Constant-Round Concurrent Non-Malleable
Commitments and Decommitments

Rafail Ostrovsky™* Giuseppe Persianof Ivan Viscontif

Abstract

In this paper we consider commitment schemes that are secure against concurrent
poly-time man-in-the-middle (¢cMiM) attacks. Under such attacks, two possible notions
of security for commitment schemes have been proposed in the literature: concurrent non-
malleability with respect to commitment and concurrent non-malleability with respect to
decommitment (i.e., opening).

After the original notion of non-malleability introduced by [Dolev, Dwork and Naor
STOC 91] that is based on the independence of the committed and decommitted message,
a new and stronger notion of non-malleability has been given in [Pass and Rosen STOC
05] by requiring that for any man-in-the-middle adversary there is a stand-alone adversary
that succeeds with the same probability.

Under this stronger security notion, a constant-round commitment scheme that is
concurrent non-malleable only with respect to commitment has been given in [Pass and
Rosen FOCS 05] for the plain model, thus leaving as an open problem the construction of
a constant-round concurrent non-malleable commitments with respect to decommitment.
In other words, in [Pass and Rosen FOCS 05] security against adversaries that mount
concurrent man-in-the-middle attacks is guaranteed only during the commitment phase
(under their stronger notion of non-malleability).

The main result of this paper is a commitment scheme that is concurrent non-malleable
with respect to both commitment and decommitment, under the stronger notion of [Pass
and Rosen STOC 05]. This property protects against cMiM attacks mounted during both
commitments and decommitments which is a crucial security requirement in several appli-
cations, as in some digital auctions, in which players have to perform both commitments
and decommitments. Our scheme uses a constant number of rounds of interaction in the
plain model and is the first scheme that enjoys all these properties under the definitions
of [Pass and Rosen FOCS 05].

We stress that, exactly as in [Pass and Rosen FOCS 05], we assume that commitments
and decommitments are performed in two distinct phases that do not overlap in time.

Keywords: commitments, definitions, non-malleability, concurrency.

The work of the first author has been supported in part by Intel equipment grant, NSF
Cybertrust grant No. 0430254, Xerox Innovation group Award and IBM Faculty Award. The
work of the last two authors has been supported in part by the European Commission through
the FP6 program under contracts FP6-1596 AEOLUS and IST-2002-507932 ECRYPT. The
work of the last author was done in part while he was visiting IPAM.

*UCLA, Los Angeles, CA 90095, USA. rafail@cs.ucla.edu.
"Dip. di Informatica ed App., Universita di Salerno, 84084 Fisciano (SA), Italy. giuper@dia.unisa.it.
Dip. di Informatica ed App., Universita di Salerno, 84084 Fisciano (SA), Ttaly. visconti@dia.unisa.it.

1 Introduction

Commitment is a fundamental two-party protocol and constitutes the digital equivalent of a
safe. One party, called the committer, commits to a value without disclosing it to another
party called the receiver. This property is called hiding. The value can be later revealed
by the committer and the receiver is guaranteed that the revealed value is the one that the
committer originally committed to. This property is called binding. Commitments have been
used in the design of more complex cryptographic protocols since the early 80’s (e.g., for coin
flipping [Blu82] and for zero-knowledge for NP [GMWS&G]).

This basic setting can be extended to several different scenarios that need stronger notions
of commitment schemes. In some application scenarios, one wants to be able to guarantee
that an adversary A, playing as a receiver in an execution in which a honest committer
commits to message m, is not able to commit to a related value m to a honest receiver in
another execution in which A plays as a committer. It is easy to observe that the hiding
property does not guarantee this extra property. This type of adversary is called a man-in-
the-middle adversary (as the adversary plays in between two honest players). Commitment
schemes secure with respect to these attacks are called non-malleable commitments.

T'wo notions of non-malleable commitments have been considered in the literature. A com-
mitment scheme that is non-malleable with respect to commitment (in short NMc) guarantees
that no polynomial-time man-in-the-middle adversary A can commit to a message m that
is related to the message m committed by the honest committer. Instead, a commitment
scheme that is non-malleable with respect to decommitment (also known as non-malleable
with respect to opening), (in short NMd) guarantees that after the commitment phase, no
polynomial-time man-in-the-middle adversary A, observing the decommitment to m of the
honest committer, can decommit its commitment to a message m that is related to m.

The need to design non-malleable cryptographic primitives has been first pointed out in
the seminal paper by Dolev, Dwork and Naor [DDN91] who also gave constructions for non-
malleable encryption, non-malleable zero-knowledge proofs and non-malleable commitments.
The constructions for non-malleable commitments of [DDN91] required O(logk) rounds,
where k is the security parameter. Subsequently, assuming the existence of some trusted pa-
rameters, non-malleable commitments were constructed in [CIO98, [DKOS01) [FF00, DGO3].

The first constant-round non-malleable commitment scheme in the standard model (i.e.,
without setup assumptions) has been given by Barak [Bar02] under the assumption of the
existence of trapdoor permutations and hash functions that are collision resistant against
sub-exponential-time adversaries.

Pass and Rosen studied in [PRO5b] several issues about non-malleability, we now consider
two of those contributions. First of all they introduced a stronger notion of non-malleability
where it is required that the success probability of a man-in-the-middle adversary is main-
tained by a stand-alone adversary. Therefore, in this definition the sole requirement that the
messages decommitted by the man-in-the-middle have to be independent of the ones of the
honest committer is not enough. We will show that this is a critical difference that makes
non-malleability with respect to decommitment much more challenging to achieve. More
concretely, a man-in-the-middle could correctly decommit or could fail the decommitment of
a message depending on the message decommitted by the honest sender. This attack can be
applied according to the [DDN9I] definition while it fails when the [PRO5b] definition is used
instead.

The second main contribution of [PR05b] is that Pass and Rosen reduced the assumption
for constructing non-malleable commitment schemes to the existence of hash functions that
are collision resistant against polynomial-time adversaries. They gave two different schemes:
one that is NMc and one that is NMd.

More recently, Pass and Rosen [PR05al have considered concurrent man-in-the-middle
attacks (cMiM attacks). In such an attack, the adversary can be active in any polynomial
number of executions as a receiver and as a committer. A commitment scheme that is
secure against ¢cMiM attacks is called concurrent non-malleable. As before, we can have
two notions of concurrent non-malleable commitment schemes: concurrent NMc and NMd
commitment schemes. Pass and Rosen in [PR05a] showed that the constant-round scheme
that is NMc of [PRO5D] is actually concurrent NMc. This implies that security is guaranteed
if the commitments are concurrently executed but decommitments are not.

Their paper leaves as an open problem the construction of constant-round commitment
schemes that are concurrent NMc, under their stronger definition (instead, their scheme
enjoys the weaker notion of non-malleability with respect to decommitment that only focuses
on the indipendence of the opened messages). We stress that the concurrent non-malleability
of the scheme of [PR05a] relies on the assumption that commitments and decommitments do
not overlap in time. We retain this assumption in our schemes. This assumption is motivated
by the fact that several important applications have such separation. (e.g., electronic auctions
where first all parties send their hidden bids, and only in a second phase they decommit their
bids).

We also remark that the recent work of Barak et al. [BPS06] obtains concurrent non-
malleable zero-knowledge with a poly-logarithmic round complexity, and thus can not be
used for achieving constant-round non-malleable commitments.

Our results. Our main result consists in the construction of a constant-round commitment
scheme that is concurrent NMc and NMd under the stronger definition of [PR05b, [PR05a].
This implies that security is preserved when polynomially many commitment phases are
concurrently executed and when polynomial many decommitment phases are concurrently
executed. This solves a problem left open by the results of [PR05a] and allows one to
securely run some commitment-based applications (e.g., some digital auctions) by only re-
quiring a constant number of rounds. We follow [PR05a] in that concurrent non-malleability
is guaranteed only if commitments and decommitments do not overlap in time.

Our scheme builds and extends multiple techniques. In particular, our scheme uses the
perfect NMZK argument of knowledge of [PR0O5b], [PR05al [PRO6] but in a critically different
manner. Indeed, whereas in [PRO5b], [PR05a] the statistical NMZK argument of knowledge is
simply combined with a (potentially malleable) commitment scheme and a signature scheme,
to achieve security in a concurrent setting we also employ a technique by Feige [Fei90] and
a more sophisticated rewind technique. Furthermore, the simulator used by [PR05bl [PR05a]
works in a straight-line fashion including non-black-box techniques. Our result, instead,
combines the straight-line simulation with a new rewinding simulation that still avoids the
well known problems of using rewinds in concurrent settings [DNS98]. Our approach also
includes and extends some of the techniques developed for building concurrent NMZK in the
bare public-key model [OPV06].

Finally we stress that in [PRO5b] non-malleability with respect to commitment is consid-
ered only with respect to statistically binding commitments. Here we show that it is possible

to have non-malleable commitments with respect to commitments that are not statistically
binding. This is crucially used in our main result since the constant-round NMc and NMd
commitment scheme that we show is not statistically binding.

2 Non-Malleable Commitments

We review the needed background in Appendix [A] Here we start by considering concurrent
non-malleable commitment schemes; that is, commitments schemes that are secure under
Concurrent Man-in-the-Middle attacks (cMiM attacks). Informally speaking, a non-malleable
commitment scheme guarantees that the value committed to (or the value that is decommit-
ted) by a polynomial-time adversary A is independent of the value simultaneously committed
(or the value that is decommitted) to A by a honest committer. We assume that A has full
power over the scheduling of the messages in the two sessions (the one in which A is a com-
mitter and the one in which A is a receiver). Following [PR0O5bl [PR05a], we formalize this
notion by comparing two executions: the man-in-the-middle execution (the MiM execution)
and the simulated execution. We denote the security parameter by k& and consider the con-
current case where the adversary A receives and send a polynomial number of commitments.

Discussion. To define NMc we will use the concept of “message committed to by an ad-
versary A during the commitment phase.” By this we mean the following. We will consider
commitment schemes in which, for all adversaries A, and for each possible transcript trans
of the interaction between adversary A and a honest receiver R such that R accepts the
commitment, there exists (statistically) only one message m that is consistent with trans;
that is, for which there exist random coin tosses that give trans. We stress that statistically
hiding commitment schemes do not have the above property and thus our definition is not
suitable for these commitment schemes. On the other hand, this does not mean that the no-
tion of non-malleability with respect to commitment that we are to define makes sense only
for statistically binding commitments (this restriction was instead considered in [PRO5D]).
Indeed, as we shall see, it is possible to construct NMc commitment schemes that are not
statistically binding. This is done by observing that in some commitment schemes while an
unbounded adversarial sender could violate the binding property (since the scheme is not
statistically binding), when the adversarial (polynomial time) man-in-the-middle successfully
plays the commitment phase there always is a well defined and unique message that he can
decommit. Therefore such a message can be used to define non-malleability with respect to
commitment without having statistical binding.

