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Abstract. In ATC 2007, an identity based signcryption scheme for multiple receivers was proposed by
Yu et al. In this paper, we first show that Yu et al.’s signcryption scheme is insecure by demonstrating
an universal forgeability attack - anyone can generate a valid signcryption on any message on behalf of
any legal user for any set of legal receivers without knowing the secret keys of the legal users. Also, we
point out a subtle flaw in the proof of confidentiality given by Yu et al. and show that the scheme does
not provide confidentiality. Further, we propose a corrected version of Yu et al.’s scheme and formally
prove its security (confidentiality and unforgeability) under the existing security model for signcryption.

In another direction, Fagen Li et al. have proposed a pairing based multi-recipient signcryption scheme
which works in public key infrastructure (PKI). We show that, the scheme proposed by Fagen Li et
al. is not adaptive chosen ciphertext secure. We propose a new PKI based multi-receiver signcryption
scheme and formally prove confidentiality and unforgeability of the scheme. Since all the previously
reported schemes are shown to have flaws either in this paper or else where, the schemes reported in
this paper are the only correct and efficient ones (both identity based and PKI based) for multi-receiver
signcryption.

Keywords. Signcryption, Cryptanalysis, Identity Based Cryptography, PKI, Multi-Receiver Signcryption,
Bilinear Pairing.

1 Introduction

Encryption and signatures are basic cryptographic tools offered by public key cryptography for achieving
privacy and authenticity. Both primitives are used in a variety of high level protocols. There are scenarios
where properties of both primitives are needed. The most common example is secure emailing, where the
messages should be encrypted and signed to provide confidentiality and authenticity. For achieving this,
encryption schemes and signature schemes can be combined together. This was shown to be complex by
An et al. in [2]. Signcryption, introduced by Zheng in 1997 [22], is a cryptographic primitive that offers
confidentiality and unforgeability simultaneously similar to the sign-then-encrypt technique, but with lesser
computational complexity and lower communication cost. This has made signcryption a suitable primitive
for applications that require secure and authenticated message delivery, where devices have limited resources.
After Zheng’s work, a number of signcryption schemes were proposed ([25],[4], [16], [19], [20], [5], [8], [13]).
The security notion for signcryption was first formally defined in 2002 by Baek et al. in [3]. This was similar
to the notion of semantic security against adaptive chosen ciphertext attack and existential unforgeability
against adaptive chosen message attack.

The concept of identity based (ID-based) cryptosystem was introduced by Shamir [1] in 1984. The distin-
guishing characteristic of identity based cryptography is the ability to use any string as a public key. In
particular, this string maybe the email address, telephone number, or any publicly available parameter of
an individual that is unique to that individual. The corresponding private key can only be derived by a
trusted Private Key Generator (PKG) who keeps a master secret which is involved in the user private key
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derivation. An identity based cryptosystem removes the need for senders to look up the receiver’s public key
before sending out an encrypted message. It provides a more convenient alternative to conventional Public
Key Infrastructure (PKI).

Identity based signcryption schemes achieve the functionality of signcryption with the added advantage that
identity based cryptography provides. In [14], Malone-Lee gave the first identity based signcryption scheme.
Later it was found that Malone-Lee’s scheme was not semantically secure. Since then, quite a few identity
based signcryption schemes have been proposed ([11], [5], [13], [8], [17], [6]). To date, some of the most
efficient identity based signcryption schemes are that of Chen et al. [6], and Barreto et al. [17]

Related Work and Our Contribution: In practice, broadcasting a message to multiple users in a secure
and authenticated manner is an important facility for a group of people who are jointly working on the same
project to communicate with one another. While this can be achieved by using the single-user signcryption
primitive individually for each recipient, it results in huge computation and communication overhead. In-
stead, we opt for multi-receiver signcryption, whose objective is to efficiently broadcast a single ciphertext
to different receivers by performing a single signcryption operation, while achieving both authenticity and
unforgeability.

We point out that there are only two identity based multi-receiver signcryption schemes till date. Duan et
al. [9] were the first to come up with an identity based scheme for multi-receiver signcryption. Their scheme
requires just one pairing operation to signcrypt a single message for multiple receivers. Chik How Tan [7]
proved that, in spite of its efficiency and cleaver construct, [9] lacks adaptive chosen ciphertext security.
Yu et al. [21] came up with another scheme with improved efficiency in the unsigncryption phase (their
scheme requires one less pairing operation than Dual et al.’s). However, in this paper, we show that Yu et
al.’s scheme [21] is insecure with respect to unforgeability and confidentiality, by demonstrating an attack
which shows that any legal user of the system can generate a signcryption on any message on behalf of any
other legal user for any set of receivers without knowing the secret key of any other legal users. Further, we
propose a corrected version of Yu et al.’s scheme and prove its security (confidentiality and unforgeability)
under the existing security model for signcryption. Thus, it turns out that ours is the only existing correct
and provably secure identity based multi-receiver signcryption scheme.

To the best of our knowledge, three PKI based multi-receiver signcryption schemes which uses pairing are
reported in the literature [12, 18, 10]. Zheng has given a construct for multi-receiver signcryption in [12].
However, it is known that Zheng’s [12] signcryption scheme is not forward secure, anyone who obtains the
sender’s private key can recover the original message from a signcryption, which was shown in [23], following
that Duan et al. [18] proposed a multi-receiver signcryption scheme, which is a combination of Zheng’s
multi-receiver signcryption and Bellare’s concepts on multi-receiver setting for public key encryption [15].
However, [18] is insecure with respect to insider security, i.e. during the confidentiality game the senders
private key is known to the adversary, knowing it the adversary can distinguish the message hidden in the
signcryption (Since the work is not published and is only available in the authors web page, we do not review
and provide the formal attack on the scheme in [18]). Recently, Fagen Li et al. [10] proposed a multi-receiver
signcryption scheme which depends on bilinear pairing. We show that [10] is not adaptive chosen ciphertext
secure, also we propose a new multi-receiver signcryption scheme and formally prove the confidentiality and
unforgeability of the new scheme. Thus, all the previously reported schemes are flawed ones and the only
correct PKI based multi-receiver signcryption scheme is the scheme presented in this paper.

The rest of this paper proceeds as follows. In Section 2, we review the preliminaries like bilinear pairings
and related computational problems, the general framework of identity based and PKI based signcryption
schemes for multi-receiver and the security models for those schemes. Next, in Section 3, we review Yu et
al.’s identity based multi-receiver signcryption scheme and present the attacks on the scheme. In section 4,
we propose the improved identity based multi-receiver signcryption scheme and the formal security proof
for it. In Section 5, we review Fagen Li et al.’s multi-receiver signcryption scheme and show that it is not
adaptive chosen ciphertext secure. Following that in section 6 we lay out the details of our new multi-receiver
signcryption scheme and give the formal proof for confidentiality and unforgeability of the new scheme and
in section 7 we conclude the discussion.



2 Preliminaries

2.1 Bilinear Pairing

Let G1 be an additive cyclic group generated by P , with prime order q, and G2 be a multiplicative cyclic
group of the same order q. A bilinear pairing is a map ê : G1 × G1 → G2 with the following properties.

– Bilinearity. For all P, Q, R ∈ G1 and a, b ∈ Z∗
q

• ê(P + Q, R) = ê(P, R)ê(Q, R)
• ê(P, Q + R) = ê(P, Q)ê(P, R)
• ê(aP, bQ) = ê(P, Q)ab

– Non-Degeneracy. There exist P, Q ∈ G1 such that ê(P, Q) $= IG2 , where IG2 is the identity element of
G2.

– Computability. There exists an efficient algorithm to compute ê(P, Q) for all P, Q ∈ G1.

2.2 Computational Assumptions

In this section, we review the computational assumptions related to bilinear maps that are relevant to the
protocol we discuss.

Definition 1. (Computation Diffie-Hellman Problem (CDHP)): Given (P, aP, bP ) ∈ G3
1 for unknown a, b ∈

Z∗
q , the CDH problem in G1 is to compute abP . The advantage of any probabilistic polynomial time algorithm

A in solving the CDH problem in G1 is defined as

AdvCDH
A = Pr

[
A(P, aP, bP ) = abP | a, b ∈ Z∗

q

]

The CDH Assumption is that, for any probabilistic polynomial time algorithm A, the advantage AdvCDH
A is

negligibly small.

