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Abstract

In this paper, we study the issues related to the possibility, feasibility and opti-
mality for perfectly secure message transmission (PSMT) in an undirected syn-
chronous network, under the influence of a mixed adversary having unbounded
computing power, who can corrupt some of the nodes in the network in Byzan-
tine, fail-stop and passive fashion respectively. Specifically, we answer the fol-
lowing questions: (a) Possibility: Given a network and a mixed adversary,
what is the necessary and sufficient condition for the existence of any PSMT
protocol over the network tolerating the adversary? (b) Feasibility: Once the
existence of a protocol is ensured, then does there exist a polynomial time and
efficient protocol on the given network? (c) Optimality: Given a message of
specific length, what is the minimum communication complexity (lower bound)
needed by any PSMT protocol to transmit the message and how to design a
polynomial time protocol whose total communication complexity matches the
lower bound on the communication complexity? We answer the above questions
by considering two different types of mixed adversary, namely static mixed ad-
versary and mobile mixed adversary. Intuitively, it is more difficult to tolerate a
mobile mixed adversary (who can corrupt different set of nodes during different
stages of the protocol) in comparison to its static counter part (who corrupts the
same set of nodes throughout the protocol). However, surprisingly, we show that
the connectivity requirement in the network and lower bound on communication
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complexity of PSMT protocols is same against both static and mobile mixed ad-
versary. To design our protocols against static and mobile mixed adversary, we
use several new techniques, which are of independent interest.

Key words: Information Theoretic Security, Static and Mobile Mixed
Adversary, Undirected Graphs, Synchronous Networks.

1. Introduction

Consider the following problem: a sender S and a receiver R are part of
an unreliable distributed synchronous network and are connected through in-
termediate nodes. The distrust in the network is modelled by an entity called
adversary, who has unbounded computing power and who can corrupt some of
the intermediate nodes in a variety of ways. S wishes to send to R a message
m that consists of ℓ ≥ 1 field elements, selected uniformly from a finite field
F. The challenge is to design a protocol, such that after interacting with S
as per the protocol, R should output m without any error (perfect reliability)
and at the same time, adversary should not get any information about m what
so ever (perfect security). Moreover, this should happen irrespective of the be-
havior of the adversary. This problem is known as perfectly secure message
transmission (PSMT). Security against such a powerful adversary is also known
as non-cryptographic or information theoretic or Shannon security. Notice that
since adversary has unbounded computing power, we cannot solve PSMT prob-
lem by using classical cryptographic primitives such as public key cryptography,
digital signatures, authentication schemes, etc as the security of all these prim-
itives holds good only against an adversary having bounded computing power.

Why to Study PSMT: PSMT is one of the fundamental problems in secure
distributed computing. There are two motivations to study PSMT problem.
Many fundamental fault tolerant distributed computing primitives, such as se-
cure multiparty computation (MPC) [56, 21, 6, 8, 42, 3, 4, 5], Byzantine Agree-
ment (BA) [41, 15, 13, 7, 26], Verifiable Secret Sharing (VSS) [9, 6, 42, 20], etc
assume that there exists a direct and secure link between every two nodes in the
network. This implies that the underlying network graph is a complete graph,
which is an unrealistic assumption. In the networks, where S and R are not
adjacent, PSMT protocols help to simulate a virtual secure link between S and
R. This way, we can simulate a virtual complete network, over which the above
fault tolerant primitives can be executed.

The second motivation to study PSMT is to achieve information theoretic
security. The security of all existing public key cryptosystems, digital signatures
are based on the unproven hardness assumptions of certain number theoretic
problems. However, the increase in computing speed and advent of new com-
puting paradigms like Quantum computing [46] may render these assumptions
very weak or useless in practice. But these factors have no effect on information
theoretic security which is the strongest notion of security. Thus in a scenario,
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when existing public key cryptosystems, digital signatures can not provide sat-
isfactory security, PSMT protocols may help to provide effective alternative.

A Taxonomy for PSMT Protocols: The PSMT problem was first proposed
and solved by Dolev et.al [14]. Dolev et.al considered an undirected synchronous
network and assumed that the adversary can corrupt tb nodes in the network in
Byzantine fashion. Roughly speaking, if a node is Byzantine corrupted, then the
adversary can not only listen all the information possessed by that node, but also
can force the node to deviate from the protocol in any arbitrary manner. The
work of Dolev et.al is followed by several other works, which considered PSMT
problem in several network settings and adversarial model. For example, the
underlying network model may be undirected graph [14, 45, 50, 1, 16, 36, 25],
directed graph [12, 32, 37, 34] or hypergraph [19, 52]. The communication in
the network could be synchronous [14, 45, 51, 25] or asynchronous [44, 11, 49].
The faults in the network could be passive, fail-stop, Byzantine or sometimes
mixed/hybrid faults [10]. The number of faulty nodes in the network may be
bounded by a fixed constant (threshold adversary) [14, 25] or the potential
sets of faulty nodes may be described by a collection of subsets of nodes (non-
threshold adversary) [23, 49, 40]. The adversary may be static [14, 23, 25, 12] or
mobile [54, 39, 10, 35]. The protocol may allow a negligible error probability in
reliability [18, 12, 55, 24, 2, 51, 33, 48] or may not allow any error in reliability
[14, 45, 50, 1, 16, 36, 25]. We may use the following parameters to describe
different settings/models for studying PSMT:

1. Type of Underlying Network — Undirected Graph, Directed Graph, Hy-
pergraph.

2. Type of Communication — Synchronous, Asynchronous.
3. Adversary capacity — Threshold Static, Threshold Mobile, Non-threshold

Static, Non-threshold Mobile.
4. Type of Faults — Fail-stop, Passive, Byzantine, Mixed.

For example, one may ask: what is the necessary and sufficient condition for
PSMT over an undirected synchronous network thwarting a threshold static
mixed adversary? In this way, hundreds of different models/settings can be
formulated and almost all of them are used in practice.

Any PSMT protocol is analyzed by the following four parameters:

1. Connectivity of the underlying network, denoted by n,
2. Number of phases, denoted by r, taken by the protocol. Here a phase is a

communication from S to R or vice-versa,
3. Communication complexity denoted by c, which is the total number of

field elements communicated by S and R in the protocol and
4. Amount of computation done by S and R in the protocol.

Irrespective of the settings in which PSMT is studied, the following issues are
common:

(i) Possibility: What is the necessary and sufficient condition for the exis-
tence of any PSMT protocol in a given network, tolerating a given type
of adversary?

3



(ii) Feasibility: Once the existence of a PSMT protocol is ensured then does
there exist a polynomial time efficient protocol on the given network?

(iii) Optimality: Given a message of specific length, what is the minimum
communication complexity (lower bound) needed by any PSMT protocol
to transmit the message and how to design a polynomial time PSMT
protocol whose total communication complexity matches the lower bound
on the communication complexity?

This taxonomy and a unified framework for a number of research problems were
first discussed in [47]. Different techniques are used to resolve the above issues
in different settings. For example, the techniques used in designing optimal
PSMT protocols in undirected networks are completely different from the ones
used in directed networks.

1.1. Our Motivation

The issue of possibility, feasibility and optimality in the context of
PSMT in undirected synchronous networks has been completely resolved in
[14, 45, 50, 1, 16, 53, 25, 35]. However, all these works assume that the ad-
versary can corrupt the nodes only in Byzantine fashion. In a typical large
network, certain nodes may be strongly protected and few others may be moder-
ately/weakly protected. An adversary may only be able to fail-stop(/eavesdrop
in) a strongly protected node, while he may affect a weakly protected node in
Byzantine fashion 7. Thus, we may capture the abilities of an adversary in a
more realistic manner, using three parameters tb, tf , tp where tb, tf , tp are the
number of nodes under the influence of adversary in Byzantine, fail-stop and
passive fashion respectively. Also it is better to grade different kinds of disrup-
tion done by adversary and consider them separately rather than treating every
kind of fault as Byzantine fault as this is an “overkill” and causes an over esti-
mation of the resources required for PSMT. A formal justification of the later
statement will appear in the subsequent sections.

Motivated by the need to study mixed adversary in the context of secure
message transmission, the authors in [38] have recently studied the issues re-
lated to possibility, feasibility and optimality in the context of reliable
and secure message transmission in the presence of a mixed adversary, who can
corrupt disjoint sets of tb, tf and tp nodes in Byzantine, fail-stop and passive
fashion respectively. However, the results presented in [38] holds only for the
protocols, having a negligible error probability in reliability; i.e., the reliability

7Informally, a fail-stop corrupted node can crash at any time during the protocol execution.
Moreover, once crashed it cannot become alive again. However, as long as it is alive, it will
honestly follow the protocol, without leaking any information to the adversary. If a node
is eavesdropped or passively corrupted then it honestly follows the protocol, but leaks full
information to the adversary
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is not perfect reliability 8. As far our knowledge is concerned, nobody has ever
addressed the issue of possibility, feasibility and optimality in the con-
text of PSMT in undirected synchronous networks, tolerating mixed adversary.
In this paper, we completely resolve the above three issues in undirected syn-
chronous network tolerating threshold mixed adversary. The mixed adversary
has unbounded computing power and controls disjoint sets of tb, tf and tp nodes
in Byzantine, fail-stop and passive fashion respectively.

We consider two types of mixed adversary, namely threshold static mixed
adversary and threshold mobile mixed adversary, denoted by Astatic

(tb,tf ,tp) and

Amobile
(tb,tf ,tp) respectively. Informally, Astatic

(tb,tf ,tp) controls the same set of tb, tf and

tp nodes in Byzantine, fail-stop and passive fashion respectively throughout the
protocol. On the other hand, Amobile

(tb,tf ,tp) may control potentially different set of

tb, tf and tp nodes in Byzantine, fail-stop and passive fashion respectively, dur-
ing different phases of the protocol. Hence if a node is corrupted by Amobile

(tb,tf ,tp)

in Byzantine/fail-stop/passive fashion in ith phase, then it is healed at the end
of that phase. So a node controlled by Amobile

(tb,tf ,tp) in ith phase will be honest

in (i + 1)th phase, unless the adversary chooses to corrupt the same node in
(i + 1)th phase as well.

Why to Study Mobile Adversary: If a protocol is executed for a very short
duration, then it is appropriate to model the adversary as static, who corrupts
the same set of nodes throughout the protocol. However, in many practical sce-
narios, a protocol may be executed for a longer duration, where S and R may
interact for a long time. In such scenarios, some of the faults which are done in
the earlier stages, may be identified and fixed and in the mean time, a hacker
may attack some other nodes. Evidently, in such cases the mobile adversary
models the fault behavior more appropriately than static adversary.