Informally speaking, non-malleability with respect to commitment guarantees that the
commitment computed by the MiM adversary corresponds to a message that is independent
of the one committed by the honest committer. Then, decommitting the commitment should
not harm and thus non-malleability with respect to decommitment should hold as well. The
definition of non-malleability with respect to commitment from [DDN91] essentially implies
non-malleability with respect to decommitment [FF00]. In [DDNO91], dependency of the values
m and m has been formalized through the existence of a poly-time computable relation R
for which R(m,m) = 1. Non-malleability with respect to commitment requires that for any
man-in-the-middle adversary A and any polynomial time computable relation R, there exists
a poly-time stand-alone adversary S whose success probability in committing to a value m

so that R(m,m) = 1 is at least as good as A’s success probability. Non-malleability with
respect to decommitment instead considers the ability of A to decommit to a value m that
is related to m. Notice that under the [DDNO9I1] definition, if A is no more likely to commit
to a related value than S and the commitment is statistically binding, then A is also no
more likely to decommit to a related value. This is true regardless of whether A is given the
decommitment information or not. So under this definition, any commitment that is NMc is
also NMd.

A stronger notion of non-malleable commitments. The more recent and stronger
definition of Pass and Rosen given in [PRO5bl [PR05al, which we adopt for our schemes re-
quires that the value m committed to by S in the stand-alone execution is computationally
indistinguishable from the value committed to by A in the man-in-the-middle execution. To
make non-malleability with respect to decommitment possible, since A is assumed to obtain
the decommitment (say m) of the sender before decommitting its commitment, S is assumed
to obtain m before decommitting its commitment. In particular, it is not clear that when
using this definition non-malleability with respect to commitment implies non-malleability
with respect to decommitment. The problem here is that (in contrast to the [DDN9I] defi-
nition), one would like the success probability of S (i.e., the probability that the stand-alone
simulator playing with a honest receiver correctly completes the decommitment phase) to be
only negligibly far from A’s success probability. Indeed, in the schemes of [PR05b, [PR05a],
the simulator S generates a bogus commitment that is being fed to A. However, after having
committed to some value, S is stuck with the bogus value and it is not clear how to enable
S to decommit it to A as m.

From the above discussion we have that the constant-round commitment scheme NM¢c
(see Figure [2)) of [PRO5b] that is proved to be NMec, does not seem to be NMd (according to
the stronger [PR05D] definition), at least no evidence of that is given in the proof of [PR0O5b].
Specifically, the simulator that computes ¢ = SBCom(0¥, s) in the commitment phase cannot
open ¢ as m since the decommitment phase simply consists in the decommitment phase of
SBCom which is statistically binding. Therefore the proof that NMc is an NMc commit-
ment scheme does not seem to extend to prove that NMc is also NMd. We stress that
in [PRO5D, [PR0O5a], only the commitment phase is considered for proving NMc, and since the
decommitment phase as discussed above is quite problematic, their security proof implicitly
requires that the commitment and decommitment phases do not overlap in time.

Next we remark on the possibility of obtaining NMc commitments that are not statis-
tically binding. When statistically binding commitments are considered, the commitment
phase encodes the unique message to which the commitment can be later decommitted. In-
deed, even in case the adversarial committer is unbounded there is no way for him to violate
the binding property. Since NMc considers the message committed in the commitment phase,
the statistical binding property guarantees that this non-malleability notion is well defined,
and indeed in [PRO5Db| the authors consider the notion of NMc only for statistically binding
commitment schemes. Intuitively, this claim is correct since in case the scheme is not statis-
tically binding, then the commitment phase does not specify yet and uniquely the message
that is going to be decommitted. Therefore, it would be unclear the meaning of NMc as
an unbounded adversarial committer could decommit a commitment to different messages.
However, we observe that NMc commitments are secure against polynomial-time MiM adver-
saries for which the binding property still holds. It is therefore possible to have a commitment

scheme that is not statistically binding (i.e., binding does necessarily hold in case the adver-
sarial committer is unbounded) but however is NMc as at the end of the commitment phase
it is always possible to determine the message committed by the bounded (i.e., polynomial
time) MiM and by the honest sender. Indeed we show commitment schemes that are not
statistically binding but that are NMc commitment schemes and, at the same time, NMd.

In Appendix [Bl we review two recent schemes (due to [PR0O5b]) of non-malleable com-
mitment: AMMc that is NMc and NMd that is NMd. We show a commitment scheme that
combines NMc and NMd in Appendix[C] In the main body of this paper we will concentrate
on our main result: a constant-round concurrent NMc and NMd commitment scheme.

3 Concurrent Non-Malleable Commitments

Following [PR0O5D, [PR05a], we now formalize the concept of a concurrent non-malleable com-
mitment scheme by comparing two executions: the concurrent man-in-the-middle execution
(the cMiM execution) and the simulated execution. We denote the security parameter by k.

The cMiM execution. In the cMiM execution, the cMiM adversary A is simultaneously
participating in poly(k) left and poly(k) right interactions.

Consider a cMiM execution in which the cMiM adversary A with auxiliary information z
interacts in the i-th left interaction with a honest committer running on input a message m;
of length poly(k) and in the right interactions A interacts with honest receivers. We denote
by cmim“éom(M, z), where M = (ma,...,Mpoy(x)), the random variable that associates to
the ¢MiM execution a vector M whose i-th component rm; is defined as follows. If the
commitment phase of the i-th right interaction terminates successfully and its transcript is
different from the commitment phase of all the left interactions, then m; is the message that
A has committed to in the i-th right interaction. Otherwise, m; =1.

Similarly, we denote by cmiméec(M ,z) the vector M whose i-th component 7; is the
message that A has decommitted in the right interaction. If the i-th right interaction is not
successful or its transcript (including commitment and decommitment phase) is identical to
the transcript of one of the left interactions then m; =1.

The simulated execution. In the simulated execution we have one party S (called the
stmulator) that interacts with poly(k) honest receivers. S works in two phases: in the commit-
ment phase S receives security parameter 1¥ and auxiliary information z and interacts with
the honest receivers. We denote by csisgom(lk ,z) the vector M whose i-th component m; is
the value committed to by S if the i-th commitment phase has been successfully completed.
Otherwise m; is set equal to L.

Once the commitment phases have been completed, S receives input vector M and
interacts with the honest receiver to complete the decommitment phase. We denote by
csisg.. (M, z) the vector M whose i-th component 7; is the value decommitted by S in the
i-th decommitment phase if it has been successfully completed. Otherwise m; is set equal to
1.

We have the following definitions (see also [PRO5D, [PR05a]).

Definition 3.1 A commitment scheme is concurrent non-malleable with respect to com-
mitment (a concurrent NMc commitment scheme) if, for every probabilistic polynomial-time

cMiM adversary A, there exists a probabilistic polynomial time simulator S such that follow-
ing ensembles are computationally indistinguishable:

{emimg,n (M, 2)} are (o 13pom 0w o1y @ {Csistom (1%, 2)}eqo,13+-

Definition 3.2 A commitment scheme is concurrent non-malleable with respect to decom-
mitment (a concurrent NMd commitment scheme) if, for every probabilistic polynomial-time
cMiM adversary A, there exists a probabilistic polynomial time simulator S such that the
following ensembles are computationally indistinguishable:

{cmiméec(M, 2’)}Me({o,l}P°'v<k>)P°'y(k),ze{o,l}* and {CSngec(M7 Z)}Me({0,1}P°'y(k>)P°'y(k>,ze{o,l}*-

3.1 Commitment Scheme ¢cNMcd

In this section we present a constant-round commitment scheme cNMecd that enjoys both
concurrent NMc and concurrent NMd. We stress that this is the first protocol that is concur-
rent NMd in the plain model and requires only a constant number of rounds. Therefore this
protocol gives the best security guarantees for important applications as electronic auctions.

We will use a constant-round tag-based perfect NMZK argument of knowledge nmZK =

{Ps, V1 }; for all NP [PRO5D], a constant-round witness indistinguishable (wiP,wi))) proof of
knowledge (WIPoK) for all NP [Blu86, [FS90], a non-interactive statistically binding commit-
ment scheme Com and a secure signature scheme SS = (SG,Sig, SVer). See Appendix
and [A-4] for details about these tools. A description of commitment scheme cNMed is found
in Figure [}
How we achieve concurrent NMd. First of all, we notice that a straight-forward combi-
nation of the two commitment schemes of [PR0O5b] achieves non-malleability with respect to
both commitment and decommitment, when concurrency is not considered. This scheme is
shown in Appendix [C] and is called NMcd. Let us briefly discuss why commitment scheme
NMed is not a concurrent NMd commitment scheme. In proving the NMd property we cru-
cially relied on the existence of a simulator extractor for the NMZK argument nmZK. If we
try to argue that NMMed is a concurrent NMd commitment scheme along the same lines, we
would need a simulator that simulates concurrent executions; in other words, we would need a
concurrent NMZK argument of knowledge. Unfortunately, the existence of a constant-round
concurrent NMZK argument system in the plain model is still an open problem.

We use instead a more sophisticated protocol and prove its properties by blending the
straight-line simulator of the concurrent NMc commitment scheme of [PR05al] with a sophis-
ticated rewind technique. In using rewinding we have to be careful as the nested sessions
can potentially make the running time super polynomiaﬂ Instead, we perform rewinds “in
advance,” to extract information from the adversary. The simulator is then able to simulate
in a straight-line fashion the decommitment phase by using the information extracted by
means of rewinds. Our security proof also employs the two-witness technique by [Fei90] and
the well known FLS-technique [FLS99).

More in details, we extend the commitment phase of the concurrent non-malleable com-
mitment scheme of [PR05a] by requiring that the receiver gives a proof of knowledge of a
secret. The decommitment phase consists in sending a message and in proving with a NMZK

!The study of this problem started with the notion of concurrent zero knowledge [DNS9S].

Security Parameter: 1%
Input to Committer: m € {0,1}*.
Commitment Phase:

C — R: pick s € {0,1}*, set ¢ = Com(m, s) and send c to R.

C — R: set (PK,SK) « SG(1*) and send PK to R.

C «— R: C executes the code of Ppg on input ¢ to prove knowledge of m, s €
{0,1}* such that ¢ = Com(m, s). R executes the code of Vpg on input c. If
Vpk rejects then R aborts.

R — C: pick mo, so,m1,51 € {0,1}*, set ¢cg = Com(mo, s9),c1 = Com(my,s1)
and send ¢y and ¢; to C.

R — C: R select a random bit b and executes the code of wiP on input (¢, c1)
to prove knowledge of 7,5 € {0,1}* such that c¢g = Com(ih,3) or ¢; =
Com(rn, §) using (mp, sp) as witness. C' executes the code of wiV on input
(co, c1). If wiV rejects then C' aborts.

C — R: let transg be the transcript so far. Set oy <« Sig(transg, SK) and send
og to R.

R: if SVer(transg, 0g,PK) # 1 abort.

Decommitment Phase:

C — R: send m.

