
Security of Permutation-based Compression Function lp231

Jooyoung Lee1? and Daesung Kwon2

1 Sejong University, Seoul, Korea, jlee05@sejong.ac.kr
2 The Attached Institute of Electronics and Telecommunications Research Institute, Daejeon, Korea,

ds kwon@ensec.re.kr

Abstract. In this paper, we study security of a certain class of permutation-based compression
functions. Denoted lp231 in [10], they are 2n-to-n-bit compression functions using three calls to
a single n-bit random permutation. We prove that lp231 is asymptotically preimage resistant

up to 2
2n
3 /n query complexity and collision resistant up to 2

n
2 /n1+ε query complexity for any

ε > 0. Based on a single permutation, lp231 provides both efficiency and almost optimal collision
security.

1 Introduction

A cryptographic hash function takes a message of arbitrary length, and returns a bit string
of fixed length. The most common way of hashing variable length messages is to iterate a
fixed-size compression function according to the Merkle-Damg̊ard paradigm. The underlying
compression function can either be constructed from scratch, or be built upon off-the-shelf
cryptographic primitives such as blockciphers. For example, the Whirlpool hash function,
adopted as ISO/IEC 10118-3 standard, is based on the Miyaguchi-Preneel construction using
a modified version of AES [1]. Compression functions based on blockciphers have been widely
studied [4–8, 14, 15]. Recently, researchers has begun to pay attention to building compres-
sion functions from fixed key blockciphers, where just a small number of constants are used
as keys [2, 3, 9, 10, 12, 13]. Since each key of a blockcipher defines an independent random per-
mutation in the ideal cipher model, such compression functions are often called permutation-
based. Permutation-based compression functions have an obvious advantage over conventional
blockcipher-based ones, since fixing the keys allows to save computational overload for key
scheduling.

In earlier work, Black, Cochran and Shrimpton showed that any “highly-efficient” com-
pression function using exactly one permutation call for each message block allows a query-
efficient collision-finding attack [3]. Rogaway and Steinberger extended this result to a wide
class of compression functions that map mn bits to rn bits using k calls to n-bit permuta-

tions [11]. Such compression functions, denoted m
k−→ r, allow collision-finding attacks with

2n(1−(m−0.5r)/k) query complexity, and preimage finding attacks with 2n(1−(m−r)/k) query com-
plexity.

In [10], the authors focused on the security of a special class of permutation-based com-
pression functions, where the input to each permutation is given by a linear combination of
the inputs to the compression function and the outputs of the previously called permutations.
Such compression functions are called linearly-dependent permutation-based, and denoted by
LPmkr if the compression function is based on independent random permutations, and by

? This research was supported by Basic Science Research Program through the National Research Foundation
of Korea(NRF) funded by the Ministry of Education(NRF-2013R1A1A2007488).

lpmkr if the compression function is based on a single random permutation. Taking into ac-
count the attacks presented in [11], they investigated the security of LP231, LP241, LP352,
LP362 and their “lp variants”. From a practical point of view, it is obvious that lp compression
functions are more efficient compared to LP ones since an lp compression function uses its
basing blockcipher with only one fixed key. However, [10] gives a concrete analysis only for
LP231. The analysis of the other compression functions rest on computer-aided approxima-
tion. Especially, the authors claim that analyzing lp231 by hand would require about 30 times
as much paper as LP231.

In this paper, we give a concrete security analysis of lp231 in terms of preimage resistance
and collision resistance. Specifically, we prove preimage resistance up to (2

2n
3 /n) query com-

plexity and collision resistance up to (2
n
2 /n1+ε) query complexity for any ε > 0. Our analysis

is not only simpler than the authors of [10] estimated, but also elegant based on a recursive
approach.

2 Preliminaries

General Notations For a positive integer n, let [1, n] = {1, 2, . . . , n} and let Πn be the set
of permutations on {0, 1}n. We let F2n denote a finite field of order 2n. Throughout our work,
we will identify F2n and {0, 1}n, assuming a fixed mapping between the two sets.

For positive integers s and t, let Ms×t
F2n

denote the set of all s × t matrices over F2n . For

A, B ∈ M2×1
F2n

, [A,B] is the 2 × 2 matrix obtained by the concatenation of A and B. The
concatenation is similarly denoted for more than two matrices. For a 2× 1 matrix

A =

[
a1
a2

]
let

A∗ =
[
a2 a1

]
.

Note that A∗A = 0. For A, B ∈M2×1
F2n

, A∗B is the determinant of [A,B].

We write u
$← U to denote uniform random sampling from the set U and assignment to u.

For a multiset U , mult(U, u) is the multiplicity of u in U , and mult(U) = maxu∈U mult(U, u).

Linearly-dependent Permutation-based Compression Functions For positive integers
m, k and r with m > r, let MF2n

(m, k, r) be a set of (k + r) × (m + k) matrices A = (aij)
over F2n such that

aij = 0 for 1 ≤ i ≤ k and j ≥ m+ i.

Then each matrix A ∈MF2n
(m, k, r) defines a compression function lpAmkr with oracle access

to a random permutation π ∈ Πn as follows.

lpAmkr : ({0, 1}n)m −→ ({0, 1}n)r

(v1, . . . , vm) 7−→ (w1, . . . , wr)

where (w1, . . . , wr) is computed by the algorithm described in Figure 1(a). A function lpAmkr
is called linearly-dependent single-permutation-based, and often simply denoted as lpmkr or
lpA. A compression function lpA231 for A ∈MF2n

(2, 3, 1) is separately described in Figure 1(b).

Algorithm lpAmkr(v1, . . . , vm)

for i← 1 to k do
xi ←

∑m
j=1 aijvj +

∑i−1
j=1 ai(m+j)yj

yi ← π(xi)

for i← 1 to r do
wi ←

∑m
j=1 a(k+i)jvj +

∑k
j=1 a(k+i)(m+j)yj

return (w1, . . . , wr)

(a) lpAmkr for A ∈MF2n (m, k, r)

Algorithm lpA231(v1, v2)

x1 ← a11v1 + a12v2
y1 ← π(x1)
x2 ← a21v1 + a22v2 + a23y1
y2 ← π(x2)
x3 ← a31v1 + a32v2 + a33y1 + a34y2
y3 ← π(x3)
w ← a41v1 + a42v2 + a43y1 + a44y2 + a45y3
return w

(b) lpA231 for A ∈MF2n (2, 3, 1)

Fig. 1. Compression function lpAmkr

Collision Resistance and Preimage Resistance For simplicity of notations, we will
define collision resistance and preimage resistance focusing on linearly-dependent single-
permutation-based compression functions, while these security notions can be extended in
an obvious way to any hash function based on public ideal primitives.