1.2. Organization of the Paper

Since, in this paper, we deal with both static and mobile adversary, for ease of
understanding and to avoid confusion, we divide the paper into two halves. The
first half deals with Astatic

(tb,tf ,tp), while the second half deals with Amobile
(tb,tf ,tp). At

the end of each section, we give a comprehensive comparison of our results with
the existing results. In the sequel, we present an elaborate literature survey, our
contribution, our network and adversary model for static adversary and finally
our results related to static adversary. Subsequently, the same format will be
followed for mobile adversary.

8The authors in [38] have termed this problem as unconditionally secure message trans-

mission (USMT), which is same as PSMT, except that R may output an incorrect message
at the end of the protocol with negligible error probability.
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2. Network Model and Definitions Used for Static Adversary

We now describe the network model and adversary settings used for study-
ing PSMT against static adversary. The underlying network is a connected
synchronous network represented by an undirected graph, where S and R are
two non-adjacent nodes of the graph (for if S and R are adjacent then PSMT
can be solved trivially). All the edges in the network are reliable and secure
but the nodes can be corrupted. We assume that there exists an adversary
Astatic

(tb,tf ,tp), who has unbounded computing power and controls disjoint sets of

tb, tf and tp nodes in Byzantine, fail-stop and passive fashion respectively. We
would like to caution the reader on different ways in which the terminologies
Byzantine, fail-stop and passive are used in the literature and there are minor
and subtle variations among definitions of these terminologies used by different
authors. To keep the discussion self contained, we give below the definitions of
the above terminologies as used in this paper. The definitions are same as used
in [17].

Definition 1 (Fail-stop Corruption [17]). A node P is said to be fail-stop
corrupted if the adversary can crash P at will at any time during the execution
of the protocol. But as long as P is alive, P will honestly follow the protocol and
the adversary will have no access to any information or internal state of P.

Definition 2 (Passive Corruption [17]). A node P is said to be passively
corrupted if the adversary has full access to the information and internal state
of P. But P will honestly follow the protocol execution.

Definition 3 (Byzantine Corruption [17]). A node P is said to be Byzan-
tine corrupted if the adversary fully controls the actions of P. The adversary
will have full access to the computation and communication of P and can force
P to deviate from the protocol in any arbitrary manner.

Following the approach of Dolev et. al. [14], we abstract away the network and
concentrate on solving PSMT problem for a single pair of processors, the sender
S and the receiver R, connected by n parallel and synchronous bi-directional
node disjoint paths/channels w1, w2, . . . , wn, also called as wires. The reason
for such an abstraction is as follows: suppose some intermediate node between
S and R is under the control of the adversary. Then all the paths between S
and R which passes through that node are also compromised. Hence, all the
paths between S and R passing through that node can be modelled by a single
wire between S and R. In the worst case, the adversary can compromise an
entire wire in certain fashion by controlling a single node on the wire. Hence,
Astatic

(tb,tf ,tp) having unbounded computing power can corrupt up to tb, tf and tp
wires in Byzantine, fail-stop and passive fashion respectively. Moreover, as a
worst case assumption, we assume that the wires that are under the control of
the adversary in Byzantine, fail-stop and passive fashion are mutually disjoint.

A wire which is controlled in a fail-stop fashion may fail to deliver any infor-
mation, but if it delivers the information then it will be correct. Moreover, the
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adversary will have no idea about the information that has passed through a
wire which is controlled in fail-stop fashion. A wire which is passively controlled
will always deliver correct information. However, the adversary will completely
know the information that has passed through a passively controlled wire. A
Byzantine corrupted wire may deliver correct information or it may deliver incor-
rect/changed information. However, in any case, the adversary will completely
know the actual information that was sent through a Byzantine corrupted wire.

Following the approach of [14], we assume that any PSMT protocol operates
as a sequence of phases, where a phase is a send from S to R or vice-versa.
Moreover, since the network is synchronous, there exists a global clock and
hence the transmission delay of each wire is fixed. The static mixed adversary
Astatic

(tb,tf ,tp) controls the same set of tb, tf and tp wires among n wires, in Byzan-

tine, fail-stop and passive fashion respectively, in different phases of any PSMT
protocol. The static Byzantine adversary Astatic

tb
is a special type of Astatic

(tb,tf ,tp)

with tf = tp = 0, who controls at most tb wires in Byzantine fashion.
Since Byzantine corrupted wires can also be eavesdropped, the maximum

number of wires which can be eavesdropped by Astatic
(tb,tf ,tp) in any PSMT protocol

is bounded by tb + tp. We assume that the adversary is a centralized adversary
and can collectively pool the data from the wires under its control and use it
according to his own choice in any manner. The set of wires which Astatic

(tb,tf ,tp)

controls is decided before the execution of the protocol. Before the execution
of the protocol, neither S nor R knows in advance which wires are going to
be influenced by Astatic

(tb,tf ,tp). However, the total number of wires that can be

under the control of Astatic
(tb,tf ,tp) in a certain fashion (Byzantine/failstop/passive)

throughout the protocol is bounded by a threshold. Also once a wire is under
the control of Astatic

(tb,tf ,tp) in some fashion, it will remain corrupted in the same

fashion throughout the protocol.
Throughout the paper we use m to denote the message that S wants to send

to R, where m is a sequence of ℓ ≥ 1 field elements, selected from uniform
distribution over a finite field F. Moreover, we assume that all computation and
communication in our protocols are done over F. The only restriction on F is
that |F| ≥ n. We use |m| to denote the number of field elements in m. We say
that a wire is corrupted, if the information sent over the wire is changed. A
wire which is not under the control of the adversary is said to be honest or
uncorrupted. We now give the following definitions:

Definition 4 (Broadcast). If some information is sent over all the wires
then it is said to be “broadcast”. If x is “broadcast” over at least 2tb + tf + 1
wires, then at most tf wires may crash and fail to deliver x, where as at most
tb wires may deliver incorrect x. But at least tb + 1 wires will deliver correct
x. So receiver will be able to correctly recover x by taking majority among the
received values. Moreover, this is true irrespective of whether the adversary is
static or mobile.

Definition 5 (Perfectly Reliable Message Transmission (PRMT) [14]).
Let N = (V, E) be an undirected graph representing a synchronous network. Let
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Astatic
(tb,tf ,tp) be a static mixed adversary and let S and R be two specific nodes

in V . We define the VIEW of a node in V at any point of the execution of a
protocol Π, to be the information the node can get from its local input (if any)
to the protocol, all the messages that it had earlier sent or received, the protocol
code executed by the node and its random coins. The VIEW of the adversary
Astatic

(tb,tf ,tp) at any point of the execution of Π is defined as all the information

that the adversary can get from the VIEWS of all the nodes under the control of
the adversary. For every message m, adversary Astatic

(tb,tf ,tp) and a message trans-

mission protocol Π, let Γ(Astatic
(tb,tf ,tp), m, Π) denote the probability distribution on

the VIEW of the adversary Astatic
(tb,tf ,tp) at the end of the execution of Π when the

message sent is m. The protocol Π is said to facilitate PRMT between S and
R, if after interacting in phases as per the protocol, the following conditions hold:

Perfect Reliability: R should correctly output m′ = m without any error.

Definition 6 (Perfectly Secure Message Transmission (PSMT) [14]).
A protocol Π is said to facilitate perfectly secure message transmission (PSMT)
if it satisfies perfect reliability condition of PRMT. In addition to this, the
protocol should also satisfy Perfect Secrecy property which is as follows:

Perfect Secrecy: The message is hidden from the adversary in informa-
tion theoretic sense. More formally, Γ(Astatic

(tb,tf ,tp), m, Π) ≡ Γ(Astatic
(tb,tf ,tp), m

′, Π),

for all possible messages m′. That is, the above two distributions are identical
irrespective of the message transmitted.

Definition 7 (Communication Optimal PSMT Protocol (OPSMT)). Let
N be an n-(S, R)-connected network under the influence of Astatic

(tb,tf ,tp) / Amobile
(tb,tf ,tp).

Moreover, let Ω(b) be the lower bound on the communication complexity of any
r (r ≥ 1) phase PSMT protocol over such a network, to securely send a mes-
sage m containing ℓ (ℓ ≥ 1) field elements against Astatic

(tb,tf ,tp) / Amobile
(tb,tf ,tp). If

Π is an r phase PSMT protocol over such a network, which sends m by com-
municating O(b) field elements against Astatic

(tb,tf ,tp) / Amobile
(tb,tf ,tp), then Π is said

to be a communication optimal PSMT (OPSMT) protocol against Astatic
(tb,tf ,tp) /

Amobile
(tb,tf ,tp).

3. Existing Literature and Our Contributions — Static Adversary

PSMT dates back to Dolev et. al. [14], who presented the first ever charac-
terization (POSSIBILITY) for PSMT in an undirected synchronous network
tolerating threshold static Byzantine adversary Astatic

tb
, who corrupts the same

set of tb nodes throughout the protocol in Byzantine fashion 9. Dolev et. al. [14]

9Actually, Dolev et.al [14] have considered ”Containment Model”, where the adversary
can Byzantine corrupt tb nodes and passively corrupt tp nodes, such that either the set of
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abstracted the underlying network in terms of node disjoint paths/channels and
concentrated on solving PSMT problem for a single pair of processors, the sender
S and the receiver R, connected by n parallel and synchronous bi-directional
channels w1, w2, . . . , wn, also known as wires. 10 Using the wired abstraction,
Dolev et.al assumed that any PSMT protocol executes in phases, where a phase
is a send from S to R or vice-versa. Thus in a single phase PSMT, only S
communicates to R and the protocol terminates. On the other hand, in a two
phase PSMT, the first phase is from R to S, while the second phase is from S
to R. In [14], it is shown that single phase PSMT tolerating Astatic

tb
is possible

iff n ≥ 3tb + 1, where as two or more phase PSMT tolerating Astatic
tb

is possible
iff n ≥ 2tb + 1.

Dolev et. al. [14] presented single phase and multi phase PSMT protocols
tolerating Astatic

tb
with n = 3tb + 1 and n = 2tb + 1 respectively. The protocols

of [14] were significantly improved in [45]. For the first time in the literature, a
non-trivial lower bound on the communication complexity of PSMT protocols
tolerating Astatic

tb
was derived in [50]. In [50], it is shown that any two phase

PSMT over n ≥ 2tb + 1 wires, must communicate Ω
(

nℓ
n−2tb

)

field elements to

securely send a message containing ℓ field elements against Astatic
tb

. The same
bound was further extended in [53], where it is shown that any three or more

phase PSMT over n ≥ 2tb +1 wires must communicate Ω
(

nℓ
n−2tb

)

field elements

to securely send a message containing ℓ field elements against Astatic
tb

. Moreover,
in [53, 47], it is shown that any single phase PSMT over n ≥ 3tb + 1 wires must

communicate Ω
(

nℓ
n−3tb

)

field elements to securely send a message containing ℓ

field elements against Astatic
tb

. The same lower bound on single phase PSMT
tolerating Astatic

tb
was independently derived in [16].

