The Analysis of Galois Substitution Counter Mode (GSCM)

Mohamed Abo El-Fotouh and Klaus Diepold
Institute for Data Processing (LDV)
Technische Universitdt Miinchen (TUM)
80333 Miinchen, Germany
[mohamed, k1ldi]@tum.de

Abstract

In [9], GSCM mode of operation for authenticated en-
cryption was presented. GSCM is based on the Ga-
lois/Counter Mode (GCM). GSCM is an enhancement of
GCM, which is characterized by its high throughput and low
memory consumption in network applications. In this pa-
per, we propose some enhancements to GSCM and compare
it with the different implementations of GCM. We present
stability, performance, memory and security analyses of dif-
ferent implementations of GSCM and GCM.

1. Introduction

The number of internet users is increasing continually
world wide. Recent statistics reported the current number of
internet users is more than 1.5 billion. This number has in-
creased more than 330% in the last eight years and is still in-
creasing daily [28]. Consequently, internet and network ap-
plications need to serve an increasing number of concurrent
clients. The enhanced quality and performance expected
from modern applications require more bandwidth capacity
to meet the clients’ needs. Today, modern networks have
to fulfill the demand of higher transmission rates and in the
same time provide data security and especially data confi-
dentiality [16].

Key agility is particularly important in applications
where only several blocks of data are encrypted between
two consecutive key changes. IPSec [17, 18, 19] and
ATM [7], with small sizes of packets, and consecutive pack-
ets encrypted using different keys, are two widespread pro-
tocols in which the key setup latencies may play a very im-
portant role [11].

Galois/Counter Mode (GCM) [23] is a block cipher
mode of operation that uses universal hashing over a binary
Galois field to provide authenticated encryption. GCM is
build on the counter mode (CTR) [22] and it has been stan-
dardized by NIST [26]. There is a number of different soft-

ware algorithms that implements universal hashing over a
binary Galois field, these implementations vary from their
speed and memory requirements.

In this paper, we studied different software implementa-
tions of GCM. Our analysis pointed out some shortcomings
in each scheme, as the scheme that uses on-the-fly com-
putation is considered slow, on the other hand the schemes
that uses pre-computed tables use more memory, which may
limit the number of concurrent clients.

In [9], GSCM was proposed to overcome the shortcom-
ings of the current schemes. GSCM is based on the Static
Substitution Model (SSM) [8]. The SSM model can pro-
vide a block cipher with a secondary key. The secondary
key is used to replace some bits of the cipher’s expanded
key. The SSM model is used to construct a variant of the
AES, the name of this variant is AES2S. AES2S was used
to construct an encryption scheme for network applications.
In this scheme, each client possesses two keys. The first
key is shared with a group of clients (a cluster) and it is
expanded in memory (cluster key). The second key is the
client’s unique session key. Encryption and decryption are
done using AES2S, where the cluster key is used as the
expanded AES key and the client’s session key is used as
the secondary key. This scheme enjoys high throughput to-
gether with low memory consumption.

This paper is structured as follows. In Section 2, we
present the current encryption scheme together with our
general assumptions and propose a method to generate the
secondary keys for GSCM. In Section 3, we extend the def-
inition of AES2S and GSCM proposed in [9], to support
all the key lengths of AES [25]. In Section 4, we present
memory analysis of different implementations of GCM and
GSCM. In Section 5, we present software simulations to
help us better understand the behavior of the schemes in
real systems. In Section 6, we present the security analysis
of GCM and GSCM schemes . We conclude in Section 7.

2 Current schemes
2.1 General assumptions

1. We have a Server that serves N concurrent secure ses-
sions.

2. We are going to use the AES [25, 6] for encryption and
decryption.

3. The encryption/decryption is done in GCM mode [26],
which has emerged as the best method for high-speed
authenticated encryption [23].

4. Each client has two keys, one for each traffic flow (the
same method used in IPSec [17, 18, 19], when The
Internet Key Exchange (IKE) [14] is used to establish
fresh keys).