Let lpAmkr be a compression function for A ∈MF2n
(m, k, r). Given an information-theoretic

adversary A with oracle access to π and π−1, we execute the experiment Expcol
A described in

Figure 2(a) in order to quantify the collision resistance of lpAmkr. The experiment records the
query-response pairs that the adversary A obtains into a query history Q. A pair (x, y) is in
the query history if A makes π(x) and gets back y, or it makes π−1(y) and gets back x. Given
a query history Q, then MaplpA(Q) ⊂ ({0, 1}n)m × ({0, 1}n)r is defined to be the set of pairs
(v, w) such that there exist evaluations (xi, yi) ∈ Q satisfying the following equations.

xi =
m∑
j=1

aijvj +
i−1∑
j=1

ai(m+j)yj , i = 1, . . . , k,

wi =
m∑
j=1

a(k+i)jvj +
k∑
j=1

a(k+i)(m+j)yj , i = 1, . . . , r, (1)

where we write v = (v1, . . . , vm) and w = (w1, . . . , wr). Informally, MaplpA(Q) is the set of the

evaluations of lpAmkr that are determined by the query history Q. Now the collision-finding
advantage of A is defined to be

Advcol
lpA

(A) = Pr
[
Expcol

A = 1
]
.

The probability is taken over the random permutation π, and A’s coins (if any). For q > 0,
we define Advcol

lpA
(q) as the maximum of Advcol

lpA
(A) over all adversaries A making at most q

queries.
The preimage resistance of lpAmkr is quantified similarly using the experiment Exppre

A de-
scribed in Figure 2(b). The adversary A takes as input a random w ∈ ({0, 1}n)r before it
begins making queries to π and π−1. The preimage-finding advantage of A is defined to be

Advpre

lpA
(A) = Pr

[
Exppre

A = 1
]
.

For q > 0, Advpre

lpA
(q) is the maximum of Advpre

lpA
(A) over all adversaries A making at most

q queries.

Experiment Expcol
A

π
$← Πn

Aπ,−π updates Q
if ∃ v 6= v′, w s.t. (v, w), (v′, w) ∈ MaplpA(Q) then

output 1
else

output 0

(a) Quantification of collision resistance

Experiment Exppre
A

π
$← Πn

w
$← Irn

A(w)π,−π updates Q
if ∃ v s.t. (v, w) ∈ MaplpA(Q) then

output 1
else

output 0

(b) Quantification of preimage resistance

Fig. 2. Experiments for quantification of collision resistance and preimage resistance

3 Security of lp231

In this section, we will prove that a linearly-determined permutation-based compression func-
tion lpA231 achieves good collision resistance and preimage resistance as long as the matrix
A ∈ MF2n

(m, k, r) satisfies a certain condition. Our strategy is to first define a certain “bad
event” parameterized by a matrix, and then show that collision or preimage finding is hard
without the occurrence of the bad event. The bad event is the union of some “auxiliary
events”, defined in the following subsection. Throughout this paper, we will write N = 2n

and N ′ = N − q.

3.1 Auxiliary Events

In order to analyze the security of lp231, we need to define some auxiliary events. Suppose
that an adversary A makes q adaptive queries to a random permutation π and its inverse
π−1, and records a query history

Q = {(xj , yj) ∈ {0, 1}n × {0, 1}n : 1 ≤ j ≤ q}

where (xj , yj) denotes the query-response pair obtained by the j-th query. Throughout this
work, we will assume that xj ’s are all distinct. This means that yj ’s are also all distinct since
π is a permutation. It would not affect A’s collision finding advantage making any redundant
query.

For t ≥ 1 and, ai, bi ∈ F2n and Ai, Bi ∈ M2×1
F2n

, i = 1, . . . , t, we define the following
multisets.

U t (a1, b1, . . . , at, bt) =

{
t∑
i=1

(
aix

ji + biy
ji
)

: j1, . . . , jt ∈ [1, q]

}
,

U t6= (a1, b1, . . . , at, bt) =

{
t∑
i=1

(
aix

ji + biy
ji
)

: j1, . . . , jt ∈ [1, q] are all distinct

}
,

V t (A1, B1, . . . , At, Bt) =

{
t∑
i=1

(
Aix

ji +Biy
ji
)

: j1, . . . , jt ∈ [1, q]

}
.

For a positive integer l, these multisets are associated with the following events.

Et(a1, b1, . . . , at, bt; l)⇔ A sets mult(U t(a1, b1, . . . , at, bt)) > l,

Et6=(a1, b1, . . . , at, bt; l)⇔ A sets mult(U t(a1, b1, . . . , at, bt)) > l,

Ft(A1, B1, . . . , At, Bt; l)⇔ A sets mult(V t(A1, B1, . . . , At, Bt)) > l.

We will often write Et(l) = Et(a1, b1, . . . , at, bt; l), E
t
6=(l) = Et6=(a1, b1, . . . , at, bt; l) and Ft(l) =

Ft(A1, B1, . . . , At, Bt; l) for simplicity. The rest of this section is devoted to the estimation of
the probability of these auxiliary events for small t’s (say t = 1, 2, 3).

Theorem 1. Let a1, a2, b1, b2 be nonzero elements in F2n, and let

f1 = f1(d1) = N

(
q

d1 + 1

)(
1

N ′

)d1+1

,

f2 = f2(d2) = N

(
q

d2 + 1

)(
2q

N ′

)d2+1

for positive integers d1 and d2. Then the following hold.

1. Pr
[
E1(a1, b1; d1)

]
≤ f1.

2. Pr
[
E2
6=(a1, b1, a2, b2; 2d1d2)

]
≤ f2 + 2f1.

3. If either a1 + a2 6= 0 or b1 + b2 6= 0, then

Pr
[
E2(a1, b1, a2, b2; 2d1d2 + d1)

]
≤ f2 + 3f1.

