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Abstract. We newly propose a multiple and unlinkable identity-based
public key encryption scheme. Unlike the traditional public key encryp-
tion and identity-based encryption schemes, our scheme allows the use
of a various number of identity-based public keys in different groups or
applications while keeping a single decryption key so that the decryption
key can decrypt every ciphertexts encrypted with those public keys. Also
our scheme removes the use of certificates as well as the key escrow prob-
lem so it is functional and practical. Since our public keys are unlinkable,
the user’s privacy can be protected from attackers who collect and trace
the user information and behavior using the known public keys. Fur-
thermore, we suggest a decryption key renewal protocol to strengthen
the security of the single decryption key. Finally, we prove the security
of our scheme against the adaptive chosen-ciphertext attack under the
random oracle model.

1 Introduction

1.1 Background and Related Work

With the ever increasing Internet user population, widely available large scale
Internet-based services and the advent of pervasive computing environment,
more and more daily human activities are relying on various types of com-
munication devices and applications over wired or wireless networks all the
time. Tremendous personal data have been being transmitted over the networks
even without our consciousness. Especially, the pervasive computing environ-
ment makes attackers capable of gathering and accessing private and sensitive
information more easily. So we need stronger and more flexible security equip-
ments and protocols which can protect privacy against those attackers.

In this paper we propose a new type of public key encryption scheme designed
to provide data confidentiality and personal privacy in upcoming ubiquitous
environment where heterogeneous networks and services coexist or can be tied
together.
(1) The progress of current public key cryptography
Since the inventions of Public Key Cryptography (PKC) in 1976[4] and 1978[9]
respectively, a tremendous amount of public key based cryptographic protocols
and algorithms for data encryption, digital signatures, secure e-commerce, elec-
tronic payments, etc. have been proposed. The traditional public key cryptogra-



phy makes the key management easier because each user just keeps a single pub-
lic key for encryptions regardless of the number of people on the network with
whom the user wishes to communicate securely. However, because the public
keys are to be delivered to all the communicating parties over the open network
channels or to be stored in a public repository where anyone can access, the
traditional PKC has its own problem that the public keys can be easily attacked
and forged.

Therefore, a certificate that contains the value of a public key, key holder, key
type, etc., and is digitally signed by a trustworthy party (Certificate Authority, or
CA) is used to serve as a proof for the correctness of the public key[7]. But the use
of certificates causes other complicated certificate-related management problems
including certificate revocation, storage and distribution. As a consequence, the
authentication and management of public keys became the main barrier to the
progress of the conventional public key cryptography.

Identity (ID)-based cryptography (IBC)[3] solved the certificate management
problems efficiently by deriving a public key directly from standard identities
such as name, IP address, cell phone number, various E-mail addresses and so
on, which eliminates the need to obtain certificates for such identities. Instead,
the corresponding private key (or decryption key) should be created by the Key
Generation Center (KGC) which is a trusted third party for key certification.
Thus, the IBC has the key escrow problem inherently in that the KGC can know
every user’s decryption key to decrypt any ciphertexts.

In order to remove the certificate problem and the key escrow problem at the
same time, combined cryptosystems which utilize the advantages of both PKC
and IBC have been suggested. Certificate-based cryptosystem[6] and certificate-
less public key cryptosystem[1] use public keys created from both identities and
user created public values and the associated decryption keys created by user it-
self and the KGC collaboratively. Since both user-own-selected secret value and
the KGC’s master secret are required to make the decryption key, the combined
schemes not only solve the key escrow problem but also provide implicit certi-
fication for the public keys. Researches on easy certification for public keys are
still ongoing.

Identity-based public keys give a big advantage over the public key manage-
ments including public key creation, distribution and certification. But we argue
that using a (universal) single public-private key pair cannot be assumed for
applications in the ubiquitous environment.
(2) The need of multiple identities
We are using a number of online and off-line services with different identities
required to identify ourselves in our real life. Thus individuals keep many iden-
tities such as various e-mail addresses, cell phone number, phone number, Web
IDs, a social security number, etc. and use them for their different purposes.
For an example, Alice can use her social security number to identify herself for
e-government services or her company email address for e-banking services.

Different electronic services may ask for different types of identities. On the
other hand, Alice may not want to provide her social security number as her



identity for some untrusted services. Hence, the use of a single universal identity
is not appropriate for the pervasive computing. In addition it can cause a serious
personal privacy problem that an attacker can collect and trace user informa-
tion by linking user behaviors with the known single identity and then reveal
potentially unintended sensitive information.

Therefore, we need to maintain multiple distinct identities and thus we should
be able to create multiple public keys based on those identities for secure com-
munication.
(3) The limitation of current public key cryptography and pseudonym systems
The conventional PKC including IBC cannot be applied straightforward to our
multiple public key environment since those systems need to create a unique
pair of public key and private key essentially. There is a one-to-one mapping
relationship between a public key and its private key. If we want to use multiple
public keys in different service groups, then we should keep the exact same
number of private keys in a secure manner as well. Strengthening the security,
we may increase secret values. However, it makes the key management more
difficult losing the benefits of easy key management conventional public key
cryptosystems offer. Therefore, a new approach is required to realize our model
without increasing secret values.

Recently, pseudonym systems[8][13] have been suggested for protecting per-
sonal privacy. The basic goal of these approaches is the same as our scheme in
that multiple random pseudonyms are used for user identities and public keys.
However, the fundamental difference is that the pseudonym systems are designed
for user anonymity. In those pseudonyms, we cannot find out the pseudonyms
holders. Hence, they need to use anonymous credential systems[10][14][11] for the
proofs of those pseudonyms. On the contrary, we use existing recognizable iden-
tities instead of random pseudonyms and certify the correctness of public keys
using those identities. Thus, what we aim for is different from that of pseudonym
systems.

1.2 Contribution

We introduce the concept of a multiple and unlinkable public key encryption
(MU-PKE) scheme which makes it available to operate multiple certified public
keys without certificates while keeping a single decryption key. The MU-PKE
scheme is one of the PKC and IBC combined public key cryptosystems described
previously. We assume a Key Generation Center (KGC) which is a trusted third
party such as the KGC described in CL-PKE[1] for implicit key certification.
The KGC plays the role of making partial public keys and partial decryption
keys of its users.

Functionalities The MU-PKE basically provides the following functionalities.

– Multiple Public Keys Associated with a Single Decryption Key:
The MU-PKE scheme allows that each user can maintain multiple identity-
based public keys which will be published to different service areas where the



base identities have already been commonly used. On the other hand, the
user just keeps a single decryption key, regardless of the number of public
keys, which can decrypt any ciphertext encrypted in one of the user’s public
keys. Therefore it still makes the key management easy in spite of keeping
various public keys.
At first, each user chooses a random secure private key and a secure master
identity in addition to the user’s base identities. In order to make a de-
cryption key, the KGC first creates a partial decryption key on the master
identity and then the user completes a final decryption key with her private
key. Every single public key is also created in a similar way. The KGC first
creates a partial public key on a base identity from which the user wants to
create the related public key and then the user makes a final public key on
the base identity with her master identity and private key. Since the same
master identity is used for making both decryption key and public keys, the
single decryption key can decrypt any ciphertexts encrypted in public keys
created from the common master identity.

– Certificateless and No Key Escrow: Each user cannot make her valid
public keys or decryption key on her own. User need partial key information
which can be generated by the only KGC to complete the final public keys
and decryption key. Since the KGC’s key certification is integrated into each
key there is no need to use certificates. Also, since the user chosen private key
is used for generating the decryption key the MU-PKE scheme eliminates
the key escrow problem.

– Unlinkable Public Keys: Each public key of a single user is differentiated
from other public keys by the value of its base identity. The value of the
master identity which is commonly used in creating every public key is hidden
in the public key. Thus, if an attacker may acquire some pairs of public key
and its base identity but cannot recognize the identity holders from those
identities, he cannot distinguish if those pairs came from the same user or
different users. Hence this property guarantees the personal privacy that
is supposed to be protected by using a lot of heterogeneous identities in
different service groups or applications.

– Decryption Key Renewal: Using a single decryption key can be vul-
nerable. The exposure of the single decryption key can result in significant
damage over the entire services for which the associated public keys are used.
So we need to refresh the decryption key periodically. We propose a periodic
decryption key update protocol in Section 5.

Our MU-PKE scheme is built from a modified bilinear map such as the Weil
pairing on elliptic curves[3]. We define an adaptive chosen-ciphertext security for
a MU-PKE scheme and analyze the security of the proposed MU-PKE scheme
against the adaptive chosen-ciphertext attack under the random oracle model.

Application As a typical application, our MU-PKE can be applied for email
encryption such as PGP[15] under existing e-mail systems. Suppose that a user,
Alice is using three emails by different providers such as corporate e-mail, gmail



and hotmail. Alice can create three independent public keys, each of which is
created from the individual e-mail address and is used for encryption in the
associated e-mail system while keeping a single decryption key. Bob knows Alice’s
gmail address and wants to send a secured message. He first asks Alice the
corresponding public key and then checks the validity of the public key using
the gmail address. Finally, Bob encrypts the email message using the public
key. Carol, Alice’s company colleague, also obtains another public key based on
Alice’s company email address and then sends an encrypted email message with
the public key. Alice can decrypt both emails from Bob and Carol using her single
decryption key. Bob and Carol can easily check that those public keys they have
received are derived from the email addresses they already know. Therefore, they
need not certificates for those public keys. If Alice tries to use an AOL email
system newly then she can create a new public key based on the AOL email
address at any time if she wants. Alice can still use her decryption key for the
new public key.

Organization The rest of the paper is organized as follows. In Section 2, we
review the basic notion of a bilinear map and the related cryptographic assump-
tions which give the basic security of the proposed scheme and then describe the
formal definitions of our MU-PKE model and security. The concrete descriptions
of the practical MU-PKE schemes are proposed in Section 3, and the unlinkabil-
ity and security of the proposed schemes against the adaptive chosen ciphertext
attack are proven under the random oracle model in Section 4. In Section 5,
we suggest a decryption key renewal protocol and then conclude the paper in
Section 6.

2 Model and Definition

2.1 System Environments

Before we stress a formal definition of our scheme, we outline the system envi-
ronment that we assume for the MU-PKE scheme.

Our model consists of Sender who makes and sends an encrypted message,
Receiver who receives and decrypts the encrypted message and a single Key
Generation Center (KGC). Once a receiver creates her decryption key and
public keys in collaboration with the KGC, then a sender can obtain the re-
ceiver’s public key and make an encryption for a message with the public key.

By the way, a single receiver can be associated with a lot of different senders.
In other word, the receiver’s potential senders can be classified into different
sender groups according to identities used to identify the receiver for individual
sender groups.