C < R: C executes the code of Ppg on input (c,co,c1) to prove knowledge
of m,5 € {0,1}* such that ¢ = Com(m,3) or cog = Com(,3) or ¢; =
Com(m, §), using (m,s) as witness. R executes the code of Vpg on input
(c,co,c1). If Vpg rejects then R aborts.

C — R: let trans; be the transcript so far. Set o1 < Sig(trans;, SK) and send
o1 to R.

R: if SVer(trans;, o1,PK) # 1 abort.

Figure 1: Our concurrent NMc and concurrent NMd commitment scheme cNMecd.

proof that either the message corresponds to the committed one or the sender knows the se-
cret (this is the FLS-technique [FLS99]). Our simulator will extract the secrets of all receivers
in the commitment phase and will use them as fake witnesses in the decommitment phase.
Instead an adversary will not be able to use such secret, since we show that any successful
adversary can be reduced to break a standard complexity-theoretic assumption by using the
two-witness technique of [Fei90] and the non-malleability of nmZK.

In the next section we prove the properties of commitment scheme cNMed. We will often
use the simulation-extractability property of nmZK. Notice that this property is guaranteed
only in case the tag used by the adversary is different from the one used by the other parties.
Since in our scheme we use as tag the public key of a signature scheme, and since each phase
is only correctly completed if there is a signature under that public key of the transcript of the
phase, we assume that the simulation-extractability property always holds, since otherwise
the security of the signature scheme is broken. We will detail this argument only when
we prove the NMc property for the one-left many-right case (see the discussion below the
description of Expt,), in the other cases the argument is quite similar and is omitted.

Binding. In the proof of concurrent NMd we show that any man-in-the-middle adversary
that completes the commitment phase, can later open that commitment only in one way.
This property is even stronger than binding (since the classical adversary for the binding
property can not play as receiver) thus that proof properly contains the proof of the binding
property.

Hiding. Assume by contradiction that there exists an adversarial receiver A that, after
the commitment phase distinguishes a commitment to mg from a commitment to m; with
non-negligible advantage. We show how to reduce A to an adversary A’ that breaks the
hiding property of Com. Indeed, A’ on input a challenge com (i.e., a commitment of either
mgo or my), plays the honest committer algorithm with the following two exceptions: com is
sent in the commitment phase and the simulator for nmZKpyg is used instead of the honest
prover algorithm. Since the simulation for nmZKpy is perfect, the only chance A has to guess
concerns the value of com. Therefore, A’ by simply giving in output the same bit given in
output by A succeeds in guessing with non-negligible advantage the message committed in
com.

3.1.1 Concurrent NMc

We start by considering the simpler case in which the adversary A is active in one left
commitment and in polynomially many right commitments (a one-left many-right adversary).

The one-left many-right case. For every one-left many-right MiM adversary A, we con-
sider simulator S(z) that internally runs A(z) and provides A with a left commitment by
executing the code of the honest committer to commit to 0¥ (k is the security parameter).
For the right commitments instead S relays messages between the polynomially many honest
receivers and A. We stress that for NMc we only have to consider the commitment phase.

We now prove that for all messages m € {0,1}* and all z |Prob[D(m,cmimg, . (m,z)) =

1] — Prob[D(m, csiséom(lk, z)) =1]‘ is negligible in k for all distinguishers D. We consider
hybrid experiments starting with Expty(v, 2).

Expty (v, 2) is the experiment in which A(z) interacts in the left commitment with a honest
committer committing to v and with honest receivers in the right commitments. We denote
by M the vector whose i-th component 77, is defined as follows. If the i-th right commitment
is successfully completed by A and its transcript differs from the one of the left commitment
then m; is the message A has committed toE] in the i-th right commitment. Otherwise m; =1.
Expty(v, z) returns D(v, M). We set po(v, z) = Prob[Expty(v, z) = 1]. Obviously, we have
that for all z, k and m € {0,1}*, po(m, z) = Prob] D(m,cmim“éom(m,z)) = 1| and that
po(0F, 2) = Prob[D(m, csisZ, (1F,2)) = 1].

To define the next experiment, we observe that A naturally defines a one-left many-
right MiM adversary A’ for nmZK. Specifically, consider the following adversary A’. A’(z)
internally runs A(z). A’ forwards externally all A’s messages of all the executions of nmZK.
For the execution of (wiP,wiV) of each right commitment (here A acts as a verifier), A’
computes the commitment of two random messages and executes the code of wiP. For the

2This is the message that is consistent with the transcript. Since we use a statistically binding commitment
scheme there is a unique such message.

executions of (wiP,wiV) of the left commitments, A" executes the code of wiV. Now let &’
be the simulator-extractor of nmZK for adversary A’.

Experiment Expt, (v, z) differs from Expty(v, z) in that we have the simulator S’ for ad-
versary A’ instead of A that is playing with the honest prover and honest verifiers for nmZK.
More precisely, in the left commitment of Expt; (v, z), we first compute com = Com(v, s) and
(PK, SK) = SG(1¥) and then run S’ on input com, tag PK and z. All other steps (executions
of (wiP,wiV) and signatures) are performed just like in Expty(v,z). Let View be the view
output by & and define vector M as follows. If the i-th right commitment in View is suc-
cessfully completed and its transcript differs from the one of the left commitment, then set
m; equal to the message committed to (again, this message is unique since Com is statisti-
cally binding) by A. Otherwise, set m; =L. Finally, Expt, (v, z) outputs D (v, M). We set
p1(v, z) = Prob[Expt;(v,2z) = 1]. By the perfect NMZK property of nmZK, we have that
po(v, z) = p1(v, 2) for all v and z.

Experiment Expt, (v, z) differs from Expt, (v, z) in the way in which vector M (and conse-
quently the output) is computed. Specifically, in Expty(v, z) we set m; as the message that
has been extracted by S’ as part of the witness for the i-th right execution of nmZK. If no
message is extracted then m; =1. We set pa(v, z) = Prob[Expty(v,z) =1].

Denote by PK; the signature public key used as a tag for the i-th right execution of nmZK
in View and by PK the signature public key used as a tag for the left execution of nmZK
in View. First of all observe that, for all ¢, if the transcript of the i-th right commitment
of View differs from the one of the left commitment then, by the security of the signature
scheme, the probability that PK; = PK is negligible. Therefore, for each 4, only two cases have
non-negligible probability. In the first case the transcript of the ¢-th right commitment is
equal to the one of the left commitment (and thus PK; = PK). Then we observe that in this
case m; =1 both in Expt;(v, z) and in Expty(v, z). If instead the transcript of the i-th right
commitment differs from the one of the left commitment and PK; # PK then, by the extraction
properties of &', the value m; extracted by S’ is not the value committed to by A in View
with negligible probability. Therefore we conclude that |p2(v,z) — p1(v, 2)| is negligible for
all v and z.

We now conclude the proof by showing that for all k& and for all v € {0,1}*, |pa(v, 2) —
p2(0F, 2)| is negligible. Suppose that it is not and thus for infinitely many k there exists
v, € {0,1}* and 2z such that |pa(vg, 2) — p2(0%, 2)| > 1/poly(k). Then, we can construct the
following adversary B that breaks the hiding of Com. B receives ¢ that is a commitment to
either 0% or vy and executes Expty(vg, 2) by setting in the left commitment phase ¢ = ¢. We
notice that Expt, can be executed in polynomial time even though the message committed
to by c in the left interaction is not known. From the output of the experiment B has a
non-negligible advantage in guessing the committed bit.

We have shown that both |po(vg, 2) — p2(vF, 2)| and |pa(vk, 2) — p2(0F, 2)| are negligible,
Using again the same arguments, it follows that |pa(0F, 2) — po(0F, 2)| is negligible. Therefore,

we have that ‘Prob[D(m,cmim@ _(m,z)) = 1] — Prob| D(m,csisg, (1¥,2)) = 1]| =

Com Com
Ipo(v*, 2) — po(0F, 2)| is negligible.
The many-left many-right case for concurrent NMc. We now consider the many-
left many-right case. For concurrent MiM adversary A, we consider simulator S(z) that
runs A(z) internally and executes the code of the honest committer on input 0* for all left
commitments. For the right interactions, S relays messages between the external receivers

10

and A. Notice that if we have only one left commitment S coincides with the simulator we
used for proving non-malleability with respect to one-left many-right MiM.

Assume by contradiction that there exists a distinguisher D that distinguishes cmim“c“om (M, z)
and csisgom(lk, z). Let | = poly(k) be the number of left commitments and, for i = 0,...,,
consider hybrid experiment Exptg4 defined as follows. Let M = (m1,...,m;) be a vector of
messages. In ExptZA(M ,2), adversary A is run on input z and the j-th honest left committer
commits to m; if j <4 and to 0% otherwise. Exptf‘(M , z) outputs a vector whose i-th compo-
nent consists of the messages committed to by A in the i-th right commitment if it has been
successfully completed by A and if its transcript differs from the transcripts of all the left
commitments. If this is not the case then the i-th component of the output of Expt (M, 2)
is set equal to L. Obviously, for all M and z, Expt({‘(M ,z) coincides with csisgom(lk,z)
and Expt/'(M, z) with cmimg, (M, z). If there exists a probabilistic polynomial time dis-
tinguisher D that distinguishes between csisZ, (1%, 2) and cmim@ (M, z) then there must
be i € {0,...1 — 1} such that D distinguishes the output of Exptf‘(M, z) and the output of
Expt;‘_‘H(M ,2). We stress that the only difference between experiment Expt;* and experiment
ExptfH is that in the (i + 1)-st left commitment of Expt;4 we are committing to 0% (just like
the simulator) whereas in Exptﬁ_l we are committing to m;y;. We can therefore construct a
successful MiM adversary A’ for the one-left many-right case. Adversary A’ internally runs
all left sessions with the only exception of the (i + 1)-st session that is played either with a
honest committer committing to m;4q or with the simulator of the one-left many-right case.
Therefore A’ breaks the one-left many-right non-malleability which is a contradiction.

3.1.2 Concurrent NMd

For every cMiM adversary A, we describe a simulator S that interacts with polynomially many
honest receivers and performs with each of them a commitment and a decommitment phase.
To satisfy Definition we will show that, for every vector M of messages, S decommits
its commitments to a vector M of messages that is indistinguishable from the messages
decommitted by A when interacting on the left with honest committers committing to M.

The simulator. Since now we also have to care about decommitments, we extend the
simulator in the following way. S first runs the left and the right commitment phases with
A executing the code of the honest receiver in the right commitment phases and the code
of the honest committer on input message 0% in the left commitment phase. Notice that A
is interacting solely with S and no honest receiver is involved. Then S runs the extractors
for all the proofs (both in left and right commitment phases) provided by A in order to
get the corresponding witnesses. More precisely, for each right commitment phase, S runs
the extractor of nmZK and we denote by (m;,s;) the witness extracted in the i-th right
commitment phase; for each left commitment phase, S runs the extractor of the WIPoK and
we denote by (my, 4, Sp, i), with b; € {0, 1}, the witness extracted in the i-th left commitment
phase. Extractions are executed sequentially and thus the running time of S is polynomial.