Proof. First we give a proof for the first inequality. Fix c ∈ F2n . When A makes the j-
th forward query y = π(x∗), the probability that a1x

∗ + b1y = c, which is equivalent to
y = b−11 (c+ a1x

∗), is not greater than 1/ (2n − (j − 1)). Similarly, when A makes the j-
th backward query x = π−1(y∗), the probability that a1x + b1y

∗ = c is not greater than
1/ (2n − (j − 1)). The event E1(a1, b1; d1) occurs when there exists a set {j1, . . . , jd1+1} ⊂ [1, q]
such that

a1x
j1 + b1y

j1 = . . . = a1x
jd1+1 + b1y

jd1+1 = c

for some c ∈ F2n . Since 1/(2n − (j − 1)) ≤ 1/N ′, it follows that

Pr
[
E1(a1, b1; d1)

]
≤ N

(
q

d1 + 1

)(
1

N ′

)d1+1

= f1.

For the proof of the second inequality, we define events

E2
j (c)⇔ A sets a1x

j1 + b1y
j1 + a2x

j2 + b2y
j2 = c with j = max{j1, j2},

E2(c; 2d1d2)⇔ A sets mult(U2, c) > 2d1d2

where we simply write U2 = U2(a1, b1, a2, b2). Note that E2
j (c) occurs when the j-th query

increases the multiplicity of c in U2 at least by one. In order to estimate Pr
[
E2(2d1d2)

]
, we

decompose E2(2d1d2) as follows.

E2(2d1d2) =
∨

c∈F2n

E2(c; 2d1d2)⇒ Eex ∨
∨

c∈F2n

(
E2(c; 2d1d2) ∧ ¬Eex

)
(2)

where
Eex = E1(a1, b1; d1) ∨ E1(a2, b2; d1).

By the first inequality, it follows that

Pr [Eex] ≤ 2f1. (3)

We now analyze the event E2(c; 2d1d2) ∧ ¬Eex for a fixed c ∈ F2n . Suppose that a certain
query, say the j-th query, completes equation

a1x
j + b1y

j + a2x
j′ + b2y

j′ = c

for some j′ < j. For the fixed j-th query, the j′-th query should satisfy

a2x
j′ + b2y

j′ = c+ a1x
j + b1y

j

and the number of such queries is at most d1 without the occurrence of E1(a2, b2; d1). Taking
into account the other position where the last query might contributes, we see that each
query increases the multiplicity mult(U2, c) at most by 2d1 without the occurrence of Eex.
This implies that the number of queries that increase mult(U2, c) should be at least d2 + 1.
Therefore we have

E2(c; 2d1d2) ∧ ¬Eex ⇒
∨

J⊂[1,q]
|J |=d2+1

∧
j∈J

(
E2
j (c) ∧ ¬Eex

) . (4)

In order to compute Pr
[∧

j∈J

(
E2
j (c) ∧ ¬Eex

)]
for a fixed J ⊂ [1, q] such that |J | = d2 + 1,

suppose that A makes the j∗-th query π(x∗) for j∗ ∈ J . Then we can upper bound the number
of responses y = π(x∗) that contribute the equation

a1x
j1 + b1y

j1 + a2x
j2 + b2y

j2 = c,

with j∗ = max{j1, j2}. If j1 = j∗ > j2, then it should hold that

y = b−12 (c+ a1x
∗ + a2x

j2 + b2y
j2)

for some j2 < j∗ ≤ q. So the number of possible responses for this case is at most q. The
case j2 = j∗ > j1 is analyzed similarly. Therefore the total number of possible responses
y = π(x∗) is at most 2q. With an analogous argument for π−1, we conclude that

Pr

∧
j∈J

(
E2
j (c) ∧ ¬Eex

) ≤ (2q

N ′

)d2+1

. (5)

Now by (2), (3), (4), and (5), we have

Pr
[
E2 (a1, b1, a2, b2; 2d1d2)

]
≤ N

(
q

d2 + 1

)(
2q

N ′

)d2+1

+ 2f1 = f2 + 2f1.

In order to prove the third inequality, note that

U2 (a1, b1, a2, b2) = U2
6= (a1, b1, a2, b2) ∪ U1 (a1 + a2, b1 + b2) .

If a1 + a2 6= 0 and b1 + b2 6= 0, then by the first inequality,

Pr
[
E1 (a1 + a2, b1 + b2; d1)

]
≤ f1.

This inequality also holds for the case that either a1 + a2 6= 0 or b1 + b2 6= 0: since π is a
permutation, this special case implies

Pr
[
E1 (a1 + a2, b1 + b2; 1)

]
= 0.

Therefore by the first two inequalities,

Pr
[
E2(a1, b1, a2, b2; 2d1d2 + d1)

]
≤ Pr

[
E2
6=(a1, b1, a2, b2; 2d1d2)

]
+ Pr

[
E1 (a1 + a2, b1 + b2; d1)

]
≤ f2 + 3f1. ut

Definition 1. For t ≥ 1, a matrix M = [A1, B1, . . . , At, Bt] ∈ M2×2t
F2n

is called column-sum
independent if M satisfies the following conditions.

1.
[∑

i∈I1 Ai,
∑

i∈I2 Ai
]

and
[∑

i∈I1 Bi,
∑

i∈I2 Bi
]

are invertible for any pair of distinct nonempty
subsets I1, I2 ⊂ [1, t].

2.
[∑

i∈I1 Ai,
∑

i∈I2 Bi
]

are invertible for any pair of (not necessarily distinct) nonempty
subsets I1, I2 ⊂ [1, t].

Definition 1 will be used for compact statement of the following corollary. We point out some
useful properties of column-sum independent matrices.

Property 1 If [A1, B1, . . . , At, Bt] is column-sum independent, then [Ai1 , Bi1 , . . . , Ais , Bis] is
also column-sum independent for every nonempty subset {i1, . . . , is} ⊂ [1, t].

Property 2 If [A1, B1, . . . , At, Bt] is column-sum independent, then
∑

i∈I Ai 6= 0 and
∑

i∈I Bi 6=
0 for every nonempty subset I ⊂ [1, t].

Property 3 Column-sum independence of M stipulates nonsingularity of

2
(
2t − 1

) (
2t − 2

)
+
(
2t − 1

)2
matrices determined by M .

Theorem 2. Let f1 = f1(d1) and f2 = f2(d2) be defined as in Theorem 1, and let

g2 = g2(d1, d2) =
d2 (4d1q + 2d1 + 1) q

N ′
,

g3 = g3(d1, d2, d3) = N2

(
q

d3 + 1

)(
6d1d2 + 6d1 + 1

N ′

)d3+1

for positive integers d1, d2 and d3. If a matrix [A1, B1, A2, B2, A3, B3] ∈M2×6
F2n

is column-sum
independent, then the following hold.

1. Pr
[
F1(A1, B1; 1)

]
= 0.