Suppose that Alice, a receiver denoted as RA, possesses t identities used in
numerous online applications. Then the potential senders can be logically divided
into t sender groups. We denote the total sender groups as SA = {S1, ..., St}.



We also denote each base identity Alice uses as her identifier in Si as IDA,i for
i = 1, ..., t. We assume that Si already knows that IDA,i indicates Alice.

For a secure communication between Alice and the senders, Alice can make
separate public keys published to those different sender groups for encryption
and a single decryption key for decryption. Alice first creates her decryption
key DKA with the KGC. Then, for i = 1, ..., t, Alice makes a public key set
PKSA,i based on IDA,i for Si with the KGC at any time Alice needs. Si can
certify PKSA,i with IDA,i, and then can make encryptions with both PKSA,i
and IDA,i. Consequently, Alice can decrypt all ciphertexts with DKA no matter
which public keys of hers are used for making those ciphertexts.

2.2 Cryptographic Assumptions

We describe the background mathematical definitions and assumptions used
throughout this paper. Our scheme is built from a modified bilinear map such
as Weil pairing on elliptic curves[3]. We review the modified bilinear map briefly
and its computational hard problem that provides the basic security for our
MU-PKE scheme.

Bilinear Map: Let G1 be an additive group of prime order q and G2 be a
multiplicative group of the same order. An admissible bilinear map ê : G1×G1 →
G2 between these two groups must satisfy the following properties:

1. Bilinear: We say that a map ê : G1 ×G1 → G2 is bilinear, for all Q,W,Z ∈
G1, if

ê(Q,W + Z) = ê(Q,W )ê(Q,Z) and ê(Q+W,Z) = ê(Q,Z)ê(W,Z).

Consequently, for any a, b ∈ Z∗q ,

ê(aQ, bW ) = ê(Q,W )ab = ê(abQ,W ).

2. Non-degenerate: The map does not send all pairs in G1×G1 to the identity
in G2. Note that since G1, G2 are prime order groups, it is implied that if P
is a generator of G1 then ê(P, P ) is a generator of G2.

3. Computable: There is an efficient algorithm to compute ê(Q,W ) for all
Q,W ∈ G1.

Bilinear Diffie-Hellman (BDH) Problem: Let G1, G2 be two groups of
prime order q. Let ê : G1 × G1 → G2 be an admissible bilinear map and let
P be a generator of G1. The BDH problem in (G1, G2, ê) is as follow: For any
a, b, c ∈ Z∗q , given 〈P, aP, bP, cP 〉, compute W = ê(P, P )abc ∈ G2.

BDH Parameter Generator: As described in [3], this randomized algorithm
outputs a triple (G1, G2, ê) where G1 and G2 are of prime order q and ê : G1 ×
G1 → G2 is a pairing. In general, G1 is a cyclic subgroup of the additive group
of points on a supersingular elliptic curve over E/Fp. G2 is a cyclic subgroup of
the multiplicative group associated with a finite extension of F ∗p2 .



BDH Assumption: Let IG be a BDH parameter generator. We say that an
algorithm A has advantage ε(k) in solving the BDH problem for IG if for suffi-
ciently large k:

AdvIG,A(k) = Pr

[
A(q,G1, G2, ê, P, aP, bP, cP ) = ê(P, P )abc| (q,G1, G2, ê)← IG(1k),

P ← G∗1, a, b, c← Z∗q

]
≥ ε(k)

It is said that IG satisfies the BDH assumption if for any randomized polynomial
time algorithm A and for any polynomial f ∈ Z[x] we have that AdvIG,A(k) <
1/f(k) for sufficiently large k. When IG satisfies the BDH assumption it is said
that the BDH problem is hard in groups generated by IG.

2.3 Definitions and Security Model

We define our MU-PKE scheme with formal descriptions. Let k be a security
parameter, and let IG be a BDH parameter generator. We assume that the KGC
can make use of a secure communication channel to communicate with its users.

Definition 1. A MU-PKE scheme is specified by five randomized algorithms
(Setup,GenDK,GenPK,Encryption,Decryption) such that:

1. Setup: The probabilistic system parameter generation algorithm Setup takes
as input the security parameter k and IG. It returns the system parameters
params and a master key s. The system parameters include descriptions of
the message space M and the ciphertext space C. Usually, this algorithm is
run by the KGC. The system parameters are publicly available, but only the
KGC knows the master key.

2. GenDK: The deterministic decryption key generation algorithm GenDK con-
sists of three steps which are set-private-key, extract-partial-decryption key
and set-decryption key.
(a) Set-Private-Key: This step takes as inputs params and a receiver RA’s

chosen identity string and random xA, and then outputs RA’s private
key pair (xA, PA) and master identity MIDA ∈ {0, 1}∗ which includes
PA. This step is performed by individual receivers.

(b) Extract-Partial-Decryption-Key: This step takes as inputs the receiver’MIDA

and the KGC’s master key s, and then outputs a partial decryption key
PDKA for the receiver. MIDA and PDKA are delivered in a secure
manner. This step is performed by the KGC.

(c) Set-Decryption-Key: This step takes as inputs the partial decryption key
PDKA and the private key xA, and then outputs a final decryption key
DKA. This step is performed by individual receivers. RA keeps MIDA,
xA and DKA in a secure manner.

3. GenPK: The probabilistic public key generation algorithm GenPK consists of
two steps which are extract-partial-public-key and set-public-key.
(a) Extract-Partial-Public-Key: This step takes as inputs the receiver’s single

identity IDA,i, a proof about the holder of IDA,i and the KGC’s master
key s, and then outputs a partial public key PPKA,i for the identity



IDA,i. This step is performed by the KGC. PPKA,i is delivered to RA
in a secure way.

(b) Set-Public-Key: This step takes as inputs the identity IDA,i, the par-
tial public key PPKA,i, the decryption key DKA, the private key xA
and the master identity MIDA, and then outputs a public key set
PKSA,i = {E1, E2, E3, E4} for IDA,i. This step is performed by in-
dividual receivers.

4. Encryption: The probabilistic encryption algorithm Encryption takes as inputs
the params, a message M ∈M, a receiver RA’s single identity IDA,i and its
public key set PKSA,i which a sender knows. It first checks the validity of
PKSA,i with params and IDA,i, and if PKSA,i is correct then it makes en-
cryption. It returns either a ciphertext C ∈ C or the null symbol ⊥ indicating
an encryption failure. This step is performed by individual senders.

5. Decryption: The deterministic decryption algorithm Decryption takes params,
RA’s decryption key DKA and the ciphertext C ∈ C as input. It returns the
message M ∈ M or a null symbol ⊥ indicating a decryption failure. This
step is performed by individual receivers. 2

Operation of Algorithms: The KGC initializes all system parameters us-
ing the Setup algorithm. A receiver, Alice, creates her decryption key with the
KGC using the GenDK algorithm. She performs this algorithm just once when
she starts using MU-PKE. On the other hand, Alice performs the GenPK algo-
rithm whenever she needs to create a new public key for an identity which has
no corresponding public key. If a public key is set up between Alice and a sender
group, the sender can make encryption for a message with the public key using
the Encryption algorithm, and then Alice can decrypt the ciphertext with her
decryption key using the Decryption algorithm.

We now define our security model against adaptive chosen-ciphertext at-
tackers (IND-CCA)[3][2][12] which is an acceptable standard security model for
public key cryptography. The traditional IND-CCA model allows for an attacker
to obtain plaintexts corresponding to any other ciphertexts the attacker chose
rather than a particular ciphertext which is challenged by the attacker. This
IND-CCA model can be strengthened to an IND-ID-CCA model for identity-
based cryptography by allowing that the attacker can also obtain decryption
keys associated with identities that the attacker chose but those identities are
different from a particular identity which is challenged by the attacker[3]. Since
our scheme is a kind of identity-based public key encryption scheme, we bor-
row the IND-ID-CCA model for our security. However we need to modify and
strengthen the IND-ID-CCA model slightly to make it adequate for our scheme.
Because a single receiver maintains multiple identities, the attacker should be
able to obtain decryption keys associated with any identities the attacker chose
other than identities belonging to a particular receiver which is challenged. On
the other hand, the attacker might already know some secure information such
as partial public keys and partial decryption keys associated with any identi-
ties the attacker chose except for the receiver chosen-private key. The system
should remain secure under such those attacks. Hence, we define our adaptive



chosen-ciphertext adversary (IND-MUP-CCA) A’s power as follows:

– The adversary can obtain any valid public key sets associated with identities
of his choice.

– The adversary can obtain plaintexts of any ciphertexts of his choice (other
than the challenging ciphertext Cch encrypted in a particular identity and
public key set 〈IDch,I , PKSch,I〉 of the challenger Rch being attacked).

– The adversary can obtain decryption keys associated with any identities of
receiver Ri of his choice (other than identities of the challenger Rch being
attacked).

– The adversary can obtain any partial public keys associated with identities
of his choice which may include a partial public key associated with the
particular identity IDch,I of the challenger Rch being attacked.

– The adversary can obtain any partial decryption keys associated with iden-
tities of his choice which may include the partial decryption key of the chal-
lenger Rch being attacked.

We specify the above adversary A into two types of adversaries denoted as
AI and AII according to the permission of an access to the KGC’s master secret
s. The Type-1 adversary AI cannot access s while the Type-2 adversary AII
that is like a malicious KGC can obtain s and some receivers’ mater identities as
well. Notice that both of the adversaries do not have an access to the receivers’
private keys.

We say that a multiple and unlinkable public key encryption (MU-PKE)
scheme is semantically secure against an adaptive chosen ciphertext attack (IND-
MUP-CCA) if no polynomially bounded adversary A (for both AI and AII) has
a non-negligible advantages against the Challenger in the following IND-MUP-
CCA game:

– Setup: The challenger takes a security parameter k and runs the Setup
algorithm. It gives A the resulting system parameters params. It keeps the
master key s to itself for the Type-1 adversary AI but it gives s to the
Type-2 adversary AII . The challenger is supposed to know (or decide) the
relationship regarding which identities belong to which receivers.

– Phase 1: A issues queries q1, ..., qm where qi is one of the following queries.
For Type-2 adversary AII , the challenger responds with not only each query
answer but also the master identity associated with each identity since the
Type-2 adversary AII is supposed to know the master identities of receivers.
• Public Key Set Query on 〈IDi,j〉: The challenger decides the correspond-

ing receiver Ri to IDi,j and runs algorithm GENDK to obtain Ri’s de-
cryption key, private key and master identity. Then it runs GENPK to
generate the public key set PKSi,j corresponding to IDi,j . It responds
to the adversary with PKSi,j .
• Partial Public Key Query on 〈IDi,j〉: The challenger decides the corre-

sponding receiver Ri to IDi,j and responds by running algorithm GENPK
to get the partial public key PPKi,j corresponding to IDi,j . It sends
PPKi,j to the adversary.