Next, S plays the commitment phases with the honest receivers. S does so by executing
the code of the honest committer and using, for the i-th commitment phase, message m; as
input.

After the commitment phases have been completed, S receives vector M* = (mfj, ..., mJ)
and has to perform the decommitment phases with A. S does so by resuming the interactions
with A in the following way. In the left decommitment phase corresponding to the i-th left

11

commitment phase, S uses knowledge of my, ; to open the commitment (that was originally
computed by S as a commitment to 0%) to my. In the right decommitment phases, S acts as a
honest receiver. Then, for each 4, if A has successfully completed the i-th right decommitment
phase, then S completes the i-th decommitment phase with the honest receiver decommitting
the commitment to m; (notice that in the i-th commitment phase with honest receivers, S
had committed to m;). This ends the description of the simulator S.

The above simulator combines the techniques we propose in this paper to overcome the
limitations of the [PR05a] result. Our simulator not only guarantees concurrent NMc as
we proved previously, but it will also guarantee concurrent NMd. Notice that the [PR05a]
simulator only works for concurrent NMc, while for NMd it immediately fails when a single
decommitment phase is executed. We now turn to proving that the described simulator S
satisfies Definition 3.2

We now prove that the distribution of the messages decommitted by A when interacting
with honest committers and honest receivers is indistinguishable from the distribution of the
messages decommitted by A when interacting with S.

Indistinguishability of the simulation. We start with the one-left many-right case and
then we will consider the many-left many-right case. We consider a sequence of experiments
Exptg“(m, z) and show that any distinguisher D between the experiments can be used to
produce a contradiction. Therefore, the output of each experiment is the output of a dis-
tinguisher D (which existence is assumed by contradiction) on input a message m and a
vector M whose i-th component m; is defined as follows. If the decommitment phase of the
i-th right interaction terminates successfully and its transcript is different from all the left
interactions, then m; is the message that A has decommitted in the i-th right interaction.
Otherwise, 7m; =L. We also set p*(m, z) = Prob[Expt{i(m, z) = 1].

Expt()‘l(m, z) is the experiment in which A plays with S that behaves as a honest re-
ceivers in the right interactions and as a honest committer on input m in the left interaction.
We notice that, since S is acting as honest receiver and honest committer, pé“(m, z) is the
probability that D outputs 1 on input distributed according to cmiméec(m, z).

Experiment Expt“f‘(m, z) differs from Expt, only because in the left commitment phase, S
runs the extractor of the WIPoK used by A. Since there is no other deviation, we have that
pf(mv z) = pf)A(m’ z).

Experiment Exptf‘(m, z) differs from Expt; in that in the left decommitment phase, S ex-
ecutes the code of the honest prover but uses a fake witness (that is the witness extracted in
the left commitment phase from A’s WIPoK). Next we prove that |ps'(m, 2)—pit(m, 2)| is neg-
ligible. Assume by contradiction that this difference is non-negligible; as the only difference
between the two games consists in the witness used in the nmZK played in the decommitment
phase, we show how to break the witness indistinguishability of nmZK. Specifically, we play
the following game with an external prover P. We perform the commitment phase like in
game Exptf(m,z). In particular, in the left commitment phase S has computed and sent
to A commitment ¢ = Com(m, s) and A has produced commitments ¢y and ¢; and proved
knowledge of the message committed to by one of the two. We denote by (my, s;) the witness
extracted by S from A’s WIPoK. The decommitment phase proceeds as in game Expt; with
the exception of the execution of nmZK in the left decommitment phase which is performed
by the external prover P. P is fed with the real witness (m, s) and the fake witness (my, sp)
and performs the code of the honest prover using one of the two. Notice that the decommit-

12

ment phase is straight-line. We observe that if P uses the fake witness then we are actually
playing game Expts'(m,z) whereas if P uses the real witness we are playing Expti(m, 2).
Therefore if D distinguishes these two games, we break the witness indistinguishability of
nmZK. We stress that in this reduction we have not used the extractor of the nmZK of the
decommitment phase, therefore we can relay messages with P without rewinding it.

Next we consider Expt{;‘(m, z) in which S uses the simulator of nmZK in the left commit-
ment phase. Since the simulation is perfect we have that pg'(m, 2) = ps'(m, 2).

Next we consider Exptj'(m, z) in which S commits to 0¥ in the left commitment phase.
Any distinguisher between Exptj'(m, z) and Expts'(m, z) can be easily reduced to a distin-
guisher between a commitment of 0¥ and a commitment of m using Com, by simply play-
ing this commitment as ¢, completing the experiment and then giving in output the same
output of the distinguisher. Therefore by the computational hiding of Com we have that
lpgt(m, 2) — p3'(m, 2)| is negligible.

This sequence of experiments shows that the distribution of the messages decommitted
by A during the man-in-the-middle game when the honest sender commits and decommits
to m and A commits and decommits with the honest receiver R (i.e., Expt()“(m, z)), is indis-
tinguishable from the distribution of the messages that A decommits in the simulated game
where S plays both as sender committing to 0¥ and as receiver (i.e., Exptf(m, z)).

Epilogue. We now show that S is actually a stand-alone adversary, i.e., it can commit and
open to a honest receiver R the same messages that A can open and decommit during a
man-in-the-middle game.

Following the description of .S, we know that S commits to R the messages that it extracts
from A at the end of the commitment phase of the simulated game. The proof of non-
malleability with respect to commitment given previously, says that the messages committed
by S to R have the same distribution of the ones committed by A in the real game. Then
the description of S says that S decommits to R the commitments that correspond to the
ones that 4 decided to decommit to S in the decommitment phase of the simulated game.
Since the indistinguishability of the simulation proved so far says that A decommits to S
the same messages that A decommits in the real game, we have that S decommits to R the
same messages decommitted by A in the real game, unless A in the real game decommits
messages different with respect to the committed ones (indeed, S never decommits to R a
message that is different from the committed one).

Therefore we now show that in the real game A can not open to different messages,
this will imply that S decommits to R messages with the same distribution of the ones
decommitted by A.

In the real game A cannot open in a different way. Assume by contradiction that, with
some non-negligible probability, in the real game (i.e., when A plays with a honest prover
committing to m and with honest receivers) there exists i such that the decommitted message
m;, is different from the committed message mﬂ We denote by ¢y and ¢; the two commitments
computed by the R in the i-th commitment phase of A and by b € {0,1} the bit such that
the receiver R used knowledge of the message committed to by ¢, to perform the WIPoK
of the i-th commitment phase. Given that A successfully completes the i-th decommitment
phase then, we can consider the following experiment. Adversary A plays with a real sender

3The committed message is the one uniquely specified by the statistically binding commitment scheme
used as subprotocol.

13

and a receiver-extractor. The real sender commits to m, while the receiver-extractor runs the
honest receiver algorithm for all right commitments and runs the extractor of nmZK of the
i-th decommitment phase. The receiver-extractor with overwhelming probability outputs a
pair (1, §) such that either ¢, = Com(rn, §) or ¢;_, = Com(m, §) (i.e., since A decommitted
to a different message, the witness must be a fake one).

Suppose that with some non-negligible probability it happens that ¢;_;, = Com(7, $).
Then we break the hiding property of Com. Consider the following adversary B that receives
a commitment ¢ and would like to compute the message committed to by ¢ with some non-
negligible probability. B interacts with A and plays all commitment phases as the honest
senders and receivers, with the only exception of the i¢-th commitment phase played as re-
ceiver. Here B picks a random b € {0,1}, a random my, € {0,1}* and random s; € {0, 1}*
and computes commitment ¢, = Com(my, sp) and sets ¢;_p = ¢. Then B continues the com-
mitment phase by running the code of the honest prover wiP of the WIPoK using (my, sp)
as witness. By our hypothesis, with some non-negligible probability, the extractor gives the
message committed to by ¢, this gives to B a non-negligible advantage for breaking the hiding
property of Com.

Suppose instead that, except with negligible probability, it happens that ¢, = Com(,).
We show that the witness indistinguishability of the WIPoK is violated. More specifically,
we consider a WI adversary B that executes internally all the previous interactions with the
only exception that the WIPoK of the i-th right commitment phase is played by relaying
messages with an external prover (that uses a witness for ¢« for some b* € {0,1}). B then
plays internally the decommitment phases with the exception of the i-th decommitment phase
for which the extractor is used. By looking at the extracted witness, B will guess the witness
used by the external prover.

Summing up. We have therefore shown that A decommits successfully only the commit-
ted messages. Moreover, we have shown that in the simulated game A’s choices for which
commitment have to be decommitted are indistinguishable from its choices in the simulated
game. These two properties guarantee that S decommits to R messages indistinguishable
from the ones decommitted by A in the real game.

This terminates the proof for the one-left many-right case.

The many-left many-right case for concurrent NMd. Let [= poly(k) be the size of the
vector of messages M, we consider the hybrid games {Exptf‘}ogigl, where Expt;4 fori=0,...1
is defined as follows. In the game Expt;4 the committer commits to m; as the j-th commit-
ments if j < 4, and to 0F if j > i. Moreover in E><ptg4 the i-th commitment is decommitted
using a legal witness if j < 7 and a fake witness if j > i. Obviously Expt64 corresponds to the
game played by the simulator (including both the commitment and decommitment phases)
while ExptlA corresponds to game played by the honest committer (again, including both the

A
commitment and decommitment phases). For all M and z we denote by {csisgict" (M, 2)}
the random variable that associates to each successfully completed decommitment phase of

Expt;! the messages decommitted by A. Instead {csisgzctf (M, z)} associates the value L to
interactions that have not been completed by A.

Assume by contradiction that the scheme is not concurrent non-malleable with respect to
decommitment. It follows that there must be an index ¢ € {0,...1 — 1} such that D distin-

A
guishes with non-negligible probability between {csisg);'zti (M, z)} and {csisEXptﬁ1 Dec(M, z)}.

14

The only difference between game Expt;4 and game ExptfH for ¢ € {0,...1 — 1} is that the
i+ 1 commitment is computed for message 0% in Expt;4 while it is computed for message m;
in Exptf}H. Moreover the corresponding decommitment uses a fake witness in Exptg4 and a
legal witness in Exptﬁ_l.

We can therefore construct a successful MiM adversary A’ for the one-left many-right
case. Adversary A’ internally runs all left sessions with the only exception of the (i + 1)-st
commitment and the corresponding decommitment that is played either with a honest com-
mitter committing to m;41 or with the simulator of the one-left many-right case. Therefore
A’ breaks the one-left many-right non-malleability which is a contradiction.

From the previous discussion and by observing that existence of a family of claw-free
permutations is sufficient for the tools we use, we have the following theorem and corollary.