2. Pr
[
F2(A1, B1, A2, B2; 1)

]
≤ g2 + 6f2 + 14f1.

3. Pr
[
F3(A1, B1, A2, B2, A3, B3; 7d3)

]
≤ g3 + 3g2 + 24f2 + 66f1.

Proof. The proof of the first equality is straightforward since [A1, B1] is invertible. In order
to prove the second inequality, we define the following events.

F2col(j)⇔ A sets A1x
j1 +B1y

j1 +A2x
j2 +B2y

j2 = A1x
j3 +B1y

j3 +A2x
j4 +B2y

j4

where j3 < j1 ≤ j, j4 < j2 ≤ j, and j = max{j1, j2}

and

Eex = E2 ((B1 +B2)
∗A1, (B1 +B2)

∗B1, (B1 +B2)
∗A2, (B1 +B2)

∗B2; 2d1d2 + d1)

∨ E2 ((A1 +A2)
∗A1, (A1 +A2)

∗B1, (A1 +A2)
∗A2, (A1 +A2)

∗B2; 2d1d2 + d1)

∨ E2
6= (B∗1A2, B

∗
1B2, B

∗
1A2, B

∗
1B2; 2d1d2)

∨ E2
6= (A∗1A2, A

∗
1B2, A

∗
1A2, A

∗
1B2; 2d1d2)

∨ E2
6= (B∗2A1, B

∗
2B1, B

∗
2A1, B

∗
2B1; 2d1d2)

∨ E2
6= (A∗2A1, A

∗
2B1, A

∗
2A1, A

∗
2B1; 2d1d2) .

Then it follows that

F2(A1, B1, A2, B2; 1)⇒
∨

1≤j≤q
F2col(j)⇒ Eex ∨

∨
1≤j≤q

(
F2col(j) ∧ ¬Eex

)
(6)

and
Pr [Eex] ≤ 2 (f2 + 3f1) + 4 (f2 + 2f1) = 6f2 + 14f1 (7)

by Theorem 1.
We now estimate the probability Pr

[
F2col(j) ∧ ¬Eex

]
. Suppose that Amakes the j-th query

π(x∗), and consider the following three cases where y = π(x∗) contributes the equation

A1x
j1 +B1x

j1 +A2x
j2 +B2x

j2 = A1x
j3 +B1x

j3 +A2x
j4 +B2x

j4 . (8)

Case 1: j1 = j2 = j. The equality (8) is reduced to

(A1 +A2)x
∗ + (B1 +B2)y = A1x

j3 +B1y
j3 +A2x

j4 +B2y
j4 . (9)

Any response y satisfying (9) corresponds to a pair (j3, j4) ∈ [1, j − 1]2 such that

(B1 +B2)
∗A1x

j3 + (B1 +B2)
∗B1y

j3 + (B1 +B2)
∗A2x

j4 + (B1 +B2)
∗B2y

j4

= (B1 +B2)
∗(A1 +A2)x

∗. (10)

The number of such pairs is at most 2d1d2 + d1 without the occurrence of Eex.

Case 2: j1 = j and j2 6= j. The equality (8) is reduced to

A1x
∗ +B1y = A2x

j2 +B2y
j2 +A1x

j3 +B1y
j3 +A2x

j4 +B2y
j4 . (11)

Any response y satisfying (11) corresponds to a triple (j2, j3, j4) ∈ [1, j−1]3 such that j2 6= j4
and

B∗1A1x
j3 + (B∗1A2x

j2 +B∗1B2y
j2 +B∗1A2x

j4 +B∗1B2y
j4) = B∗1A1x

∗. (12)

For each j3 ∈ [1, j − 1], the number of pairs (j2, j4) ∈ [1, j − 1]2 satisfying (12) and j2 6= j4 is
at most 2d1d2 without the occurrence of Eex. Therefore the number of the triples satisfying
(11) is at most 2d1d2q without the occurrence of Eex.

Case 3: j2 = j and j1 6= j. The analysis of this case is essentially the same as Case 2.
To summarize, we conclude that

Pr
[
F2col(j) ∧ ¬Eex

]
≤ d2 (4d1q + 2d1 + 1)

N ′
. (13)

We can apply a similar argument for π−1. So using a union bound, the second inequality is
followed from (6), (7) and (13).

In order to prove the third inequality, we define events

F3j (C)⇔ A sets

3∑
i=1

(
Aix

ji +Biy
ji
)

= C with j = max{j1, j2, j3}, (14)

F3(C; 7d3)⇔ A sets mult(V 3, C) > 7d3

for C ∈ M2×1
F2n

and j ∈ [1, q]. Here we simply write V 3 = V 3(A1, B1, A2, B2, A3, B3). The

event F3j (C) occurs when the j-th query increases the multiplicity of C in V 3 at least by one.

In order to estimate Pr
[
F3(7d3)

]
, we decompose F3(7d3) as follows.

F3(7d3) =
∨

C∈M2×1
F2n

F3(C; 7d3)⇒ Fex ∨
∨

C∈M2×1
F2n

(
F3(C; 7d3) ∧ ¬Fex

)
(15)

where

Fex = F1(A1, B1; 1) ∨ F1(A2, B2; 1) ∨ F1(A3, B3; 1)

∨ F2(A1, B1, A2, B2; 1) ∨ F2(A2, B2, A3, B3; 1) ∨ F2(A3, B3, A1, B1; 1)

∨ E1 ((A2 +A3)
∗A1, (A2 +A3)

∗B1; d1) ∨ E1 ((A3 +A1)
∗A2, (A3 +A1)

∗B2; d1)

∨ E1 ((A1 +A2)
∗A3, (A1 +A2)

∗B3; d1) ∨ E1 ((B2 +B3)
∗A1, (B2 +B3)

∗B1; d1)

∨ E1 ((B3 +B1)
∗A2, (B3 +B1)

∗B2; d1) ∨ E1 ((B1 +B2)
∗A3, (B1 +B2)

∗B3; d1)

∨ E2 (A∗3A1, A
∗
3B1, A

∗
3A2, A

∗
3B2; 2d1d2 + d1)

∨ E2 (A∗1A2, A
∗
1B2, A

∗
1A3, A

∗
1B3; 2d1d2 + d1)

∨ E2 (A∗2A3, A
∗
2B3, A

∗
2A1, A

∗
2B1; 2d1d2 + d1)

∨ E2 (B∗3A1, B
∗
3B1, B

∗
3A2, B

∗
3B2; 2d1d2 + d1)