• Partial Decryption Key Query on 〈IDi,j〉: The challenger decides the
corresponding receiver Ri to IDi,j and responds by running algorithm
GENDK to get the partial decryption key PDKi of Ri. It sends PDKi

to the adversary.
• Decryption Key Query on 〈IDi,j〉: The challenger decides the corre-

sponding receiverRi to IDi,j and responds by running algorithm GENDK
to generate the decryption key DKi of Ri. It sends DKi to the adversary.

• Decryption Query on 〈IDi,j , Ci,j〉 : The challenger decides the corre-
sponding receiver Ri to IDi,j and responds by running GENDK to gen-
erate the decryption key DKi of Ri. It then runs Decryption to decrypt
the ciphertext Ci,j using the decryption key DKi. It sends the resulting
plaintext to the adversary.

– Challenge: Once the adversary decides that Phase 1 is over it outputs
two equal length plaintexts M0,M1 ∈ {M} and an identity IDch,I on
which it wishes to be challenged. The only constraint is that the corre-
sponding receiver Rch to IDch,I did not appear in decryption key query
in Phase 1. The challenger picks a random bit b ∈ {0, 1} and sets Cch =
Encryption(params, IDch,I , PKSch,I ,Mb). It sends Cch as the challenge to
the adversary.

– Phase 2: The adversary issues more queries qm+1, ..., qn where query qi is
one of the following queries. The constraints are that (1) the corresponding
receiver Ri of identity 〈IDi,j〉 queried for requesting decryption key should
not be the same as Rch, and that (2) 〈IDi,j , Ci,j〉 queried for requesting
decryption should not be the same as 〈IDch,I , Cch,I〉. For Type-2 adversary
AII , the challenger responds with not only each query answer but also the
master identity associated with each identity.

• Public Key Set Query on 〈IDi,j〉: The challenger responds as in Phase
1.

• Partial Public Key Query on 〈IDi,j〉: The challenger responds as in Phase
1.

• Partial Decryption Key Query on 〈IDi,j〉: The challenger responds as in
Phase 1.

• Decryption Key Query on 〈IDi,j〉 where Ri 6= Rch: The challenger re-
sponds as in Phase 1.

• Decryption Query on 〈IDi,j , Ci,j〉 6= 〈IDch,I , Cch,I〉: The challenger re-
sponds as in Phase 1.

– Guess: The adversary outputs a guess b′ ∈ {0, 1} and wins the game if
b = b′.

We refer to such an adversary A as an IND-MUP-CCA adversary. We define
A’s advantage in attacking the scheme as AdvIG,A(k) = |Pr[b = b′]− 1

2 |.
Definition 2. We define that a MU-PKE scheme is semantically secure

against an adaptive chosen ciphertext attack if for any polynomial time IND-
MUP-CCA adversary A the function AdvIG,A(k) is negligible. We say that the
MU-PKE scheme is IND-MUP-CCA secure. 2



The proof of the security for our MU-PKE scheme requires to make use of a
weaker notion of security known as semantic security against a chosen plaintext
attack (IND-ID-CPA)[3][2][12]. This security is similar to IND-ID-CCA except
that the adversary cannot make decryption queries. Thus we define a security
against the chosen plaintext attack (IND-MUP-CPA) for our MU-PKE scheme
using an IND-MUP-CPA game. The game is identical to the IND-MUP-CCA
game defined previously except that the adversary cannot make the decryption
queries.

We say that a multiple and unlinkable public key encryption scheme is se-
mantically secure against the chosen plaintext attack (IND-MUP-CPA) if no
polynomially bounded adversary A has a non-negligible advantage against the
Challenger in the following IND-MUP-CPA game:

– Setup: Identical to Setup in the IND-MUP-CCA game.
– Phase 1: A issues queries q1, ..., qm where qi is one of public key set queries,

partial public key queries, partial decryption key queries and decryption key
queries. For each query the challenger responds to A as the same way defined
in IND-MUP-CCA. For Type-2 adversary AII , the challenger responds with
not only each query answer but also the master identity associated with
each identity since the Type-2 adversary AII is supposed to know master
identities of receivers.

– Challenge: Once the adversary decides that Phase 1 is over it outputs two
equal length plaintexts M0,M1 ∈ {M} and an identity IDch,I on which
it wishes to be challenged. The only constraint is that the corresponding
receiver Rch to the challenging identity IDch,I did not appear in decryption
key query in Phase 1. The challenger picks a random bit b ∈ {0, 1} and
sets Cch = Encryption(params, IDch,I , PKSch,I ,Mb). It sends Cch as the
challenge to the adversary.

– Phase 2: The adversary issues more queries qm+1, ..., qn where query qi is
one of public key set queries, partial public key queries, partial decryption key
queries and decryption key queries. The only constraint is that the receiver
Ri of identity IDi queried for requesting decryption key should not be the
same as Rch. The challenger responds to A as the same way in Phase 1. For
Type-2 adversary AII , the challenger responds with not only each query
answer but also the master identity associated with each identity.

– Guess: The adversary outputs a guess b′ ∈ {0, 1} and wins the game if
b = b′.

We refer to such an adversary A as an IND-MUP-CPA adversary. A’s ad-
vantage in attacking the scheme is defined as AdvIG,A(k) = |Pr[b = b′]− 1

2 |.
Definition 3. We define that a MU-PKE scheme is semantically secure

against a chosen plaintext attack if for any polynomial time IND-MUP-CPA
adversary A the function AdvIG,A(k) is negligible. We say that the MU-PKE
scheme is IND-MUP-CPA secure. 2

Now we define the unlinkability for our MU-PKE scheme. Roughly speaking,
the unlinkability means that an adversary who can obtain every public key sets



he wants cannot decide whether two arbitrary public key sets belong to the same
receiver or not when we assume that the adversary has no idea about who created
those two public key sets. We say that the MU-PKE scheme is unlinkable if no
polynomially bounded adversary AL takes non-negligible advantage against the
Challengers in the following IND-LlNK game:

– Setup: There are two challengers denoted as CH0, CH1. They take the
security parameter k and run Setup algorithm. Then they run GENDK to
generate their master identities, private keys and decryption keys. They give
the system parameter params to AL.

– Challenge: AL chooses arbitrary two random strings ID1, ID2 ∈ {0, 1}∗.
Then AL requests the corresponding public key sets to the challengers. The
challengers respond to AL as follows:
1. CH0 selects a random c0 ∈ {0, 1}, then CH1 sets c1 = 1 − c0. The

challenger CHi with ci = 1 runs GENPK on ID1 and then outputs
PKS1.

2. CH0 selects a random c′0 ∈ {0, 1} again, then CH1 sets c′1 = 1 − c′0.
The challenger CHi with c′i = 1 runs GENPK on ID2 and then outputs
PKS2.

3. They set c = c0 ⊕ c′0.
4. They respond with PSK1, PSK2 to AL.

– Guess:AL guesses c′ ∈ {0, 1}. AL sets c′ = 0 if two public key sets are
generated from the same challenger. Otherwise, AL sets c′ = 1 (two public
key sets are created by two different challengers). If c = c′, then AL can
link at least two public key sets which belong to the same challenger. In this
case, AL wins.

We refer to such an adversary AL as an IND-LINK adversary. We define
AL’s advantage in attacking the scheme as AdvIG,AL(k) = |Pr[c = c′]− 1

2 |.
Definition 4. A multiple public keys encryption scheme is unlinkable if

for any polynomial time IND-LINK adversary AL the function AdvIG,AL(k) is
negligible. 2

3 A Multiple and Unlinkable Public Key Encryption
(MU-PKE) Scheme

We propose concrete descriptions to build our MU-PKE using the admissible bi-
linear map. We describe our MU-PKE scheme in two stages. First, we give a basic
multiple and unlinkable public key encryption (BasicMU-PKE) scheme which is
IND-MUP-CPA secure against IND-MUP-CPA game under the BDH assump-
tion. And then we suggest a full multiple and unlinkable public keys encryption
(FullMU-PKE) scheme which is transformed by Fujisaki-Okamoto transformation
so that is IND-MUP-CCA secure against IND-MUP-CCA game. The security
proofs will be shown in Section 4.



3.1 BasicMU-PKE

The full descriptions of the five algorithms needed to define BasicMU-PKE are
described below. Presenting our protocols, we use the BDH parameter genera-
tor IG which satisfies the BDH assumption. As we assumed, Alice has already
generated her different identities used in different sender groups so senders in
each group can authenticate Alice with individual identity which is known to
the senders.

1. Setup: The KGC sets the system parameters with this algorithm which per-
forms the following steps with inputs (k, IG): The algorithm
(a) runs IG on input k to generate two groups G1, G2 of a prime order q

and a bilinear map ê : G1 ×G1 −→ G2;
(b) chooses a generator P ∈ G1;
(c) selects a master secret key s uniformly at random from Z∗q and sets

P0 = sP ∈ G1; and
(d) chooses cryptographic hash functionsH0 : {0, 1}∗ −→ Z∗q , H1 : {0, 1}∗ −→

G∗1, H2 : G2 −→ {0, 1}n, where n is the bit-length of plaintexts.
The system parameters are params = 〈G1, G2, ê, n, P, P0, H0, H1, H2〉. The
message space isM = {0, 1}n and the ciphertext space is C = G1×{0, 1}2n.
The KGC keeps s in a secure manner but publishes params to public.

2. GenDK: This algorithm is just once performed interactively between Alice
and the KGC in a secure way when Alice registers her master identity to the
KGC. The algorithm performs the following steps:
(a) Alice creates user information InfoA ∈ {0, 1}∗;
(b) Alice runs Set-Private-Key with inputs (params, InfoA). The algorithm

chooses a random number xA ∈ Z∗q and sets PA = xAP ∈ G1 and
MIDA = InfoA ‖ PA ∈ {0, 1}∗. It outputs her master identity MIDA,
her hashed-master identity MA = H1(MIDA) ∈ G1 and her private key
pair (xA, PA).

(c) The KGC runs Extract-Partial-Decryption-Key with inputs (params,MIDA, s):
The algorithm makes and outputs a partial decryption key PDKA as fol-
lows:

MA = H1(MIDA) ∈ G1, PDKA = sMA ∈ G1

The KGC keeps MIDA in its secure storage.
(d) Alice runs Set-Decryption-Key with inputs (params, PDKA, xA). The

algorithm makes and outputs the final decryption key DKA as follows:

DKA = xAPDKA = xAsMA ∈ G1.