A single phase (multi-phase) PSMT protocol is called communication opti-
mal, if the communication complexity of the protocol satisfies the communica-
tion complexity lower bound for single phase (multi-phase) PSMT i.e. a single

phase (multi-phase) communication optimal protocol communicates O
(

nℓ
n−3tb

)

field elements (O
(

nℓ
n−2tb

)

field elements) for sending a message of size ℓ with

ℓ ≥ 1. The lower bound on communication complexity of single phase PSMT
tolerating Astatic

tb
as given in [53, 16] was shown to be tight in [53, 16] by pro-

viding single phase communication optimal PSMT protocols over n ≥ 3tb + 1
wires. In [50], the authors tried to prove the tightness of the lower bound on
communication complexity of two phase PSMT by designing a communication
optimal two phase PSMT over n = 2tb + 1 wires. However, in [1], the two

Byzantine corrupted nodes is a subset of the set of passively corrupted nodes or vice-versa.
However, in this paper, we assume that the set of Byzantine corrupted nodes is disjoint from
the set of passively corrupted nodes.

10The approach of abstracting the network as a collection of n wires is justified using
Menger’s theorem [29] which states that a graph is c − (S, R)-connected iff S and R are
connected by at least c vertex disjoint paths.
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phase PSMT protocol of [50] is shown to be incorrect. Moreover, the authors
in [1] have presented a two phase communication optimal PSMT protocol over
n = 2tb +1 wires. Though this protocol proves the tightness of the lower bound
on the communication complexity of two phase PSMT tolerating Astatic

tb
(as

given in [50]), unfortunately it has the following limitations:

1. Both S and R need to perform exponential computation (exponential in
n) and

2. The message size ℓ is also exponential in n.

Subsequently, in [36], a three phase polynomial time communication optimal
PSMT with n = 2tb +1 is presented, where the message size ℓ is polynomial in n
and both S and R perform polynomial computation. Though this significantly
improves the two phase PSMT protocol of [1] (in terms of computation and
message length), designing a two phase polynomial time communication optimal
PSMT with n = 2tb + 1 (where ℓ is polynomial in n) remained an interesting
and challenging open problem. Recently, in [25], the authors have resolved
this problem by designing a two phase polynomial time communication optimal
PSMT protocol tolerating Astatic

tb
.

We now summarize the existing results for PSMT in undirected synchronous
networks tolerating Astatic

tb
in Table 1 and Table 2.

Number of Phase(s) (r) Connectivity Requirement Lower Bound on Communication
between S and R (n) Complexity

r = 1 n ≥ 3tb + 1 [14] Ω
“

nℓ
n−3tb

”

[16, 53, 47]

r ≥ 2 n ≥ 2tb + 1 [14] Ω
“

nℓ
n−2tb

”

[50, 53, 47]

Table 1: Connectivity Requirement and Lower Bound on Communication Complexity for
PSMT in Undirected Synchronous Networks Tolerating Astatic

tb
. Here ℓ denotes the message

size in terms of field elements.

3.1. Our Contribution in PSMT over Undirected Synchronous Networks Toler-
ating Astatic

(tb,tf ,tp)

As mentioned earlier, any PSMT protocol is analyzed by (a) the the con-
nectivity requirement of the network, (b) the number of phases required by
the protocol, (c) the total number of field elements communicated by S and R
throughout the protocol and (d) the computation done by S and R. The trade-
offs among these parameters are well studied in the literature in the context of
PSMT over undirected synchronous network tolerating Astatic

tb
(see Table 1 and

Table 2). In this paper, we investigate this trade-off for PSMT in the presence of
threshold static mixed adversary Astatic

(tb,tf ,tp), which according to our knowledge is

the first attempt in the literature. So we present characterization, lower bound
on communication complexity and protocols that matches the lower bound for
PSMT tolerating Astatic

(tb,tf ,tp). In summary, we show the following:
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Number Communication Remarks
of Phases (r) Complexity in Terms

of Field Elements

r = 1 O
“

nℓ
n−3tb

”

[53, 16, 47] ℓ = Ω(n)

r ≥ 2 O
“

nℓ
n−2tb

”

[50] • r = 2. Protocol shown to be incorrect in [1].

O
“

nℓ
n−2tb

”

[1] • r = 2. ℓ is exponential; Exponential computation

and communication complexity [1].

O
“

nℓ
n−2tb

”

[36] • r = 3. ℓ ≥ n2; Polynomial computation

and communication complexity [36].

O
“

nℓ
n−2tb

”

[25] • r = 2. ℓ ≥ n2; Polynomial computation

and communication complexity [25].

Table 2: PSMT Protocols with Optimum Communication Complexity Tolerating Astatic
tb

.
Here ℓ is the message size in terms of field elements and n is the corresponding connectivity
requirement from Table 1.

1. Single phase PSMT tolerating Astatic
(tb,tf ,tp) is possible iff there exists n ≥

3tb + tf + tp + 1 wires between S and R.

2. Any single phase PSMT protocol over n ≥ 3tb + tf + tp + 1 wires tol-

erating Astatic
(tb,to,tf ,tp) must communicate Ω

(

nℓ
n−(3tb+tf+tp)

)

field elements

to securely transmit a message containing ℓ field elements. Moreover,
we show that this bound is tight by designing a polynomial time sin-
gle phase PSMT over n = 3tb + tf + tp + 1 wires, which sends a mes-
sage of ℓ field elements (where ℓ is polynomial in n) by communicating

O
(

nℓ
n−(3tb+tf+tp)

)

= O(nℓ) field elements.

3. Any two or more phase PSMT tolerating Astatic
(tb,tf ,tp) is possible iff there

exists n ≥ 2tb + tf + tp + 1 wires between S and R.

4. Any two or more phase PSMT protocol over n ≥ 2tb + tf + tp +1 wires tol-

erating Astatic
(tb,to,tf ,tp) must communicate Ω

(

nℓ
n−(2tb+tf+tp)

)

field elements

to securely transmit a message containing ℓ field elements. Moreover,
we show that this bound is tight by designing a four phase polynomial
time PSMT protocol over n = 2tb + tf + tp + 1 wires, which sends a
message of ℓ field elements (where ℓ is polynomial in n) by communi-

cating O
(

nℓ
n−(2tb+tf+tp)

)

= O(nℓ) field elements. Finally, we present a

three phase PSMT protocol with the same communication complexity (i.e
O(nℓ)).

3.2. Techniques Used for Designing PSMT Protocols Against Astatic
(tb,tf ,tp)

In order to design our four phase PSMT protocol against Astatic
(tb,tf ,tp), we use

the notion of Reed-Solomon (RS) codes and their properties from coding theory
[27, 28]. Though the existing optimal PSMT protocols tolerating Astatic

tb
also use

RS codes and their properties, they cannot be extended in a straight forward

11



manner for designing optimal PSMT protocols tolerating Astatic
(tb,tf ,tp) (a formal

discussion on this is given in Section 6.3). Furthermore, we design a three phase
communication optimal PSMT by extending the techniques proposed in [25] for
Byzantine adversary to mixed adversary.

4. Coding Theory Preliminaries

In our protocols, we have used Reed-Solomon (RS) codes, which are used
to reliably send message over a noisy channel. Informally, to send a message
over a noisy channel, the message is encoded using RS encoding and the re-
sultant codeword, which can be viewed as a tuple of values, is sent over the
channel. During the transmission of the codeword, the values at some locations
could get erased and values at few other locations could be changed arbitrarily.
We can view the later type of error as Byzantine errors. At the receiving end,
the shortened and possibly changed codeword is decoded to get back the orig-
inal message. The redundancy which is incorporated in the codeword by the
encoding function allows to correctly decode and obtain the original message.

Let Ch(tb,tf ) denote a noisy channel, where at most tf and tb locations
of a codeword can be arbitrarily erased and changed respectively during the
transmission.

Definition 8 (Reed-Solomon (RS) Codes [27]). For message block M =
(m1, m2, . . . , mk) over F, define ReedSolomon polynomial as PM (x) = m1 +
m2x+m3x

2 + . . .+mkxk−1. Let α1, α2, ..., αN , where N > k, denote a sequence
of distinct and fixed elements from F. Then the vector C = (c1, c2, . . . , cN ) where
ci = PM (αi), 1 ≤ i ≤ N is called the Reed-Solomon (RS) codeword of length/size
N for the message block M . We denote the length/size of vector C by |C|.

We now define error correction and error detection.

Definition 9 (Error Correction and Detection [43]). Let C be a sub-
set of F

N that contains all possible N length RS codeword over F. Let C ∈ C be
the transmitted codeword and let C′ ∈ F

N be the received vector. By a Byzan-
tine error, we mean the event of changing an entry in codeword C. The error
locations are the indices of the entries in which C and C′ differs.

The task of error correction is to find the error locations and error values in
the received vector C′. On the other hand, error detection means an indication
by the decoder that errors have occurred, without attempting to correct them.

Suppose a sender has generated a RS codeword C of size |C| = N , for a message
block M of size k and sends the codeword C through Ch(tb,tf ). Let C′ be the
received vector of size N ′ ≥ N − tf , which is different from C at most at
tb locations. The next theorem summarizes a known result related to Reed-
Solomon codes.

Theorem 1 (Singleton Bound [27]). The receiver can reconstruct the mes-
sage M from C′ iff N ≥ 2tb + tf + k.
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RS-DECODING ALGORITHM [31]: Berlekamp-Welch algorithm is one of
the most simple and efficient RS decoding algorithms existing in the literature.
The description of this algorithm can be found in any standard Coding theory
book, such as [43, 30, 22]. However, the descriptions of the algorithm, as given
in these sources, are in terms of several field and algebraic operations, which
is specific to coding theory community. Since the main topic of this paper is
secure message transmission, where the decoding algorithm is only used as a
black-box, in order to avoid too much digression, we take the simple description
of the decoding algorithm from [31].

Suppose sender has a message of size k field elements, which he wants to
send reliably over Ch(tb,tf ) using RS codes. In order to do so, the sender has to
encode the message into an RS codeword of size N = 2tb + tf + k (see Theorem
1). So the sender constructs ReedSolomon polynomial P (x) of degree k − 1
and constructs the N length RS codeword C = (c1, . . . , cN ), where ci = P (αi),
for i = 1, . . . , N . Finally, the sender sends the codeword C to the receiver over
Ch(tb,tf ).