2.2 Counter block format

Following the guidelines in [15, 29], we assume that
the counter block used in counter mode, has the following
format:

1. The first 32-bit are a nonce, which are random and
unique for each client.

2. The next 64-bit are the initialization vector (IV), which
are random and incremented with each packet.

3. The last 32-bit are initialized for each packet by one,
and incremented for each 128-bit block within the
packet.

2.3 Secondary keys generation

In our proposed models, we have two classes of keys:
the cluster keys and the clients keys. We propose to use
three keys for each cluster, two main keys (Cluster Encryp-
tion Key CEK and Cluster Decryption Key CDK) and the
users’ key (Cluster User Key CUK). These three keys are
unique for each cluster and are generated using a crypto-
graphic secure random number generator. CEK and CDK
are used to generate the cluster encryption and decryption
expanded keys using AES key scheduling. CUK is used
to generate the clients’ unique keys using the counter mode
(CTR) [22]. In this way, we guarantee that each client has
an unique pair of secondary keys.

Note that if one of the two secondary keys of the client is
known, the second key can be calculated by knowing only
one pain of plaintext/ciphertext. Thus, the secondary keys
MUST be unique and unpredictable.

2.4 GCM software implementations

GCM mode combines the well-known counter
mode [22] of encryption with the Galois mode of au-
thentication. The key feature is that the Galois field
multiplication used for authentication can be easily com-
puted in parallel thus permitting higher throughput than
the authentication algorithms that use chaining modes, like
CBC [24].

We tested GCM with the different GHASH implementa-
tion strategies, using on-the-fly strategy and pre-computed
tables using 256 bytes, 4Kb tables with Shoups method [?],
8Kb tables [12] and 64Kb with the straightforward method.
We also implemented AES with pre-computed subkeys and
generating the subkeys on-the-fly.

2.5 GCM-Pre(x)

GCM-Pre(x) represent a group of five schemes, each
scheme uses different value of x. These values are 0, 256,
4096 (4K), 8192 (8K) and 65536 (64K) and they represent
the amount of memory required in bytes for GHASH com-
putation for each traffic flow per client. The pre-computed
tables are computed at the beginning of the session, stored
in memory and then recalled whenever a GHASH compu-
tation is needed. It executes as follows:

e Setup Routine, is executed for every client number i
(C,), once it is connected:

— Two unique cryptographic random keys (k; and
k?) of length 128-/256-bit are generated.

— Two random IVs (IV} and IV?) of length 64-bit
are generated.

— Two unique nonces (n; and n?) of size 32-bit are
generated.

- kb k2, IVI,IVZ, n! and n? are send to the client.

— k} and k? are expanded, using AES encryption
key setup algorithm to produce E; and D;.

— T} and T? (tables of size x bytes used to compute
the GHASH function in the encryption and de-
cryption directions respectively) are computed,
using &} and k?.

- E;, D;, IVL, IVZ, nl, n?, T} and T? are stored
in the server’s memory.

¢ Encryption Execution Routine, to encrypt a plaintext
(PT) for C;:

- E;, IV}, n} and T} are fetched from the server’s
memory.

— IV} is incremented by one.

— IV} and n} are used to construct the initial

counter block (ICB;) for the CTR mode (as ex-
plained in Sect. 2.2).

— ICB; is used to encrypt PT using GCM mode to
produce CT, where E; serves as the encryption
expanded key and 77! is used to calculate the au-
thentication tag t.

- CT, IV} and t are send to the client, note that
IV} is send to the client to ensure that the client
can generate the key stream needed for decryp-
tion, even when some packets are lost or re-
ordered [15].

e Decryption Execution Routine, to decrypt a cipher-
text (CT) for C;:

— Dy, n? and T? are fetched from the server’s mem-
ory.

- IV2, CT and t are received from the client.

— The authentication tag t’ is calculated using 77
and if t=t’ the next step is executed, otherwise an
authentication error is returned.

— IV? and n? are used to construct the initial

counter block (ICB;) for the CTR mode (as ex-
plained in Sect. 2.2).

— ICB; is used to decrypt CT using GCM mode to
produce PT, where D; serves as the encryption
expanded key (note that the encryption function
of the cipher is used in the decryption process of
the CTR mode).