∨ E2 (B∗1A2, B
∗
1B2, B

∗
1A3, B

∗
1B3; 2d1d2 + d1)

∨ E2 (B∗2A3, B
∗
2B3, B

∗
2A1, B

∗
2B1; 2d1d2 + d1) . (16)

By Theorem 1 and the first two inequalities, it follows that

Pr [Fex] ≤ 3(g2 + 6f2 + 14f1) + 6f1 + 6(f2 + 3f1) = 3g2 + 24f2 + 66f1. (17)

We now analyze the event F3(C; 7d3) ∧ ¬Fex for a fixed C ∈ M2×1
F2n

. Since each query

increases the multiplicity mult(V 3, C) at most by 7 without the occurrence of Fex (according
to the positions where the query contributes), the number of queries that increase mult(V 3, C)
should be at least d3 + 1. Therefore we obtain

F3(C; 7d3) ∧ ¬Fex ⇒
∨

J⊂[1,q]
|J |=d3+1

∧
j∈J

(
F3j (C) ∧ ¬Fex

) . (18)

In order to compute Pr
[∧

j∈J

(
F3j (C) ∧ ¬Fex

)]
for a fixed J ⊂ [1, q] such that |J | = d3 + 1,

suppose that A makes the j∗-th query π(x∗) for j∗ ∈ J . Then we can upper bound the number
of responses y = π(x∗) that contribute the equation

A1x
j1 +B1y

j1 +A2x
j2 +B2y

j2 +A3x
j3 +B3y

j3 = C (19)

with j∗ = max{j1, j2, j3}. For s ∈ {0, 1, 2}, consider the case where the j∗-th query contributes
3− s terms in equation (19). If js+1 = · · · = j3 = j∗, then the equation (19) is reduced to

s∑
i=1

(
Aix

ji +Biy
ji
)

+ Āx∗ + B̄y = C (20)

where Ā =
∑3

i=s+1Ai 6= 0 and B̄ =
∑3

i=s+1Bi 6= 0 by the column-sum independence. By
multiplying B̄∗ on both sides of (20), we observe that each y satisfying (20) is associated with
a solution (j1, . . . , js) ∈ [1, j∗ − 1]s to the following equation.

s∑
i=1

(
B̄∗Aix

ji + B̄∗Biy
ji
)

= B̄∗C + B̄∗Āx∗. (21)

Without the occurrence of Fex, the number of solutions (j1, . . . , js) to (21) is at most 1 if
s = 0, d1 if s = 1 and 2d1d2 + d1 if s = 2. By symmetry in the positions of the j∗-th query
and with an analogous argument for π−1, we obtain

Pr

∧
j∈J

(
F3j (C) ∧ ¬Fex

) ≤ (6d1d2 + 6d1 + 1

N ′

)d3+1

. (22)

Using a union bound, the proof is complete from (15), (17), (18) and (22). ut

3.2 Concrete Security Bounds for lp231

For A ∈MF2n
(2, 3, 1), the system of equations (1) is rewritten as follows.

x1 = a11v1 + a12v2 (23)

x2 = a21v1 + a22v2 + a23y1 (24)

x3 = a31v1 + a32v2 + a33y1 + a34y2 (25)

w = a41v1 + a42v2 + a43y1 + a44y2 + a45y3. (26)

From equations (23) and (24), we obtain the following system of equations in variables v1 and
v2. [

a11 a12
a21 a22

] [
v1
v2

]
=

[
x1

x2 + a23y1

]
. (27)

If a11a22 + a12a21 6= 0, then we can solve the system of equations (27). By substituting its
solution into equations (25) and (26), we obtain an equation of the following form.

A1x1 +B1y1 +A2x2 +B2y2 +A3x3 +B3y3 = Cw, (28)

where Ai, Bi and C are matrices in M2×1
F2n

. We write M(A) = [A1, B1, A2, B2, A3, B3] and
C(A) = C, indicating these matrices are determined by the matrix A. Note that

A3 =

[
1
0

]
, B3 =

[
0
a45

]
and C =

[
0
1

]
.

Preimage Resistance

Theorem 3. Let A = (aij) be a matrix in MF2n
(2, 3, 1) such that a11a22 + a12a21 6= 0. If

M(A) is column-sum independent, then for positive integers d1 and d2,

Advpre

lpA
(q) ≤ (6d1d2 + 6d1 + 1)q

N ′
+ 6f2 + 24f1

where f1 = f1(d1) and f2 = f2(d2) are defined as in Theorem 1.

Proof. We will upper bound Advpre

lpA
(A) for an adversary A makes q queries to a random

permutation π and its inverse π−1. Let

Gex = E1 ((A2 +A3)
∗A1, (A2 +A3)

∗B1; d1) ∨ E1 ((A3 +A1)
∗A2, (A3 +A1)

∗B2; d1)

∨ E1 ((A1 +A2)
∗A3, (A1 +A2)

∗B3; d1) ∨ E1 ((B2 +B3)
∗A1, (B2 +B3)

∗B1; d1)

∨ E1 ((B3 +B1)
∗A2, (B3 +B1)

∗B2; d1) ∨ E1 ((B1 +B2)
∗A3, (B1 +B2)

∗B3; d1)

∨ E2 (A∗3A1, A
∗
3B1, A

∗
3A2, A

∗
3B2; 2d1d2 + d1)

∨ E2 (A∗1A2, A
∗
1B2, A

∗
1A3, A

∗
1B3; 2d1d2 + d1)

∨ E2 (A∗2A3, A
∗
2B3, A

∗
2A1, A

∗
2B1; 2d1d2 + d1)

∨ E2 (B∗3A1, B
∗
3B1, B

∗
3A2, B

∗
3B2; 2d1d2 + d1)

∨ E2 (B∗1A2, B
∗
1B2, B

∗
1A3, B

∗
1B3; 2d1d2 + d1)

∨ E2 (B∗2A3, B
∗
2B3, B

∗
2A1, B

∗
2B1; 2d1d2 + d1) .

Then by Theorem 1,
Pr [Gex] ≤ 6f2 + 24f1. (29)

For w ∈ F2n and j ∈ [1, q], we define an event

Pj(w)⇔ A sets A1x
j1 +B1y

j1 +A2x
j2 +B2y

j2 +A3x
j3 +B3y

j3 = Cw

with j = max{j1, j2, j3}. (30)

Since the occurrence of Pj(w) means that the j-th query determines a preimage of w, it follows
that

Advpre

lpA
(A) ≤ max

w∈F2n
Pr

 ∨
1≤j≤q

Pj(w)

 . (31)

For a fixed w ∈ F2n , we use the following decomposition.