We now assume the worst case, where exactly tf locations get erased in
the codeword C during its transmission. Although any subset of tf locations
might get erased, we make a simplifying assumption that the last tf locations
have been erased. Thus, the receiver will receive a shortened N ′ length vector
C′ = (c′1, . . . , c

′
N ′), where N ′ = N−tf = 2tb+k. Let R(x) denote the polynomial

of smallest degree passing through the points (α1, c
′
1), . . . , (αN ′ , c′N ′). It is easy

to see that R(x) will differ from P (x) for at most tb values of αj . Notice that
the received values R(αj)’s may not lie on a k − 1 degree polynomial, due to
the presence of tb corrupted values. In order to get the original message, the
receiver has to construct the polynomial P (x) from these N ′ values of R(x).
The questions is, how the receiver can do so?

Our first observation is that if the receiver can find a polynomial P ′(x) of
degree k − 1 that agrees with R(x) at k + tb points, then P ′(x) = P (x). This
is because out of the k + tb points, at most tb could be corrupted. Therefore,
P ′(x) = P (x) for at least k points. But a polynomial of degree k−1 is uniquely
defined by its values at k points.

Now the question is: how the receiver can find such a polynomial? The
receiver could try to guess where the tb errors occurred, but this would take too
much time (in fact, it would require exponential time). A very clever polynomial-
time algorithm for this problem was invented by Berlekamp and Welch. The
main idea is to describe the received polynomial R(x) (constituted by R(αj)
values), which because of the errors may not be a k− 1 degree polynomial, as a
ratio of polynomials. Let e1, . . . , etb

be the tb positions at which errors occurred.
Dene the error locator polynomial E(x) = (x−e1)(x−e2) . . . (x−etb

). It is easy
to see that E(x) is zero at exactly the tb points at which errors occurred. Now
observe that the following relation holds:

P (x)E(x) = R(x)E(x), for x = α1, . . . , α
′
N . (1)

The above equation is true for all x points at which no errors occurred, as
P (x) = R(x) at those points. On the other hand, at all x points where error
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occurred, E(x) = 0. So both the sides of the above equation will be zero at
those points.

Now let Q(x) = P (x)E(x). Then Q(x) is a polynomial of degree tb + k − 1
and is therefore specied by tb + k coefcients, which are unknown. E(x) is a
polynomial of degree tb and is described by tb + 1 coefcients. Note that the
coefcient of xtb in E(x) is 1. So, there are only tb unknown coefficients of
E(x). Thus, there are total (tb + k) + (tb) = 2tb + k = N ′ unknowns here.
Moreover, we have N ′ received values of R(x). So from Equation 1, by equating
Q(x) = R(x)E(x), we can form a system of N ′ linear equations in N ′ unknowns
and solve them. Once the system of equations are solved, we get Q(x) and E(x).
From the E(x) polynomial, we get the locations at which errors occurred. We
can then find P (x) by computing the quotient Q(x)/E(x).

If N ′ = k + 2tb and if indeed at most tb errors occurred, then the decoding
algorithm will correctly output the message. For a complete proof of this fact,
see [30, 43, 22].

We now demonstrate the working of the above algorithm with few exam-
ples. In these examples, for the ease of presentation, we make the following
assumptions:

1. Instead of performing the computations over F, we perform the compu-
tations over the set of whole numbers. However, the same examples will
also work if we perform all the computations over a sufficiently large F.

2. Instead of using α1, . . . , αN from F for computing RS codeword of length
N , we use 1, . . . , N from the set of whole numbers.

Remark 1. In all the following examples, we will specify k, the degree of the
polynomial used for encoding as a function of tb. This is because in all our
PRMT and PSMT protocols, k will be indeed selected as a function of tb. In fact,
each of the following examples represents one of the possible cases, which may
arise in the context of our PRMT and PSMT protocol. During the description
of our PRMT and PSMT protocols, we will show how these examples are related
with various such cases.

Example 1. Let tb = 1, tf = 0, k = tb + 1 = 2 and N = k + 2tb + tf = 4.
Let m = (1, 2). So the ReedSolomon polynomial is P (x) = 1 + 2x. The
four length RS codeword will be C = (P (1), . . . , P (4)) = (3, 5, 7, 9) Suppose
during the transmission of the codeword, the third location gets corrupted and
the receiver receives the vector (3, 5, 8, 9). Let R(x) be the minimum degree
polynomial passing through the points (1, 3), (2, 5), (3, 8) and (4, 9). It is easy
to see that R(x) is not a polynomial of degree one. The goal of the decoding
algorithm will be to find a polynomial of degree k − 1 = 1, passing through
k+tb = 3 of the R(j)’s. It is easy to see that there is exactly one such polynomial,
namely the one passing through the points (1, 3), (2, 5) and (4, 9). Since tb = 1,
the error locator polynomial is

E(x) = (x − e1)
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Now Q(x) = P (x)E(x) will be of degree two. So let

Q(x) = Ax2 + Bx + F

For x = 1, . . . , 4, it holds that

Q(x) = R(x)E(x)

The above relation implies that

Ax2 + Bx + F = R(x)(x − e1)

=⇒ Ax2 + Bx + F + e1R(x) = xR(x)

Substituting x = 1, . . . , 4 in the above relation, we get the following system of
equations:

A + B + F + 3e1 = 3

4A + 2B + F + 5e1 = 10

9A + 3B + F + 8e1 = 24

16A + 4B + F + 9e1 = 36

Solving the above system of linear equations, we get A = 2, B = −5, F = −3
and e1 = 3. Thus Q(x) = 2x2 − 5x − 3 and E(x) = (x − 3). This implies
that error has occurred in the third location. Finally, the algorithm computes
P (x) = Q(x)/E(x) = 1 + 2x. Thus the recovered message is (1, 2).

In the above example, the value of N, tb, tf and k satisfies the inequality given
by Theorem 1. However, if this is not the case, then anything can happen.
We illustrate all possible cases with few examples. These examples will also
illustrate the cases which will arise, when we use RS encoding and decoding
in the context of secure message transmission. We will then give the formal
description of the RS decoding algorithm, along with its properties.

Example 2. Let tb = 2, k = tb + 1 = 3, tf = 0 and N = 2tb + 1 = 5. Let
m = (1, 2, 3). So P (x) = 1 + 2x + 3x2 and the RS codeword of size five is
(P (1), . . . , P (5)) = (6, 17, 34, 57, 86). Suppose during the transmission of code-
word, only one error occurs, instead of tb = 2 errors. Let the error occurs at
the first location and let the received vector be (4, 17, 34, 57, 86).

Although only one error has occurred in the received vector (instead of two),
the receiver has no information about this fact. The receiver will think that
at most two errors are present in the received vector and would try to correct
them. However, from Theorem 1, we require N ′ = 7 in order to correct two
errors. Furthermore, with N ′ = 5 and k = 3, the decoding algorithm will
correctly output the original message, only if one error would have occurred in
the received vector, which is the case in this example.
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If the receiver applies RS decoding algorithm, assuming the number of errors
to be corrected is one, then the algorithm will proceed as follows: the decoding
algorithm will try to find a polynomial of degree k − 1 = 2, passing through
k + 1 = 4 of the received points. It is easy to see that the only polynomial
passing through four of the received points in this case is the original polynomial
P (x). Since the algorithm is assuming the number of errors to be one, the error
locator polynomial will be

E(x) = (x − e1)

Also, Q(x) = P (x)E(x) will be a polynomial of degree three. So let

Q(x) = Ax3 + Bx2 + Cx + D

By substituting x = 1, . . . , 5 in the equation

Q(x) = R(x)E(x),

we get the following system of linear equations:

A + B + C + D + 4e1 = 4

8A + 4B + 2C + D + 17e1 = 34

27A + 9B + 3C + D + 34e1 = 102

64A + 16B + 4C + D + 57e1 = 228

125A + 25B + 5C + D + 86e1 = 430

By solving the above system of equations, we get A = 3, B = −1, C = −1, D =
−1 and e1 = 1. Thus E(x) = (x − 1) and Q(x) = 3x3 − x2 − x − 1, indicating
that error has occurred in the first location. Moreover, P (x) = Q(x)/E(x) =
1 + 2x + 3x2. Thus in this case, the receiver will correctly recover the message.

In the above example, the receiver could recover the original message only be-
cause the number of actual errors that are present in the received vector is same
as the number of errors that the receiver guessed and tried to correct. But re-
ceiver will not be sure whether the recovered message is correct. Because the
decoding algorithm tried to correct only one error, where as two errors could
be present in the received vector. If the receiver is sure that exactly one error
could be present in the received vector, then he is certain that the output of
the algorithm is correct. However, since he is unsure about the exact number
of errors in the received vector, the receiver cannot take any guarantee of the
output polynomial. In fact, if two errors occur in the transmitted codeword,
then the decoding algorithm could end up outputting an incorrect message, as
illustrated in the following example:

Example 3. Suppose in the previous example, exactly tb = 2 errors occur in
the transmitted codeword. Namely, the errors occur in the third and fourth
location and let the received vector be (6, 17, 28, 39, 86). Notice that the errors
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are introduced in the codeword in such a way that the two corrupted points,
namely (3, 28) and (4, 39), along with the first two correct points, namely (1, 6)
and (2, 17) lie on the polynomial 0x2 + 11x − 5. This is possible because the
original polynomial P (x) = 3x2 + 2x + 1 is of degree two and two polynomials
of degree two can have same value at two points.

Now if the receiver assumes that only one error is present in the received
vector and tries to correct it, then the decoding algorithm will proceed as follows:
the decoding algorithm will try to find a polynomial of degree k − 1 = 2, passing
through k + 1 = 4 of the received points. In this case, there is only one such
polynomial, namely 0x2+11x−5, passing through the points (1, 6), (2, 17), (3, 28)
and (4, 86) and hence the decoding algorithm will output this polynomial. Out
of the received five points, only three points, namely (1, 6), (2, 17) and (5, 86) lie
on the original polynomial P (x).

Since the decoding algorithm assumes the number of errors to be one, the
error locator polynomial will be (x − e1) and Q(x) = Ax3 + Bx2 + Cx + D.
After substituting x = 1, . . . , 5 in the relation Q(x) = R(x)(x − e1), we get the
following system of equations:

A + B + C + D + 6e1 = 6

8A + 4B + 2C + D + 17e1 = 34

27A + 9B + 3C + D + 28e1 = 84

64A + 16B + 4C + D + 39e1 = 156

125A + 25B + 5C + D + 86e1 = 430

Solving the above system of equations, we get Q(x) = 11x2 − 60x + 25 and
E(x) = (x−5). This will give P (x) = Q(x)/E(x) = 11x−5. Thus the decoding
algorithm outputs an incorrect polynomial. Moreover, the algorithm has output
fifth location as the error location, even though the fifth location in the received
vector represents a correct point on original polynomial P (x).