Alice keeps her master identity MIDA, private key xA and decryption
key DKA in a secure manner.

We suppose that Alice has t identities denoted as IDA,i for i = 1, ..., t. Alice
can create a public key set on IDA,i by the following algorithm. And she
can generate other public keys based on other identities in the same way.



3. GenPK: This algorithm is performed interactively between Alice and the
KGC in a secure way. This algorithm generates a public key set for an
identity IDA,i used for Si. The algorithms performs the following steps:
(a) Alice creates a proof PFA,i = xAH1(InfoA ‖ IDA,i) ∈ G1 and sends

her identity IDA,i ∈ {0, 1}∗ with her user information InfoA and PFA,i
to the KGC.

(b) The KGC runs Extract-Partial-Public-Key with inputs (params, IDA,i, InfoA, PFA,i, s).
The KGC can retrieve PA corresponding to InfoA and then checks if
ê(PFA,i, P ) = ê(H1(InfoA ‖ IDA,i), PA). If the proof is correct, the
algorithm computes QA,i = H1(IDA,i) ∈ G1 and then creates a partial
public key PPKA,i = sQA,i ∈ G1.

(c) The KGC sends PPKA,i to Alice.
(d) Alice runs Set-Public-Key with inputs (params, IDA,i, PPKA,i,MIDA, xA, DKA).

The algorithms performs as follows:
i. computes QA,i = H1(IDA,i) ∈ G1;
ii. computes ai = H0(MIDA||IDA,i) ∈ Z∗q ;

iii. sets E1 = aixAMA ∈ G1;
iv. sets E2 = 1

ai
PPKA,i = 1

ai
sQA,i ∈ G1;

v. sets E3 = 1
ai
QA,i;

vi. computes QCA,i = H1(E1||E2||E3||IDA,i); and
vii. sets E4 = 1

ai
QCA,i; and

viii. sets and outputs PKSA,i = 〈E1, E2, E3, E4〉
(e) Alice publish each public key set PKSA,i to Si for encryption.

4. Encryption: This algorithm is performed by Si who wants to encrypt a mes-
sage M with Alice’s identity IDA,i and public key set PKSA,i. The algo-
rithms performs the following steps with inputs (params, IDA,i, PKSA,i,M):
(a) computes Q = H1(IDA,i);
(b) computes QC = H1(E1||E2||E3||IDA,i);
(c) checks if ê(E4, Q) = ê(QC,E3), otherwise, rejects the public key set;
(d) checks if ê(E2, P ) = ê(E3, P0), otherwise, rejects the public key set;
(e) sets

g = ê(E1, E2)
= ê(aixAMA,

1
ai
sQA,i)

= ê(aixAMA,
1
ai
sQ)

= ê(xAsMA, Q)

(f) chooses a random r ∈ Z∗q and computes a ciphertext:

C = 〈U, V 〉 = 〈rQ,M ⊕H2(gr)〉

We note that steps (a) to (e)are just carried out once when Si gets the public
key, and do not have to be carried out in every encryptions.

5. Decryption: Alice can decrypt C = 〈U, V 〉 using the decryption key DKA

with this algorithm. The algorithm performs the following steps with inputs
(params,DKA, C):
(a) computes

V ⊕H2(ê(DKA, U)) = M



Correctness: We show that each ciphertext can be decrypted to the message
correctly using the decryption key.

H2(gr) = H2(ê(xAsMA, Q)r)
= H2(ê(DKA, rQ))
= H2(ê(DKA, U))

3.2 FullMU-PKE

In this section, we suggest the full descriptions of FullMU-PKE with Fujisaki-
Okamoto transformation.

1. Setup: Identical to Setup in the previous BasicMU-PKE except that the KGC
chooses two more cryptographic hash functions H3 : {0, 1}n × {0, 1}n −→
Z∗q , H4 : {0, 1}n −→ {0, 1}n. The system parameters are params = 〈G1, G2, ê, n, P, P0, H0, H1, H2, H3, H4〉.
The message space is M = {0, 1}n and the ciphertext space is C = G1 ×
{0, 1}2n.

2. GenDK: Identical to GenDK in BasicMU-PKE.
3. GenPK: Identical to GenPK in BasicMU-PKE.
4. Encryption: Identical to step (a) to step (e) in BasicMU-PKE. And the algo-

rithm performs the followings:
(a) chooses a random σ ∈ {0, 1}n and sets r = H3(σ,M) ∈ Z∗q ; and
(b) computes a ciphertext:

C = 〈U, V, T 〉 = 〈rQ, σ ⊕H2(gr),M ⊕H4(σ)〉

5. Decryption: The algorithm performs the following steps with inputs (params,DKA, C)
where C = 〈U, V, T 〉:
(a) computes

V ⊕H2(ê(DKA, U)) = σ′

(b) computes T ⊕H4(σ′) = M ′

(c) sets r′ = H3(σ′,M ′) and tests if U = r′QA,i. if not, rejects the ciphertext;
and

(d) outputs M ′ as a plaintext.

4 Security Analysis

We show the securities of our proposed schemes along with the security proofs of
Boneh and Franklin’s IBE schemes which show foundations to prove the security
for identity-based cryptography.



4.1 IND-MUP-CPA Security of BasicMU-PKE

First we show that our BasicMU-PKE is IND-MUP-CPA secure assuming that
BDHP is hard in groups generated by IG. The following theorem shows that
another adversary B can solve the BDH problem using the IND-MUP-CPA ad-
versary A if A has non-negligible advantage in the IND-MUP-CPA game.

Theorem 1. Suppose that two hash functionsH1 andH2 are random oracles,
and that there are two types of IND-MUP-CPA adversary AI and AII each of
which has advantage ε(k) against BasicMU-PKE. Suppose that AI makes at most
qPK > 0 public key set queries, qPPK > 0 partial public key queries, qPD > 0
partial decryption key queries, qDK > 0 decryption key queries and qH2 > 0
hash queries to H2, and that AII makes at most qPK > 0 public key set queries,
qPD > 0 partial decryption key queries, qDK > 0 decryption key queries and
qH2 > 0 hash queries to H2. Then there is an algorithm B that solves the BDH
problem in groups generated by IG with advantages at least:

AdvAIIG,B(k) ≥ 2ε(k)
e(1 + qPPK + qPD + qDK)qH2

,

AdvAIIIG,B(k) ≥ 2ε(k)
e(1 + qDK)qH2

e ≈ 2.71 is the base of the natural logarithm. The running time of B isO(time(A)).
2

In order to prove the above theorem we first define BasicMultiPub which is a
related multiple public key encryption scheme with t public keys for a single user
but those public keys are not based on identities. BasicMultiPub is specified with
the following three algorithms: Setup, Encryption and Decryption. Let k be the
security parameter given to the setup algorithm, let IG be a BDH parameter
generator.

– Setup: The algorithm performs as follows:
• runs IG to generate 〈G1, G2, ê〉 with the security parameter k
• chooses a generator P ∈ G∗1
• chooses a random secret M ∈ G∗1
• chooses secret values s, x ∈ Z∗q and then sets P0 = sP and D = xsM ∈
G∗1

• chooses t random Q1, Q2, ..., Qt ∈ G∗1 and t random secret integers
a1, a2, ..., at ∈ Z∗q

• makes t public key sets PKS1, PKS2, ..., PKSt such like PKSi = 〈Qi, aixM, 1
ai
sQi,

1
ai
Qi,

1
ai
Ti〉

where Ti = Qi + aixM + 1
ai
sQi + 1

ai
Qi for i = 1, .., t

• sets PKS = {PKS1, PKS2, ..., PKSt}
• chooses a cryptographic hash function H2 : G2 → {0, 1}n.

The public key is Kpub = 〈G1, G2, ê, n, P, P0, PKS,H2〉. The decryption key
is D = xsM , the message space is M = {0, 1}n and the ciphertext space is
C = G1 × {0, 1}2n.



– Encryption: To encrypt a message M ∈ M with a single public key set
PKSi = 〈E0, E1, E2, E3, E4〉 = 〈Qi, aixM, 1

ai
sQi,

1
ai
Qi,

1
ai
Ti〉, the algo-

rithm performs the following steps:
• computes T = E0 + E1 + E2 + E3 ∈ G∗1
• checks if ê(E4, E0) = ê(T,E3), otherwise, rejects the public key set.
• checks ê(E2, P ) = ê(E3, P0), otherwise, rejects the public key set.
• computes g = ê(E1, E2) = ê(xM, sQi)
• chooses a random r ∈ Z∗q and set a ciphertext C = 〈U, V 〉 = 〈rE0,M ⊕
H2(gr)〉

– Decryption: To decrypt a ciphertext C = 〈U, V 〉 created by the public key,
the algorithm performs the following steps:
• computes M = V ⊕H2(ê(D,U))

M is the plaintext.

This completes the description of BasicMultiPub. In order to prove Theorem 1
we first show that an IND-MUP-CPA attack on BasicMU-PKE can be converted
to an IND-CPA attack on BasicMultiPub. This proof shows that partial public
key queries, partial decryption key queries and decryption key queries do not
give advantages to the adversary. Then we show that BasicMultiPub is IND-CPA
secure if the BDH assumption holds.

Lemma 1.1. Let H1 be a random oracle from {0, 1}∗ to G∗1. Let AI be
a Type-1 IND-MUP-CPA adversary that has advantage ε(k) against BasicMU-
PKE. Suppose that AI makes at most qPK > 0 public key set queries, qPPK > 0
partial public key queries, qPD > 0 partial decryption key queries and qDK > 0
decryption key queries. Then there is a IND-CPA adversary B that has ad-
vantage at least ε(k)

e(1+qP P K+qP D+qDK) against BasicMultiPub. Its running time is
O(time(AI)). 2

Proof. We show how to construct a IND-CPA adversary B that uses AI to gain
the advantage ε(k)/e(1 + qPPK + qPD + qDK) against BasicMultiPub. B makes
use of AI by simulating the Challenger in the IND-MUP-CPA game. B works
as follows:

Setup: First, the challenger CH carries out the Setup algorithm of BasicMul-
tiPub and gives Kpub to an adversary B who simulates BasicMU-PKE against an
IND-MUP-CPA adversaryAI . B suppliesAI with params = {G1, G2, ê, n, P, P0, H1, H2}
where B picked params from Kpub. But H1 is a random oracle that will be con-
trolled by B. AI may make queries of hash functions H1 and H2 at any time
during its attack. These hash functions are handled as follows:

H1-queries: AI may request two types of H1-queries. Type 1 hash query
is on input 〈ID〉 ∈ {0, 1}∗ (to compute Q in BasicMU-PKE) and Type 2 hash
query is on input 〈ID, PKS〉 (to compute QC in BasicMU-PKE).
B first generates a random pool MP = {m1, ...,ml} with l integers, where

l < [q/t], every integer of which is randomly chosen in Z∗q . The random pool indi-
cates l different users (receivers) who can possess at least t identities. B maintains
a list of tuples 〈IDj , Qj , Tj , cj , bj , xj ,mj , PKSj〉 called H1 list. The list is ini-
tially empty and when AI queries H1 on either input 〈IDi〉 or 〈IDi, PKSi〉, B
responds as follows:



1. If IDi already appears on theH1 list in a tuple 〈IDj , Qj , Tj , cj , bj , xj ,mj , PKSj〉,
then B responds with H1(IDi) = Qj ∈ G1 for Type 1 hash query or
H1(IDi, PKSi) = Tj ∈ G1 for Type 2 hash query.