Theorem 3.3 Under the assumption of existence of a tag-based one-left many-right perfect
cNMZK arguments of knowledge for all NP, of a secure signature scheme and of a secure
non-interactive commitment scheme, commitment scheme NMcd is is both concurrent NMc
and concurrent NMd.

Corollary 3.4 Under the existence of a family of claw-free permutations there exists a
constant-round commitment scheme that is both concurrent NMc and concurrent NMd.

References

[Bar02] Boaz Barak. Constant-round coin-tossing with a man in the middle or realizing the shared
random string model. In 43rd Annual Symposium on Foundations of Computer Science,
pages 345-355, Vancouver, British Columbia, Canada, November 16-19, 2002. IEEE Com-
puter Society Press.

[Blug2] Manuel Blum. Coin flipping by telephone. In Proc. IEEE Spring COMPCOM, pages
133-137, 1982.

[Blu86) Manuel Blum. How to Prove a Theorem So No One Else Can Claim It. In Proceedings of
the International Congress of Mathematicians, pages 1444-1451, 1986.

[BPS06] Boaz Barak, Manoj Prabhakaran, and Amit Sahai. Concurrent non-malleable zero knowl-
edge. In 47th Annual Symposium on Foundations of Computer Science. IEEE Computer
Society Press, 2006.

[CIO98] Giovanni Di Crescenzo, Yuval Ishai, and Rafail Ostrovsky. Non-interactive and non-
malleable commitment. In 80th Annual ACM Symposium on Theory of Computing, pages
141-150, Dallas, Texas, USA, May 23-26, 1998. ACM Press.

[DDN91] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptography. In 23rd An-
nual ACM Symposium on Theory of Computing, pages 542-552, New Orleans, Louisiana,
USA, May 6-8, 1991. ACM Press.

[DDO101] Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Persiano, and Amit
Sahai. Robust non-interactive zero knowledge. In Joe Kilian, editor, Advances in Cryptol-
ogy — CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science, pages 566—598,
Santa Barbara, CA, USA, August 19-23, 2001. Springer-Verlag, Berlin, Germany.

[DGO3] Ivan Damgard and Jens Groth. Non-interactive and reusable non-malleable commitment
schemes. In 35th Annual ACM Symposium on Theory of Computing, pages 426-437, San
Diego, California, USA, June 9-11, 2003. ACM Press.

15

[DKOS01] Giovanni Di Crescenzo, Jonathan Katz, Rafail Ostrovsky, and Adam Smith. Efficient

[DNS98]

[Fei90)]

[FF00]

[FLS99)

[FS90]

[GK96]
[GMRSY]

[GMWS6]

[Gol01]
[Nao91]

[OPV06]

[PRO5a]

[PRO5b)

[PRO6]

[Rom90]

and non-interactive non-malleable commitment. In Birgit Pfitzmann, editor, Advances in
Cryptology — EUROCRYPT 2001, volume 2045 of Lecture Notes in Computer Science,
pages 40-59, Innsbruck, Austria, May 6-10, 2001. Springer-Verlag, Berlin, Germany.

Cynthia Dwork, Moni Naor, and Amit Sahai. Concurrent zero-knowledge. In 30th Annual
ACM Symposium on Theory of Computing, pages 409-418, Dallas, Texas, USA, May 23—
26, 1998. ACM Press.

Uriel Feige. Alternative Models for Zero Knowledge Interactive Proofs. Weizmann Institute
of Science, 1990.

Marc Fischlin and Roger Fischlin. Efficient non-malleable commitment schemes. In Mihir
Bellare, editor, Advances in Cryptology — CRYPTO 2000, volume 1880 of Lecture Notes
in Computer Science, pages 413-431, Santa Barbara, CA, USA, August 20-24, 2000.
Springer-Verlag, Berlin, Germany.

Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple NonInteractive Zero Knowledge
Proofs under General Assumptions. STAM Journal on Computing, 29:1-28, 1999.

Uriel Feige and Adi Shamir. Witness indistinguishable and witness hiding protocols. In
22nd Annual ACM Symposium on Theory of Computing, pages 416-426, Baltimore, Mary-
land, USA, May 14-16, 1990. ACM Press.

Oded Goldreich and A. Kahan. How to Construct Constant-Round Zero-Knowledge Proof
Systems for NP. Journal of Cryptology, 9(2):167-189, 1996.

Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of inter-
active proof systems. SIAM Journal on Computing, 18(1):186-208, 1989.

Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their
validity and a methodology of cryptographic protocol design. In 27th Annual Symposium
on Foundations of Computer Science, pages 174-187, Toronto, Ontario, Canada, Octo-
ber 27-29, 1986. IEEE Computer Society Press.

Oded Goldreich. Foundations of Cryptography: Basic Tools, volume 1. Cambridge Uni-
versity Press, Cambridge, UK, 2001.

Moni Naor. Bit Commitment using Pseudorandomness. Journal of Cryptology, 4:151-158,
1991.

Rafail Ostrovsky, Giuseppe Persiano, and Ivan Visconti. Concurrent non-malleable wit-
ness indistinguishability and its applications. Technical Report ECCC Report TR06-095,
ECCC, 2006.

Rafael Pass and Alon Rosen. Concurrent non-malleable commitments. In 46th Annual
Symposium on Foundations of Computer Science, pages 563-572. IEEE Computer Society
Press, 2005.

Rafael Pass and Alon Rosen. New and Improved Constructions of Non-Malleable Cryp-
tographic Protocols. In 87th Annual ACM Symposium on Theory of Computing, pages
533-542. ACM Press, 2005.

Rafael Pass and Alon Rosen. Concurrent non-malleable commitments (full version).
http://www.eecs.harvard.edu/~alon/PAPERS/conc-nmc/conc-nme.ps, 2006.

John Rompel. One-way functions are necessary and sufficient for secure signatures. In 22nd
Annual ACM Symposium on Theory of Computing, pages 387-394, Baltimore, Maryland,
USA, May 14-16, 1990. ACM Press.

16

A Background

A polynomial-time relation R is a relation for which it is possible to verify in time polyno-
mial in |z| whether R(z,w) = 1. We will consider NP-languages L and denote by Ry, the
corresponding polynomial-time relation such that = € L if and only if there exists w such
that Ry (xz,w) = 1. We will call such a w a valid witness for x € L and denote by W (x)
the set of valid witnesses for x € L. We will slightly abuse notation and, whenever L is
clear from the context, we will simply write W (z) instead of Wy (x). Also for sequences
X = (z1,...,xm) and W = (wy,...,wy), by the writing “W € W(X)” we mean that
w; € W(z;) fori=1,...,m.

For a language L we will denote by L!* the set of sequences of m elements of L each of
length at most n. A negligible function v(k) is a function such that for any constant ¢ < 0
and for all sufficiently large k, v(k) < k°.

Indistinguishability. Let S be a set of strings. An ensemble of random variables X =
{Xs}ses is a sequence of random variables indexed by elements of S.

Definition A.1 Two ensembles of random variables X = {Xs}ses and Y = {Ys}ses are
computationally indistinguishable if for every probabilistic polynomial-time algorithm D there
exists a negligible function v such that for any s € S

|Prob[o «— X5 : D(s,a0) = 1] — Prob[a « Y : D(s,a) = 1]| < v(]s]).

Definition A.2 Two ensembles of random variable X = {Xs}ses and Y = {Y}ses are
statistically indistinguishable if there exists a negligible function v such that for all s € S

Z |Prob] Xs = a] — Prob[Ys; = a]| < v(]s]).

Definition A.3 Two ensembles of random variables X = {Xs}ses and Y = {Ys}ses are
perfectly indistinguishable if for all s € S

Z|Prob[Xs:a]—Prob[Ys:a]|:0.

One-way functions. One of the tools we will use is that of a one-way function.

Definition A.4 A polynomial-time computable function f : {0,1}* — {0,1}* is called one-
way if for every probabilistic polynomial time algorithm A there exists a negligible function v
such that

Prob[o — {0,1}%y — A(f(2),1") : f(y) = f(z)] < v(n).

Interactive argument /proof systems. An interactive proof (resp., argument) system |[GMR89]
for a language L is a pair of interactive Turing machines (P, V'), satisfying the requirements
of completeness and soundness. Informally, completeness requires that for any « € L, at the
end of the interaction between P and V', where P has on input a valid witness for = € L,
V rejects with negligible probability. Soundness requires that for any x ¢ L, for any com-
putationally unbounded (resp., probabilistic polynomial-time for arguments) P*, at the end

17

of the interaction between P* and V', V accepts with negligible probability. We denote by
(P, V)(x) the output of the verifier V' when interacting on common input x with prover P.
Also, sometimes we will use the notation (P(w),V)(z) to stress that prover P receives as
additional input witness w for x € L.

Formally, we have the following definition.

Definition A.5 A pair of interactive Turing machines (P, V') is an interactive proof system
for the language L, if V is probabilistic polynomial-time and
1. Completeness: There exists a negligible function v(-) such that for every x € L and
for every w € W(x)

Prob (P(w), V)(x) = 1] > 1 - v(ja]).

2. Soundness: For every x € L and for every interactive Turing machines P* there
exists a negligible function v(-) such that

Prob[(P*,V)(z) = 1] < v(|z|).

If the soundness condition holds only with respect to probabilistic polynomial-time interactive
Turing machines P* then (P, V) is called an argument.

Since all protocols we give are actually argument (rather than proof) systems, we will
now focus on argument systems only. Also from now on we assume that all interactive Turing
machines are probabilistic polynomial-time.

Zero knowledge. The classical notion of zero knowledge has been introduced in [GMR89].
In a zero-knowledge argument system a prover can prove the validity of a statement to a
verifier without releasing any additional information. This concept is formalized by requiring
the existence of an expected polynomial-time algorithm, called the simulator, whose output
is indistinguishable from the view of the verifier.

We start by defining the concept of a view of an interactive Turing machine. Let A
and B be two interactive Turing machines that run on common input z and assume that A
and B have additional information z4 and zg. We denote by Viewg(:c, 24, zp) the random
variable describing the view of B; that is, B’s random coin tosses, internal state sequence,
and messages received by B during its interaction with A.

We are now ready to present the notion of a zero-knowledge argument.

Definition A.6 An interactive argument system (P, V') for a language L is zero-knowledge
if for all polynomial-time verifiers V*, there exists an expected polynomial-time algorithm S
running in expected polynomial time such that the following ensembles are computationally
indistinguishable:

{View‘];* (z,w, Z)}xeL,wGW(a:),ze{o,l}* and {S(z, 2)}xeL,ze{0,1}* .

If the two ensembles are statistically/perfectly indistinguishable then (P, V') is statisti-
cal/perfect zero-knowledge.