In the above algorithm, the decoding algorithm outputs an incorrect message
due to the following reason: the sender sent the codeword (6, 17, 34, 57, 86), cor-
responding to the polynomial 3x2 + 2x + 1. From Theorem 1, receiver will be
able to recover the message only if one Byzantine error occur during the trans-
mission of the codeword. However, during the transmission of the codeword,
two errors occur instead of one. The received vector is (6, 17, 28, 39, 86). The
errors are introduced in such a way that the received vector (6, 17, 28, 39, 86)
has a distance 11 of one from the codeword (6, 17, 28, 39, 50), corresponding to
the polynomial 0x2 +11x−5. Since the decoding algorithm tried to correct one
error, it will work as if the transmitted codeword was (6, 17, 28, 39, 50), which
is received as (6, 17, 28, 39, 86), due to the introduction of error at fifth location.

11The distance between two vectors is the number of locations at which the two vectors
have different components.
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So it will output fifth location as the error location, even though it is not an
error location. Moreover, the algorithm will output an incorrect message.

The above example illustrates one of the cases, which occurs, when the
actual number of errors in the transmitted codeword is more than the number
of errors, which the RS decoding algorithm can correct (as given by Theorem
1). However, there may be another case. The actual number of errors in the
transmitted codeword could be more than the number of errors, which the RS
decoding algorithm can correct (as given by Theorem 1), such that the decoding
algorithm fails to output any meaningful polynomial. If this is the case, then
the decoding algorithm can simply declare that actual number of errors in the
received vector is more than the number of errors that the decoding algorithm
tried to correct. This case is illustrated by the following example:

Example 4. Suppose tb = 2, tf = 0, N = 2tb + 1 = 5 and k = tb + 1 = 3. Let
m = (1, 2, 0). So P (x) = 1 + 2x and the transmitted codeword is (3, 5, 7, 9, 11).
Suppose two errors are arbitrarily introduced in the first two locations and let the
received vector be (1, 2, 7, 9, 11). From Theorem 1, the receiver can recover the
original message from the received vector if only one error occurs in the received
vector.

If the RS decoding algorithm tries to correct one error in the received vector,
then the algorithm will proceed as follows: the algorithm will try to find a poly-
nomial of degree two passing through four of the received points. However, in
this case, the errors are introduced in such a way that there exist no polynomial
of degree two passing through four of the received points. So the algorithm will
not output any meaningful polynomial.

Since the decoding algorithm assumes the number of errors to be one, the
error locator polynomial will be (x − e1) and Q(x) = Ax3 + Bx2 + Cx + D.
After substituting x = 1, . . . , 5 in the relation Q(x) = R(x)(x − e1), we get the
following system of equations:

A + B + C + D + e1 = 1

2A + 4B + 2C + D + 2e1 = 4

27A + 9B + 3C + D + 7e1 = 21

64A + 16B + 4C + D + 9e1 = 36

125A + 25B + 5C + D + 11e1 = 55

Solving the above system of equations, we get Q(x) = − 1
8x3 + 7

2x2− 79
8 x+5 and

E(x) = (x− 5
2 ). Thus the decoding algorithm outputs Q(x) and E(x), which are

not meaningful. The error location as pointed out is not an integer. Moreover,
Q(x) does not divide E(x). So the algorithm can declare that more than one
error are present in the received vector.

We now give the summary of the four examples, which illustrates four properties
of the RS decoding algorithm, which will be further used in the context of our
PSMT protocols. We will formalize these properties at the end of this section.
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1. In Example 1, the receiver knows that at most tb errors could be present
in the received vector. Moreover, the value of k, N ′, tb and tf satisfies the
inequality given in Theorem 1. Hence the decoding algorithm correctly
outputs the message by finding the tb errors. Moreover, the receiver is
sure that the output polynomial is correct.

2. In Example 2, the receiver knows that at most tb errors could be present
in the received vector. However, only tb

2 errors are introduced in the
received vector. By substituting N ′ = 2tb + 1, k = tb + 1 and tf = 0
in the inequality of Theorem 1, we find that RS decoding algorithm can
correctly output the message only if tb

2 errors are present in the received
vector. Since only tb

2 errors are introduced in the received vector, the RS
decoding algorithm when applied to correct tb

2 errors, correctly output
the original message. However, receiver has no way of knowing that the
recovered message is correct as he does not know that indeed tb

2 errors are
present in the received vector.

3. In Example 3, more than tb

2 errors are introduced in the received vector.
However, from Theorem 1, RS decoding algorithm can correctly output
the message only if tb

2 errors are present in the received vector. But
the actual number of errors in the received vector is more than what
can be corrected. Moreover, the errors are introduced in such a way
that the received vector has a distance of tb

2 from another valid codeword

Ĉ (different from the original codeword which was actually sent by the
sender). Since the decoding algorithm is applied to correct tb

2 errors, the

algorithm will output incorrect message, corresponding to Ĉ. Moreover,
the decoding algorithm outputs at least one correct location in the received
vector as the error location. Furthermore, the receiver has no way of
knowing that the recovered message is incorrect.

4. In Example 4, more than tb

2 errors are introduced in the received vector.
From Theorem 1, RS decoding algorithm can correctly output the message
only if tb

2 errors are present in the received vector. But the actual num-
ber of errors in the received vector is more than what can be corrected.
However, the errors are introduced in such a way that the received vector
has a distance of more than tb

2 from all possible valid codewords. Since
the decoding algorithm is applied to correct tb

2 errors, it fails to output
any meaningful polynomial. In this case, the receiver simply declares that
more than tb

2 errors are present in the received vector.

In all the previous examples, we have only considered the error correcting ca-
pability of RS codes as given by Theorem 1. However, as mentioned at the
beginning of the section, we can use RS codes to either correct errors or detect
errors or simultaneously do the both. The following theorem gives the number
of errors which can be corrected and detected by RS codes.

Theorem 2 ([27, 12]). Let C be an N length RS codeword, corresponding to
a message of size k field elements and let C be transmitted over Ch(tb,tf ). Let
C′ be the received vector of size N ′, where N ′ ≥ (N − tf ). Then RS decoding
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can correct upto c Byzantine errors in C′ and simultaneously detect additional
d Byzantine errors in C′ iff N ′ − k ≥ 2c + d, such that (c + d) ≤ tb.

Notice that Theorem 1 is a special case of Theorem 2 because we obtain the
former by substituting d = 0 and c = tb in the later. Theorem 2 states that if
we use RS decoding algorithm only for correcting errors (i.e., d = 0), then it can

correct at most (N ′−k)
2 . Thus if at most (N ′−k)

2 errors are present in the received
vector, then the decoding algorithm will correctly find them and recovers the
original message.

On the other hand, if we use RS decoding algorithm only for detecting errors
(i.e., c = 0), then it can detect at most (N ′−k) errors. Thus if at most (N ′−k)
errors are present in the received vector, then the decoding algorithm will sense
it and will output an error, indicating that at most (N ′ − k) errors are present
in the received vector. However, unlike error correction, error detection will not
output the locations at which errors are present.

If RS decoding algorithm is used with non-zero values of c and d (provided
they satisfy the inequalities given in Theorem 2), then the algorithm can simul-
taneously correct and detect errors. In this case, the algorithm will first try to
correct c errors. If the number of errors that are present in the received vector
is indeed c, then the algorithm will correct all of them. Moreover, the algorithm
will not detect any additional error and will correctly output the message. On
the other hand, if more than c errors but at most (c + d) errors are present in
the received vector, then the algorithm will detect the additional d errors (other
than the c errors, which it tried to correct) and will output an error, indicating
that more than c errors are present in the received vector. We illustrate the
case of simultaneous correction and detection using RS decoding, with the help
of following example. This example also illustrate the cases, which will arise in
the context of our PSMT protocols, when we use RS decoding for simultaneous
detection and correction.

Example 5. Let tb = 2, tf = 0, N = 2tb + 1 = 5, k = tb

2 + 1 = 2, c = tb

2 = 1
and d = tb

2 = 1. Let m = (1, 2). So P (x) = 1 + 2x and the transmitted RS
codeword is C = (3, 5, 7, 9, 11). Since tf = 0, N ′ = N = 5. Substituting the
value of N ′, K, c and d in the inequality of Theorem 2, we find that RS decoding
algorithm will be able to correct one error and detect one additional error in the
received vector.

Suppose exactly one error occurs in the received vector, say in the first lo-
cation. The RS decoding algorithm, when applied to correct c = 1 error, will
correctly identify the error. This is because the algorithm will try to find a poly-
nomial of degree k − 1 = 1, passing through k + c = k + tb

2 = 3 of the received
points. In this case, there is only one polynomial of degree one, passing through
three of the received points, namely the original polynomial P (x). So the algo-
rithm will correctly output the polynomial P (x). Moreover, the receiver will be
sure that the output polynomial is correct because in this case, (c + d) = tb and
the maximum number of errors that could be present in the received vector is
also tb. Since the algorithm has not detected any additional error (other than c
errors), it implies that the output polynomial is indeed correct.
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On the other hand, suppose that more than c = tb

2 = 1 errors are present in
the received vector; i.e., suppose two errors are present in the received vector.
Moreover, the errors are introduced in the first two locations and let the received
vector be (5, 6, 7, 9, 11). Notice that here the errors are introduced in such a way
that first tb + (k − 1) = 3 points in the vector, namely (1, 5), (2, 6) and (3, 7)
lie on polynomial x + 4. On the other hand, the last N ′ − tb = 3 points in the
vector, namely (3, 7), (4, 9) and (5, 11) lie on polynomial 2x+ 1. If we apply the
RS decoding algorithm to correct c = 1 error, then the decoding algorithm will
try to find a polynomial of degree k−1 = 1, passing through k+c = k+ tb

2 = 3 of
the received points. In this case, there are two polynomials of degree one, passing
through three of the received points. So the decoding algorithm will output an
error. More specifically, E(x) = (x − e1) and Q(x) = P (x)E(x) = Ax2 + Bx +
F . By substituting x = 1, . . . , 5 in the relation Q(x) = R(x)E(x), we get the
following system of linear equations:

A + B + F + 5e1 = 5

4A + 2B + 1F + 6e1 = 12

9A + 3B + 1F + 7e1 = 21

16A + 4B + 1F + 9e1 = 36

25A + 5B + 1F + 11e1 = 55

However, the above system of equations does not have any solution and hence the
algorithm will not output any polynomial. This will indicate to the the receiver
that more than c errors are presented in the received vector, which are detected
by the algorithm.