2. Otherwise, B generate a random coin ci ∈ {0, 1} so that Pr[ci = 0] = δ for
some δ that will be determined later.

3. If ci = 0, then B randomly picks bi, xi, ai ∈ Z∗q , and a random value mi ∈
MP . B computes Qi = biP,E1 = aiximiP,E2 = 1

ai
biP0, E3 = 1

ai
biP, Ti =

Qi + E1 + E2 + E3 and E4 = 1
ai
Ti.

4. Else if ci = 1, B picks a random mi ∈ MP and sets bi = mi and xi =⊥.
B chooses a random PKSI = 〈QI , aIxM, 1

aI
sQI ,

1
aI
QI ,

1
aI
TI〉 in PKS. B

computes Qi = biQI , E1 = biaIxM,E2 = bi
1
aI
sQI , E3 = bi

1
aI
QI , E4 =

bi
1
aI
TI and Ti = Qi + E1 + E2 + E3.

5. B sets PKSi = 〈E1, E2, E3, E4〉 and adds the tuple 〈IDi, Qi, Ti, ci, bi, xi,mi, PKSi〉
to the H1 list.

6. B responds toAI withH1(IDi) = Qi for Type 1 hash query orH1(IDi, PSKi) =
Ti for Type 2 hash query.

H2 queries: Any H2 queries made by AI are passed to the challenger CH
to answer. H2 does not have to be assumed as a random oracle controlled by B
at this attack.

Phase 1: After receiving params from B, AI launches Phase 1 of its attack,
by making a series of requests, each of which is either a public key set query,
a partial public key query, a partial decryption key query or a decryption key
query.

– Public Key Set Query: Suppose that the request is on 〈IDi〉. B runs H1

query on 〈IDi〉 to obtain Qi and its corresponding tuple in the H1 list. Then
B returns 〈PKSi〉 in the tuple as a public key set.

– Partial Public Key Query: Suppose that the request is on 〈IDi〉. B runs
H1 query on 〈IDi〉 to obtain Qi and its corresponding tuple in the H1 list.
There are two cases: (1) If ci = 1, then B aborts. (2) Otherwise, B replies
with biP0.

– Partial Decryption Key Query: Suppose that the request is on 〈IDi〉.
B runs H1 on 〈IDi〉 query to obtain Qi and its corresponding tuple in the
H1 list. There are two cases: (1) If ci = 1, then B aborts. (2) Otherwise, B
replies with miP0.

– Decryption Key Extraction: Suppose that the request is on 〈IDi〉. B
runs H1 on 〈IDi〉 query to obtain Qi and its corresponding tuple in the H1

list. There are two cases: (1) If ci = 1, then B aborts. (2) Otherwise, B replies
with ximiP0.

Challenge: Once AI decides that Phase 1 is over, AI picks IDch and two
messages M0,M1 on which it wishes to be challenged.
B responds as follows:

1. B runs H1 query on IDch to obtain Qch and its corresponding tuple. Let
〈IDch, Qch, Tch, c, b, x,m, PKSch〉 be the corresponding tuple in the H1 list.



2. If c = 0, the B aborts.
3. Else if c = 1, then B gives the pair 〈M0,M1〉 and QI = b−1Qch to the chal-

lenger CH as the messages and public key to be challenged. CH responds
with the challenge ciphertext Cch = 〈U ′, V ′〉 such that Cch is the BasicMulti-
Pub encryption of Mg under PKSI and Kpub for a random g ∈ {0, 1}. Then
B sets C∗ = 〈b−1U ′, V ′〉 and delivers C∗ to AI . It is easy to see that C∗ is the
BasicMU-PKE encryption of Mg for the identity IDch under public key set
PKSch. SinceQch = bQI and PKSch = 〈Qch, baIxM, 1

aI
sbQI ,

1
aI
bQI ,

1
aI
bTI〉,

IDch’s decryption key in the BasicMU-PKE scheme is Dch = bsxM . So, ob-
serve that

ê(b−1U ′, Dch) = ê(b−1U ′, bD) = ê(U ′, D)

where D is the challenger’s decryption key. Thus the BasicMU-PKE decryp-
tion of C∗ using Dch is the same as the BasicMultiPub decryption of Cch
using D.

Phase 2: B continues to respond to AI ’s requests as in Phase 1.
Guess: AI should make guess g′ for g. Then B outputs g′ as its guess for g.
Claim: If B does not abort during the simulation, then AI ’s view is identical

to its view in the real attack. Also, if B does not abort then |Pr[g = g′]− 1
2 | ≥

ε(k). The probability is over the random bits used by AI , B and the challenger
CH.

Proof of Claim: B’s responses to all H1 queries are uniformly and indepen-
dently distributed as in the real attack. All responses to AI ’s requests including
decryption key queries are valid. Furthermore, the challenge ciphertext C∗ given
to AI is the BasicMU-PKE encryption of Mg under the current public key set
PKSch for the identity IDch, where g ∈ {0, 1} is random. Therefore, by the
definition of algorithm AI , we have g = g′ with probability at least ε(k) + 1

2 .
Probability: To complete the proof of Lemma 1.1 we should calculate the

probability that B does not abort during the simulation. Since B always does not
abort for the public key set queries, we count partial public key queries, partial
decryption key queries and decryption key queries about abortion. Suppose that
A makes at most qPK public key set queries, qPPK partial public key queries,
qPD partial decryption key queries and qDK decryption key queries in total.

The probability B cannot abort in Phase 1 and Phase 2 is δqP P K+qP D+qDK .
And the probability B cannot abort in the challenge queries is 1− δ. Therefore,
the probability B cannot abort during the entire simulation is (1−δ)δqP P K+qP D+qDK .
This value can be maximized at δO = 1 − 1

qP P K+qP D+qDK+1 . Applying δO
to the above probability, the probability that B does not abort is at least
1/e(1 + qPPK + qPD + qDK). 2

Lemma 1.2. Let H1 be a random oracle from {0, 1}∗ to G∗1. Let AII be
a Type-2 IND-MUP-CPA adversary that knows the master secret key s and
master identities. Suppose that AII has advantage ε(k) against BasicMU-PKE
and makes at most qPK > 0 public key set queries, qPD > 0 partial decryption
key queries and qDK > 0 decryption key queries. Then there is a IND-CPA
adversary B that has advantage at least ε(k)/e(1 + qDK) against BasicMultiPub.
Its running time is O(time(AII)). 2



Proof. We show how to construct an IND-CPA adversary B that uses AII to
gain the advantage ε(k)/e(1 + qDK) against BasicMultiPub. The game between
B and AII is similar to the game used in the proof of Lemma 1.1. B makes use
of AII by simulating the Challenger.

Setup: Identical to Setup in the proof of Lemma 1.1 except that CH gives
the secret s and M to B so that B supplies AII with params and s (CH still
keeps x in secret). Since AII is supposed to know some master identities, AII
can make additional H1 hash query on those master identities at any time during
its attack. The H1-queries in the proof of Lemma 1.1 should be slightly modified
to respond with it to AII .

H1-queries: Identical to H1-queries in the proof of Lemma 1.1 for Type
1 and Type 2 hash queries. AII may request a Type 3 hash query on input
〈MID〉 ∈ {0, 1}∗ (to compute M in BasicMU-PKE). B maintains an additional
T3H1 list with tuples of 〈MIDi, ci,mi,Mi〉. The list is initially empty.

1. If MIDi already appears on the T3H1 list in a tuple 〈MIDj , cj ,mj ,Mj〉,
then B responds with H1(MIDi) = Mj for Type 3 hash query.

2. Otherwise, B generates a random coin ci ∈ {0, 1} so that Pr[ci = 0] = δ.
3. B picks a random mi ∈MP .
4. If ci = 0, then B sets Mi = miP .
5. Else if ci = 1, B sets Mi = miM
6. B adds the tuple 〈MIDi, ci,mi,Mi〉 to the T3H1 list.
7. B responds to AII with H1(MIDi) = Mi.

Phase 1: After receiving params from B, AII launches Phase 1 of its attack,
by making a series of requests, each of which is either public key set query, partial
decryption key query or decryption key query. Notice that AII does not need to
make partial public key queries because AII can compute a partial public key
sQi for any Qi.

– Public Key Set Query: Identical to Public Key Set Query in Lemma 1.1.
– Partial Decryption Key Query: Identical to Public Key Set Query in

Lemma 1.1 except that B replies with sbiM if ci = 1.
– Decryption Key Extraction: Identical to Decryption Key Extraction in

Lemma 1.1.

Challenge: Identical to Challenge in Lemma 1.1.
Phase 2: B continues to respond to AII ’s requests as in Phase 1.
Guess: AII should make guess g′ for g. Then B outputs g′ as its guess for

g.
As mentioned in Lemma 1.1, if B does not abort during the simulation, then

AII ’s view is identical to its view in the real attack.
Probability: To complete the proof of Lemma 1.2 we should calculate the

probability that B does not abort during the simulation. Since B always does
not abort for the public key set queries and the partial decryption key queries,
we just count the decryption key queries about abortion. Suppose that A makes
qDK decryption key queries. The probability B cannot abort in Phase 1 and



Phase 2 is δqDK . And the probability B cannot abort in the challenge queries is
1− δ. Therefore, the probability B cannot abort during the entire simulation is
(1−δ)δqDK . This value can be maximized at δO = 1− 1

qDK+1 . Applying δO to the
above probability, the probability that B does not abort is at least 1/e(1 + qDK)
as required. 2

Next we show that BasicMultiPub is a semantically secure public key system
if the BDH assumption holds.