18

A.1 Witness Indistinguishability

The notion of a witness indistinguishable argument was introduced in [FS90] and requires the
view of the (adversarial) verifier when interacting with a honest prover to be independent of
the witness used by the prover. This notion therefore concerns NP statements for which there
exists more than one witness. Even though witness indistinguishability yields weaker security
guarantees than zero knowledge, in several cases witness indistinguishability is sufficient for
the specific task at hand and it gives very efficient protocols. Furthermore, the celebrated FLS
technique [FLS99] can be used for obtaining zero knowledge from witness indistinguishability.

Let us now proceed more formally. Let IT = (P, V) be an argument system for language
L. A witness indistinguishability adversary V' for II receives as input € L, w°, w' € W(x)
and auxiliary information z. V' interacts with machine P* that has a bit b € {0,1} wired-
in. P* receives as input (z,w’,w!) and executes the code of the honest prover P on input
(z,w). For b € {0,1}, we denote by WIExpt%V,(aﬁ, w®, wl, z) the random variable describing
the output of V'’ when interacting on input (z,w? w!, 2) with prover P* running on input
(2,0, w') and b is the wired-in bit of P*.

Definition A.7 Argument system Il = (P, V') for the language L is witness indistinguishable
if for all probabilistic polynomial-time witness indistinguishability adversaries V' there exists
a negligible function v such that for all x € L, all witnesses w®, w! € W(x) and all z € {0,1}*

|Prob] WIExptOP,V,(x,wo,wl,z) = 1] — Prob| WIExpt}Dy,(x,wO,wl,z) =1]] <v(z|).

We stress that witness indistinguishability holds with respect to adversaries that know both
witnesses.

A stronger notion can be obtained if we consider adversaries that can concurrently ex-
ecute several proofs. More precisely, a concurrent witness indistinguishability adversary V'
for argument system II = (P, V) for language L receives as input security parameter 1%,
sequence X = (x1,...,2) of m = poly(k) elements of L each of length n = poly(k), two
sequences W0 = (w?,...,w0,) and W' = (wi,...,w})) such that w? w! € W(z;) and aux-
iliary information z. V' interacts with m copies of machine P* (one copy for each ;). All
copies of machine P* have the same random bit b € {0,1} wired-in and the i-th copy of P*
receives as input (z;, w?, w}) and executes the code of the honest prover P on input (z;, wf).
V' has control of the network and decides in which order messages from different executions
are delivered. For b € {0,1}, we define the random variable WIExptl}g,V,(X WO WL 2) as the
output of V' when interacting with m copies of machine P* with bit b wired-in. We have the
following definition.

Definition A.8 An argument system I1 = (P, V') for the language L is concurrent witness
indistinguishable (¢WI argument system) if for all efficient non-uniform adversaries V', for
all k, for all m = poly(k) and n = poly(k), there exists a negligible function v such that for
all sequences X of m elements of L of length n, for all sequences WO, W' € W(X) and for
all z € {0,1}* it holds that

[Prob] WIExptD (X, W, W', z) = 1] — Prob[WIExptp (X, WO, W', 2) = 1] < v(k).

It is known (see [FS90]) that witness indistinguishability is closed under concurrent com-
position. Finally we stress that the FLS paradigm [FLS99] that allows one to obtain zero
knowledge from witness indistinguishability is the most used technique for designing zero
knowledge protocols.

19

A.2 Non-Malleable Argument Systems

The notion of non-malleability has been first considered in [DDN9I]. Non-malleability is
concerned with an adversary A that mounts a so-called man-in-the-middle attack on two
concurrent executions of a protocol 1I.

Let IT = (P, V') be an argument system for the language L. A man-in-the-middle adversary
A for II acts as a verifier in one proof (called the left proof) and verifies the validity of a
statement “x € L” being proved by a honest party running P; and acts as a prover in
another proof (called the right proof) in which A tries to convince a honest party running V'
of the validity of a statement & € L of its choice. It is assumed that A has complete control
of the communication channel and therefore decides the scheduling of the messages. Very
informally, II is non-malleable if, whenever x # Z, the left proof does not help A in the right
proof.

Let us proceed more formally. For a man-in-the-middle adversary A, we consider two
executions: the man-in-the-middle execution and the stand-alone execution.

In the man-in-the-middle execution we have three parties: a honest prover P, a honest
verifier V' and man-in-the-middle adversary A. In the left proof P and A (acting as a
verifier) interact on common input x € L; P receives w € W (x) as private input and A
receives auxiliary information z € {0,1}*. In the right proof A (acting as a prover) and V'
interact on common input & chosen by A. We denote by mim“{}(w, w, z) the random variable
describing the output of V' in this scenario which is V’s decision and the right input & chosen
by A. If x = & then mim“{}(a:,w, z) is the random variable that assigns positive probability
only to L.

In the stand-alone execution we have only two parties: a machine S (the simulator) and
a verifier V. S with access to A and auxiliary information z € {0, 1}*, interacts with V' on
common input z. We denote by sta‘b;(x, z) the random variable describing the output of V'
in this interaction.

Definition A.9 (non-malleable argument system) An argument system Il = (P, V') for
a language L is non-malleable if for every probabilistic polynomial-time man-in-the-middle
adversary A, there exists a probabilistic algorithm S running in expected polynomial time and
a negligible function v such that, for every x € L, w € W(x), and for every z € {0,1}*

|Prob[mim¢}(z, w, z) = 1] — Prob[staj (z, 2) = 1]] < v(|z]).

Tag-based non-malleability. The above definition does not say anything about the case
in which A proves in the right proof the same theorem P proved in the left proof (that is,
Z = x). Actually, there is no way of preventing A from relaying messages from the left proof
to the right proof and vice versa. The next definition requires that if, x = Z, then A’s proof
must be somehow different from P’s.

Consider a family {(Ptag, Vtag)}tag of argument systems indexed by a string tag. As
before, we will consider the man-in-the-middle execution and the stand-alone execution. More
specifically, in the man-in-the-middle execution we consider A that, on input x and auxiliary
information z, interacts in the left proof with the prover Ptag on input (z,w) and in the
right proof with verifier Vtég on input Z. The tag tag of the right proof as well the input

of the right proof are chosen adaptively by A. We denote by mim{/‘(tag, x,w, z) the random

20

variable describing the output of V' in this scenario (it is V’s decision, the tag tag and the
statement & € L). Similarly staj (tag,,2) is defined as the output of the verifier while
interacting with S. Similarly to the previous case, if the right proof contains the same tag

used in the left proof, then mim“é(tag, x,w, z) gives positive probability only to the string L.

Definition A.10 (tag-based non-malleable argument) A family of argument systems
II = {(Ptag, Vtag) }tag for a language L is a tag-based non-malleable argument with tags of
length ¢ if for every probabilistic polynomial-time man-in-the-middle adversary A, there exist
a probabilistic algorithm S running in expected polynomial time and a negligible function v
such that for every x € L, w € W (z), for every tag € {0,1}, and for every z € {0,1}*
|Prob[mim{}(tag, x, w, z) = 1| — Prob| staj (tag,z,z) = 1]| < v(|z|).

Non-malleable zero knowledge. Consider an argument system II = (P, V) for an NP-
language L. Let A be a man-in-the-middle adversary attacking I1. Then, with a slight abuse
of notation, by Viewﬁ(x, w, z) we denote the random variable describing the view obtained by
A in the left and the right proof (including the sequence of its internal states and messages
sent and received by A) when given auxiliary information z. In the left proof A is interacting
with a honest prover P on common input “x € L” and P receives a valid witness w for = as
private input. In the right proof A interacts with the honest verifier on input Z chosen by A.

Definition A.11 (NMZK argument system) A non-malleable argument systemII = (P, V')
for a language L is non-malleable zero-knowledge (in short NMZK) if for any probabilistic
polynomial-time man-in-the-middle adversary A, there exists a probabilistic algorithm S run-
ning in expected polynomial time such that, the ensembles

{Viewy (2,0, 2)}serwew (@) c01} and {S(x, 2) }uer se(0.1}+

are computationally indistinguishable.
If the two ensembles are statistically/perfectly indistinguishable then 11 is said to be non-
malleable statistical /perfect zero-knowledge.

NMZK arguments of knowledge. The notion of non-malleable zero knowledge argument
of knowledge is obtained by requiring that the simulator also outputs the witness encoded in
the right proof (in which the man-in-the-middle adversary A plays as a prover). This notion
was introduced by [DDOT01] for non-interactive NMZK and clearly implies non-malleability.

Definition A.12 (NMZK arguments of knowledge) An argument system I1 = (P,V)
for a language L is a non-malleable zero-knowledge argument of knowledge if for every
probabilistic polynomial-time man-in-the-middle adversary A, there exists a probabilistic al-
gorithm S (called the simulator-extractor) running in expected polynomial time such that by
denoting as S(z,z) = (So(x, 2), S1(x, 2)), the output of S(x, z), we have that:
1. {So(z,2) }zer,ze{0,1)+ i computationally indistinguishable from {View!; (z, w, 2) YaeLwew (x),2€{0,1}*7
2. S1(z,2) = w and if the right proof given in {So(, 2)}zer,zc{0,1}+ 1S accepting with
common input T # x we have that, except with negligible probability, w € W (Z).

The notion of tag-based NMZK argument of knowledge is obtained by requiring that the
extraction procedure is successful if the right proof has a tag different from the one of the
left proof. We also stress that we allow the adversary A to pick the theorem and the tag to
be used in the right proof.

21

A.3 Concurrent Non-Malleable Zero-Knowledge Arguments of Knowledge

In a more powerful man-in-the-middle attack, the adversary A is not restricted to one proof
on the left and one proof on the right but instead A is allowed to concurrently play polyno-
mially many left and right proofs. We call such an adversary a concurrent man-in-the-middle
adversary. Specifically, let k be the security parameter. Consider a vector X = (z1,...,Zm)
of m = poly(k) inputs each of length n = poly(k) and a vector W = (wy,...,wy), such
that wy € W(z1),...,wn € W(x,,). In the man-in-the-middle execution, the i-th left proof,
for 1 < ¢ < m, is played by (an instance of) the honest prover P on input (z;,w;) and by
the adversary A on input (z;, z), for some auxiliary information z; the j-th right proof, for
1 < j <1, is played by A on input &; chosen by A and auxiliary information z and by (an
instance of) the verifier V' on input Z;. We assume that A has complete control over the
network and thus decides when each message of each proof is delivered.

cNMZK arguments of knowledge. The next definition extends the notion of an NMZK
Argument of Knowledge (as defined in Definition [A.12]) to the concurrent scenario.

