ Zp.
We now generate the input for the SDH-III problem: we

– randomly choose α, β ∈ Zp and (xi, yi) ∈ Zp, for i = 1, . . . , q−1, such that the (xi, yi)’s are pairwise
distinct;

– choose a random index k ∈ {1, . . . , q − 1}, and set (thus implicitly defining a new secret exponent
ω ← γ − xk),

G← β

q−1∏
i=1
i 6=k

(γ − xk + xi)

 · P K ← (αγ − yk)G Γ ← (γG)− xkG = ωG

– simulate the certificates, for i = 1, . . . , q − 1:

• for i = k, Ak ← αG, which satisfies

(ω + xk)Ak = αγG = K + ykG

• for i 6= k,

Ai ← β((yi − yk) + αγ)

 q∏
j=1

j 6=i,k

(γ − xk + xj)

P
We have (ω + xi)Ai = ((yi − yk) + αγ)G = (yi − yk)G+K + ykG = K + yiG

Finally, a successful output satisfies

(x, y) 6= (xi, yi) (i = 1, . . . , q), A =
1

ω + x
(K + yG)

Since we assumed that the x is likely in {x1, . . . , xq}, and xk is only used under the formula ω = γ−xk,
the probability that x = xk is 1/q, in which case

Ak =
1
γ

(K + ykG) A =
1
γ

(K + yG)

Then,

ykA− yAk =
yk − y
γ

K =
yk − y
γ

(αγ − yk)β

q−1∏
i=1
i6=k

(γ − xk + xi)

 · P =
f(γ)
γ

P,
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with

f(γ) = (yk − y)(αγ − yk)β

q−1∏
i=1
i6=k

(γ − xk + xi)

 = (y − yk)ykβ

q−1∏
i=1
i 6=k

(xi − xk)

+ γg(γ)

Since g is a polynomial of degree at most q − 2, one can compute R = g(γ)P from the SDH-I input.
If one sets

A′ =
1

(y − yk)ykβ
[∏q−1

i=1
i 6=k

(xi − xk)
](ykA− yAk −R) =

1
γ
P,

the pair (0, A′) is a solution to the SDH-I problem. ut

C The Concrete Form of a Coin

For concreteness we give the form of a coin, i.e., a certificate “encrypted” under two different keys
together with a proof of validity.

Let ck = (U, V,W1,W2,W3), ckD = (U ′, V ′,W ′1,W
′
2,W

′
3), let ~u and ~u′ be as in (3), resp.; let

C = (A,X,X ′, Y, Y ′) be a certificate satisfying (1). We commit to its components

cA := ι(A) +
∑
sAiui

cX := ι(X) +
∑
sXiui

cX′ := ι(X ′) +
∑
sX′iui

cY := ι(Y ) +
∑
sY iui

cY ′ := ι(Y ′) +
∑
sY ′iu′i

and prove that the plaintexts satisfy the equations in (1):

Equation 1. e(X,H) = e(G,X ′), that is e(H,X) e(G−1, X ′) = 1, which is linear. The proof is thus
ξ := (sX1H + sX′1G

−1, sX2H + sX′2G
−1, sX3H + sX′3G

−1)

Equation 2. e(Y,H) = e(G, Y ′), with Y and Y ′ being commitments under different keys ~u and ~u′.
This is explained in Sect. 5.3, with Z := Y ′. The proofs are thus Π := (p1,p2,p3) as in (10), for
random ti,j ← Zp (1 ≤ i, j ≤ 3), and Ψ := (ψ1, ψ2, ψ3) as in (11) (with sZi := sY ′i).

Equation 3. e(A,Ω +X) = e(K + Y,G), that is e(A,Ω) e(Y,G−1) e(A,X) = e(K,G), which can
be written as ( ~A · ~Y) (~Y · Γ ~Y) = tT , with

~Y :=

[
A
X
Y

]
~A :=

[
Ω
0

G−1

]
, Γ :=

[
0 1 0
0 0 0
0 0 0

]
, tT := e(K,G), and S =

[
sA1 sA2 sA3

sX1 sX2 sX3

sY 1 sY 2 sY 3

]
Constructing Φ ∈ G3×3 as in (5), we get

Φ =



sA1sX1U (sA1sX2 + r1)V sX1A+ sA1X + sA1Ω + sY 1G
−1

+ (sA1sX3 + r2)W1 + (sA1sX3 + r2)W2 + (sA1(sX1 + sX2) + r1)P + (sA1sX3 + r2)W3

(sA2sX1 − r1)U sA2sX2V sX2A+ sA2X + sA2Ω + sY 2G
−1

+ (sA2sX3 + r3)W1 + (sA2sX3 + r3)W2 + (sA2(sX1 + sX2)− r1)P + (sA2sX3 + r3)W3

(sA3sX1 − r2)U (sA3sX2 − r3)V sX3A+ sA3X + sA3Ω + sY 3G
−1

+ sA3sX3W1 + sA3sX3W2 + (sA3(sX1 + sX2)− r2 − r3)P + sA3sX3W3


for random r1, r2, r3 ← Zp.

A coin is thus of the form (cA, cX , cX′ , cY , cY ′ , ξ,Π, Ψ, Φ)> ∈ G15×3.
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