2.6 GCM-On(x)

GCM-On(x) represent a group of five schemes, each
scheme uses different value of x. These values are 0, 256,
4096 (4K), 8192 (8K) and 65536 (64K) and they represent
the amount of memory required in bytes for GHASH com-
putation for each traffic flow per client. The pre-computed
tables are computed at the beginning of the session, stored
in memory and then recalled whenever a GHASH compu-
tation is needed. It executes as follows:

e Setup Routine, is executed for every client number i
(C;), once it is connected:

Two unique cryptographic random keys (k;} and
k?) of length 128-/256-bit are generated.

Two random IVs (IV} and IV?) of length 64-bit
are generated.

Two unique nonces (n;} and n?) of size 32-bit are
generated.

k}, k2, IVL,IVZ, nl and n? are send to the client.

— T} and T? (tables of size x bytes used to compute
the GHASH function in the encryption and de-
cryption directions respectively) are computed,
using k! and k7.

- kL k2, IVLIVZ, n}, n2, T} and T? are stored in

the server’s memory.

¢ Encryption Execution Routine, to encrypt a plaintext
(PT) for C;:

-k}, IVY, nl and T} are fetched from the server’s
memory.

- IV} is incremented by one.

- IV} and n} are used to construct the initial
counter block (ICB;) for the CTR mode (as ex-
plained in Sect. 2.2).

— ICB; is used to encrypt PT using GCM mode to
produce CT, where k} serves as the encryption
key (the subkeys are calculated on-the-fly) and
T is used to calculate the authentication tag t.

- CT, IVZ1 and t are send to the client, note that
IV} is send to the client to ensure that the client
can generate the key stream needed for decryp-
tion, even when some packets are lost or re-
ordered [15].

e Decryption Execution Routine, to decrypt a cipher-
text (CT) for C;:

— k2, n? and T? are fetched from the server’s mem-
ory.
— IV2, CT and t are received from the client.

— The authentication tag ' is calculated using 777
and if t=t’ the next step is executed, otherwise an
authentication error is returned.

- IV2 and n? are used to construct the initial
counter block (ICB;) for the CTR mode (as ex-
plained in Sect. 2.2).

— ICB; is used to decrypt CT using GCM mode to
produce PT, where k? serves as the encryption
key (the subkeys are calculated on-the-fly), note
that the encryption function of the cipher is used
in the decryption process of the CTR mode.

3 New Scheme
3.1 AES2S

AES2S is a variant of AES presented in [9]. It is con-
structed using the SSM model [8]. It accepts two 128-bit
secondary keys. We redefine AES2S to support 128-bit
keys. The listing of AES2S is found in table 1, where:

Table 1. AES2S encrypting function.
Encrypt-AES2S(P, EK, K1,K2)
KL=len(EK)
if(KL=1408)

Xx=5

else

x=9
end if
Substitute(EK , K1,0)
Substitute(EK , K2 , x)
C=Encrypt-AES(P , EK)
return C

X: is the input plaintext, that will be encrypted using
AES2S.

EK: is the expanded AES encryption key.
K1: is the first part of the secondary key of size 128-bit.
K2: is the second part of the secondary key of size 128-bit.

Substitute(EK,K1,i): replaces the i*" 128-bit of EK with
K1 (Note that: the first round of the AES is round zero
and it is the pre-whitening process).

len(X): returns the size of X in bits.

Encrypt-AES(X,EK): encrypts X using AES encryption
routine, with EK as the expanded encryption key and
return the result.

C: the output ciphertext.
In AES2S, two rounds subkeys are replaced:

1. The subkeys of the pre-whitening round are replaced
with K1.

2. The subkeys of the x*" round are replaced with K2.
3.2 GSCM(x)"

AES?2S is used to build a scheme for high-speed net-
works, where:

e (K. 1 and K,9) are the cluster keys used as the AES
secret keys, and are shared by n clients (where n is the
maximum size of a cluster).

e Each client i (C;) has its own two unique 128-bit keys
(k}) and (k).

GSCM(x)" tries to eliminate the setup latencies, it executes
as follows:

e Cluster setup routine: is used to prepare the system
and is executed for each cluster of n clients.

— Two cryptographic random keys (K1) and (K.2)
with length 128-/256-bit are generated.

— K1 and K. are expanded, using AES encryp-
tion key setup algorithm to produce the cluster’s
shared encryption expanded subkeys (E.) and
the cluster’s shared decryption expanded subkeys
Do)

— T, and T.o (tables of size x bytes used to
compute the GHASH function in the encryption
and decryption directions respectively) are com-
puted, using K.; and K,».