Definition A.13 (cNMZK arguments of knowledge) An argument system Il = (P, V)
for the language L is a concurrent non-malleable zero-knowledge argument of knowledge (a
cNMZK argument of knowledge) if for every probabilistic polynomial-time concurrent man-in-
the-middle adversary A there exists a probabilistic algorithm S (called the simulator-extractor)
running in expected polynomial time such that for all m = poly(k) and n = poly(k), by
denoting with S(X, z) = (So(X, 2),S1(X, 2)) the output of S on input (X, z) , we have that:
1. {So(X, 2)} xerm »ef0,1} and {Viewk (X, W, 2)}xerm wew(X),ze{0,1}* are computation-
ally indistinguishable;
2. S1(X,z) = (W1,...,0m) where, except with negligible probability, w; € W(Z;) for
1<j<mandz; ¢ X is the common input of the j-th accepting right proof given in
{SU(X7 Z)}XELW,ZG{OJ}*

To define the notion of tag-based cNMZK argument of knowledge we define the view
Viewﬁ(T, X, W, z) of a tag-based man-in-the-middle adversary A when T is the sequence of
tags, X is the sequence of inputs and W is the sequence of witnesses used in the left proofs
as all messages receives by A in left and right proofs along with A’s internal coin tosses.

Definition A.14 (tag-based cNMZK arguments of knowledge) A family Il = {(Ptag, Viag)}tag
of argument systems for the language L is a tag-based concurrent non-malleable zero-knowledge
argument of knowledge with tags of length ¢ (¢ cNMZK argument of knowledge) if for ev-
ery probabilistic polynomial-time tag-based concurrent man-in-the-middle adversary A there
exists a probabilistic algorithm S (called the simulator-extractor) running in expected polyno-
mial time such that for all m = poly(k) and n = poly(k), and for all sequences T of m tags
of length ¢ by denoting with S(T, X, z) = (So(T, X, 2),S51(T, X, z)) the output of S on input
(T, X, z), we have that:
1. {So(T, X, 2)}reqoaymt xeLy zefo.1y and {View (T, X, W, 2)}reqo1ymt xeLp,wew(X)ze (0,1}
are computationally indistinguishable;
2. S1(T, X, z) = (W, ..., W) and for all accepting right proofs j with tag tégj ¢ T we
have that, except with negligible probability, w; € W (Z;).

One-left many-right cNMZK arguments of knowledge. Weaker notions of cNMZK
can be obtained by restricting the power of the concurrent man-in-the-middle adversary A.

22

If we allow the adversary to be active in only one left proof, then we obtain the notion of a
one-left many-right cNMZK argument of knowledge. The following theorem is from [PRO5D,
PRO5a, PROG[Y

Theorem A.15 ([PRO5b, PRO05a, [PR06]) Assume that there exists a family of claw-free
permutations. Then for any NP language L there exists a constant-round tag-based one-left
many-right perfect cNMZK arguments of knowledge nmZK = {(Ptag, Vtag) }tag for all NP.

According to the above definition, this theorem says that for any efficient one-left many-right
concurrent man-in-the-middle adversary A that is restricted to one left session there exists
an efficient simulator S that guarantees:

1. the view (including the left proof and all the right proofs) given in output by S is
perfectly indistinguishable from the interaction of A with honest prover and honest
verifiers;

2. the extraction succeeds for all accepting right proofs in which the one-left many-right
concurrent man-in-the-middle adversary has used a tag not appearing in the left proof;

The last property is based on a technique referred to as simulation-extraction that com-

bines non-black-box simulation with black-box extraction. Indeed, while the simulator is
simulating a proof to the adversary, the extractor rewinds the adversary (and thus the sim-
ulation itself) and still extracts a valid witness from the proof given by the adversary.

A.4 Other Tools

Secure signature schemes. A secure signature scheme SS = (SG,Sig,SVer) is a triple
of efficient algorithms. The key generation algorithm SG on input a security parameter 1%
returns a pair (pk, sk) that are respectively a public and a secret key. The secret key sk is used
to sign a message m by running the signature algorithm Sig on input sk and the message
m and obtains the signature s. The public key pk instead is used to verify signatures by
means of the SVer algorithm that runs on input the public key pk, the message m and the
signature s and outputs a bit. The security requirement guarantees that no polynomial-time
adversary that is given access to a signature oracle is able to produce a signature of a message
for which it has not queried the oracle, or to produce a new signature of a message for which
it has queried the oracle (this last requirement defines a strong secure signature scheme).
See [Rom90| for a construction of a secure signature scheme based on one-way functions.

Commitment Schemes. Informally, a commitment scheme is a two-phase two-party pro-
tocol played by the committer C' (sometimes also called the committer) and the receiver
R.

In the commitment phase C' receives as input a message m. The commitment phase has
one common output com, called the commitment, and one private input, to be used in the
next phase, for each party.

In the decommitment phase both parties receive as input the common output com of the
commitment phase and their respective private auxiliary information. During the decommit-
ment phase C' decommits com to m by sending m to R and then engaging in a protocol with

4The use of claw-free permutations and the perfect zero-knowledge property are in particular discussed
in [PRO6].

23

R. At the end of the decommitment phase R may accept the decommitment of m as com (in
which case we say that decommitment was successful) or reject the decommitment.

The hiding property requires that the commitment phase does not reveal any information
about m to a polynomial-time adversarial receiver. If the hiding property holds with respect
to unbounded adversarial receivers then we say that the commitment scheme is statistically
hiding.

The binding property requires that a polynomial-time adversarial committer can not pro-
duce a commitment com and later decommit it to two different messages mg and my. If the
binding property holds with respect to unbounded adversarial committer then we say that
the commitment scheme is statistically binding.

Non-interactive commitment schemes. In our schemes we will use non-interactive com-
mitment schemes. These are schemes in which the commitment phase consists of a single
message from committer to receiver. We will describe such schemes by means of a commit-
ment algorithm Com. Specifically, let k be a security parameter. To commit to a message m of
length poly(k), the committer picks a random k-bit string s and computes com = Com(m, s)
and sends it to the receiver. To decommit commitment com to message m, the committer
sends message m and string s to the receiver that verifies that indeed com has been computed
as com = Com(m, s).

It is possible to construct non-interactive statistically binding commitment schemes based
on any one-to-one one-way function (see for example [Gol01]). If we allow a setup message
from the receiver to the committer, then we can construct non-interactive statistically binding
commitment schemes based on any one-way function [Nao91] and non-interactive statistically
hiding commitment schemes based on certified claw-free functions [GK96].

B Previous Schemes

In this section we review two recent schemes (due to [PR0O5b]) of non-malleable commitment:
one that is NMc and one that is NMd. In Section[C| we show how to combine the two schemes
to get a non-malleable commitment scheme that is simultaneously NMc and NMd. Moreover
in Section |3| we will show that using new techniques, we can keep both security guarantees
in the concurrent setting.

These schemes are based on TheorenfA.15] of [PRO5D, [PR05al [PRO6] (that is also an
ingredient for our schemes)

A statistically binding NMc scheme N Mc. Denote by SBCom a non-interactive statis-
tically binding commitment scheme and by nmZK = {(P:, V;)} a tag-based perfect NMZK
argument of knowledge (see [PR0O5D]) for all NP. M Mc is conceptually very simple (see Fig-
ure [2). The committer commits using (the possibly malleable) commitment scheme SBCom
and then proves knowledge of the committed value by using nmZK. For the proof, we con-
struct a simulator that commits to 0¥. Since we are arguing NMec, there is no need to
consider the decommitment phase. The proof then follows from the fact that nmZK is a per-

fect non-malleable argument of knowledge and that the commitment scheme Com is hiding
(see [PRO5SD]).

A statistically hiding NMd scheme NMd. Denote by SHCom a statistically hiding
commitment scheme and by nmZK = {(P,V;)} a tag-based perfect NMZK argument of
knowledge (see [PR05D]) for all NP. The scheme is conceptually the dual of NMc (see Figure|3)).

24

Security Parameter: 1%
Input to Committer: m € {0,1}*.
Commitment Phase:
C — R: Pick s € {0,1}* and send ¢ = SBCom(m, s).
C < R: C proves to R using nmZK, that there exist m,s € {0,1}* so that
¢ = SBCom(m, s).
R: Verify that nmZK_, is accepting.
Decommitment Phase:
C — R: Send m, s.
R: Verify that ¢ = SBCom(m, s).

Figure 2: The NMc commitment scheme NMc of [PRO5D].

In the commitment phase the committer computes (the possibly malleable) commitment com
of m using commitment scheme SHCom. In the decommitment phase, the committer sends
m to the receiver and then proves, using nmZK, that m is the correct decommitment.

Security Parameter: 1%
Input to Committer: m € {0,1}*.
Commitment Phase:
R — C: Pick r € {0,1}* and send it to C;
C — R: Pick s € {0,1}* and send ¢ = SHCom(r, m, s).
Decommitment Phase:
C — R: Send m.
C < R: C proves to R using nmZK., », that there exist s € {0, 1}* so that
¢ = SHCom(r,m, s).
R: Verify that nmZK,, ,, is accepting.

Figure 3: The NMd commitment scheme NMd of [PRO5D].

C The Constant Round Commitment Scheme NMcd

In Figure [4 we describe commitment scheme NMecd that is both NMc and NMd. We will
use a non-interactive statistically binding commitment scheme Com in which the committer
can commit to a message m by picking a random s and by setting ¢ = Com(m,s). Such
commitment schemes can be constructed using 1-to-1 one-way functions (see [Gol01]). Also
we denote by nmZK = {(P;,V;)} a tag-based perfect NMZK argument of knowledge (see
Theorem for all NP. See Appendix and for details about these tools.

At a very high level, NMecd can be seen as a combination of the schemes NMc and
NMd. Specifically, the commitment phase consists of committing m using the (possibly

25

malleable) non-interactive commitment scheme Com and then proving knowledge of the com-
mitted message using nmZK. In the decommitment phase, the committer sends message m
to the receiver and then proves, using nmZK, that m is the message originally committed to.

In the next sections we prove the properties of NMecd. We stress that, being simul-
taneously NMc and NMd, guarantees security if the MiM adversary is active both in the
commitment phase and in the decommitment phase.

Security Parameter: 1%.
Input to Committer: m € {0,1}*.
Commitment Phase:
C — R: Pick s € {0,1}* and send ¢ = Com(m, s).
C « R: C proves to R that there exist m, s € {0,1}* so that ¢ = Com(m, s) by
running P, on input ¢ and witness (m, s).
R: Verify that V. on input c¢ is accepting.
Set tag = (c,t) where t is the transcript of the interaction between P, and V..
Decommitment Phase:
C — R: Send m.
C « R: C proves to R that there exist s € {0,1}* so that ¢ = Com(m, s) by
running P, tag on input (m, c) and witness s.
R: Verify that V,,, tag is accepting.

Figure 4: Commitment scheme NMcd enjoying both NMc and NMd.

We have the following theorem.

Theorem C.1 Under the existence of a family of claw-free permutations there exists a
constant-round commitment scheme that enjoys both NMc and NMd.

PROOF.

Hiding and binding. The proof of the hiding property is precisely the same of the sta-
tistically binding NMc commitment scheme of Fig. [2] as the commitment phase is identical.
The proof of the binding property is instead very similar to (actually it is properly contained
in) the proof of the binding property of the statistically hiding NMd commitment scheme of
Fig. Bl We remark that AMMecd is not statistically binding as an unbounded adversary might
be able to cheat in the execution of nmZK (which is an argument and not a proof) and open
a commitment in any way.