In the above example, we have considered the case, when c+d = tb. If c+d < tb,
then again anything can happen. For example, the errors could be introduced in
such a way that the received vector could have a distance of c from another valid
codeword (other than the one sent by the sender, as in Example 3). In this case,
the algorithm will output the incorrect polynomial corresponding to the other
codeword. Moreover, the receiver will have no way of knowing that the output
polynomial is incorrect, as (c + d) < tb. On the other hand, the errors could be
introduced in such a way that the received vector has a distance of more than c
from all valid codewords (as in Example 4). In this case, the algorithm will fail
to output any polynomial, indicating to the receiver that more than c errors are
present in the received vector.

We now give the formal description of Berlekamp-Welch RS decoding al-
gorithm. In the algorithm, all the computations are performed over F. The
algorithm takes the following inputs:

1. An N ′ length vector C′, received over Ch(tb,tf ). Let i1, . . . , iN ′ ∈ {1, . . . , N}
denote the indices of the components of the received vector. This implies
that the components of the received vector at the remaining indices in
the set {1, . . . , N} − {i1, . . . , iN ′} are erased. Here N is the length of the
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original RS codeword and N ′ ≥ (N − tf ). We denote the values in the
received vector as R(αi1), . . . , R(αiN′

).

2. Parameter k, where k − 1 is the degree of the original polynomial P (x),
used for encoding the message.

3. Parameters c ≥ 0 and d ≥ 0, subject to the condition that N ′−k ≥ 2c+d
and (c+d) ≤ tb. Here c is the number of errors that the algorithm tries to
correct and d is the number of additional errors that the algorithm tries
to detect.

The algorithm is formally given in Table 3.

Algorithm RS-DEC(N ′, C′, c, d, k)
Goal: To Find a Polynomial of Degree k − 1 Passing Through k + c Received R(αj)’s

1. Let the error locator polynomial E(x) = (x − e1) . . . (x − ec). The coefficient of xc in
E(x) will be one.

2. Let Q(x) = P (x)E(x) = ac+k−1xc+k−1 + ac+k−2xc+k−2 + . . . + a0 be the polynomial
of degree c + k − 1.

3. Form a system of N ′ equations, involving 2c + k ≤ N ′ unknowns
e1, . . . , ec, ac+k−1, . . . , a0, by substituting x = αi1 , . . . , αiN′

in the relation
Q(x) = R(x)E(x).

4. Solve the above system of equations. Now there are the following cases:

(a) If the above system of equations fails to give any solution, then output an error.
In this case, the receiver concludes that more than c errors are present in the
received vector.

(b) If the above system of equations gives a solution, such that value of at least one
of the unknowns e1, . . . , ec, ac+k−1, . . . , a0 is outside the field F, then output an
error. In this case, the receiver concludes that more than c errors are present in
the received vector.

(c) If the above system of equations gives a solution, such that value of at least two
distinct unknowns in the set {e1, . . . , ec} are same, then output an error. In this
case, the receiver concludes that more than c errors are present in the received
vector.

(d) If the above system of equations gives a solution, such that value of all the 2c + k
unknowns are from the field F and each of unknowns in {e1, . . . , ec} have distinct
values, then do the following:

i. Compute P (x) = Q(x)/E(x). Let P (x) = b0 + b1x + . . . + bk−1xk−1.
ii. Output (b0, . . . , bk−1) as the message. In addition, output an error list, de-

noted by Error List. The Error List indicates the values which are iden-
tified to be corrupted in C′. The Error List will contain c pairs. For
j = 1, . . . , c, the jth entry of Error List is of the form (ej , C′

iej
), where

C′

iej
denotes the ithej

entry in C′.

Table 3: Protocol for RS Decoding

Definition 10 (Good/Bad Error List). We call an error list generated by
RS-DEC algorithm as “good” if each of the values in the error list, pointed as a
corrupted value, is indeed corrupted. Otherwise we call the error list as “bad”.
When an error list is “bad”, it points a correct value in C′ as cor-
rupted.
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We now state few important properties of RS decoding, which will be used in the
context of our PSMT protocols. We have already illustrated all these properties
with examples and hence we will not give formal proof of these properties. For a
complete formal proof, we refer [22, 43]. In all these properties, we assume that
t′b ≤ tb is the actual number of errors that are present in the received vector.
The receiver has no information about t′b, except that t′b ≤ tb.

Property 1. If c + d = tb and t′b ≤ c, then the algorithm will correct all these
errors and will detect no additional errors. So the algorithm will output P (x),
which is the original/correct k−1 degree polynomial and Error List, which is a
”good” error list (of cardinality at most c). Moreover, the receiver is certain that
the output polynomial P (x) is correct and the error list Error List is ”good”.
This property is illustrated in Example 5.

Property 2. If c + d = tb and t′b > c, then the algorithm will fail to output
any message, thus indicating to the receiver that more than c errors are present
in the received vector. This is because even though the actual number of errors
t′b is more than c (which is the number of errors which the algorithm tried to
correct), the algorithm has the capability to detect (tb − c) ≥ (t′b − c) additional
errors. However, the algorithm can only detect the additional errors, but will
not be able to correct them. So the algorithm will not output any message. In
this case, the receiver concludes that more than c errors are present in C′. This
property is illustrated in Example 5.

Property 3. If c + d < tb and t′b ≤ c, then the algorithm will correct all the t′b
errors and will correctly output P (x). Moreover, Error List will be a ”good” er-
ror list (of cardinality at most c). However, receiver will not be sure/certain that
the output polynomial P (x) is correct and the error list Error List is ”good”.
This is because the extra detection capability of the algorithm in this case is less
than tb − c and the value of t′b is unknown to the receiver. This property is
illustrated in Example 2.

Property 4. If c+d < tb and t′b > c, such that the received vector has a distance
of c from another valid codeword (different from the one, which was originally
sent by the sender), then the algorithm will output the incorrect P ′(x) 6= P (x),
corresponding to the other codeword. Moreover, the Error List will be ”bad”
of cardinality at most c. Furthermore, receiver will not be sure/certain that the
output polynomial P ′(x) is correct and the error list Error List is ”bad”. This
is because the extra detection capability of the algorithm in this case is less than
tb − c and the value of t′b is unknown to the receiver. This property is illustrated
in Example 3.

Property 5. If c + d < tb and t′b > c, such that the received vector has a
distance of more than c from all valid codewords, then the algorithm will output
error. In this case, the receiver is certain that more than c errors are present
in the received vector. This property is illustrated in Example 4.
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4.1. PRMT Protocol Based on RS Codes

Let S and R be connected by N ≥ 2tb + tf + 1 wires, w1, . . . , wN . We now
design a single phase protocol called PRMT-Mixed, which allows S to reliably
send a message m containing ℓ ≥ field elements to R, tolerating Astatic

(tb,tf ,tp).

The protocol is based on the properties of RS codes and will be later used in
designing OPSMT protocols against Astatic

(tb,tf ,tp) and Amobile
(tb,tf ,tp).

Protocol PRMT-Mixed(m, ℓ, N, tb, tf , k)

• S breaks up m into blocks B1,B2, . . . , Bℓ/k, each consisting of k field elements,
where k = N − 2tb − tf . If ℓ is not an exact multiple of k, a default padding is
used to make ℓ mod k = 0.

• For j = 1, . . . , ℓ/k, S computes N length RS codeword (cj1cj2 . . . cjN ), cor-
responding to block Bj. For i = 1, . . . , N , S sends cji along wire wi, for
j = 1, . . . , ℓ/k.

• Let R receive information over wires wi1 , . . . , wiN′
, where {wi1 , . . . , wiN′

} ⊆

{w1, . . . , wN} and N ′ ≥ N − tf . For j = 1, . . . , ℓ/k, let R receive c′ji1
, . . . , c′jiN′

along wire wi1 , . . . , wiN′
respectively. Let C′

j = [c′ji1
, . . . , c′jiN′

].

• For j = 1, . . . , ℓ/k, R executes RS − DEC(N ′, C′

j , tb, 0, k) and recovers Bj . R
then concatenates all Bj’s to recover the message m.

Table 4: Single Phase Reliable Message Transmission Tolerating Astatic
(tb,tf ,tp)

We now prove the properties of protocol PRMT-Mixed.

Lemma 1 (Correctness). Protocol PRMT-Mixed correctly delivers m.

Proof: In order to show that R will correctly receive m, we show that R will
recover each Bj correctly. In the protocol, each Bj is of size k = N − 2tb − tf
and is RS encoded into a codeword of length N ≥ 2tb + tf + 1. Corresponding
to each Bj, R receives an N ′ ≥ N − tf length vector, which differs from the
original codeword at most at tb locations. So by putting N ′ ≥ N − tf , k =
N − 2tb − tf , c = tb and d = 0 in the inequality of Theorem 2, we find that R
will be able to correct all the tb errors in C′

j by applying RS − DEC to C′
j .

Thus R correctly recovers Bj. 2

Lemma 2 (Communication Complexity). The communication complexity

of protocol PRMT-Mixed is O
(

Nℓ
N−2tb−tf

)

.

Proof: Corresponding to each block of size k, S sends an RS codeword of
length N . So the communication complexity of the protocol is O

(

Nℓ
k

)

=

O
(

Nℓ
N−2tb−tf

)

. 2

Protocol PRMT-Mixed has another important property. Consider the fol-
lowing scenario: In protocol PRMT-Mixed, S knows that R has the knowledge
of the exact identity of α ≤ tb wires that are Byzantine corrupted. S does not
know the exact identity of those α wires. If this is the case, then the following
theorem holds:

24



Theorem 3. Suppose S knows that R has the knowledge of the exact identity
of α ≤ tb wires that are Byzantine corrupted. Then in protocol PRMT-Mixed,
S can reliably send m using block size k ≤ (N − 2tb − tf ) + α. Moreover, the

communication complexity of the protocol will be O
(

Nℓ
(N−2tb−tf )+α

)

Proof: Since R is aware of the exact identity of α Byzantine corrupted wires,
R can simply ignore the values received over these wires. So the length of
each received vector C′

j will be N ′, where N ′ ≥ N − tf − α. Moreover C′
j will

now differ from original codeword at most at tb − α locations. So by putting
N ′ ≥ N − tf − α, k = (N − 2tb − tf ) + α, c = tb −α and d = 0 in the inequality
of Theorem 2, we find that by applying RS − DEC to C′

j , R will be able to
correct all the tb − α errors in C′

j and hence correctly recover Bj.
Since k ≤ (N − 2tb − tf )+ α, the communication complexity of the protocol

will be O
(

Nℓ
(N−2tb−tf )+α

)

. 2

5. Single Phase PSMT Tolerating Astatic
(tb,tf ,tp)

In this section, we provide the necessary and sufficient condition for the ex-
istence of single phase PSMT tolerating Astatic

(tb,tf ,tp). We then derive the lower

bound on the communication complexity of single phase PSMT tolerating Astatic
(tb,tf ,tp).