Pr

 ∨
1≤j≤q

Pj(w)

 ≤ Pr

 ∨
1≤j≤q

(Pj(w) ∧ ¬Gex)

+ Pr [Gex] . (32)

Note that the event Pj(w) is identical with F3j (Cw) as defined in (14). So with the same

analysis as F3j (Cw), the number of responses that determine a preimage of w is at most
6d1d2 + 6d1 + 1 for each query without the occurrence of Gex. Therefore we obtain

Pr

 ∨
1≤j≤q

(Pj(w) ∧ ¬Gex)

 ≤ (6d1d2 + 6d1 + 1)q

N ′
. (33)

The proof is complete from (29), (31), (32) and (33). ut

Corollary 1. Let A = (aij) be a matrix in MF2n
(2, 3, 1) such that a11a22 + a12a21 6= 0. If

M(A) is column-sum independent, then

lim
n→∞

Advpre

lpA

(
2

2n
3 /n

)
= 0.

Proof. Let q = 2
2n
3 /n, d1 = 2 and d2 = 5 · 2

n
3 − 1. Since

(6d1d2 + 6d1 + 1)q

N ′
=

(60 · 2
n
3 + 1)q

N ′
≤ 122

n

f1 = N

(
q

d1 + 1

)(
1

N ′

)d1+1

≤ N
(

2eq

(d1 + 1)N

)d1+1

= N

(
2eq

3N

)3

=
8e3

27n3

and

f2 = N

(
q

d2 + 1

)(
2q

N ′

)d2+1

≤ N
(

2eq2

(d2 + 1)N ′

)d2+1

≤ N
(

12e

5n2

)5·2
n
3

using N ′ ≥ N/2, it follows that

lim
n→∞

(6d1d2 + 6d1 + 1)q

N ′
= lim

n→∞
f2(d1, d2) = lim

n→∞
f1(d1) = 0.

The proof is complete from Theorem 3. ut

Collision Resistance

Theorem 4. Let A = (aij) be a matrix in MF2n
(2, 3, 1) such that a11a22 + a12a21 6= 0, and

let M(A) = [A1, B1, A2, B2, A3, B3] and C(A) = C satisfy the following conditions.

1. M(A) is column-sum independent.

2. [A1, C], [A2, C], [A3, C], [B1, C] and [B2, C] are invertible.

3. The following 2× 6 matrices are column-sum independent.

D1 =
[
[B2, C]−1[A1, B1], [B1, C]−1[A2, B2], [B1, C]−1[A3, B3]

]
,

D2 =
[
[A2, C]−1[A1, B1], [A1, C]−1[A2, B2], [A1, C]−1[A3, B3]

]
,

D3 =
[
[A3, C]−1[A1, B1], [A3, C]−1[A2, B2], [A1, C]−1[A3, B3]

]
,

D4 =
[
[A3, C]−1[A1, B1], [A3, C]−1[A2, B2], [A2, C]−1[A3, B3]

]
.

Then for positive integers d1, d2 and d3,

Advcol
lpA

(q) ≤ Nq2
(

6d1d2 + 6d1 + 1

N ′

)2

+
3(2d1d2 + d1)q + 3qmax{7d3q, 2d1d2 + d1}

N ′

+ 4g3 + 15g2 + 121f2 + 333f1,

where f1 = f1(d1), f2 = f2(d2), g2 = g2(d1, d2) and g3 = g3(d1, d2, d3) are defined as in
Theorem 1 and 2.

Proof. We will upper bound Advcol
lpA

(A) for an adversary A makes q queries to a random

permutation π and its inverse π−1. Let

Hex = Fex ∨ E2
(
B̄∗A1, B̄

∗B1, B̄
∗A2, B̄

∗B2; 2d1d2 + d1
)

∨ F3
(
D1; 7d3

)
∨ F3

(
D2; 7d3

)
∨ F3

(
D3; 7d3

)
∨ F3

(
D4; 7d3

)
where B̄ = B1 +B2 +B3 and Fex is defined as in (16). Then it follows that

Pr [Hex] = 3g2 + 24f2 + 66f1 + (f2 + 3f1) + 4(g3 + 3g2 + 24f2 + 66f1)

= 4g3 + 15g2 + 121f2 + 333f1. (34)

For j ∈ [1, q] and ρ1, ρ2 ∈ {0, 1}3\{(0, 0, 0)}, we define the following event.

C2
j (ρ

1, ρ2)⇔A sets A1x
11 +B1y

11 +A2x
12 +B2y

12 +A3x
13 +B3y

13 = Cw and

A1x
21 +B1y

21 +A2x
22 +B2y

22 +A3x
23 +B3y

23 = Cw,

where w ∈ F2n , (11, 
1
2, 

1
3) 6= (21, 

2
2, 

2
3), j = max

i=1,2,3
s=1,2

{si} and

si = j if and only if ρsi = 1 for i = 1, 2, 3 and s = 1, 2.

Here ρ1 and ρ2 specify the positions where the j-th query contributes within the two different
evaluations. Since ρ1, ρ2 6= (0, 0, 0), the occurrence of C2

j (ρ
1, ρ2) means that the single j-th

query completes two colliding evaluations of lpA231 at the same time. Let

C1 =
∨

1≤j1<j2≤q
w∈F2n

(Pj1(w) ∧ Pj2(w))

where events Pj1(w) and Pj2(w) are defined as in (30) and let

C2 =
∨

1≤j≤q
(ρ1,ρ2)∈P

C2
j (ρ

1, ρ2)

where P = P1 ∪ P2 ∪ P3 and

P1 =
{(
ρ1, ρ2

)
: ∃ i ∈ {1, 2, 3} such that ρ1i = ρ2i = 1

}
,

P2 = {((1, 1, 0), (0, 0, 1)) , ((1, 0, 1), (0, 1, 0)) , ((0, 1, 1), (1, 0, 0))} ,
P3 = {((1, 0, 0), (0, 1, 0)) , ((1, 0, 0), (0, 0, 1)) , ((0, 1, 0), (0, 0, 1))} .