- E., D., T.; and T, are stored in the server’s
memory.

e Client setup routine: is executed for every client
number i (C;), once it is connected:

— Two unique cryptographic random keys (k; and
k?) of length 256-bit are generated.

— Two random IVs (IV} and IV?) of length 64-bit
are generated.

— Two unique nonces (n} and n?) of size 32-bit are
generated.

- k! k2, K1, Koo, IVE, IVZ, n! and n? are send to

30 Vg %
the client.
-k}, k2, IVL, 1IV2, n! and n? are stored in the
server’s memory.

e Encryption execution routine, to encrypt a plaintext
(PT) for C;:

- E., IV}, n} and T, are fetched from the server’s
memory.

— IV} is incremented by one.

- IV} and n} are used to construct the initial
counter block (ICB;) for the GCM mode (as ex-
plained in Sect. 2.2).

— ICB; is used to encrypt PT using GCM mode to
produce CT using AES2S (with k! and k? as its
secondary keys), where E; serves as the encryp-
tion expanded key and T, is used to calculate the
authentication tag t.

- CT, IVZ1 and t are send to the client, note that
IV} is send to the client to ensure that the client
can generate the key stream needed for decryp-
tion, even when some packets are lost or re-
ordered [15].

e Decryption execution routine, to decrypt a ciphertext
(CT) for C;:

- D, n% and T,., are fetched from the server’s
memory.

— IVZ, CT and t are received from the client.

— The authentication tag t’ is calculated using 7.2
and if t=t’ the next step is executed, otherwise an
authentication error is returned.

— IV? and n? are used to construct the initial
counter block (ICB;) for the CTR mode (as ex-
plained in Sect. 2.2).

— ICB; is used to decrypt CT using GCM mode to
produce PT using AES2S (with k! and k2 as its
secondary keys), where D; serves as the encryp-
tion expanded key (note that the encryption func-
tion of the cipher is used in the decryption pro-
cess of the CTR mode).

4 Memory Analysis

The less the memory the scheme needs, the more avail-
able memory to other applications and the larger the number
of concurrent clients the server can serve. Memory access
has a great role in the overall scheme performance. If a
server has insufficient physical memory space to cache all
of the data it needs, it performs page replacements. Al-
though virtual memory makes the server able to complete
the process, this process is very slow compared to the cost
of data computation [20].

Table 2 represents the memory requirements in bytes for
the GCM schemes per client to hold the key material and
other data required to perform encryption and decryption
(e.g IVs, nonces, counter, ...etc). From these results, it is
clear that GSCM(x) schemes possess the lowest memory
requirements and thus can server the maximum number of
concurrent clients. GSCM(x) schemes can server at least
twice the number of clients of the current schemes and in
some cases this factor increases to about 1029.

5 Simulation Analysis
5.1 Server Configuration

We implemented NoCrypto and the other tested schemes
using C++ language and run a simulation to examine their
practical behavior. Table 3 shows the server configuration
used in our simulations. Note that NoCrypto does not per-
form any encryption or decryption functions, it is illustrated
here to show the cryptographic overhead and in our pro-
posed schemes all the clients share the same cluster.

Table 2. Memory requirements for GCM
schemes per client (in bytes)

128-bit key | 256-bit key
GCM-Pre(64k) | 131624 131752
GCM-Pre(8k) 16936 17064
GCM-Pre(4k) 8744 8872
GCM-Pre(256) 1064 1192
GCM-Pre(0) 552 630
GCM-On(64k) | 131336 131400
GCM-On(8k) 16648 16712
GCM-On(4k) 8456 8520
GCM-On(256) 776 840
GCM-On(0) 264 328
GSCM(x) 128 128

Table 3. Server configuration.

Processor Intel Xeon Quad-Core 2.33GHz(64-bit)
RAM 4096 MB

Processor Cache 12 MB

Paging file 4096 MB

(0N Microsoft Windows Server 2008
Compiler Visual C++ 2005

Code optimization | Maximum speed

5.2 Parameters

« is the tested packet size, we have chosen a to be
either 40 or 1500 bytes. As the current packet sizes
seem mostly bimodal at 40 and 1500 bytes [13, 27].

e UNIT is the current number of clients.

e STEP is a number used to calculate the current number
of clients in a given simulation instance.

e Z, is the current number of clients served by the serve,
We construct the set Z = { Z; }, where Z; = (i x STEP).