Definition 2. (Bilinear Diffie-Hellman Problem (BDHP)): Given (P, aP, bP, cP ) ∈ G4
1 for unknown a, b, c ∈

Z∗
q , the BDH problem in G1 is to compute ê(P, P )abc. The advantage of any probabilistic polynomial time

algorithm A in solving the BDH problem in G1 is defined as

AdvBDH
A = Pr

[
A(P, aP, bP, cP ) = ê(P, P )abc | a, b, c ∈ Z∗

q

]

The BDH Assumption is that, for any probabilistic polynomial time algorithm A, the advantage AdvBDH
A is

negligibly small.

Definition 3. (Decisional Bilinear Diffie-Hellman Problem (DBDHP)): Given (P, aP, bP, cP, α) ∈ G4
1 ×G2

for unknown a, b, c ∈ Z∗
q , the DBDH problem in G1 is to decide if α = ê(P, P )abc. The advantage of any

probabilistic polynomial time algorithm A in solving the DBDH problem in G1 is defined as

AdvDBDH
A = |Pr

[
A(P, aP, bP, cP, ê(P, P )abc) = 1

]
− Pr [A(P, aP, bP, cP, α) = 1] |

The DBDH Assumption is that, for any probabilistic polynomial time algorithm A, the advantage AdvDBDH
A

is negligibly small.

2.3 ID-Based Multi-Receiver Signcryption

A generic multi-receiver IBSC scheme for sending a single message to t users consists of the following
probabilistic polynomial time algorithms,

– Setup(κ). Given a security parameter κ, the Private Key Generator (PKG) generates the public param-
eters params and master secret key msk of the system.

– Keygen(IDAlice). Given an identity IDAlice, the PKG computes the corresponding private key DAlice

and transmits it to Alice in a secure way.



– Signcrypt(m, IDAlice,L = {ID1, ID2, . . . , IDt} , DAlice). To send a message m to a set of receivers with
identities ID1, ID2, . . . , IDt, Alice with identity IDAlice and private key DAlice runs this algorithm to
obtain the signcryption σ.

– Unsigncrypt(σ, IDAlice, IDBob, DBob). When Bob with identity IDBob and private key DBob receives
the signcryption σ from Alice with identity IDAlice, Bob runs this algorithm to obtain either the plain
text m or invalid according as whether σ was a valid signcryption from Alice to Bob or not.

For consistency, we require that if σ = Signcrypt (m, IDAlice,L = {ID1, ID2, . . . , IDt}, DAlice), then m =
Unsigncrypt (σ, IDAlice, IDi, Di) for 1 ≤ i ≤ t.

2.4 Security Model for ID-Based Multi-Receiver Signcryption (IBMSC)

We describe the security models for confidentiality and unforgeability for IBMSC schemes given by [5] in this
section. These are the strongest security notions for IBMSC schemes.

Confidentiality: A signcryption scheme is semantically secure against chosen ciphertext attack (IND-
IBMSC-CCA2) if no probabilistic polynomial time adversary A has a non-negligible advantage in the fol-
lowing game.

Setup Phase: The challenger C runs the Setup algorithm and sends the system public parameters to the
adversary A. A now chooses a list of identities L = {ID1, ID2, . . . , IDt} of users {R1, R2, . . . , Rt} as the
target receiver identities for which A is not allowed to query the private keys.

Phase I: In this phase, A makes polynomial number of queries to the following oracles.
1. Keygen Oracle: A produces an identity IDA and queries for the secret key of user A. The Keygen

Oracle returns DA to A.
2. Signcrypt Oracle: A produces a message m, sender identity IDA and a list of receiver identities

ID1, ID2, . . . , IDt. C computes the secret key DA from Keygen(IDA) and returns to A, the sign-
cryption σ.

3. Unsigncrypt Oracle: A produces a sender identity IDA, receiver identity IDB and a signcryption
σ. Note that inorder to construct m from σ, C must know the secret key of IDB and C obtains it
by invoking Keygen(IDB). C returns the corresponding message m to A if σ is a valid signcryption
from IDA to IDB else returns invalid.

Challenge: A produces two messages m0 and m1 of equal length from the message space M and an
arbitrary sender identity IDA. The challenger C flips a coin, sampling a bit b ← {0, 1} and computes
σ∗ = Signcrypt (mb, IDA,L, DA). σ∗ is returned to A as the challenge signcryption.

Phase II: A is allowed to make polynomial number of new queries as in Phase I with the following
restrictions: A should not query the Unsigncryption Oracle for σ∗ or should not have queried the Keygen
Oracle for the secret keys of identities in the targeted receiver list L.

Guess: At the end of this game, A outputs a bit b′. A wins the game if b′ = b.

Unforgeability: A signcryption scheme is existentially unforgeable under chosen message attack (EUF-
IBMSC-CMA) if no probabilistic polynomial time adversaryA has a non-negligible advantage in the following
game.

Setup Phase: The challenger C runs the Setup algorithm to generate the master public and private keys
params and msk respectively. C gives system public parameters params to A and keeps the master
private key msk secret from A. Now, A selects a sender identity IDA and gives it to C for which A is
not allowed to query the private key.

Training Phase: A now makes polynomial number of queries to the oracles as described in Phase I of
the confidentiality game.

Forgery: A produces a signcryption σ∗ on a message m and wins the game if the private key of sender
identity IDA was not queried in the Training Phase, the signcryption σ∗ is valid on message m from
IDA to some arbitrary receiver IDB for which A knows the private key and σ∗ is not the output of any
of the previous queries to the Signcrypt Oracle with IDA as sender and m as the message.



2.5 Security Model for PKI Based Multi-Receiver Signcryption for (MSC)

Here, we describe the security models for confidentiality and unforgeability of PKI based multi-receiver
signcryption scheme. These are the strongest security notions for MSC schemes. Let S denote the sender
and R denote the receiver.

Confidentiality: A multi-receiver signcryption scheme is semantically secure against adaptive chosen ci-
phertext attack (IND-MSC-CCA2), if no polynomially bounded adversary A has a non-negligible advantage
in the following game.
The challenger C, takes the security parameter κ as input and runs Extract to generate multiple key pairs
(skRi , pkRi), (for i = 1, . . . , n) for n receivers. All skRi are kept secret while pkRi the corresponding public
keys are given to A. (Note that, A can choose any user for which it knows the private key, as sender).

Phase I: A performs a series of queries in an adaptive fashion in this phase. The oracles which A can
access are given below:
Signcryption oracle: A produces a message m ∈ M and requests the signcryption of the message m,
from the sender S to a set of receivers with public keys (pkR1 , pkR2 , . . . , pkRn).
Unsigncryption oracle: A produces a signcryption σ, public key pkS of the sender and the public key
pkR of the receiver as input to this oracle and requests the corresponding message m as output.
These queries may be asked adaptively, i.e. each query may depend on the answers to previous ones.

Challenge: At the end of Phase I, A gives to C, two equal length plaintexts m0 and m1 and a sender public
key pkS , for which A knows the private key. Now, C chooses b ∈R {0, 1} and generates the challenge
signcryption σ∗ = signcrypt( mb, skS , pkR1 , . . ., pkRn), where {pkR1 , . . ., pkRn} are the n receiver public
keys for which A does not know the corresponding secret keys. C returns σ∗ to A.

Phase II: A can perform polynomial number of queries adaptively again as in Phase I but A cannot make
an unsigncryption query on σ∗.

Guess: A outputs a bit b′ and wins the game if b′ = b.

Unforgeability: A multi-receiver signcryption scheme is existentially unforgeable under chosen message
attack (EUF-MSC-CMA) if no probabilistic polynomial time adversary A has a non-negligible advantage in
the following game.
The challenger C, takes the security parameter κ as input to generates the public parameters of the system
and runs the Extract algorithm to generate a key pair (skS , pkS) and gives pkS to A and keeps the private
key skS secret. A is allowed to have access to all recipients private keys as well as the corresponding public
keys.

Training Phase: The adversary A makes polynomial number of queries to the oracles as described in
Phase I of the confidentiality game.
This phase consists of several requests by A to C for signcryption of messages with S as the sender and
an arbitrary set of users as receivers. C responds to A with the signcryption of the message. Formally,
A generates the public key pkRi for the users Ri and sends {m, pkRi , for 1 ≤ i ≤ n} to C and asks
for signcryption of m with S as the sender and {Ri, for 1 ≤ i ≤ n} as receivers. C responds with
σ = signcryption(m, S, pkR1 , . . . , pkRn).