Then by the symmetry of ρ1 and ρ2, it follows that

Advcol
lpA

(A) = Pr
[
C1 ∨ C2

]
≤ Pr [Hex] + Pr

[
C1 ∧ ¬Hex

]
+ Pr

[
C2 ∧ ¬Hex

]
. (35)

Estimation of Pr
[
C1 ∧ ¬Hex

]
. If events P are defined as (30), then

Pr
[
C1 ∧ ¬Hex

]
= Pr

 ∨
1≤j1<j2≤q
w∈F2n

(Pj1(w) ∧ Pj2(w) ∧ ¬Hex)

 .

With a similar argument as the analysis of preimage resistance, we obtain

Pr
[
Pj∗1 (w∗) ∧ Pj∗2 (w∗) ∧ ¬Hex

]
≤
(

6d1d2 + 6d1 + 1

N ′

)2

for fixed w∗ ∈ F2n and 1 ≤ j∗1 < j∗2 ≤ q. Therefore we have

Pr
[
C1 ∧ ¬Hex

]
= Pr

 ∨
1≤j1<j2≤q
w∈F2n

(Pj1(w) ∧ Pj2(w) ∧ ¬Hex)


≤ Nq2

(
6d1d2 + 6d1 + 1

N ′

)2

. (36)

Estimation of Pr
[
C2 ∧ ¬Hex

]
. In order to use

Pr
[
C2 ∧ ¬Hex

]
≤

∑
1≤j≤q
(ρ1,ρ2)∈P

Pr
[
C2
j (ρ

1, ρ2) ∧ ¬Hex
]

(37)

we focus on the estimation of Pr
[
C2
j

(
ρ1, ρ2

)
∧ ¬Hex

]
for each (ρ1, ρ2) ∈ P . We consider three

cases as follows.

Case 1: We estimate the probability Pr
[
C2
j

(
ρ1, ρ2

)
∧ ¬Hex

]
for (ρ1, ρ2) ∈ P1. Suppose that

ρ1 = ρ2 = (1, 0, 0). If the event C2
j ((1, 0, 0), (1, 0, 0)) occurs, then it holds that

A1x
j +B1y

j +A2x
12 +B2y

12 +A3x
13 +B3y

13 = Cw, (38)

A1x
j +B1y

j +A2x
22 +B2y

22 +A3x
23 +B3y

23 = Cw (39)

for some 12, 
1
3, 

2
2, 

2
3 < j and w ∈ F2n . The equations (38) and (39) imply that

A2x
12 +B2y

12 +A3x
13 +B3y

13 = A2x
22 +B2y

22 +A3x
23 +B3y

23 .

Therefore it follows that

C2
j ((1, 0, 0), (1, 0, 0))⇒ F2 (A2, B2, A3, B3; 1)⇒ Hex,

and hence,
Pr
[
C2
j ((1, 0, 0), (1, 0, 0)) ∧ ¬Hex

]
= 0.

The same argument applies to any event C2
j

(
ρ1, ρ2

)
such that ρ1 ∧ ρ2 6= (0, 0, 0).

Case 2: We estimate the probability Pr
[
C2
j

(
ρ1, ρ2

)
∧ ¬Hex

]
for (ρ1, ρ2) ∈ P2. Say ρ1 =

(1, 1, 0) and ρ2 = (0, 0, 1). Suppose that A makes the j-th query π(x∗). Among (N − (j − 1))
possible responses for y = π(x∗), we need to upper bound the number of y = π(x∗) satisfying

(A1 +A2)x
∗ + (B1 +B2) y +A3x

13 +B3y
13 = Cw, (40)

A1x
21 +B1y

21 +A2x
22 +B2y

22 +A3x
∗ +B3y = Cw (41)

for some 13, 
2
1, 

2
2 < j and w ∈ F2n . Adding (40) and (41), we obtain

Āx∗ + B̄y +A1x
21 +B1y

21 +A2x
22 +B2y

22 +A3x
13 +B3y

13 = 0

which implies the following equation.

B̄∗A1x
21 + B̄∗B1y

21 + B̄∗A2x
22 + B̄∗B2y

22 +
(
B̄∗A3x

13 + B̄∗B3y
13

)
= B̄∗Āx∗. (42)

The number of solutions (13, 
2
1, 

2
2) to (42) is at most (2d1d2 + d1)q without the occurrence of

Hex. (We can first fix the 13-th query, and then count the number of pairs (21, 
2
2) satisfying

equation (42).) For events C2
j ((0, 1, 1), (1, 0, 0)) and C2

j ((1, 0, 1), (0, 1, 0)), we have the same
equation as (42). Therefore we have

Pr
[
C2
j

(
ρ1, ρ2

)
∧ ¬Hex

]
≤ (2d1d2 + d1)q

N ′
.

Case 3: We estimate the probability Pr
[
C2
j

(
ρ1, ρ2

)
∧ ¬Hex

]
for (ρ1, ρ2) ∈ P3. Say ρ1 =

(1, 0, 0) and ρ2 = (0, 1, 0). Suppose that A makes the j-th query π(x∗). Among (N − (j − 1))
possible responses for y = π(x∗), we need to upper bound the number of y = π(x∗) satisfying

A1x
∗ +B1y +A2x

12 +B2y
12 +A3x

13 +B3y
13 = Cw,

A1x
21 +B1y

21 +A2x
∗ +B2y +A3x

23 +B3y
23 = Cw,

for some 12, 
1
3, 

2
1, 

2
3 < j and w ∈ F2n . Removing variables y and w from this system of

equations, we obtain the following equation.

[B1, C]−1A2x
12 + [B1, C]−1B2y

12 + [B1, C]−1A3x
13 + [B1, C]−1B3y

13

+ [B2, C]−1A1x
21 + [B2, C]−1B1y

21 +
(

[B2, C]−1A3x
23 + [B2, C]−1B3y

23

)
=
(
[B1, C]−1A1 + [B2, C]−1A2

)
x∗. (43)

For each 23, the number of solutions (12, 
1
3, 

2
1) to (43) is at most 7d3 without the occurrence

of F3
(
D1; 7d3

)
. Therefore the number of solutions (12, 

1
3, 

2
1, 

2
3) to (43) is at most 7d3q.

One special case is when ρ1 or ρ2 is (0, 0, 1) and A makes a forward query y = π(x∗). Since
[B3, C] is not invertible, the above argument does not apply to this case. Say ρ1 = (0, 0, 1).
Then the response y = π(x∗) should satisfy

A1x
11 +B1y

11 +A2x
12 +B2y

12 +A3x
∗ +B3y = Cw, (44)

for some 11, 
1
2 and w ∈ F2n . Multiplying B∗3 on both sides of (44) and using B∗3C = 0, we see

that each y satisfying (44) is associated with a solution (11, 
1
2) to the following equation.