5.3 The Simulation

We constructed a multi-client/server TCP socket applica-
tion to demonstrate the behavior of the schemes. The server
and the clients are connected via a LAN (100 Mbps). The
scenarios work as follows:

1. The server allocates 90% of its RAM as a shared data
pool. This pool hold the encrypted and decrypted data
for all the client and is used to illustrate the effect of
reading and writing to the RAM.

2. The server allocates the memory needed by the tested
scheme to serve Z; clients, where for each client, the
server allocates M bits, where M is the number of bits
required by each client using the tested scheme (see
table 4).

3. The server waits until 50 computers are connected,
then send the start command to all the computers (each
computer simulates Z;/50 clients). Note that each
computer is served using a different thread, to illus-
trate the effect of multi-threading.

4. As the computer receives the start command, it sends
a packet of size « to the server.

5. The packet is decrypted for client C; and encrypted to
client C,, where i and x are positive random numbers
less than Z;.

6. The server sends the encrypted packet (from the previ-
ous step), to the computer that serves client C,,.

7. When the packet is processed by the server and re-
ceived by the computer, the computer starts to send a
packet for the next client it simulates.

8. The average time (in milliseconds) for processing a
packet is reported.

9. We ran the simulation, where STEP=100,000 with the
following termination conditions:

Table 4. Maximum reported number of clients
and stable number of clients for GCM
schemes (in 10,000).

MaxR MaxS
128-bit | 256-bit | 128-bit | 256-bit

GCM-Pre(0) 85 70 70 55
GCM-On(0) 190 150 175 135
GCM-Pre(256) | 45 45 35 30
GCM-On(256) | 60 50 45 40
GCM-Pre(4k) 20 20 5 5
GCM-On(4k) 20 20 5 5
GCM-Pre(8k) 20 20 5 5
GCM-On(8k) 20 20 5 5
GCM-Pre(64k) | NA NA NA NA
GCM-On(64k) | NA NA NA NA
GSCM(*) 200 195 185 180

(a) When the average packet processing time for a
packet exceeds that of NoCrypto with a factor of
2 (using the same parameters).

(b) The server can not allocate memory for Z;
clients.

(c) The server begins to loss its connections.

5.4 Maximum Stable Number of Clients

Table 4 summarizes the simulation results, where we re-
ported the maximum number of clients reported in our sim-
ulation, together of the maximum number of stable clients
reported. These numbers are the average of that with a=40
and a=1500. It is worth to mention that the maximum num-
ber of stable clients with a=1500 is greater than that with
a=40.

From these results, all GSCM schemes can serve the
same number of stable clients. In case of K=128, our simu-
lation reported that GSCM schemes can server about 265%
and 105% stable clients as GCM(0)-Pre and GCM(0)-
On respectively, these values increase to 320% and 130%
(when K=256). For the schemes that uses 256 pre-
computed tables, GSCM schemes can server about 530%
and 410% stable clients as GCM(256)-Pre and GCM(256)-
On respectively (when K=128), and these persantages in-
crease to 600% and 450% (when K=256). For both schemes
that uses 4K and 8K pre-computed tables, GSCM schemes
can server from 3600% to 3700% stable clients than the
other schemes. In case of GCM(64k)-Pre and GCM(64k)-
On, the simulation program failed to allocate the required
memory.

5.5 Network Performance Analysis

We performed a similar simulation like in 5.3 , in this
simulation we set Z = { Z; }, where Z; = 10,000 and 1 <
7 < 10. To measure the performance of the schemes in real
network.

Figure 1, presents the simulation results for the fastest
schemes of each category. GSCM(64k) is considered the
fastest scheme of GSCM(x), GCM(4k)-Pre is the fastest
GCM(x)-Pre and GCM(4k)-On is the fastest GCM(x)-
On. Where GSCM(64Kk) is faster than GCM(4k)-Pre and
GCM(4k)-On specially in the small packets size case, where
it is about 5% faster than GCM(4k)-Pre, almost as fast as
GCM(4k)-On (K=128) and 8% faster than GCM(4k)-On
(K=256). It is worth to mention that for large packest all
the schemes have almost the same speed.