Lemma 1.3 Let H2 be a random oracle from G2 to {0, 1}n. Let A be an
IND-CPA adversary that has advantage ε(k) against BasicMultiPub. Suppose A
makes at most qH2 > 0 queries to H2. Then there is an algorithm B that solves
the BDH problem for IG with advantage at least 2ε(k)/qH2 and a running time
O(time(A)). 2

Proof. We assume that B is given as inputs the BDH parameters 〈G1, G2, ê〉
produced by IG and a random instance 〈P, aP, bP, cP 〉 = 〈P, P1, P2, P3〉 of the
BDH problem for these parameters where P is a random generator in G1 and
a, b, c are random integers in Z∗q . Consequently, D = ê(P, P )abc ∈ G2 is the
solution of this BDH problem. We show how B interacts with A to find D. B
works as follows:

Setup: B creates BasicMultiPub public keyKpub = 〈G1, G2, ê, n, P, P0, PKS,H2〉
such that P0 = P1 and each PKSI = 〈E0, E1, E2, E3, E4〉 = 〈bIP, aIP2,

1
aI
bIP0,

1
aI
bIP,

1
aI
TI〉

in PKS where aI and bI are random integers in Z∗q for I = 1, ..., t. Here H2 is a
random oracle controlled by B as described below. B gives Kpub to A. Observe
that the (unknown) decryption key associated to Kpub is DK = aP2 = abP .
A may make queries of the hash function H2 at any time. And these hash

queries are handled as follows:
H2-queries: B maintains a list of tuples 〈Xi, Hi〉 which we call H2 list. This

list is initially empty. When A queries H2 on an input Xi B responds as follows:

1. If Xi already appears on H2 list in a tuple 〈Xj , Hj〉 then B responds with
H2(Xi) = Hj .

2. Otherwise, B just picks a random string Hi ∈ {0, 1}n and adds the tuple
〈Xi, Hi〉 to the H2 list. B responds with H2(Xi) = Hi.

Challenge: A chooses a single PKSI and outputs two messages M0,M1

on which it wishes to be challenged. B picks a random string R ∈ {0, 1}n and
defines C to be the ciphertext C = 〈bIP3, R〉. B gives C as the challenge to A.
Observe that the decryption of C is R⊕H2(ê(DK, bIP3)) = R⊕H2(DbI )

Guess: A outputs its guess c′ ∈ {0, 1}. At this point B picks a random tuple

〈Xj , Hj〉 from the H2 list and then outputs D′ = X
b−1

I
j as the solution to the

given BDH instances.
B is simulating the Challenger and the random oracle for H2. And A’s view

is identical to its view in the real attack environment. The probability that B
outputs the correct answer D is at least 2ε(k)/qH2 as required if A is supposed
to make at most qH2 H2 queries. The probability analysis is the same as the
proof of Lemma 4.3 in [3] so we omit it. 2



Proof Of Theorem 1. The theorem follows directly from Lemma 1.1,
Lemma 1.2 and Lemma 1.3. Combining all reductions shows that a Type-1
IND-MUP-CPA adversary on BasicMU-PKE with advantage ε(k) gives a BDH
problem for IG with advantage at least 2ε(k)/e(1+qPPK +qPD+qDK)qH2 , and
that a Type-2 IND-MUP-CPA adversary on BasicMU-PKE gives a BDH problem
with advantage at least 2ε(k)/e(1 + qDK)qH2 , as required. 2

4.2 IND-MUP-CCA Security of FullMU-PKE

Next we show that our FullMU-PKE is a chosen ciphertext secure against the
IND-MUP-CCA adversary under the assumption that BDH is hard in groups
generated by IG.

FullMU-PKE results from applying the Fujisaki-Okamoto transformation[5] to
BasicMU-PKE to gain the adaptive chosen ciphertext security. Fujisaki-Okamoto
showed that their transformation gives the IND-CCA security to the IBE scheme[3].
Their theorem described below shows that there is an IND-CPA adversary B that
takes advantage ε1(k) against BasicMultiPub if there is an IND-CCA adversary
A with advantage ε(k) against FullMultiPub which is the result of applying the
Fujisaki-Okamoto transformation to BasicMultiPub.

Theorem 2 (Fujisaki-Okamoto). Suppose A is an IND-CCA adversary
that achieves advantage ε(k) when attacking FullMultiPub. Suppose A has run-
ning time t(k), makes at most qD decryption queries, and makes at most qH3 , qH4

queries to the hash functions H3, H4 respectively. Then there is an IND-CPA ad-
versary B against BasicMultiPub with running time t1(k) and advantage ε1(k)
where

ε1(k) ≥ FOadv(ε(k), qH4 , qH3 , qD) =
1

2(qH4 + qH3)
[(ε(k) + 1)(1− 2/q)qD − 1]

t1(k) ≤ FOtime(t(k), qH4 , qH3) = t(k) +O((qH4 + qH3) · n).
Here q is the size of the groups G1, G2 and n is the length of σ. 2

Using the Fujisaki-okamoto theorem, the following theorem shows that there
is an adversary B that can solve the BDH problem using the IND-MUP-CCA
adversary A if A has non-negligible advantage in the IND-MUP-CCA game.

Theorem 3. Suppose that four hash functions H1, H2, H3, H4 are random
oracles, and that there are two types of IND-MUP-CCA adversary AI and AII
each of which has advantage ε(k) against FullMU-PKE and each runs in time
at most t(k). Suppose that AI makes at most qPK > 0 public key set queries,
qPPK > 0 partial public key queries, qPD > 0 partial decryption key queries,
qDK > 0 decryption key queries and qD > 0 decryption queries, and that AII
makes at most qPK > 0 public key set queries, qPD > 0 partial decryption key
queries, qDK > 0 decryption key queries and qD > 0 decryption queries. Also
suppose that each adversary makes at most qH2 , qH3 , qH4 queries to the hash
functions H2, H3, H4 respectively. Then there is an algorithm B that solves the
BDH problem in groups generated by IG with advantages at least:

AdvAIIG,B(k) ≥ 2FOadv(
ε(k)

e(1 + qPPK + qPD + qDK + qD)
, qH4 , qH3 , qD)/qH2 ,



AdvAIIIG,B(k) ≥ 2FOadv(
ε(k)

e(1 + qDK + qD)
, qH4 , qH3 , qD)/qH2

The running time of B is:

tB(k) ≤ FOtime(t(k), qH4 , qH3)

where FOadv and FOtime are Fujisaki-Okamoto functions which are defined in
Theorem 2. 2

In order to prove the above theorem we first show that an IND-MUP-CCA
attack on FullMU-PKE can be converted to an IND-CCA attack on FullMultiPub.
Then we show that FullMultiPub is IND-CCA secure if the BDH assumptions
holds.

The specification of FullMultiPub is almost same as BasicMultiPub except two
more hash functions H3, H4 are chosen and used in encryption and decryption.
FullMultiPub chooses two cryptographic hash functions H3, H4 such like H3 :
{0, 1}n × {0, 1}n → Z∗q , H4 : {0, 1}n → {0, 1}n. Those hash functions are used
for making encryption and decryption in FullMultiPub as the same way used in
FullMU-PKE.

Lemma 2.1. Let H1 be a random oracle. Let AI be a Type-1 IND-MUP-
CCA adversary that has advantage ε(k) against FullMU-PKE. Suppose that AI
makes at most qPK > 0 public key set queries, qPPK > 0 partial public key
queries, qPD > 0 partial decryption key queries, qDK > 0 decryption key queries
and qD > 0 decryption queries. Then there is an IND-CCA adversary B that
has advantage at least ε(k)

e(1+qP P K+qP D+qDK+qD) against FullMultiPub. Its running
time is O(time(AI)). 2

Proof. We construct an IND-CCA adversary B that uses AI to gain the ad-
vantage ε(k)

e(1+qP P K+qP D+qDK+qD) against FullMultiPub. B makes use of AI by
simulating the Challenger in the IND-MUP-CCA Game. B works as follows:

Setup: Identical to Setup in Lemma 1.1 except that H3, H4 are included in
Kpub and params.

H1-queries: Identical to H1-queries in Lemma 1.1.
Phase 1: Public key set query, partial public key query, partial decryption

key query and decryption key query are handled as identical as those in Lemma
1.1.

– Decryption Query: Suppose that the request is on 〈IDi, Ci〉. Let Ci =
〈Ui, Vi,Wi〉 be a ciphertext encrypted with a valid public key set PKSi
associated with IDi. B responds to this query as follows:
1. B runs H1 query on IDi to obtain Qi and its corresponding tuple. Let
〈IDi, Qi, Ti, ci, bi, xi,mi, PKSi〉 be the corresponding tuple in the H1

list.
2. if ci = 0, then B runs decryption key query to obtain the decryption key
Di = ximiP0 for the public key 〈IDi, PKSi〉, and uses it to decrypt Ci.

3. If ci = 1, thenQi = biQI and PKSi = 〈Qi, biaIxM, 1
aI
sbiQI ,

1
aI
biQI ,

1
aI
biTI〉.

And the corresponding decryption key is Di = bisxM . B sets C ′i =
〈biU, V,W 〉. B relays C ′ to the challenger CH. CH’s decryption key is



D = xsM , thus ê(D, biU) = ê(xsM, biU) = ê(bixsM,U) = ê(Di, U).
The FullMU-PKE decryption of Ci using Di is the same as the Full-
MultiPub decryption of C ′i using D. Therefore CH provides the correct
decryption of C ′. B relays the challenger’s response back to AI .

Challenge: Once AI decides that Phase 1 is over, AI picks IDch and two
messages M0,M1 on which it wishes to be challenged.
B responds as follows:

1. B runs H1 query on IDch to obtain Qch and its corresponding tuple. Let
〈IDch, Qch, Tch, c, b, x,m, PKSch〉 be the corresponding tuple in the H1 list.

2. If c = 0, the B aborts.
3. Else if c = 1, then B gives the pair 〈M0,M1〉 and QI = b−1Qch to the chal-

lenger CH as the messages and public key to be challenged. CH responds
with the challenge ciphertext Cch = 〈U ′, V ′,W ′〉 such that Cch is the Full-
MultiPub encryption of Mg under PKSI and Kpub for a random g ∈ {0, 1}.
Then B sets C∗ = 〈b−1U ′, V ′,W ′〉 and delivers C∗ to AI . As described in
Lemma 1.1., C∗ is the FullMU-PKE encryption of Mg for the identity IDch

under public key set PKSch.

Phase 2: B responds to public key set query, partial public key query, partial
decryption key query and decryption key query in the same way described in
phase 1.

– Decryption Query: B responds to decryption query in the same way de-
scribed in phase 1. However if the ciphertext relayed to the Challenger is
equal to the Challenger’s ciphertext Cch, then B aborts.

Guess: AI should make a guess g′ for g. Then B outputs g′ as its guess for
g.

As mentioned in Lemma 1.1, if B does not abort during the simulation then
AI ’s view is identical to its view in the real attack.