B∗3A1x
11 +B∗3B1y

11 +B∗3A2x
12 +B∗3B2y

12 = B∗3A3x
∗. (45)

The number of solutions (j1, j2) to (45) is at most 2d1d2 + d1 without the occurrence of
E2 (B∗3A1, B

∗
3B1, B

∗
3A2, B

∗
3B2; 2d1d2 + d1). Therefore we have

Pr
[
C2
j

(
ρ1, ρ2

)
∧ ¬Hex

]
≤ max{7d3q, 2d1d2 + d1}

N ′
.

To summarize the analysis for the three cases, we conclude that

Pr
[
C2 ∧ ¬Hex

]
≤

∑
1≤j≤q
(ρ1,ρ2)∈P

Pr
[
C2
j (ρ

1, ρ2) ∧ ¬Hex
]

≤ 3(2d1d2 + d1)q + 3qmax{7d3q, 2d1d2 + d1}
N ′

. (46)

Now the proof is complete from (34), (35), (36) and (46). ut

Corollary 2. Let A = (aij) be a matrix in MF2n
(2, 3, 1) such that a11a22 + a12a21 6= 0. If

M(A) and C(A) satisfy the conditions described in Theorem 4, then

lim
n→∞

Advcol
lpA

(
2
n
2 /n1+ε

)
= 0,

for any ε > 0.

Proof. Let q = 2
n
2 /n1+ε and (d1, d2, d3) = (1, n, 3). Then it is easy to check that

max{7d3q, 2d1d2 + d1} = 7d3q

and

Nq2
(

6d1d2 + 6d1 + 1

N ′

)2

= O

(
1

n2ε

)
,

3(2d1d2 + d1)q + 21d3q
2

N ′
= O

(
1

n2+2ε

)
,

f1(d1) = O

(
1

n2+2ε

)
, f2(d2) = O

(
1

n(2+2ε)n

)
,

g2(d1, d2) = O

(
1

n1+2ε

)
, g3(d1, d2, d3) = O

(
1

n4ε

)
.

Since all the terms converge to 0 as n goes to infinity, and by Theorem 4, we obtain the
corollary. ut

Example 1. Let n = 128 and let F2128 = F[ζ]/(ζ128 + ζ7 + ζ2 + ζ + 1) be a finite field of order
2128, where f(ζ) = ζ128 + ζ7 + ζ2 + ζ + 1 is an irreducible polynomial over F2. For simplicity
of computation, assume that a23 = 0, a45 = 1, and[

a11 a12
a21 a22

]
=

[
1 0
0 1

]
.

Then we have

M(A) =

[
a31 a33 a32 a34 1 0
a41 a43 a42 a44 0 1

]
and C(A) =

[
0
1

]
.

If we set a31 = a44 = ζ, a33 = a42 = ζ3, a32 = a43 = ζ2 + ζ, and a34 = a41 = 1, then

A =


1 0 0 0 0
0 1 0 0 0
ζ ζ2 + ζ ζ3 1 0
1 ζ3 ζ2 + ζ ζ 1


and the corresponding matrices M(A) and C(A) satisfy all the conditions described in Theo-
rem 4. With respect to the threshold distinguishing advantage 1/2, the resulting compression
function lpA is preimage resistant up to 281.5 queries (with (d1, d2) = (2, 237.5)) and collision
resistant up to 256.6 queries (with (d1, d2, d3) = (2, 8, 4)).

References

1. P. Barreto and V. Rijmen. The Whirlpool hashing function. Primitve submitted to NESSIE, September
2000, revised on May 2003.

2. G. Bertoni, J. Daemen, M. Peeters and G. Van Assche. On the indifferentiability of the Sponge construction.
Eurocrypt 2008, LNCS 4965, pp. 181–197, Springer-Verlag, 2008.

3. J. Black, M. Cochran and T. Shrimpton. On the impossibility of highly-efficient blockcipher-based hash
functions. Eurocrypt 2005, LNCS 3494, pp. 526–541, Springer-Verlag, 2005.

4. J. Black, P. Rogaway and T. Shrimpton. Black-box analysis of the block-cipher-based hash-function con-
struction from PGV. Crypto 2002, LNCS 2442, pp. 320–325, Springer-Verlag, 2002.

5. S. Hirose. Provably secure double-block-length hash functions in a black-box model. ICISC 2004, LNCS 3506,
pp. 330–342, Springer-Verlag, 2005.

6. S. Hirose. Some plausible construction of double-block-length hash functions. FSE 2006, LNCS 4047,
pp. 210–225, Springer-Verlag, 2006.

7. S. Matyas, S. Meyer and J. Oseas. Generating strong one-way functions with cryptographic algorithm. IBM
Technical Disclosure Bulletin 27, 10a, pp. 5658–5659, 1985.

8. B. Preneel, R. Govaerts and J. Vandewalle. Hash functions based on block ciphers: A synthetic approach.
Crypto 1993, LNCS 773, pp. 368–378, Springer-Verlag, 1994.

9. T. Ristenpart and T. Shrimpton. How to build a hash function from any collision-resistant function. Asi-
acrypt 2007, LNCS 4833, pp. 147–163, Springer-Verlag, 2007.

10. P. Rogaway and J. P. Steinberger. Constructing cryptographic hash functions from fixed-key blockciphers.
Crypto 2008, LNCS 5157, pp. 433–450, Springer-Verlag, 2008.

11. P. Rogaway and J. P. Steinberger. Security/efficiency tradeoffs for permuation-based hashing. Euro-
crypt 2008, LNCS 4965, pp. 220–236, Springer-Verlag, 2008.

12. T. Shrimpton and M. Stam. Building a collision-resistant function from non-compressing primitives.
ICALP 2008, LNCS 5126, pp. 643–654, Springer-Verlag, 2008.

13. M. Stam. Beyond uniformity: Better security/efficiency tradeoffs for compression functions. Crypto 2008,
LNCS 5157, pp. 397–412, Springer-Verlag, 2008.

14. J. P. Steinberger. The collision intractability of MDC-2 in the ideal-cipher model. Eurocrypt 2007,
LNCS 4515, pp. 34–51, Springer-Verlag, 2008.

15. R. Winternitz. A secure one-way hash function built from DES. IEEE Symposium on Information Security
and Privacy, pp. 88–90, IEEE Press, 1984.