Finally, we show that our lower bound is asymptotically tight by designing a sin-
gle phase OPSMT protocol tolerating Astatic

(tb,tf ,tp).

5.1. Necessary and Sufficient Condition for the Existence of Single Phase PSMT
Tolerating Astatic

(tb,tf ,tp)

We first recall the existing characterization of single phase PSMT tolerating
Astatic

tb
from [14].

Theorem 4 ([14]). Single phase PSMT tolerating Astatic
tb

is possible iff the
network is (3tb + 1)-(S, R)-connected 12.

The necessary and sufficient condition for the existence of single phase PSMT
tolerating Astatic

(tb,tf ,tp) is given by the following theorem:

Theorem 5. Single phase PSMT tolerating Astatic
(tb,tf ,tp) is possible iff there exists

n ≥ 3tb + tf + tp + 1 wires between S and R.

Proof: (Necessity): In order to prove the necessity part, we follow the strat-
egy of [14] that is used to prove the necessity of Theorem 4. We first argue that

12The actual expression is (ta +max (ta, te)+1)-(S, R)-connected, where the adversary can
corrupt up to ta nodes actively in Byzantine fashion and te nodes passively in the containment
model, where the set of actively corrupted nodes is a subset of the set of passively corrupted
nodes or vice-versa. However, as mentioned earlier, we do not deal with such a model in this
paper.
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in any single phase PSMT protocol to send m against Astatic
(tb,tf ,tp), the information

sent over any set of n−(2tb+tf ) wires have full information about m (see Lemma
3 presented in the sequel). Now in any single phase PSMT tolerating Astatic

(tb,tf ,tp),

the adversary can eavesdrop information over tb + tp wires. This implies that in
any single phase PSMT tolerating Astatic

(tb,tf ,tp), n − (2tb + tf ) > (tb + tp) should

hold. Otherwise, adversary will get information about m, thus violating the
perfect secrecy property. This further implies that in any single phase PSMT
tolerating Astatic

(tb,tf ,tp), n > 3tb + tf + tp should hold. We now proceed to prove

Lemma 3.

Lemma 3. Let Π be a single phase PSMT tolerating Astatic
(tb,tf ,tp) that sends m,

where S and R are connected by n wires. Then the information sent over any
set of n − (2tb + tf ) wires in Π will have full information about m.

Proof: The proof is by contradiction. Suppose in Π, the information sent over
any set of n − (2tb + tf ) wires have no information about m. This implies that
for two distinct messages m1 and m2, with m1 6= m2, the information sent over
any set of n − (2tb + tf ) wires may be same (and thus do not distinguish the
messages). Let the n wires be denoted by w1, . . . , wn. Let E1 and E2 be two
different executions of Π to send m1 and m2 respectively. We now define the
following notations:

1. α1 and α2 denote the collective information sent by S over wires w1, . . . , wtb

in E1 and E2 respectively.

2. β1 and β2 denote the collective information sent by S over wires wtb+1, . . . , w2tb

in E1 and E2 respectively.

3. Γ1 and Γ2 denote the collective information sent by S over wires w2tb+1,
. . . , w2tb+tf

in E1 and E2 respectively.

Since the information sent over any set of n−(2tb+tf) wires may be same, we can
assume that the collective information sent by S over wires w2tb+tf +1, . . . , wn

in E1 and E2 are same. Let it be denoted by δ. Thus, in E1, the total informa-
tion sent by S over the n wires can be represented as (α1, β1, γ1, δ). Similarly,
the total information sent by S over the n wires in E2 can be represented as
(α2, β2, γ2, δ). Now consider the following adversary strategies:

1. S wants to send m1 and sends (α1, β1, γ1, δ) to R over the n wires. The
adversary controls the wires w2tb+1, . . . , w2tb+tf

in fail-stop fashion and
blocks them. Moreover, the adversary does no Byzantine corruption. Thus
view of R is (α1, β1,⊥, δ). According to the perfect reliability property of
Π, R will output m1.

2. S wants to send m2 and sends (α2 β2 γ2 δ) to R over the n wires. The
adversary controls the wires w2tb+1, . . . , w2tb+tf

in fail-stop fashion and
blocks them. Moreover, the adversary does no Byzantine corruption. Thus
view of R is (α2, β2,⊥, δ). According to the perfect reliability property of
Π, R will output m2.
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3. S wants to send m1 and sends (α1, β1, γ1, δ) to R over the n wires.
The adversary controls the wires w2tb+1, . . . , w2tb+tf

in fail-stop fashion
and blocks them. Moreover, the adversary controls the wires w1, . . . , wtb

in Byzantine fashion and changes α1 to α2, Thus view of R will be
(α2, β1,⊥, δ). Now except with probability 1

2 , R cannot distinguish be-
tween whether w1, . . . , wtb

is Byzantine corrupted and α1 is changed to
α2 or wtb+1, . . . , w2tb

is Byzantine corrupted and β2 is changed to β1.
Thus, on receiving (α2, β1,⊥, δ), R may output m1 or m2 with probabil-
ity 1

2 . But this violates the perfect reliability property of Π, which is a
contradiction.

From the above discussion, we conclude that the information sent over any set
of n − (2tb + tf ) wires in Π will have full information about m. 2

Now in any single phase PSMT, Astatic
(tb,tf ,tp) can eavesdrop at most tb+tp wires.

From the above lemma, the information sent over any set of n− (2tb + tf ) wires
in any single phase PSMT tolerating Astatic

(tb,tf ,tp) will have full information about

the message. From these two facts, we can conclude that in any single phase
PSMT tolerating Astatic

(tb,tf ,tp), n − (2tb + tf ) > (tb + tp) should hold, otherwise

it will violate the perfect secrecy property. Thus, in any single phase PSMT
tolerating Astatic

(tb,tf ,tp), n > (3tb + tf + tp). This completes the necessity proof of

Theorem 5.

Sufficiency: In order to prove the sufficiency of the condition of Theorem 5,
we design a single phase OPSMT protocol with n = 3tb + tf + tp + 1 tolerating
Astatic

(tb,tf ,tp) in Section 5.3. This completes the proof of Theorem 5. 2

Comparison 1 (Significance of Theorem 5 Over Theorem 4). The sig-
nificance of Theorem 5 over Theorem 4 is established by the following two facts:

1. Theorem 5 generalizes Theorem 4 as we get the later by substituting tf =
tp = 0 in the former.

2. Theorem 5 shows availability of more fault tolerance in comparison to
Theorem 4. For a clean interpretation of this statement, consider a net-
work with five wires between S and R. From Theorem 4, the network can
tolerate only one Byzantine corruption. However, from Theorem 5, the
network can tolerate one Byzantine corruption, along with one additional
fault, which can be either passive or fail-stop type. This example clearly
justifies the need to study PSMT in the context of mixed adversary. Had
we treated the passive or fail-stop corruption as Byzantine corruption, we
would require seven wires between S and R (from Theorem 4), which is
much more than what is actually required.

5.2. Lower Bound on Communication Complexity of Single Phase PSMT Tol-
erating Astatic

(tb,tf ,tp)

In [53, 16], the authors have derived the lower bound on the communica-
tion complexity of any single phase PSMT tolerating Astatic

tb
. We now derive

the lower bound on the communication complexity of any single phase PSMT
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tolerating Astatic
(tb,tf ,tp), by extending the arguments used in [16] for deriving the

lower bound against Astatic
tb

.

Theorem 6. Let S and R be connected by n ≥ 3tb + tf + tp + 1 wires. Then
any single phase PSMT tolerating Astatic

(tb,tf ,tp) over the n wires must communicate

Ω
(

nℓ
n−(3tb+tf )

)

field elements to securely send a message m containing ℓ ≥ 1

field elements.

Proof: Let Π be any single phase PSMT over n ≥ 3tb + tf + tp + 1 wires,
tolerating Astatic

(tb,tf ,tp), which sends a message m containing ℓ ≥ 1 field elements

from F. We now define the following notations:

1. M denotes the message space from where S selects the message to be sent.
In our context, M = F

ℓ.

2. Tm
i denotes the set of all possible transmissions that can occur on wire

wi ∈ {w1, . . . , wn}, when S transmits message m ∈ M using protocol Π.

3. For j ≥ i, Mm
i,j ⊆ Tm

i × Tm
i+1 × . . . × Tm

j denotes the set of all possible
transmissions that can occur over the wires {wi, wi+1, . . . , wj}, when S
transmits message m ∈ M using protocol Π.

4. Mi,j =
⋃

m∈M Mm
i,j and Ti =

⋃

m∈M Tm
i . We call Ti as the capacity of

wire wi and Mi,j as the capacity of the set of wires {wi, wi+1, . . . , wj}.

In protocol Π, one element from the set Ti is transmitted over each wire wi,
for i = 1, . . . , n. Moreover, each element of the set Ti can be represented by
log |Ti| bits. Thus, the lower bound on the communication complexity of Π is
Σn

i=1 log |Ti| bits. In the sequel, we try to estimate Ti.
Since Π is a single phase PSMT protocol, it implies that the transmissions

on any set of tb + tp wires is independent of the message. Thus, for any two
messages m1, m2 ∈ M, it must hold that

Mm1
2tb+tf+1,3tb+tf +tp

= Mm2
2tb+tf+1,3tb+tf+tp

.

Notice that the above relation must hold for any selection of tb + tp wires. We
focussed on the set {w2tb+tf +1, . . . , w3tb+tf +tp

} just for simplicity. From Lemma
3, the transmission over any set of n− (2tb + tf ) wires in Π has full information
about m and uniquely determine m. Thus it must also hold that

Mm1
2tb+tf+1,n ∩Mm2

2tb+tf+1,n = ∅.