Forgery: After a polynomial number of interactions as above during the Training Phase, A generates
σ∗ as signcryption of a message m∗ with S as the sender and {R∗

1,R∗
2,. . .,R∗

n} as the receiver set. A sends
σ∗ and public keys of the receiver set to C. C verifies if σ∗ is a valid signcryption of m with S as the
sender and {R∗

1,R∗
2,. . .,R∗

n} as the receiver set. If C finds that σ∗ is valid and σ∗ is not the output of any
previous queries to the Signcrypt Oracle with S as the sender then A is said to have successfully forged
the signcryption on message m with S as the sender and has won the game.

3 Yu et al.’s ID-Based Multi-Receiver Signcryption Scheme (Y-IBMSC)

In this section, we review Yu et al.’s identity based multi-receiver signcryption scheme (Y-IBMSC) and show
that the scheme does not provide unforgeability as well as confidentiality.



3.1 Review of Y-IBMSC

The Y-IBMSC scheme in [21] has the following algorithms.

Setup(κ): The security parameter of the scheme is κ, G1, G2 are two cyclic groups of prime order q, P
is a generator of G1 and ê is a bilinear map defined as ê : G1 × G1 → G2. Let n0, n1, n2 and n3 denote
the number of bits required to represent an identity, an element of G1, an element of G2 and a message
respectively. Three hash functions H1 : {0, 1}n0 → G1, H2 : {0, 1}n1+n3 → Z∗

q , H3 : {0, 1}n2 → {0, 1}n3 are
used. The PKG randomly chooses s ∈ Z∗

q and R ∈ G1\ {0G1} and computes Ppub = sP and θ = ê(R, Ppub),
where 0G1 denotes the zero element of G1. The public parameters are 〈G1, G2, P, Ppub, R, θ, ê, H1, H2, H3〉.

Keygen(IDA): The public key and private key of user A are computed from his identity IDA as QA =
H1 (IDA) and DA = sQA respectively.

Signcrypt(m, IDA, ID1, ID2, . . . , IDn, DA): Suppose A wants to encrypt a message m to n receivers
with identities ID1, ID2, . . . , IDn. User A does the following.

1. Randomly chooses r ∈ Z∗
q

2. Computes the following.
(a) X = rQA

(b) h2 = H2 (X‖m)
(c) Z = (r + h2)DA

(d) U = rP
(e) ω = ê (Z, P )
(f) y = m ⊕ H3 (ω)
(g) W = θrω
(h) Ti = rH1 (IDi) + rR, for 1 ≤ i ≤ n.

3. The signcryption σ = 〈y, U, X, W, T1, T2, . . . , Tn,L〉, where L is the list of receivers who can designcrypt
the message. Here, Ti is meant for the receiver IDi.

Unsigncrypt(σ, IDA, IDi, Di) : A receiver with identity IDi uses his secret key Di to unsigncrypt
σ = 〈y, U, X, W, Ti,L〉 from IDA as follows.

1. Computes the following.
(a) ω′ = Wê (U, Di) ê (Ppub, Ti)

−1

(b) m′ = y ⊕ H3 (ω′)
(c) QA = H1 (IDA)
(d) h′

2 = H2 (X‖m′)
2. If ω′ = ê (Ppub, X + h′

2QA), returns m′. Otherwise, returns invalid.

3.2 Attack on Y-IBMSC

The scheme described above is insecure from the point of view of unforgeability and confidentiality. Anybody
can generate a valid signcryption for any message m∗ as if it were generated by another legal user. We describe
how these attacks proceed in this section.

Attack on Unforgeability: Let Alice be a legal user of the system and Eve be any forger. If Eve wants
to generate a signcryption on any message m∗ as if it were generated by Alice for a list of legal users of the
system with identities ID1, ID2, . . . , IDn, Eve just has to do the following.

1. Randomly choose r∗ ∈ Z∗
q

2. Compute the following.
(a) X∗ = r∗QAlice

(b) h∗
2 = H2 (X∗‖m∗)

(c) Z∗ = (r∗ + h∗
2) QAlice.

(d) U∗ = r∗P
(e) ω∗ = ê (Z∗, Ppub)



(f) y∗ = m∗ ⊕ H3 (ω∗)
(g) W ∗ = θr∗

ω∗

(h) T ∗
j = r∗H1 (IDj) + r∗R, for 1 ≤ j ≤ n

3. σ∗ = 〈y∗, U∗, X∗, W ∗, T ∗
1 , T ∗

2 , . . . , T ∗
n ,L∗〉 is the signcryption by Alice on message m∗ generated by Eve

for the list of users L∗ with identities {IDj}1≤j≤n

We now prove that the σ∗ generated by Eve is a valid signcryption from Alice to the receivers in L∗ on the
message m∗.

Unsigncrypt(σ∗ = 〈y∗, U∗, X∗, W ∗, T ∗
1 , T ∗

2 , . . . , T ∗
n , L∗〉, IDAlice, IDj, Dj). A receiver with identity IDj uses

his secret key Dj to unsigncrypt σ∗ obtained from Eve as follows.

– First, computes the following.
1. QAlice = H1 (IDAlice)
2. Next, it can be seen that

ω′ = W ∗ê (U∗, Dj) ê
(
Ppub, T

∗
j

)

= θr∗
ω∗ê (r∗P, sQj) ê (Ppub, r

∗Qj + r∗R)−1

= ê (Ppub, R)r∗
ω∗ê (P, Qj)

r∗s ê (P, Qj)
−r∗s ê (P, R)−r∗s

= ω∗

3. m′ = y∗ ⊕ H3 (ω′) = m∗

4. h′
2 = H2 (X∗‖m′) = h∗

2

– Next, the check ω′ ?= ê (Ppub, X∗ + h′
2QAlice) is performed. We show below that this test will succeed

and hence message m∗ will be returned.

ê (Ppub, X
∗ + h′

2QAlice) = ê (sP, r∗QAlice + h∗
2QAlice) (since h′

2 = h∗
2)

= ê (sP, (r∗ + h∗
2)QAlice)

= ê (Ppub, Z
∗) (from Step 2(c) of Eve’s forgery above)

= ê (Z∗, Ppub) (by symmetry of the bilinear map)
= ω∗ = ω′

From this it is clear that Eve can succeed in generating a signcryption of message m∗ with Alice as sender
and identities IDj, 1 ≤ j ≤ n as receivers without knowing the secret key of Alice. Thus any legal user can
forge any message on behalf of any other legal user to any set of receivers.

Attack on Confidentiality : The scheme in [21] does not provide confidentiality. This can be shown by
the following:

Let m0 and m1 be the two messages given by the adversary to the challenger during the challenge
phase of the confidentiality game. On seeing the challenge signcryption σ∗ = 〈y∗, U∗, X∗, W ∗, T ∗

i ,L∗ =
{ID1, ID2, . . . , IDn}〉, the adversary will be able to compute h0

2 = H2(X∗‖m0) and w0 = ê(X∗+h0
2QID1 , Ppub).

Then, he can compute m′ = y∗ ⊕ H3(w0). If m′ = m0 then adversary knows that σ∗ is signcryption of m0,
else, σ∗ is signcryption of m1.

4 Improved ID-Based Multi-Receiver Signcryption Scheme (I-IBMSC)

In this section, we propose an improved version of Y-IBMSC, which we formally prove to be secure.

4.1 Scheme

The setup and key generation algorithms of I-IBMSC are similar to that of Y-IBMSC, but with slightly
different hash functions. The details are given below.



Setup(κ): Let κ be the security parameter of the system. Let G1 and G2 be two groups of prime order q and
let P be the generator of G1 and ê be a bilinear map defined as ê : G1 × G1 → G2. As before, let n0, n1, n2

and n3 denote the number of bits required to represent an identity, an element of G1, an element of G2 and
a message respectively. Consider three hash functions H1 : {0, 1}n0 → G1, H2 : {0, 1}n0+2n1+n3 → Z∗

q , H3 :
{0, 1}n2 → {0, 1}n1+n3 . The PKG chooses its secret key s ∈ Z∗

q randomly and sets the master public key as
Ppub = sP . It also chooses R ∈ G1\ {0G1} at random and computes θ = e(R, sP ), where 0G1 denotes the zero
element of G1. The public parameters of the system are 〈G1, G2, P, Ppub, R, θ, ê : G1×G1 → G2, H1, H2, H3〉.

Keygen(IDA): The public key and private key of user A are computed from his identity IDA as QA =
H1 (IDA) and DA = sQA respectively.

Signcrypt(m, IDA, ID1, ID2, . . . , IDn, DA): For signcryption of message m by user A with identity
IDA and secret key DA to n receivers with identities ID1, ID2, . . . , IDn, do the following.