0.015

0.013

002 +— —
001 — T (@ GCMdk-Pre
| GCMi4k-On

2 000 — —

O GSCHME4K)
0os — — (O MoCrpto
0,004 — —
000z +— —

k=123 S}

Figure 1. The fastest GCM schemes, average
time (in ms) needed to process a packet (« =
40)

5.6 CPU Utilization Analysis

We performed a similar simulation like in Sect. 5.5 , but
we only use the multi-threading to simulate the clients (i.e.
we removed the network overhead), this is to measure the
CPU utilization for each scheme.

Figure 2, presents the simulation results for the fastest
schemes of each category. GSCM(64k) is considered the
fastest scheme of GSCM(x), GCM(4k)-Pre is the fastest
GCM(x)-Pre and GCM(4k)-On is the fastest GCM(X)-
On. Where GSCM(64Kk) is faster than GCM(4k)-Pre and
GCM(4k)-On specially in the small packets size case, where
it is about 19 to 40% faster than GCM(64k)-Pre and 49% to
58% faster than GCM(4k)-On. On the other hand, it seems
that GSCM(64k) is faster than GCM(4k)-Pre with about 7
to 8% and it is faster than GCM(4k)-On with about 20% to
30% (when a=1500).

0.0z

.01
oo
O GCM{4K-Pre
2 ooe +— B GCM{4K-0n
O GSCM 4k
0004 —
0002 ——
a T
k=128 k=256
(a) (a=40 and STEP=10,000).
0,035
ooz
0025 — —
ooz | — |@GCMEk-Pre
g B GCM{4K)-On
0,015 +—— 1 |OGSCMELK)
0.01 — —
000s —f —
a

k=122 KEZEE

(b) (=1500 and STEP=10,000).

Figure 2. The fastest GCM schemes, average
time (in ms) needed to process a packet

6 Security Analysis

The security of GCM is based on that of CTR and AES,
as GCM uses AES in CTR mode in its encryption. The
security of GSCM is based on that of CTR and AES2S, as
GSCM uses AES2S in CTR mode in its encryption.

6.1 Security of CTR.

Birthday attacks on CTR mode remain possible even
when the underlying block cipher is ideal [1], and CTR en-
cryption becomes insecure once 254 (in case of AES) blocks
have been encrypted, in the sense that at this point partial
information about the message begins to leak, due to birth-
day attacks [2]. Therefore, the server MUST generate a
fresh key (random and unused key) before 264 blocks are
encrypted with the same key for each client.

6.2 Security of AES.

We assume that, the best attack known against the full
AES is to try every possible 128-/256-bit key (i.e., perform
an exhaustive key search), this requires about 2127/2255
trails [6].

6.3 Security of AES2S

For an attacker that does not know either the primary key
and the secondary key, she tries to attack a full round AES.
After the first secondary key substitution, 4 to 8 rounds
of the AES are performed, these rounds assures that not
only full confusion and diffusion after the injection are
achieved [21], but also that any differential and linear prop-
agation is completely destroyed in the encryption direction
(as the secondary keys for each client are unique and ran-
dom (Sect. 2.3)). Using two subkeys substitution that are
random and unique, prevent the attacker to introduce any
controlled difference in the middle of the cipher, thus elimi-
nating the possibility of a chosen plaintext attack. Thus, the
attacker can not mount linear, differential, chosen plaintext
and AES2S is considered secure.

Note that in GSCM(x) schemes, only the encryption of
AES2S is needed, as the counter mode use the encryption
function in both the encryption and decryption direction.

6.4 Security of the schemes

The security of GCM(x)-Pre and GCM(x)-On schemes
are inherited from the security of the CTR mode and that
of the AES. As the attacker can either attack the mode of
operation or the cipher itself. The server should generate a
fresh key (for each client) before 254 blocks are encrypted
with the same key, to avoid birthday attacks on CTR. We

recommend to encrypt maximum 232 blocks for each client
(which is sufficient to encrypt the largest possible IPv6 jum-
bogram [4]), then generates a fresh key for that client.