Probability: Now we analyze the probability B aborts. B could abort when
one of the following events happens.

1. E1 is the event that AI issues a partial public key query on IDi in Phase 1
and Phase 2 that causes B to abort. If ci = 1 on IDi then B aborts.

2. E2 is the event that AI issues a partial decryption key query on IDi in
Phase 1 and Phase 2 that causes B to abort. If ci = 1 on IDi then B aborts.

3. E3 is the event that AI issues a decryption key query on IDi in Phase 1
and Phase 2 that causes B to abort. If ci = 1 on IDi then B aborts.

4. E4 is the event that AI chooses an identity IDch to be challenged on that
causes B to abort. If cch = 0 on IDch then B aborts.

5. E5 is the event that AI issues a decryption query on 〈IDi, Ci〉 in Phase 2
that causes B to abort. If C ′i relayed to the FullMultiPub challenger is equal
to Cch, then B aborts.



Claim: Pr[−E1 ∧ −E2 ∧ −E3 ∧ −E4 ∧ −E5] ≥ δqP P K+qP D+qDK+qD (1− δ)
Proof of Claim. We prove the claim in a very similar way used to calculate

the probability the BasicPubhy adversary aborts in [3].
We know that

Pr[−E1 ∧ −E2 ∧ −E3 ∧ −E4 ∧ −E5]
= Pr[−E3 ∧ −E5| − E1 ∧ −E2 ∧ −E4]Pr[−E1 ∧ −E2 ∧ −E4].

As we proved in Lemma 1.1, since Pr[c = 0] = δ, we can obtain easily that
Pr[−E1 ∧ −E2 ∧ −E4] ≥ δqP P K+qP D (1− δ). Thus

Pr[−E1 ∧ −E2 ∧ −E3 ∧ −E4 ∧ −E5]
≥ Pr[−E3 ∧ −E5| − E1 ∧ −E2 ∧ −E4]δqP P K+qP D (1− δ).

For simplifying the notation let E124 be the event E1 ∨ E2 ∨ E4.
Now we prove that Pr[−E3 ∧ −E5| − E124] ≥ δqDK+qD by induction on

the maximum number of queries qDK + qD for both decryption key query and
decryption query made by AI . Let i = qDK + qD and let E0...i be the event that
E3∨E5 happens after AI issues at most i queries. Also, let Ei be the event that
E3 ∨ E5 happens for the first time when AI issues the i-th query. We prove it
by induction on i that Pr[−E0...i| − E124] ≥ δi. For i = 0, Pr[−E0...0] = 1 by
definition. Now suppose that the claim holds for i− 1. Then

Pr[−E0...i| − E124] = Pr[−E0...i| − E0...i−1 ∧ −E124]Pr[−E0...i−1 ∧ −E124]
= Pr[−Ei| − E0...i−1 ∧ −E124]Pr[−E0...i−1 ∧ −E124]
≥ Pr[−Ei| − E0...i−1 ∧ −E124]δi−1

Thus the induction suffices if we show that Pr[−Ei| −E0...i−1 ∧−E124] ≥ δ.
Consider the i-th query AI can make. The query would be either decryption key
query on IDi or decryption query on 〈IDi, Ci〉 AI chose. There are three cases
to consider for the i-th identity. IDi can be either a new identity, an existing
identity queried before or IDi = IDch.

Let 〈IDi, Qi, Ti, ci, bi, xi,mi, PKSi〉 be the corresponding tuple of the H1 list
to IDi. We use a fact that if ci = 0 then E3 does not happen and E5 as well
since the decryption query is not relayed to the FullMultiPub challenger. Let Pi
be the lowest probability that E3 ∨ E5 does not occur for the i-th query when
E0...i−1 ∨ E124 did not happen.

– Case 1: IDi is a new identity. If the i-th query is decryption key query, then
E3 does not happen only if ci = 0. Thus Pi = δ. Else if the i-th query is
decryption query, then E5 does not happen regardless of the value of ci. If
ci = 0, B decrypts the query with the corresponding decryption key. Else if
ci = 1, B relays the modified ciphertext to the FullMultiPub challenger. Thus
Pi = 1

– Case 2: IDi has been once queried during the past i−1 queries (for decryption
key and decryption queries), public key set queries, partial public key queries
or partial decryption key queries. We consider each of cases.



• IDi appeared in the past i − 1 queries: Since E3 ∨ E5 did not happen
during the i− 1 rounds by definition, if IDi was queried for decryption
key then ci = 0 so Pi = 1. Else if IDi was queried for decryption then
ci could be 0 or 1. If the i-th query on IDi is decryption query, then
Pi = 1. Else if the i-th query on IDi is decryption key query, E3 does
not happen only if ci = 0. So Pi = δ.

• IDi appeared in public key set query: The value of ci could be 0 or 1. If
the i-th query on IDi is decryption query, then Pi = 1. Else if the i-th
query on IDi is decryption key query, E3 does not happen only if ci = 0.
So Pi = δ.

• IDi appeared in either partial public key query or partial decryption key
query: Since E1 ∨ E2 did not happened, ci = 0. Thus Pi = 1 for both
decryption key query and decryption query.

– Case 3: IDi = IDch. By the definition of the IND-MUP-CCA game, the
decryption key query on the challenger identity is not allowed. So the i-
th query would be for decryption on 〈IDi, Ci〉 and ci = 1 as well. So B
would relay a modified ciphertext C ′i = 〈biUi, Vi, Ti〉 to the challenger. By
the definition of the game, Ci is different from C∗ = 〈U, V, T 〉 which is the
challenging ciphertext sent to AI . Recall that the challenger’s ciphertext is
Cch = 〈U ′, V, T 〉 = 〈b−1U, V, T 〉. Since Ci 6= C∗, C ′i 6= Cch. Thus Pi = 1.

Consequently, we have Pi = Pr[−Ei| − E0...i−1 ∧ −E124] ≥ δ whatever
the i-th query is. Hence we say that Pr[−E1 ∧ −E2 ∧ −E3 ∧ −E4 ∧ −E5] ≥
δqP P K+qP D+qDK+qD (1− δ) as required.

The rest of probability analysis to get ε(k)
e(1+qP P K+qP D+qDK+qD) is identical to

the descriptions specified in the proof of Lemma 1.1 so we omit it. 2

Lemma 2.2. Let H1 be a random oracle. Let AII be a Type-2 IND-MUP-
CCA adversary that has advantage ε(k) against FullMU-PKE. Suppose that AII
makes at most qPK > 0 public key set queries, qPD > 0 partial decryption key
queries, qDK > 0 decryption key queries and qD > 0 decryption queries. Then
there is an IND-CCA adversary B that has advantage at least ε(k)

e(1+qDK+qD)

against FullMultiPub. Its running time is O(time(AII)). 2

Proof. The proof of Lemma 2.2 is almost same as the proof of Lemma 2.1
except that AII does not make partial public key queries and that AII does
not abort on partial decryption key queries. So the events B aborts are bounded
to E3, E4 and E5. Thus we show that Pr[−E3∧−E4∧−E5] = Pr[−E3∧−E5|−
E4]Pr[−E4] ≥ δqDK+qD (1 − δ). The probability analysis for that is identical to
the analysis in Lemma 2.1 so we omit it. 2

Proof of Theorem 3. The above two lemmas show that there is an IND-
CCA adversary who has advantage ε1(k) against FullMultiPub if there is an
IND-MUP-CCA adversary who has advantage ε(k) against FullMU-PKE.

Combining Theorem 2 and Lemma 1.3 we obtain easily the fact that there
is an adversary B that can solve the BDH problem with advantage at least
2FOadv(ε1(k), qH4 , qH3 , qD)/qH2 if there is an IND-CCA adversary A with ad-
vantage ε1(k) against FullMultiPub.



By combining all together, we say that (1) if there is a Type-1 IND-MUP-
CCA adversary on FullMU-PKE with advantage ε(k), then there is another algo-
rithm B that solves the BDH problem with advantage at least AdvAIIG,B(k) ≥
2FOadv(

ε(k)
e(1+qP P K+qP D+qDK+qD) , qH4 , qH3 , qD)/qH2 , and that (2) if there is a

Type-2 IND-MUP-CCA adversary on FullMU-PKE with advantage ε(k), then
there is another algorithm B that solves the BDH problem with advantage at
least AdvAIIIG,B(k) ≥ 2FOadv(

ε(k)
e(1+qDK+qD) , qH4 , qH3 , qD)/qH2 , as required. 2

4.3 Proof of Unlinkability

Lastly we show the unlinkability of public keys.
Theorem 4. Suppose that the hash function H1 is a random oracle. Then

public keys in the MU-PKE scheme are unlinkable. 2

Proof of Theorem 4. In order to prove the above theorem, we define a re-
lated (multiple and unlinkable) pubic key set generation algorithm denoted as
UnLinkPub. UnLinkPub is specified by Setup and GPKS as described below.

Setup: The algorithm runs IG to generates BDH parameters (ê, G1, G2) with
a given security parameter k. It chooses random integers s, b0, b1, d1, d2, q1, q2 ∈
Z∗q and random P, P1, T ∈ G1 and then sets P0 = sP . It sets the system pa-
rameter sparams = 〈ê, G1, G2, P, P0, P1, T, b0, b1, d1, d2, q1, q2, s〉. It creates two
decryption keys DK0 = sb0P1, DK1 = sb1P1. It chooses cryptographic hash
functions H2, H3, H4 as defined in FullMU-PKE. It publishes a public parameter
set Kpub = 〈ê, G1, G2, n, P, P0, H2, H3, H4〉.

GPKS on 〈IDj , CHi, sparams〉: This algorithm takes IDj , a challenger
CHi’s information and sparams as inputs and creates a public key set as follows:
It

– sets H1(IDj) = Qj = qj b̄iP and H1(IDj , PSKj) = Tj = b̄iT where b̄i means
b1−i;

– sets aj = dj b̄i ∈ Z∗q ; and
– creates PKSj = 〈ajbiP1,

1
aj
sQj ,

1
aj
Qj ,

1
aj
Tj〉

Now we show that if an IND-LINK adversaryAL has an advantage ε(k) in the
IND-LINK game, then AL gets at least the same advantage against UnLinkPub.

Setup: First, two challengers CH0, CH1 carry out the Setup algorithm of
UnLinkPub. Suppose that DK0 is CH0’s decryption key and DK1 is CH1’s. They
share sparams. The challengers give params = 〈G1, G2, ê, n, P, P0, H1, H2, H3, H4〉
to AL. Here H1 is a random oracle controlled by the challengers.