1. Randomly choose r1, r2 ∈ Z∗
q

2. Compute the following.
(a) U = r1P
(b) X = r2QA

(c) h2 = H2 (IDA‖U‖X‖m)
(d) Z = (r2 + h2)DA

(e) ω = ê (Z, P )
(f) y = (m‖Z‖X)⊕ H3 (ω)
(g) W = θr1ω
(h) Ti = r1(Qi + R), for 1 ≤ i ≤ n

3. The signcryption σ = 〈y, U, W, T1, T2, . . . , Tn,L〉, where L is the list of receivers who can unsigncrypt the
message. Here, Ti is meant for the receiver IDi.

Unsigncrypt(σ, IDA, IDi, Di): A receiver with identity IDi uses his secret key Di to unsigncrypt σ =
〈y, U, W, Ti,L〉 from IDA as follows.

1. Compute the following.
(a) ω′ = Wê (U, Di) ê (Ppub, Ti)

−1

(b) m′‖Z ′‖X ′ = y ⊕ H3 (ω′)
(c) h′

2 = H2 (IDA‖U‖X ′‖m′)
2. If ω′ = ê (Z ′, P ) and ω′ = ê (X ′ + h′

2QA, Ppub), return m′. Otherwise, return invalid.

4.2 Proof of Correctness of I-IBMSC

In this section, we show that our improved scheme is consistent. If σ = 〈y, U, W, Ti〉 is a valid signcryption
for a user with identity IDi, then Unsigncrypt(σ, IDA, IDi, Di) does the following.

1. Compute QA = H1 (IDA)
2. Next, we observe that

ω′ = Wê (U, Di) ê (Ppub, Ti)
−1

= θr1ωê (r1P, sQi) ê (sP, r1Qi + r1R)−1

= ê (P, R)r1s ωê (P, Qi)
r1s ê (P, Qi)

−r1s ê (P, R)−r1s

= ω

3. Compute m′‖Z ′ = c ⊕ H3 (ω′) = m‖Z
4. Compute h′

2 = H2 (IDA‖U‖X‖m′) = h2

5. Next, the checks ω′ ?= ê (Z ′, P ) and ω′ ?= ê (X + h′
2QA, Ppub) are performed. We show below that these

tests will succeed and hence message m′ will be returned.

– Check 1
ω′ = ω = ê (Z, P ) = ê (Z ′, P )



– Check 2

ê (X + h′
2QA, Ppub) = ê (X + h2QA, Ppub)

= ê (r2QA + h2QA, sP )
= ê ((r2 + h2)QA, sP )
= ê ((r2 + h2)DA, P )
= ω = ω′

4.3 Proof of Confidentiality of I-IBMSC

Theorem 1. Our identity based multi-receiver signcryption scheme I-IBMSC is secure against any IND-
IBMSC-CCA2 adversary A under the random oracle model if DBDHP is hard in G1.

(Note: We consider the security model for confidentiality of an identity based multi-receiver signcryption
scheme, described in section 2.4 to prove the IND-IBMSC-CCA2 security of our scheme).
The challenger C receives an instance (P, aP, bP, cP, α) of the DBDH problem, its goal is to decide whether
α = ê (P, P )abc or not. Suppose there exists an IND-IBMSC-CCA2 adversary A for the proposed I-IBMSC
scheme. We show that C can use A to solve the DBDH problem instance it has received. C will set the random
oracles OH1 , OH2 , OH3 , OKeyExtract, OSigncrypt and OUnsigncrypt. The answers to the oracles OH1 , OH2 , and
OH3 are randomly selected, therefore, to maintain consistency, C will maintain three lists L1 = 〈IDi, Qi, xi〉,
L2 = 〈IDi, U, X, m, h2〉, L3 = 〈ω, h3〉. We assume that A will ask for H1(ID) before ID is used in any key
extraction, signcryption and unsigncryption queries.

Setup Phase: First, the adversary A outputs the list of identities L = {ID∗
0 , ID∗

1 , . . . , ID∗
t } which is the

set of target users. Then, C gives A the system parameters params consisting of P , Ppub = cP , R = bP , and
θ = ê(R, Ppub)ê(R, cP ).

Phase I: A now adaptively queries on the various oracle OH1 , OH2 , OH3 , OKeyExtract, OSigncrypt and
OUnsigncrypt. The descriptions of these oracles follow.

Oracle OH1(IDi): C checks if there exists a tuple (IDi, Qi, xi) in L1. If such a tuple exists, C answers with
Qi. Otherwise, C does the following.

1. If IDi /∈ L, randomly choose a new1 xi ∈ Z∗
q and set Qi = xiP .

2. If IDi ∈ L, randomly choose a new xi ∈ Z∗
q and set Qi = xiP − R.

3. Add the tuple (IDi, Qi, xi) to L1 and return Qi.

Oracle OH2(IDi‖U‖X‖m): C checks if there exists a tuple (IDi, U, X, m, h2) in L2. If such a tuple exists,
C returns h2. Otherwise, C chooses a new h2 ∈R Z∗

q , adds the tuple (IDi, U, X, m, h2) to L2 and returns h2.

Oracle OH3(ω): C checks if there exists a tuple (ω, h3) in L3. If such a tuple exists, C returns h3. Otherwise,
C chooses a new h3 ∈R {0, 1}n1+n3 , adds the tuple (ω, h3) in L3 and returns h3.

Oracle OKeyExtract(IDi): C does the following.

1. If IDi ∈ L return invalid.
2. If IDi /∈ L, recover the tuple (IDi, Qi, xi) from L1 and return Di = xiPpub = cQi.

Oracle OSigncrypt (m, IDA,L1): On receiving this query, where L1 = {ID1, ID2, . . . , IDt} is the list of
intended receivers, if IDA /∈ L, C computes DA using OKeyExtract (IDA), generates the signcryption in a
normal way and returns it; else if IDA ∈ L, C chooses r, r′ and a new h2 ∈R Z∗

q and does the following.

1. Compute U = r′P
2. Compute X = rP − h2OH1(IDA) and add the tuple (IDA, U, X, m, h2) to L2.
3. Compute the following.
1 By new, we mean that the random value chosen must not have been already chosen during an earlier execution.



(a) Z = rPpub

(b) ω = ê(Z, P )
(c) y = OH3(ω) ⊕ (m‖Z‖X)
(d) For all IDj ∈ L1, Tj = r′(OH1 (IDj) + R).
(e) W = θr′

ω
4. Return the signcryption σ = 〈y, U, W, T1, T2, . . . , Tt,L1〉.

Note that, C has not followed the Signcrypt algorithm but has used a different method to obtain σ because
C does not know the private key of IDA. Although σ is generated using a different method, we show that it
is a valid signcryption on message m from IDA to the set of receivers L1 because it passes the verification
done by A. A can perform the unsigncryption of σ by considering one of the receiver identity IDj ∈ L1 and
see that σ is a valid signcryption:
First A retrieves ω from W which is proved to be correct below:

ω′= Wê(U, Dj)ê(Ppub, Tj)−1

= θr′
ωê(r′P, xjbP )ê(bP, r′(xjP + R))−1

= ê(R, bP )r′
ωê(r′P, xjbP )ê(bP, r′xjP )−1ê(bP, R)−1

= ω

Next, A retrieves (m′‖Z ′‖X ′) from y by computing y ⊕ H3(ω′). Since ω′ = ω, (m′‖Z ′‖X ′) is retrieved
correctly and thus the computation h′

2 = H2(IDA‖U‖X ′‖m′) is also correct.

Also, since Z ′ is correct, the check ω′ ?= ê(Z ′, P ) also passes. Now, we show that the check ω′ = ê(X ′ +
h′

2QA, Ppub) also holds due to the following correctness proof:

ê(X ′ + h′
2QA, Ppub)= ê(rP − h2xAP + h′

2xAP, bP )
= ê(rP − h2xAP, bP )ê(h′

2xAP, bP )
= ê(rP, bP )ê(h2xAP, bP )−1ê(h′

2xAP, bP )
= ê(rP, bP )
= ê(rbP, P )
= ê(rPpub, P )
= ê(Z ′, bP )
= ω′

Since ω′ = ω, the signcryption σ = 〈y, U, W, T1, T2, . . . , Tn,L1〉 passes the verification done by A.