The security of GSCM(x)"™ schemes is inherited from
that of the CTR mode and that of AES2S. As CTR mode se-
curity is not based on the used block cipher. There are two
kind of attackers on GSCM(x)", when attacking AES2S
(key search attack):

1. An outside attacker A (not a client served by the
server) that watches the ciphertext. For an external
attacker (that does not possess the primary key), she
needs to attack AES with two random subkeys.

2. Aninside attacker B (most probably a current user or a
recent revoked user from the cluster), that would like to
attack another client that is luckily in the same cluster.
This attacker knows the primary key:

(a) The attacker decrypts the known ciphertext with
the known primary key until the 5 or 10"
round (depending on the primary key size) to pro-
duce the intermediate state ~.

(b) By knowing the input to AES2S, the attacker
can reduce AES2S to an Even-Mansour construc-
tion [10], where K1 and K2 are the key and the
reduced AES (4 or 9 rounds) is considered as the
(Pseudo)random permutation.

(c) The security of Even-Mansour is:

i. About 2255, using exhaustive search over the
key space (K1 and K2 are both of size 128-
bit), which is considered large enough by to-
days standards.

ii. Daemen demonstrated in [5] that a known
plaintext attack, will take on average 2'27
calculations, which has the same complexity
as attacking AES with 128-bit key, which is
considered secure with todays technology.

iii. Daemen also demonstrated in [5] that a cho-
sen plaintext attack, will take on average
264 calculations using 254 stored blocks.
By limiting the number of encrypted blocks
per client, this attack can be avoided (see
Sect. 6.1, as each client encrypts maximum
232 blocks using the same secondary key, if
for some application more data is needed to
be encrypted the client can join a new clus-
ter “using a fresh secondary key” or new
fresh secondary key can be generated for
that client).

iv. Biryukov-Wagner demonstrated in [3], that
a ”’sliding with a twist” attack allows an ad-
versary to recover the key using /2 x 264

known plaintexts and v/2 x 26 work. By
limiting the number of blocks encrypted per
client using the same secondary key, this at-
tack can be avoided (see Sect. 6.1).

So GSCM(x)™ is upper bounded with the security of
AES2S and lower bounded with the security of Even-
Mansour.

7 Conclusion

In this paper, we analyze the new authenticated encryp-

tion

GSCM, with its predecessor GCM. Our analysis il-

lustrates that GSCM is superior than GCM, by possessing
high throughput, consuming the lowest amount of memory,
serving the largest number of concurrent clients and it is
also considered secure. The simulation results demonstrate
the high-throughput of GSCM, as it is faster than the cur-
rent schemes up to 60% in processing small packets and
up to 30% in processing large packets, in the same time
GSCM can serve up to 1029 times the maximum number of
clients served by the current schemes. We recommend to
use GSCM(64Kk) to benefit of its high performance.

References

(1]

[2

—

3

—

(4]

[5

—

(6]
(7]

(8

—

9]

M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A
Concrete Security Treatment of Symmetric Encryption. In
FOCS '97: Proceedings of the 38th Annual Symposium on
Foundations of Computer Science (FOCS ’97), page 394,
Washington, DC, USA, 1997. IEEE Computer Society.

M. Bellare, T. Krovetz, and P. Rogaway. Luby-Rackoff
backwards: Increasing security by making block ciphers
non-invertible. Lecture Notes in Computer Science, 1403,
1998.

A. Biryukov and D. Wagner. Advanced Slide Attacks. In
Advances in Cryptology—Eurocrypt '00 Proceeding, 2000.
D. Borman, S. Deering, and R. Hinden. IPv6 Jumbograms.
RFC 2675, August 1999.

J. Daemen. Limitations of the Even-Mansour Construction.
In ASIACRYPT: Advances in Cryptology — ASIACRYPT: In-
ternational Conference on the Theory and Application of
Cryptology. LNCS, Springer-Verlag, 1991.

J. Daemen and V. Rijmen. AES Proposal: Rijndael.
http://citeseer.ist.psu.edu/daemen98aes.html, 1998.

J. Dunn and C. Martin. Terminology for ATM Benchmark-
ing. RFC 2761, Feb 2000.

M. El-Fotouh and K. Diepold. Dynamic Substitution Model.
In The Fourth International Conference on Information As-
surance and Security (IAS’08), Naples, Italy, September
2008.