Challenge: AL generates two random identities ID1, ID2 ∈ {0, 1}∗ and
then makes a public key set query on each of them to the challenger. The
challengers respond to AL as follows: The challengers maintain a list of tuples
〈IDj , CHi, Qj , Tj , dj , qj〉 called PKS list as well.

1. CH0 selects a random coin c0 ∈ {0, 1} and then CH1’s coin is determined
as c1 = 1− c0.



2. The challenger CHi with ci = 1 runsGPKS with inputs 〈ID1, CHi, sparams〉
and then outputs PKS1.

3. CHi adds a tuple 〈ID1, CHi, Q1, T1, d1, q1〉 to the PKS list.
4. CH0 selects a random coin c′0 ∈ {0, 1} again and CH1’s coin is set as c′1 =

1− c′0.
5. The challenger CHi with c′i = 1 runsGPKS with inputs 〈ID2, CHi, sparams〉

and then outputs PKS2.
6. CHi adds a tuple 〈ID2, CHi, Q2, T2, d2, q2〉 to the PKS list.
7. The challengers set c = c0 ⊕ c′0
8. The challengers respond with PKS1, PKS2 to AL.

Notice that AL can make H1 hash query on 〈IDj〉 or 〈IDj , PKSj〉 to the
challengers. They look up the PKS list and respond with H1(IDj) = Qj and
H1(IDj , PKSj) = Tj to AL.

Guess: AL should make a guess c′ for c.
Claim: AL’s view is identical to its view in the real attack. Also |Pr[c =

c′]− 1
2 | ≥ ε(k).

Proof of Claim: The challengers choose bi, dj , qj , for i = {0, 1} and j =
{1, 2}, in uniformly and independently random distribution so thatQj = H1(IDj), Tj =
H1(IDj , PKSj) and aj are computed randomly and independently as well. And
the public key sets are valid. Therefore, AL makes a guess c′ = c with a proba-
bility at least ε(k). 2

Finally, we show that AL cannot obtain non-negligible advantage against
UnLinkPub.

There are four combinations those two challengers can make two public key
sets for ID1, ID2 in the above challenge step. Each two public key sets given to
AL for each case can be shown as follows:

– Case 1 (CH0, CH0): CH0 generated both PKS1 and PKS2. AL receives
PKS1 = 〈d1b1b0P1,

1
d1b1

sq1b1P,
1

d1b1
q1b1P,

1
d1b1

b1T 〉 and PKS2 = 〈d2b1b0P1,
1

d2b1
sq2b1P,

1
d2b1

q2b1P,
1

d2b1
b1T 〉.AL computes g1 = ê(b0P1, sq1b1P ) and g2 =

ê(b0P1, sq2b1P ).
– Case 2 (CH0, CH1): CH0 generated PKS1 and CH1 generated PKS2. AL

receives PKS1 = 〈d1b1b0P1,
1

d1b1
sq1b1P,

1
d1b1

q1b1P,
1

d1b1
b1T 〉 and PKS2 =

〈d2b0b1P1,
1

d2b0
sq2b0P,

1
d2b0

q2b0P,
1

d2b0
b0T 〉.AL computes g1 = ê(b0P1, sq1b1P )

and g2 = ê(b1P1, sq2b0P ).
– Case 3 (CH1, CH0): CH1 generated PKS1 and CH0 generated PKS2. AL

receives PKS1 = 〈d1b0b1P1,
1

d1b0
sq1b0P,

1
d1b0

q1b0P,
1

d1b0
b0T 〉 and PKS2 =

〈d2b1b0P1,
1

d2b1
sq2b1P,

1
d2b1

q2b1P,
1

d2b1
b1T 〉.AL computes g1 = ê(b1P1, sq1b0P )

and g2 = ê(b0P1, sq2b1P ).
– Case 4 (CH1, CH1): CH1 generated both PKS1 and PKS2. AL receives
PKS1 = 〈d1b0b1P1,

1
d1b0

sq1b0P,
1

d1b0
q1b0P,

1
d1b0

b0T 〉 and PKS2 = 〈d2b0b1P1,
1

d2b0
sq2b0P,

1
d2b0

q2b0P,
1

d2b0
b0T 〉.AL computes g1 = ê(b1P1, sq1b0P ) and g2 =

ê(b1P1, sq2b0P ).

We observe that the same public key set pair 〈PKS1, PKS2〉 is always cre-
ated in every case. In other words, the public information AL receives is always



the same regardless of the challengers. Therefore, it is impossible AL can dis-
tinguish whether those public key sets are generated from the same challengers
or not. So, AL cannot link two public keys which belong to the same challenger
with non-negligible advantage. Consequently, AL cannot take non-negligible ad-
vantage in IND-LINK game. 2

5 Decryption Key Renewal

In this section we suggest an extended MU-PKE (ExMU-PKE) which provides
decryption key renewal. Since a single decryption key is used to decrypt cipher-
texts encrypted with various public key sets of a single user, if the decryption
key is stolen or exposed to an attacker then the whole groups and applications
which use the associated public keys are in danger. Thus we need to refresh the
decryption key.

We approach this problem by combining our proposed MU-PKE scheme with
the certificate-based encryption scheme[6] which solved the certificate revocation
problem by adding periodic certificates to a decryption key. Likewise, in the
extended ExMU-PKE protocol, we use time intervals to refresh users’ decryption
keys periodically. Hence, each user maintains two types of decryption keys. One
is a long-term decryption key which is identical to DK in FullMU-PKE and
the other is a short-term decryption key SDK which is newly defined for the
ExMU-PKE scheme and should be updated periodically. SDKj means a short-
term decryption which is only available for decrypting in a time period j.

At the beginning of every single time period the KGC creates its new tem-
porary secret-public key pair and publishes the public key. The KGC creates
periodic partial decryption keys of its valid users which are computed by the
KGC’s periodic secret key so that users can renew their new periodic decryption
keys. The modified specifications of ExMU-PKE are described as follows:

1. Setup: Identical to Setup in FullMU-PKE except that it returns t time in-
tervals and creates a new random secret si ∈ Z∗q at the beginning of every
time interval i for i = {0, ..., t− 1}. Therefore the KGC maintains two types
of public keys. One is a long-term public key P0 = sP and the other is a
periodic temporary public key Pi = siP . The KGC publishes the temporary
public key periodically.

2. GenDK: Identical to GenDK in BasicMU-PKE except that a receiver A keeps
another periodic decryption key SDKA,i in secret. At the beginning of
time period i ≥ 0 the KGC runs Extract-Partial-Decryption-Key with in-
puts (params,MIDA, si) and outputs the periodic partial decryption key
PSDKA,i = siMA. The receiver runs Set-Decryption-Key with inputs (params, PSDKA,i, xA)
and gets SDKA,i = xAPSDKA,i = xAsiMA.

3. GenPK: Identical to GenPK in BasicMU-PKE.
4. Encryption: In the time period i ≥ 0 a sender Sj gets the KGC’s periodic

public key Pi of the time period i. Sj checks the validity of the receiver’s
identity IDA,j and public key set PKSA,j = 〈E1, E2, E3, E4〉 as the same



way as described in FullMU-PKE. If the public key set is correct, Sj generates
g as follows:

g = ê(E1, E2)ê(E1, Pi)
= ê(xAsMA, Q)ê(ajxAsiMA, P )

Sj chooses a random σ ∈ {0, 1}n and sets r = H3(σ,M), then computes a
ciphertext C = 〈U,W, V, T 〉 = 〈rQ, rP, σ ⊕H2(gr),M ⊕H4(σ)〉.

5. Decryption: The algorithm performs the following steps with inputs (params,DKA, SDKi, C)
where C = 〈U,W, V, T 〉:
(a) computes a = H0(MIDA||IDA,j) and V ′ = aW
(b) computes

V ⊕H2(ê(DKA, U)ê(SDKA,i, V
′)) = σ′

(c) computes T ⊕H4(σ′) = M ′

(d) sets r′ = H3(σ′,M ′) and tests if W = r′P . if not, rejects the ciphertext;
and

(e) outputs M ′ as a plaintext.

Since both the long-term decryption key and the short-term decryption key
are used for decrypting a ciphertext, a receiver or an attacker who succeeded
to get a long-term decryption key but did not get a valid current periodic par-
tial decryption key from the KGC cannot decrypt a ciphertext correctly. Since
the current short-term decryption key is created randomly, an attacker who has
got valid past short-term decryption key cannot obtain any idea about the cur-
rent short-term decryption key and cannot decrypt ciphertexts generated in the
current time period as well.

6 Conclusion

We proposed a new multiple and unlinkable public key encryption (MU-PKE)
scheme which allows the use of multiple identity-based public keys in differ-
ent groups or applications while keeping a single decryption key. The proposed
MU-PKE takes all advantages of the identity-based encryption scheme and tra-
ditional public key encryption scheme. Since each public key is created based on
an associated identity that is already recognized by each group or application,
it is easy to check if the public key came from the identity. The public keys and
associated decryption key are created collaboratively with user and the KGC. It
provides certification for public keys so it removed the use of certificates the tra-
ditional public key encryption scheme has. In addition, it resolved the key escrow
problem the traditional identity-based encryption scheme has inherently because
a user own selected private key that the KGC does not know is used to make the
decryption key. And we showed that our FullMU-PKE is IND-MUP-CCA secure
under the random oracle model.

We minimized the size and numbers of secret values by using a single decryp-
tion key regardless of the number of public keys. It provided user convenience
in storing and maintaining the secret values. Further more, we suggested an



advanced ExMU-PKE scheme which allows the decryption key to be refreshed
periodically in order to mitigate some vulnerabilities which may come from using
a single decryption key. It can also cope with the identity revocation problem
that would result from the corresponding decryption key collapse by updating
the decryption key periodically.

The created public keys are unlinkable. Unless an attacker or malicious user
knows information about identities and their holders in advance, he cannot link
identities and public keys which belong to the same user from the given identities
and public keys. So it provides personal privacy in pervasive computing environ-
ment by protecting the attacker from collecting and tracing user information.
We also proved the unlinkability of public keys under the random oracle model.

While this paper describes the fundamental concepts of the proposed MU-
PKE scheme, following researches are going on to further improve its efficiency
especially with regard to key renewal problem. The use of a single decryption key
for various public keys makes the key renewal problem relatively more impor-
tant compared with traditional public key cryptosystems. To this end, we need
more efficient decryption key renewal protocols which may not need the KGC’s
periodic temporary key pair or which may allow revoking a specific public key
set among the whole bunch of public key sets of each user. The KGC may want
to have each user’s public key sets under control so that it wants to create each
user’s periodic decryption key which can be associated with only current valid
public key sets in the time period i. Currently, we are researching the decryption
key renewal protocol adequate for the MU-PKE environment.
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