Oracle OUnsigncrypt (σ, IDA, IDj): On receiving this query, where the signcryption σ = 〈y, U, W, T1, T2,
. . . , Tt, L1〉, if IDj /∈ L then C computes Dj using OKeyExtract(IDj), unsigncrypts σ in the normal way
and returns the corresponding message to A else if IDj ∈ L, then C tries to locate entries (IDA, U, m, h2) ∈
L2 and (ω, h3) ∈ L3 for some h2, h3, and ω under the constraints that ω = ê(Ppub, X + h2OH1(IDA)),
(m‖Z‖X) = h3 ⊕ y, and ω = ê(Z, P ). If such an entry is found then the message m is returned, otherwise,
the oracle returns invalid.

Challenge: After the first query stage, A outputs two plaintext messages m0 and m1 of equal length,
together with a sender’s identity IDA on which he wishes to be challenged. A now waits for a challenge
signcryption built under the receivers’ identities ID1, ID2, . . . , IDt ⊆ L. Now, C chooses a random bit
b ∈ {0, 1} and signcrypts message mb as follows.

1. Choose a new h2 and r ∈R Z∗
q .

2. Compute U∗ = aP
3. Compute X∗ = rP − h2OH1(IDA) and add the tuple (IDA, U∗, X∗, mb, h2) to the list L2.
4. Compute the following.

(a) Z∗ = rPpub = rcP
(b) ω = ê(Z∗, P )
(c) y∗ = OH3(ω) ⊕ (mb‖Z∗‖X∗)
(d) T ∗

j = xjaP for 1 ≤ j ≤ t
(e) W ∗ = αω



5. Create a new label L∗ = {ID1, ID2, . . . , IDt} and send the signcryption as σ∗=〈y∗, U∗, W ∗, T1, T2, . . .,
Tt, L∗ 〉 to the adversary.

Phase II: A can perform queries as above. However, A cannot query the unsigncryption oracle with the
challenge signcryption σ∗ as input or the signcryption oracle with messages m0 or m1 and IDA as the sender.
Guess: At the end of the simulation, A outputs a bit b′ for which, A believes that the challenge signcryption
σ∗ is the signcryption of mb′ from IDA to L∗. If the relation b = b′ holds, then C outputs 1 as the answer to
the DBDH problem. Otherwise, C outputs 0. We have,

σ∗ is a valid signcryption of mb from IDA to the receivers in L∗

⇔ ω = W ∗ê(Tj , Ppub)−1ê(U∗, Dj)

⇔ αê(Tj , Ppub)−1ê(U∗, Dj) = 1 (because we have W ∗ = αω)

⇔ αê(xjaP, cP )−1ê(aP, (xj − b)cP ) = 1

⇔ αê(xjaP, cP )−1ê(aP, xjcP )ê(aP,−bcP ) = 1
⇔ αê(P,−abcP ) = 1

⇔ α = ê(P, P )abc

These calculations show that we get a correct ω if and only if α = ê(P, P )abc.

So, we can see that the challenger C has the same advantage in solving the DBDH problem as the adversary
A has in distinguishing a valid signcryption from a random string. So, if there exists an adversary who can
succeed in such a CCA2 attack with non-negligible advantage, that means there exists an algorithm to solve
the DBDH problem with non-negligible advantage. Since this is not possible, no adversary can distinguish
a valid signcryption from a random string with non-negligible advantage. Hence I-IBMSC is secure against
any IND-IBMSC-CCA2 attack. !

4.4 Proof of Unforgeability of I-IBMSC

Theorem 2. Our identity based multi-receiver signcryption scheme I-IBMSC is secure against any EUF-
IBMSC-CMA adversary A under the random oracle model if CDHP is hard in G1.

(Note: We consider the security model for unforgeability of an identity based multi-receiver signcryption
scheme, described in section 2.4 to prove the EUF-IBMSC-CMA security of our scheme).
The challenger C receives an instance (P, aP, bP ) of the CDH problem. His goal is to determine abP . Suppose
there exists an EUF-IBMSC-CMA adversary A for our proposed I-IBMSC scheme. We show that C can use
A to solve the CDH problem. C will set the random oracles OH1 , OH2 , OH3 , OKeyExtract, OSigncrypt and
OUnsigncrypt. The answers to the oracles OH1 , OH2 , and OH3 are randomly selected, therefore, to maintain
consistency, C will maintain three lists L1 = 〈IDi, Qi, xi〉, L2 = 〈IDi, U, X, m, h2〉, L3 = 〈ω, h3〉. We assume
that A will ask for H1(ID) before ID is used in any key extraction, signcryption and unsigncryption queries.
First, the adversary A outputs the identity IDA of the sender whose signcryption he claims to be able to
forge.
Setup Phase: C gives A the system parameters params, consisting of P , Ppub = bP , R, θ = ê(R, Ppub) =
ê(R, bP ).

Training Phase: A interacts with C by accessing the various oracles provided by C The descriptions of
these oracles are presented below.

Oracle OH1(IDi): C checks if there exists a tuple (IDi, Qi, xi) in L1. If such a tuple exists, C answers with
Qi. Otherwise, C does the following.

1. If IDi $= IDA, choose a new2 xi ∈R Z∗
q and set Qi = xiP .

2. If IDi = IDA, choose a new xi ∈R Z∗
q and set Qi = (xi − a)P .

3. Add the tuple (IDi, Qi, xi) to L1 and return Qi.
2 By new, we mean that the random value chosen must not have been already chosen during an earlier execution.



Oracle OH2 (IDi‖U‖X‖m): C checks if there exists a tuple (IDi, U, X, m, h2) in L2. If such a tuple exists,
C returns h2. Otherwise, C chooses a new h2 ∈R Z∗

q , adds the tuple (IDi, U, X, m, h2) to L2 and returns h2.
Oracle OH3(ω): C checks if there exists a tuple (ω, h3) in L3. If such a tuple exists, C returns h3. Otherwise,
C chooses a new h3 ∈R {0, 1}n1+n3 , adds the tuple (ω, h3) in L3 and returns h3.

Oracle OKeyExtract(IDi): C does the following.

1. If IDi = IDA, return invalid.
2. If IDi $= IDA, recover the tuple (IDi, Qi, xi) from L1 and return Di = xiPpub = bQi.

Oracle OSigncrypt (m, IDi,L): On receiving this query, where L = {ID1, ID2, . . . , IDn} is the list of
intended receivers, if IDi $= IDA, C computes Di using OKeyExtract (IDi), generates the signcryption in a
normal way and returns it; else if IDi = IDA, C chooses r, r′ and a new h2 ∈R Z∗

q and does the following.

1. Compute U = r′P
2. Compute X = rP − h2OH1(IDA) and add the tuple (IDA, U, X, m, h2) to L2.
3. Compute the following.

(a) Z = rPpub

(b) ω = ê(Z, P )
(c) y = OH3(ω) ⊕ (m‖Z‖X)
(d) For all IDj ∈ L, Tj = r′(OH1(IDj) + R).
(e) W = θr′

ω
4. Return the signcryption σ = 〈y, U, W, T1, T2, . . . , Tn,L〉.

(Note: The correctness proof for the validity of the signcryption σ is identical to that in the confidentiality
proof in the previous section (section. 4.3) and hence we omit it.)

Oracle OUnsigncrypt (σ, IDi, IDj): On receiving this query, where the signcryption σ = 〈 y, U ,W, T1, T2, . . . ,
Tn, L〉, if IDj $= IDA, C computes Dj using OKeyExtract(IDj), unsigncrypts σ in the normal way and returns
the corresponding message to A, else if IDj = IDA, then C tries to locate entries (IDi, U, X, m, h2) ∈ L2 and
(ω, h3) ∈ L3 for some h2, h3, and ω under the constraints that ω = ê(Ppub, X + h2OH1(IDi)), (m‖Z‖X) =
h3⊕ y, and ω = ê(Z, P ). If such an entry is found, them m is returned, otherwise, the oracle returns invalid.

Forgery: Eventually, A outputs a forged signcryption σ′ = 〈y′, U ′, W ′, T ′
1, T

′
2, . . . , T

′
n,L′〉 on some message

m′ from the sender IDA to users in the set L′ = {ID1, ID2, . . . , IDn}, with IDA /∈ L′.

Now, C unsigncrypts the signcryption σ′ with the private key of any of the identities IDj ∈ L′ to get the
value Z ′. C verifies the validity of the signcryption σ′. If σ′ is a valid signcryption from IDA to IDj on
message m′ then Z ′ is a valid signature on m′ by IDA, C can apply the oracle replay technique [24] to
produce two valid signcryptions σ′ = 〈y′, U ′, W ′, T ′

1, T
′
2, . . . , T

′
n,L′〉 and σ′′ = 〈y′′, U ′, W ′, T ′

1, T
′
2, . . . , T

′
n,L′〉

on the same message m′ from the sender IDA to users in the set L′ = {ID1, ID2, . . . , IDn}, with IDA /∈ L′.