NMed is NMec. In this section we prove that MMecd is NMc by giving, for every MiM
adversary A, a simulator S that satisfies Definition when there is just one left and one
right commitment.. S, on input z and security parameter 1*, interacts with a honest receiver
R and runs adversary A(z) internally. S simulates the left and the right commitment phases
for A in the following way. In the left interaction, S behaves as a honest committer committing
to m = 0F; that is, S picks s at random, computes ¢ as ¢ = Com (0¥, s) and then executes the
code of the honest prover P. to prove knowledge of the message committed to by c. In the
right interaction, S acts as a relayer between A(z) and R.

26

Suppose, for the sake of contradiction, that there exists a probabilistic polynomial-time
distinguisher D and infinite set X C N such that for all k € K there exists v;, € {0, 1}* such
that

|Prob] D(vk,sisgom(lk,z)) = 1] — Prob[D(vg, mimé)m(vk,z)) =1]| >1/q(k),

for some polynomial ¢(-) and consider the following sequence of experiments involving A,
starting with Exptg'(v, 2).

Expty'(v, 2):

Left commitment phase. A(z) interacts with honest committer that commits to
v. Let ¢ be the commitment sent by the honest committer.

Right commitment phase. .A(z) interacts with honest receiver. Let ¢ be the
commitment sent by A in the right commitment phase.

Output. If the right commitment phase is successful and ¢ # ¢, then let ¥ be the
value committed to by ¢; otherwise let o =L. Output D(v,).

We set pgl(v, 2) = Prob] Expté(v,z) = 1]. We observe that, for all v € {0,1}*, pg'(0¥,2) =
Prob[D(v,sisg,,(2)) = 1] and pgl(v,z) = Prob[D(v,mim&, (v,z)) = 1]. Therefore, by
assumption,
15 (v, 2) = po (0%, 2)| > 1/q(k)

for all k € K.

To define experiment Expt“f‘7 we observe that the MiM adversary A naturally defines
an adversary A’ for nmZK. Therefore there exists a simulator-extractor S’ for nmZK that
simulates a left interaction with A’ and extracts the witness for the right proof provided by

A

Expt{'(v, 2):

Left commitment phase. A(z) interacts with the following committer C. C picks
s at random and computes ¢ = Com(v, s) and then executes the simulator-extractor
S’ for nmZK on input ¢ and tag c.

Right commitment phase. A(z) interacts with the simulator extractor S’ for nmZK
running on input ¢ and tag c.

Output. Let View be the view of A’ as output by S’. Let ¢ be the commitment sent
by A in the right commitment phase of View.

If the right commitment phase of View is successful and ¢ # ¢, then let © be the value
committed to by ¢; otherwise let o =1. Output D(v,d).

We set pi(v, z) = Prob[Expti'(v,z) = 1]. Since nmZK is perfect zero-knowledge, we have
that, for all v € {0, 1}*, pt(v, 2) = pg'(v, 2) and thus
[t (v, 2) = p' (0%, 2)| = 1/q(k),

for all k£ € K.
Experiment Expts'(v, z) is similar to Expti'(v, z) with the only difference that the output
is computed in a different way.

27

Expty' (v, 2):
Left commitment phase. A(z) interacts with the following committer C. C picks

s at random and computes ¢ = Com(v, s) and then executes the simulator-extractor
S’ for nmZK on input ¢ and tag c.

Right commitment phase. A(z) interacts with the simulator extractor S” for nmZK
running on input ¢ and tag ¢c.

Output. Let View be the view of A’ output by S’, ¢ be the commitment sent by A in
the right commitment phase of View and let w = (v, s’) be the witness for ¢ output
by S’

If the right commitment phase of View is successful and ¢ # ¢, then let v = /;
otherwise let o =L1. Output D(v,?).

We set pgi(v,z) = Prob[Expts'(v,2) = 1]. If & # ¢ then the non-malleable argument of
knowledge of the right commitment phase uses a tag different from the one used in the non-
malleable argument of knowledge of the left commitment phase and thus, with overwhelming
probability, S’ outputs the unique valid witness. Therefore, conditioned on ¢ # ¢, we have
that

‘p2'A(U,Z) —pf(v,z)\ < V(k)

for some negligible function v. On the other hand, conditioned on ¢ = ¢, we have pé“(v, z) =
pf‘(v, z). Therefore, there exists a poly ¢ () such that

1p3(vr, 2) — p5' (0%,)| > 1/qu(k),

for all k € K. Now observe that Expt;' (unlike Expt;' and Exptsl) can be performed in
polynomial time and thus the above inequality implies that the commitment scheme is not
hiding thus reaching a contradiction. More precisely, we can construct an adversary B for
breaking commitment scheme Com that receives as input a commitment ¢ of either 0% or of
vp. B executes Expts'(vg, z) and, instead of setting ¢ = Com(vy, s) sets ¢ = & We notice
that B can perform Expté‘l(v,z) even without knowing the value committed to by ¢é. This
concludes the proof that NMecd is NMe.

NMecd is NMd. For every MiM adversary A, we describe a simulator S such that mim“,S‘ec
and sisgec are indistinguishable. For the sake of simplifying the notation, we will denote by
Apec the state of A (i.e., A’s a description along with its configuration at that time slot)
after the commitment phases (i.e., before the decommitment phases starts).

Let us now describe simulator S for A. S, on input z and security parameter 1, interacts
with a honest receiver R and runs adversary A(z) internally. S simulates the left and the
right commitment phases for A in the following way. For the left commitment phase, S
behaves like a honest committer that commits to message 0¥. For the right commitment
phase, S relays message between A and R. Once the commitment phase has terminated, S
receives message m.

The basic idea is that now S will play the decommitment phases internally with Apec (we
stress that Apec is precisely A after the commitment phases) playing as both sender in the
left decommitment phase and as receiver in the right decommitment phase. This allows S to
obtain the decommitment of the right commitment by means of the simulation-extractability

28

property of nmZK. Then S will be able to open to R the message that it committed in the
commitment phase.

More formally, let ¢ and ¢ be the commitments of the left and right commitment phases
and let t and £ be the two transcripts. Since the decommitment phase is simply a message
that specifies a statement and an execution of nmZK for that statement, the existence of
Apec implies the existence of a simulator-extractor Spec for nmZK. S then runs Spec on input
(c,m), using tag tag = (c,t) and obtains the view View and witness w for the right theorem
proved by Apec (i.e., by A). If the right decommitment phase in View terminates successfully
then it must be the case that Apec has successfully proved theorem (¢, m) for some string m.
If @ is a witness for (¢,m) then S performs the decommitment phase with R by executing
Ptag on input (¢,m) and witness w. Otherwise S aborts. This ends the description of S.

We now prove that S is a good simulator; that is, for all probabilistic polynomial-time
distinguishers D, for all z, for all £ € N and for all m € {0, 1}*,

|Prob[D(m, sisg..(m, z)) = 1] — Prob[D(m, mimf..(m, z)) = 1]|

is negligible in k. To this aim, consider the following sequence of experiments, starting with
Expty(m, z). We denote by p;(m, z) the probability that Expt;(m, z) returns 1. Experiment
Expty(m, z) consists in sampling mim“(m, z) obtaining 7 and returning D(m,). Therefore,
po(m, z) = Prob[D(m, mimA(m, z)) = 1].

Let us now consider experiment Expt;(m,z) which differs from Expty(m, z) only in the
decommitment phase. As observed in the description of S, Apec implies the existence of
Spec- Then in Expt,(m, z), instead of performing the decommitment phase, we run Spec on
input (m, c¢) (where c is the commitment that appears in the left commitment phase), and tag
tag = (¢,t). Spec outputs Viewpe. and witness w. Notice that in these decommitment phases
of Expt; the simulator is playing both as sender in the left decommitment and as receiver
in the right decommitment. If in Viewpe: the right decommitment phase is successful and
different from the left one, the output of Expt; is D(m,m) where m is the decommitment of
¢ in Viewpec. Otherwise Expt; returns D(m, L). It follows from the perfect simulation of S
that p1(m, z) = po(m, 2).

In Expty(m, z) we use the simulator of nmZK for the commitment phase too and leave the
decommitment phase as in Expt;(m, z). Specifically, since the commitment phase is again
the composition of a message that defines a statement and of an execution of nmZK for that
statement, we observe that A is actually a man-in-the-middle for nmZK and we denote by
Scom the associated simulator. The commitment phase is then performed by computing a
commitment ¢ of m and then running Scom on input ¢ and z as auxiliary input. We denote
by Viewcom the obtained view. Notice that Scom also plays the role of honest receiver in
the right commitment phase, therefore R is not part of this experiment. By the fact that
Scom is a perfect simulator (including both the right and left commitment phases), we obtain
p2(m, z) = p1(m, 2).

Expts(m, z) is similar to Expty(m,z) with the only difference that ¢ is computed as
Com(0¥). The hiding property of the commitment guarantees that |ps(m,z) — pa(m, 2)| is
negligible. Indeed, any distinguisher between Expts(m, z) and Expty(m, z) can be used to dis-
tinguish a commitment of either 0% or m by simply playing this commitment as ¢, completing
the experiment and then giving in output the same output of the distinguisher.

29

Expt,(m, z) is similar to Expts(m, z) with the only difference that in Expt,(m, z) we use
the algorithm of the prover of nmZK in the left commitment phase instead of the simulator
of nmZK. Since the simulation is perfect ps(m, z) = p3(m, z).

Expts(m, z) is similar to Expt,(m, z) with the following difference. The right commitment
phases is played by relying with R all messages. Since in Expt,(m, z) the receiver of the right
commitment phase is played by Scom running the honest receiver algorithm, we have that
ps(m, z) = pa(m, z).

Exptg(m, z) is similar to Expts(m, z) with the following difference. The right decommit-
ment phase is performed by running with R the code of the honest prover of nmZK using
the witness w obtained by Spec. As before, the output of the experiment is D(m,m) if the
right decommitment phase is successful and differs from the left one. Otherwise the exper-
iment outputs D(m, L). We observe that, since Spec obtains the unique valid witness (we
stress that the commitment scheme used as subprotocol is statistically binding) except with
negligible probability, |ps(m, z) — ps(m, z)| is negligible.

Finally note that Exptg(m, z) corresponds to sis(m, z), therefore the proof is completed.

The theorem then follows from the observation that claw-free permutations are suffi-
cient for the existence of nmZK (see Theorem and non-interactive statistically binding
commitment schemes. O

30

	Introduction
	Non-Malleable Commitments
	Concurrent Non-Malleable Commitments
	Commitment Scheme cNMcd
	Concurrent NMc
	Concurrent NMd

	Background
	Witness Indistinguishability
	Non-Malleable Argument Systems
	Concurrent Non-Malleable Zero-Knowledge Arguments of Knowledge
	Other Tools

	Previous Schemes
	The Constant Round Commitment Scheme NMcd