M. El-Fotouh and K. Diepold. Galois Substitution Counter
Mode (GSCM). In International Workshop on Security and
Privacy in Enterprise Computing (InSPEC 2008) in con-
Jjunction with the 12th IEEE International EDOC Confer-
ence (EDOC 2008), Munich, Germany, September 2008.

(10]

[11]

[12]

[13]

(14]

[15]

(16]

(17]
(18]
[19]

[20]

(21]

(22]

(23]

(24]

[25]

[26]

(27]

S. Even and Y. Mansour. A Construction of a Cipher from a
Single Pseudorandom Permutation. Journal of Cryptology:
the journal of the International Association for Cryptologic
Research, 10(3):151-161, Summer 1997.

K. Gaj and P. Chodowiec. Hardware performance
of the AES finalists - survey and analysis of results.
http://ece.gmu.edu/crypto/ AES _survey.pdf, 2000.

B. Gladman. http://fp.gladman.plus.com/AES/
index.htm, August 2008.

C. Greg. The nature of the beast: Recent Traf-
fic Measurements from an Internet backbone.
http://citeseer.ist.psu.edu/673025.html, 1998.

D. Harkins and D. Carrel. The Internet Key Exchange (IKE),
1998.

R. Housley. Using Advanced Encryption Standard (AES)
Counter Mode With IPsec Encapsulating Security Payload
(ESP), 2004.

O. Jung, S. Kuhn, C. Ruland, and K. Wollenweber. En-
hanced Modes of Operation for the Encryption in High-
Speed Networks and Their Impact on QoS. In ACISP '01:
Proceedings of the 6th Australasian Conference on Infor-
mation Security and Privacy, pages 344-359, London, UK,
2001. Springer-Verlag.

S. Kent and R. Atkinson. IP Authentication Header. RFC
2402, Nov 1998.

S. Kent and R. Atkinson. IP Encapsulating Security Payload
(ESP). RFC 2406, Nov 1998.

S. Kent and R. Atkinson. Security Architecture for the In-
ternet Protocol. RFC 2401, Nov 1998.

T. Liang, Y. Liu, and C. Shieh. Adding Memory Re-
source Consideration into Workload Distribution for Soft-
ware DSM Systems. In CLUSTER, pages 362-369, 2003.
L. May, M. Henricksen, W. Millan, G. Carter, and E. Daw-
son. Strengthening the Key Schedule of the AES. In ACISP
'02: Proceedings of the 7th Australian Conference on Infor-
mation Security and Privacy, pages 226-240, London, UK,
2002. Springer-Verlag.

D. McGrew. Counter Mode Secu-
rity: Analysis and Recommendations.
http://citeseer.ist.psu.edu/mcgrew02counter.html, 2002.

D. McGrew and J. Viega. The Ga-
lois/Counter Mode of Operation (GCM).
http://citeseer.ist.psu.edu/mcgrew04galoiscounter.html,
2004.

A. Menezes, P. V. Oorschot., and S. Vanstone. Handbook of
Applied Cryptography. CRC Press, 1996.

J. Nechvatal, E. Barker, L. Bassham, W. Burr, M. Dworkin,
J. Foti, and E. Roback. Report on the Development of the
Advanced Encryption Standard (AES). Technical report,
2000.

NIST. Recommendation for Block Cipher Modes of Op-
eration: Galois/Counter Mode (GCM) and GMAC. NIST
Special Publication 800-38D, November 2007.

R. Sinha, C. Papadopoulos, and J. Heidemann. Inter-
net Packet Size Distributions: Some Observations. Tech-
nical Report ISI-TR-2007-643, USC/Information Sciences
Institute, May 2007. Orignally released October 2005
as web page http://netweb.usc.edu/~rsinha/
pkt-sizes/.

[28] I. ~W. Stats. WORLD INTERNET US-
AGE AND POPULATION STATISTICS.
http://www.internetworldstats.com/stats.htm, March
2009.

[29] J. Viega and D. McGrew. The Use of Galois/Counter Mode
(GCM) in IPsec Encapsulating Security Payload (ESP),
2005.