C now unsigncrypts both σ′ and σ′′ to obtain the values Z ′ = (r2 + h′
2)DA and Z ′′ = (r2 + h′′

2 )DA and
applies standard arguments for the outputs of the forking lemma since both Z ′ and Z ′′ are valid signatures
for the same message m′ for the same random tape of the adversary. Finally, C obtains the solution to the
CDH instance as xAPpub − (h′

2 − h′′
2)−1(Z ′ − Z ′′). In fact,

xAPpub − (h′
2 − h′′

2 )−1(Z ′ − Z ′′) = xAPpub − (h′
2 − h′′

2)−1(h′
2 − h′′

2)DA

= xAPpub − DA = xAbP − DA

= xAbp − (xA − a)bP = abP

So, we can see that C has the same advantage in solving the CDH problem as the adversary A has in forging
a valid signcryption. So, if there exists an adversary who can forge a valid signcryption with non-negligible
advantage, that means there exists an algorithm to solve the CDH problem with non-negligible advantage.
Since this is not possible, no adversary can forge a valid signcryption with non-negligible advantage. Hence,
I-IBMSC is secure against any EUF-IBMSC-CMA attack. !



5 Li et al.’s Multi-receiver Signcryption Scheme (L-MSC)

In this section, we review Li et al.’s multi-receiver signcryption scheme (L-MSC) as described in [10] and
show that the scheme is not adaptive chosen ciphertext secure. This system is a PKI based system.

5.1 Review of L-MSC

This scheme has the following three algorithms. Given κ and l as the two security parameters, the sender and
the receiver agrees up on two cyclic groups G1 and G2 of prime order q > 2κ (the number of bits required
to represent G1 is l), a bilinear map ê : G1 × G1 → G2 and a generator P ∈R G1. They also choose three
cryptographic hash functions H1 : G1 → {0, 1}n1, H2 : {0, 1}n1+(n+1)l → G1 and H3 : G3

1 → {0, 1}l.

Extract: User U does the following to extract the private/public key pair:

– Choose xU ∈R Z∗
q and sets it as his private key.

– Sets the public key as YU = xUP .

The sender is represented by S and the set of receivers are denotes as Ri, where (i = 1 to n)

Signcrypt: Given a message m, a set of receivers R1, R2, . . . , Rn and the sender S executes the following
steps:

– Randomly chooses r ∈ Zq∗ and R ∈ G1.
– Computes U = rP .
– Computes c = m ⊕ H1(R).
– Computes V = xSH2(c, U, YR1 , . . . , YRn).
– Computes Zi = R ⊕ H3(U, YRi , rYRi ) for i = 1, . . . , n.

The signcryption σ = (U, c, V, Z1, . . . , Zn).

Unsigncrypt: On receiving a signcryption σ = (U, c, V, Z1, . . . , Zn), each receiver Ri performs the following
steps.

– Computes R = Zi ⊕ H3(U, YRi , xRiU).
– Computes m = c ⊕ H1(R).
– Computes H = H2(c, U, YR1 , . . . , YRn).
– Accepts the message if and only if ê(P, V ) ?= ê(YS , H), return invalid otherwise.

5.2 Attack on Li et al.’s Multi-receiver Signcryption Scheme (L-MSC)

The above scheme is insecure against adaptive chosen ciphertext security, we launch the attack on the
confidentiality of the scheme as follows.

Attack on Confidentiality The crucial argument in the confidentiality proof of [10] is that the adversary A
will not realize that the challenge signcryption σ∗ is not a valid signcryption unless A asks for the hash value
H3(aP, bP, abP ). We prove that this is not the only means for A to unsigncrypt the challenge signcryption σ∗.
A can modify σ∗ by attaching an arbitrary message (with respect to the existing message) and generating a
new signcryption (A knows the secret key of the sender in confidentiality game) for the manipulated message.
Now, A can make use of the oracles to unsigncrypt the altered signcryption and thus A is able to find the
message in σ∗ without solving any hard problem.
During the IND-MSC-CCA2 game, the adversaryA, on getting the challenge signcryption σ∗=(U∗,c∗,V ∗,Z∗

1 ,. . .,Z∗
n),

can do the following to identify whether σ∗ is a signcryption of m0 or m1 without solving any hard problem.

– A computes c′ = c∗ ⊕ m′.



– Chooses an arbitrary sender, for which it knows the private key (let the private key be xA).
– Computes V ′ = xAH2(c′, U∗, YR1 , . . . , YRn) (note: A can choose the receivers of the newly generated

signcryption as any subset of receivers from the challenge signcryption), where all values except c′ are
the same as in the challenge signcryption.

– Now, σ′ = (U∗, c′, V ′, Z∗
1 , . . . , Z∗

n) is a valid signcryption from user A to multiple receivers Ri, where
i = 1 to n.

– Since σ′ is a valid signcryption and is also not the exact challenge signcryption, A can obtain the
unsigncryption of σ′ during Phase II from C.

Unsigncryt(σ′) produces mb⊕m′. As m′ is selected by A and it also knows m0 and m1, it can easily identify
whether c∗ is a signcryption of m0 or m1.

6 New Multi-receiver Signcryption Scheme (N-MSC)

The bug identified in this scheme is not a trivial one but it can be rectified by altering the scheme according
to the guideline of An et al. [2]. We propose a new multi-receiver signcryption scheme and prove the confi-
dentiality against adaptive chosen ciphertext attack and unforgeability against chosen message attack in the
random oracle model in this section.

6.1 Scheme.

The improved scheme also has three algorithms. First, given κ as the security parameter, the sender and the
receiver agrees up on two cyclic groups G1 and G2 of prime order q > 2κ (Let the number of bits required
to represent a message m be n1), a bilinear map ê : G1 × G1 → G2 and a generator P ∈R G1. They also
choose four cryptographic hash functions H1 : G1 → {0, 1}n1+n2 , H2 : {0, 1}∗ → G1, H3 : G3

1 → G1. and
H4 : {0, 1}∗ → {0, 1}n2

Extract: User U does the following to extract the private/public key pair:

– Chooses xU ∈R Z∗
q and sets it as his private key.

– Sets the public key as YU = xUP .

The sender is represented by S and the set of receivers are denotes as Ri, where (i = 1 to n)

Signcrypt: Given a message m, a set of receivers R1, R2, . . . , Rn, the sender S executes the following steps
to perform signcryption:

– Chooses r ∈R Zq∗ and W ∈R G1.
– Computes U = rP and h = H4(m, W, YS , YR1 , . . . , YRn).
– Computes c = (m‖h) ⊕ H1(W ).
– Computes V = xSH2(c, U, YS , YR1 , . . . , YRn).
– Computes Zi = W ⊕ H3(U, YRi , rYRi), for i = 1, . . . , n.

The signcryption σ = (U, c, V, Z1, . . . , Zn).

Unsigncrypt: On receiving a signcryption σ = (U, c, V, Z1, . . . , Zn), each receiver Ri performs the following
steps.

– Computes W ′ = Zi ⊕ H3(U, YRi , xRiU).
– Computes h′ = H4(m, W ′, YS , YR1 , . . . , YRn).
– Retrieves the message m and h as (m‖h) = c ⊕ H1(W ′).
– Computes H = H2(c, U, YS , YR1 , . . . , YRn).
– Accepts the message if ê(P, V ) ?= ê(YS , H) and h

?= h′, otherwise rejects the signcryption σ.



Remark 1: For a signcryption scheme to be secure in multi-user setting it is required to have the following
binding in the Encrypt-then-Sign (EtS) paradigm.

– Encryption should involve the identity of sender,
– The signature should involve the identity of the receiver.

This key issue was proved by An, Dodis and Rabin in [2]. The scheme by Fagen Li et al. [10] also uses
the (EtS) paradigm, but it fails to achieve the above said property. Thus, during the confidentiality game,
the adversary is able to alter the signature part of the challenge signcryption and produce a new valid
signcryption as if it is signcrypted by a legitimate user for some other message (It can be the signature of
the actual sender itself, as the secret key of the sender is known to the adversary during the confidentiality
game to prove the insider security). This led to the weakness on adaptive chosen ciphertext security of [10]
as demonstrated in the attack.

6.2 Proof of Confidentiality of N-MSC

Theorem 3. Our multi-receiver signcryption scheme N-MSC is secure against any IND-N-MSC-CCA2 ad-
versary A under the random oracle model if CDHP is hard in G1.

(Note: We consider the security model for confidentiality of a PKI based multi-receiver signcryption scheme,
described in section 2.5 to prove the IND-N-MSC-CCA2 security of our scheme).

The challenger C uses the adversary A, who is capable of breaking the IND-N-MSC-CCA2 security
of N-MSC to solve the CDH problem in polynomial time. Let (P, aP, bP ) be a random instance of the
CDH problem C has received. C starts the game by initializing the system parameters, choosing a receiver
R∗ ∈ {R1, R2, . . . , Rn} and sets the public key of the user R∗ as YR∗ = bP , which is the challenge public key
and gives the public keys of all users {R1, R2, . . . , Rn} to A.

Phase I: A then adaptively queries on the various oracles OH1 , OH2 , OH3 , OH4 , OSigncryption and
OUnsigncryption.
Hash oracle queries: To handle the hash queries to oracles OHi , for (i = 1, 2, 3, 4), C maintains lists
Li which keeps track of the answers given to the corresponding hash oracle queries by A. Upon a query
by A on the hash oracles OHi , for (i = 1, 2, 3, 4), C responds in the following way: C first checks in the
respective list Li, whether the oracle is queried previously for the same input; if so, retrieves and returns
the corresponding value; if not queried previously, randomly generate an element from the output range
of the corresponding hash function, returns the element to A and stores the input and output values in
the corresponding list.
OSigncryption queries: To face the signcryption query on a plaintext m and a sender S with public key
pkS both chosen by A, C does the following:
– If the public key of the sender is not the target public key, (i.e. YS $= YR∗) then C proceeds as per

the Signcrypt algorithm.
– If the public key of the sender is the target public key (i.e. YS = YR∗) then C proceeds as follows:

• Chooses r ∈R Zq∗ and W ∈R G1.
• Computes U = rP and queries h4 = OH4(m, W, YS , YR1 , . . . , YRn) and h1 = OH1(W ). If entries

(m, W, YS , YR1 , . . . , YRn , h4) and (W, h1) already exists in the list L4 and L1 respectively, C uses
them.

• Computes c = (m‖h4) ⊕ h1.
• Chooses x′ ∈R Z∗

q , sets H ′
2 = x′P and stores the tuple (c, U, YS, YR1 , . . . , YRn , H ′

2) in the list L2.
• Computes V = x′bP .
• Queries h3i = OH3(U, YRi , rYRi ).
• Computes Zi = W ⊕ h3i for i = 1, . . . , n.
• The signcryption σ = (U, c, V, Z1, . . . , Zn) is then returned as the signcryption of the message m

with YR∗ as the sender to A.
Note that, the signcryption σ = (U, c, V, Z1, . . . , Zn) generated by this oracle with the targeted user as
sender is valid, which we prove here. Since all other verifications except ê(P, V ) = ê(YS , H ′

2) (which is
the key verification during the unsigncryption process) are hash equality checks we omit them and show
the validity of σ with respect to the former check alone:



ê(P, V )= ê(P, x′bP )
= ê(P, bH ′

2)
= ê(bP, H ′

2)
= ê(YS , H ′

2)

Thus, the signcryption σ = (U, c, V, Z1, . . . , Zn) generated by the oracle is valid with respect to the sender
and the receiver.

OUnsigncryption queries: Upon receiving an unsigncryption query on a signcryption σ = (U, c, V, Z1, . . . , Zn)
and a senders public key YS both chosen by A, C proceeds as follows:
– If the public key of the receiver is not the target public key, i.e. YR $= YR∗ then C proceeds as per

the Unsigncrypt algorithm.
– If the public key of the receiver is the target public key i.e. YR = YR∗ then C proceeds as follows:

• Retrieves (U, YRi , rYRi , h3i), where (0 ≤ i ≤ qH3) from list L3, if the tuple does not exist return
invalid.

• Computes W = Zi ⊕ h3i .
• Retrieves the message m′ and h′

4 by computing (m′‖h′
4) = c⊕ h1 where h1 is retrieved from the

list L1 by searching for a tuple (W, h1) in it, if not present returns invalid.
• Retrieves (m, W, YS , YR1 , . . . , YRn , h4) from the list L4, if the tuple does not exist returns invalid.
• Retrieves (c, U, YS , YR1 , . . . , YRn , H ′

2) from the list L2, if the tuple does not exist returns invalid.
• Returns the message m to A if and only if ê(P, V ) ?= ê(YS , H ′

2) and h4
?= h′

4, otherwise return
invalid and Abort.

Challenge: At the end of Phase I, A produces two plaintexts m0 and m1 to C and requires the signcryption
on one of the two messages with the receivers public keys that includes the challenge public key YR∗ . C
chooses a random bit b ∈R {0, 1} and signcrypts mb as follows.
– Computes U∗ = aP and chooses W ∗ ∈R G1.
– Queries the oracles OH4 and OH1 to obtain h∗

4 = OH4(m, W ∗, YS , YR1 , . . . , YRn) and h∗
1 = OH1(R)

respectively.
– Computes c∗ = (mb‖h∗

4) ⊕ h∗
1.

– Queries the oracle OH2 and obtains H ′∗
2 = OH2(c∗, U∗, YS , YR1 , . . . , YRn).

– Computes V ∗ = xSH ′
2.

C then chooses {Z∗
1 , . . . , Z∗

n} ∈R G1 and sends the challenge signcryption σ∗ = (U∗, c∗, V ∗, Z∗
1 , . . . , Z∗

n)
to A.

Phase II: A adaptively performs series of queries in this phase also but with the restriction that, A is not
allowed to get the unsigncryption of the challenge signcryption σ∗. These queries are handled by C as
those in the first stage.

(Note that A cannot realize that σ∗ is not a valid signcryption for the senders private key xS and the
receiver public key YR∗ unless A asks for the hash value H3(U∗, YR∗ , aYR∗)= H3(aP, bP, abP ). In that case,
the solution of the Computational Diffie-Hellman problem would be inserted in the list L3 and it does not
matter to the challenger, even if the simulation of A’s view is no longer perfect.)

Guess: At the end of Phase II, A outputs a bit b′.

C ignores the result of A. C is only interested in the tuple in the list L3 which is of the form (aP, bP, X, .).
C now checks whether ê(P, X) ?= ê(aP, bP ) for all entries of the list L3 and if this relation holds, stops and
outputs X as the solution of the CDH problem instance C has received. If no tuple of this kind satisfies the
equality, C stops and outputs invalid. The probability that C’s answer to the CDH problem is correct, is
same as the probability that A queries OH3(aP, bP, abP ) and this implies that C can solve the CDH problem
with non-negligible advantage and this is a contradiction. !

6.3 Proof of Unforgeability of N-MSC

Theorem 4. Our multi-receiver signcryption scheme N-MSC is secure against any EUF-N-MSC-CMA ad-
versary A under the random oracle model if CDHP is hard in G1.



(Note: We consider the security model for unforgeability of a PKI based multi-receiver signcryption scheme,
described in section 2.5 to prove the EUF-N-MSC-CMA security of our scheme).

The challenger C uses the adversary A, who is capable of breaking the EUF-N-MSC-CMA security of
N-MSC to solve the CDH problem in polynomial time. Let (P, aP, bP ) be a random instance of the CDH
problem given to C. C starts the game by choosing a sender S∗ and sets Y ∗

S = aP as the public key of the
user S∗, which is the challenge public key. Now, C sends Y ∗ to A (Note that A is allowed to choose receivers
of its own choice for which A knows the private keys)

Training Phase: A is allowed to adaptively perform queries on the various oracles OH1 , OH3 , OH4 ,
OSigncryption and OUnsigncryption (Note that the definition of all oracles except OH2 are same as that in
the confidentiality proof in section 6.2).
OH2 queries: When A queries the hash value of a tuple 〈c, U, YR1 , . . . , YRn , H ′

2〉 that was previously
queried, C returns the corresponding value which was previously stored in the list L2. If it is a fresh tuple
then C chooses w ∈R Z∗

q and defines the value H ′
2 = wbP which is returned to A. C now adds the tuple

〈c, U, YR1 , . . . , YRn , H ′
2, w〉 to the list L2.

Forgery: Finally, A produces a forged signcryption σ∗ = (U∗, c∗, V ∗, Z∗
1 , . . . , Z∗

n) on an arbitrary message
m∗ with S∗ as the sender. (The restriction in generating σ∗ is, it should not have been generated by
signcryption oracle OSigncryption as an output for any previous queries on the message m∗ with S∗ as
sender). C can very well unsigncrypt and verify the validity of the forged signcryption σ∗ because C
knows the secret key of all the receivers.

If the forged signcryption passes the verification then C can obtain the solution for CDH problem by per-
forming the following steps:

– C checks list L2 whether 〈c∗, U∗, YR1 , . . . , YRn〉 was previously queried by A during the Training Phase.
If not queried by A, C aborts the game else, if it was queried, the value H ′

2 corresponding to the query
was set by C to be wbP .

– Thus, V ∗ which is obtained from the forged signcryption contains the solution for the CDH instance C
has received, which can be retrieved as follows.
• V ∗ = xS∗H ′

2 = wabP
• Since C knows w, it can compute abP = w−1V ∗.

So, we can see that C has the same advantage in solving the CDH problem as the adversary A has in forging
a valid signcryption. So, if there exists an adversary who can forge a valid signcryption with non-negligible
advantage, then there exists an algorithm to solve the CDH problem with non-negligible advantage. Since
this is not possible, no adversary can forge a valid signcryption with non-negligible advantage. Hence, N-MSC
is secure against any EUF-N-MSC-CMA attack. !

7 Conclusion

We present the complexity figure for both our schemes I-IBMSC and N-MSC below:

Scheme Signcrypt Designcrypt
PA SM GE MG PA SM GE MG

I-IBMSC 1 3+n 1 - 4 1 1 -
N-MSC - 3 - 1 2 1 - 1

Table-1: Complexity figure for I-IBMSC and N-MSC
PA - Pairing, SM - Scalar Multiplication, GE - Exponentiation in G2, GM - Mapping to G1.

In this paper, we presented the cryptanalysis of the identity based multi-receiver signcryption scheme by Yu
et al. [21] and showed an universal forgeability attack on the scheme whereby anybody can generate a valid
signcryption of any message to any subset of legitimate users as if a legitimate user had generated it. Also,
we showed that the scheme does not provide confidentiality, i.e. it is not indeed adaptive chosen ciphertext
secure. We have also proposed an improved scheme and proved its security formally in the existing security



model for identity based multi-receiver signcryption schemes.

We have also cryptanalyzed a PKI based multi-receiver signcryption scheme by Fagen Li et al. [10] by
demonstrating an attack on the confidentiality of the scheme. We have also proposed a new multi-receiver
signcryption scheme and have proved both confidentiality and unforgeability formally in the random oracle
model.

As all the previously reported identity based and PKI based multi-receiver signcryptions schemes which
use bilinear pairing were shown to be flawed, our schemes are the only available correct schemes for identity
based and PKI based multi-receiver signcryptions schemes which use bilinear pairing.

References

1. Adi Shamir: Identity-Based Cryptosystems and Signature Schemes. In: CRYPTO 1984, Lecture Notes in Com-
puter Science, pp. 47-53,1984.

2. An J. H., Dodis Y., Rabin T: On the security of joint signature and encryption. In: Proceedings of Advances in
Cryptology- EUROCRYPT 2002, LNCS, vol. 2332, Springer-Verlag, pp. 83-107, 2002.

3. Baek J., Steinfeld R., Zheng Y.: Formal proofs for the security of signcryption.. In:Public Key Cryptography -
PKC 2002, volume 2274 of Lecture Notes in Computer Science, pages 80-98. Springer-Verlag, 2002.

4. Bao F., Deng R.H.: A signcryption scheme with signature directly verifiable by public key. In: Imai, H., Zheng,
Y. (eds.) PKC 1998. LNCS, vol. 1431, pp. 5559. Springer, Heidelberg 1998.

5. Boyen X.: Multipurpose identity based signcryption: a swiss army knife for identity based cryptography. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 383399. Springer, Heidelberg 2003.

6. Chen L., Malone-Lee J.: Improved identity-based signcryption. In: Vaudenay,S.(ed.) PKC 2005. LNCS, vol. 3386,
pp. 362379. Springer, Heidelberg 2005.

7. Chik How Tan: On the Security of Provably Secure Multi-Receiver ID-Based Signcryption Scheme. In: IEICE-
Transaction on Fundamentals of Electronics, Communication & Computer Science, vol. E91-A, Number 7, pp.
1836-1838. 2008.

8. Chow S.S.M., Yiu S.M., Hui L.C.K., Chow K.P.: Efficient forward and provably secure ID-based signcryption
scheme with public verifiability and public ciphertext authenticity. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003.
LNCS, vol. 2971, pp. 352369. Springer, Heidelberg 2004.

9. Duan S., Cao Z.: Efficient and provably secure multi-receiver identity-based signcryption. In: Batten, L.M.,
Safavi-Naini, R. (eds.) ACISP 2006. LNCS, vol. 4058, pp. 195206. Springer, Heidelberg 2006.

10. Fagen Li, Yupu Hu, Shuanggen Liu: Efficient and provably secure multi-recipient signcryption from bilinear
pairings. In: Wuhan University Journal of Natural Sciences, vol. 12, Number 1, pp. 17-20, January, 2007.

11. Libert B., Quisquator J.J.: A new identity based signcryption scheme from pairings. In: 2003 IEEE information
theory workshop. Paris, France, pp. 155158, 2003.

12. Zheng Y.: Signcryption and its applications in efficient public key solutions. In: Okamoto, E. (ed.) ISW 1997.
LNCS, vol. 1396, pp. 291312. Springer, Heidelberg 1998.

13. Libert B., Quisquater J.-J.: Efficient signcryption with key privacy from gap Diffie-Hellman groups. In: Bao, F.,
Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 187-200. Springer, Heidelberg (2004).

14. Malone-Lee J.: Identity based signcryption. In: Cryptology ePrint Archive. Report 2002/098, 2002.
15. Mihir Bellare, Alexandra Boldyreva, and Silvio Micali. Public-key encryption in a multi-user setting: Security

proofs and improvements In: Advances in Cryptology - EUROCRYPT 2000, LNCS, vol. 1807, Springer-Verlag,
pp 259-274, 2000.

16. Mu Y., Varadharajan V.: Distributed signcryption. In Roy, B., Okamoto, E. (eds.) INDOCRYPT 2000. LNCS,
vol. 1977, pp. 155-164. Springer, Heidelberg (2000)

17. Paulo S.L.M. Barreto, Benoit Libert, Noel McCullagh, Jean-Jacques Quisquater: Efficient and Provably Secure
Identity-Based Signatures and Signcryption from Bilinear MapsIn: B.Roy(ed.) ASIACRYPT 2005, LNCS, vol.
3788, pp. 515-532, 2005.

18. Shanshan Duan, Zhenfu Cao Efficient and Secure Multi-Receiver Signcryption Scheme In:
http://tdt.sjtu.edu.cn/ dss/, 2006.

19. Steinfeld R., Zheng Y.: A signcryption scheme based on integer factorization. In:Okamoto, E., Pieprzyk, J.P.,
Seberry, J. (eds.) ISW 2000. LNCS, vol. 1975, pp. 308-322. Springer, Heidelberg (2000)

20. Yang G., Wong D.S., Deng X.: Analysis and improvement of a signcryption scheme with key privacy. In:Zhou,
J., Lopez, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650, pp. 218-232. Springer, Heidelberg (2005).

21. Yong Yu, Bo Yang, Xinyi Huang, and Mingwu Zhang: Efficient identity-based signcryption scheme for multiple
receivers. In:ATC 2007,LNCS 4610, pp. 1321, Springer-Verlag Berlin Heidelberg 2007.



22. Zheng Y.: Digital signcryption or How to achieve cost(signature & Encrytpion) ! cost(signature) +
cost(encryption). In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 165-179. Springer, Heidel-
berg 1997.

23. Jung H.Y., Lee D.H., Lim J.I. and Chang K.S.: Signcryption schemes with forward secrecy. In: The Second
Workshop on Information Security Application - WISA 2001, pp. 463-475, Seoul, Korea, 2001.

24. Pointcheval D. and Stern J.:Security arguments for digital signatures and blind signatures. In: Journal of Cryp-
tology, Vol 13(3): pages. 361-396, 2000.

25. Pieprzyk J. and Pointcheval D.: Parallel authentication and public-key encryption. In: Information Security and
Privacy, 8th Australasian Conference, ACISP 2003, Springer LNCS Vol. 2727, pages. 387-401, 2003.