We again stress that the above relation must hold for any selection of n− (2tb +
tf ) wires. We focussed on the set {w2tb+tf+1, . . . , wn} just for simplicity. As
mentioned earlier, Mm

2tb+tf+1,3tb+tf+tp
will be same for all messages m. Thus, in

order that the above relation holds, it must hold that Mm
3tb+tf+tp+1,n is unique

for every message m. This implies that

|M3tb+tf +tp+1,n| = |M|.
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From the definition of Ti and Mi,j , we get

Πn
i=3tb+tf+tp+1|Ti| ≥ |M3tb+tf +tp+1,n| ≥ |M|.

Let g = n − (3tb + tf + tp). The above inequality holds for any selection of g
wires D ⊂ {w1, . . . , wn}, where |D| = g; i.e., Πwi∈D|Ti| ≥ |M|. In particular, it
holds for every selection Dk = {w

kg+1 mod n
, w

kg+2 mod n
, . . . , w

kg+g mod n
},

with k ∈ {0, . . . , n − 1}.
If we consider all the Dk sets collectively, then each wire is counted exactly

g times in the collection. Thus, the product of the capacities of all Dk yields the
capacity of the full wire set to the g-th power, and since each Dk has capacity
at least |M|, we get

|M|n ≤ Πn−1
k=0Πwj∈Dk

|Tj | = (Πn
i=1|Ti|)

g
,

and therefore
n log(|M|) ≤ gΣn

i=1 log(|Ti|).

As log(|M|) = ℓ log(|F|), from the above inequality, we get

Σn
i=1 log(|Ti|) ≥

(

nℓ log(|F|)

g

)

≥

(

nℓ log(|F|)

n − (3tb + tf + tp)

)

.

As mentioned earlier, Σn
i=1 log(|Ti|) denotes the lower bound on the communica-

tion complexity of protocol Π in bits. From the above inequality, we find that the

lower bound on the communication complexity of protocol Π is
(

nℓ log(|F|)
n−(3tb+tf +tp)

)

bits. Now each field element from F can be preprsented by log(|F|) bits. Thus the

lower bound on the communication complexity of protocol Π is
(

nℓ
n−(3tb+tf +tp)

)

field elements. This completes the derivation of lower bound on the communi-
cation complexity of single phase PSMT tolerating Astatic

(tb,tf ,tp). 2

5.3. Single Phase OPSMT Tolerating Astatic
(tb,tf ,tp)

We now design a polynomial time single phase OPSMT called 1-OPSMT

over n = 3tb + tf + tp + 1 wires tolerating Astatic
(tb,tf ,tp). The protocol shows the

sufficiency of the condition given in Theorem 5 and the tightness of the lower
bound derived in Theorem 6 as well. The protocol sends a message m, which
is a single field element from F, by incurring a communication complexity of
O(n) field elements. To send a message m containing ℓ > 1 field elements, the
protocol can be concurrently repeated for each element of m. This requires a
total communication cost of O(nℓ) field elements. The protocol is given in Table
5.

We now prove the properties of protocol 1-OPSMT.

Lemma 4 (Correctness). In protocol 1-OPSMT, R will correctly receive m.
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Protocol 1-OPSMT(m,n, tb, tf )
Phase I: S to R

Computation by S :

1. S selects a polynomial f(x) of degree tb + tp, uniformly and randomly from
F, such that f(0) = m.

2. Corresponding to f(x), S computes an n length RS codeword C =
[c1, . . . , cn]; i.e., ci = f(αi), for i = 1, . . . , n.

Communication by S :

1. For 1 ≤ i ≤ n, S sends ci to R over wire wi.

Message Recovery by R :

1. Let R receive information over wires {wi1 , . . . , win′
} ⊆ {w1, . . . , wn}, where

n′ ≥ (n− tf ).

2. Let R receive c′i1 , . . . , c′in′
through wi1 , . . . , win′

respectively.

3. Let C′ = [c′i1 , . . . , c′in′
]. R executes RS −DEC(n′, C′, tb, 0, tb + tp + 1) to

get f(x), recovers m = f(0) and terminates the protocol.

Table 5: Single Phase OPSMT Tolerating Astatic
(tb,tf ,tp)

, |m| = 1, n = 3tb + tf + tp + 1

Proof: In order to prove the lemma, we show that R will successfully get
back f(x). In the protocol, f(x) is RS encoded into n length RS codeword
C = [c1, . . . , cn]. Now the ith component of C is sent over wire wi. R receives
a shortened vector C′ = [c′i1 , . . . , c

′
in′

] of length n′, corresponding to C, where
C and C′ may differ at most at tb locations (apart from the locations that got
erased). By substituting c = tb, d = 0, N ′ = n′ ≥ n − tf and k = tb + tp + 1
in the inequality of Theorem 2, we find that RS − DEC can correct all the tb
errors in C′ and hence R can get back f(x) successfully. 2

Lemma 5 (Secrecy). In protocol 1-OPSMT, m will be information theoreti-
cally secure from Astatic

(tb,tf ,tp).

Proof: Since Astatic
(tb,tf ,tp) can eavesdrop at most tb+tp wires, Astatic

(tb,tf ,tp) will get at

most tb + tp distinct points on f(x). However, the degree of f(x) is tb + tp. Thus
Astatic

(tb,tf ,tp) falls short by one point to uniquely interpolate f(x). This implies

information theoretic security on m = f(0). 2

Lemma 6 (Communication Complexity). The communication complexity
of protocol 1-OPSMT is O(n).

Proof: In the protocol, S sends a single field element along each wire. Thus,
the communication complexity of the protocol is O(n). 2

Theorem 7. Protocol 1-OPSMT is a single phase OPSMT tolerating Astatic
(tb,tf ,tp).

Proof: From Theorem 6, any single phase PSMT over n = 3tb + tf + tp + 1
wires against Astatic

(tb,tf ,tp), must communicate Ω(n) field elements to securely send
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a message containing ℓ = 1 field elements. From Lemma 6, the communication
complexity of protocol 1-OPSMT is O(n). Thus, protocol 1-OPSMT is a single
phase OPSMT protocol tolerating Astatic

(tb,tf ,tp). 2

Theorem 8. Suppose S and R are connected by n = 3tb + tf + tp + 1 wires.
Then there exists a polynomial time single phase OPSMT protocol to securely
send a message m containing ℓ ≥ 1 field elements, tolerating Astatic

(tb,tf ,tp).

Proof: To securely send m, S can concurrently execute ℓ instances of protocol
1-OPSMT to send each element of m individually. This incurs a communication
complexity of O(nℓ). From Theorem 6, any single phase PSMT over n = 3tb +
tf + tp + 1 wires, must communicate Ω(nℓ) field elements to securely send a
message containing ℓ field elements. Thus, the resultant protocol is a single
phase OPSMT protocol tolerating Astatic

(tb,tf ,tp), which sends a message containing

ℓ ≥ 1 field elements. 2

6. Multi Phase PSMT Tolerating Astatic
(tb,tf ,tp)

In this section, we present the necessary and sufficient condition for the
existence of any multi phase PSMT tolerating Astatic

(tb,tf ,tp). We then prove the

lower bound on the communication complexity of multi phase PSMT tolerating
Astatic

(tb,tf ,tp). Finally, we show that our lower bound is asymptotically tight by

designing a multi phase OPSMT protocol tolerating Astatic
(tb,tf ,tp).

6.1. Necessary and Sufficient Condition for the Existence of Multi Phase PSMT
Tolerating Astatic

(tb,tf ,tp)

We first recall the existing characterization of multi phase PSMT from [14].

Theorem 9 ([14]). Multi phase PSMT between S and R in an undirected syn-
chronous network N tolerating Astatic

tb
is possible iff the network is (2tb +1)-(S,

R)-connected.

Now the necessary and sufficient condition for the existence of any multi phase
PSMT tolerating Astatic

(tb,tf ,tp) is given by the following theorem:

Theorem 10. Any r ≥ 2 phase PSMT tolerating Astatic
(tb,tf ,tp) is possible iff there

exists n ≥ 2tb + tf + tp + 1 wires between S and R.

Proof: (Necessity): In order to prove the necessity part, we show that in
any r ≥ 2 phase PSMT tolerating Astatic

(tb,tf ,tp), the information sent over any set

of n − (tb + tf ) is dependent on message m (proved in Lemma 7 given in the
sequel). Now in any r ≥ 2 phase PSMT tolerating Astatic

(tb,tf ,tp), the adversary can

eavesdrop information over tb + tp wires. This implies that in any r ≥ 2 phase
PSMT tolerating Astatic

(tb,tf ,tp), n − (tb + tf ) > (tb + tp) should hold. Otherwise,

adversary will get information about m, which will clearly violate the perfect
secrecy property of the protocol. This further implies that in any r ≥ 2 phase
PSMT tolerating Astatic

(tb,tf ,tp), n > 2tb + tf + tp should hold. We now proceed to

prove Lemma 7.
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Lemma 7. Let Π be any r ≥ 2 phase PSMT tolerating Astatic
(tb,tf ,tp) that sends m,

where S and R are connected by n wires. Then the information sent over any
set of n − (tb + tf ) wires in Π is dependent on message m.

Proof: The proof is by contradiction. Suppose in Π, the information sent over
any set of n − (tb + tf ) wires is independent of m. This implies that for two
distinct messages m1 and m2, with m1 6= m2, the information sent over any
set of n− (tb + tf ) wires may be same (i.e the information does not distinguish
m1 from m2 and vice versa). Let E1 and E2 be two different executions of Π
for sending m1 and m2 respectively. Moreover, without loss of generality, we
assume that in Π, S communicates to R in odd phases, while R communicates
to S in even phases. Now suppose that in E1 and E2, the adversary controls
wires wtb+1, . . . , wtb+tf

in fail-stop fashion and does no Byzantine corruption.
Thus the adversary allows no communication over wtb+1, . . . , wtb+tf

in E1 and
E2. We now define the following notations:

1. αi
1 and αi

2 denote the collective information sent by S to R over wires
w1, . . . , wtb

in E1 and E2 respectively in odd phase i.

2. αi
1 and αi

2 denote the collective information sent by R to S over wires
w1, . . . , wtb

in E1 and E2 respectively in even phase i.

3. Γi denotes the collective information sent by S to R over wires wtb+tf+1, . . . , wn

in both E1 and E2 in odd phase i. Γi is assumed to be same in both
E1 and E2 as the information sent over any set of n − (tb + tf ) wires is
independent of the message (according to the our assumption).

4. Γi denotes the collective information sent by R to S over wires wtb+tf+1, . . . , wn

in both E1 and E2 in even phase i. Γi is same in both E1 and E2 due
to the same reason as above.

Thus, if the adversary behaves in the above fashion, then in E1, the view of R
at the end of odd phase i will be (αi

1,⊥, Γi) and the view of S at the end of
even phase i will be (αi

1,⊥, Γi). Finally, R will output m1. Similarly, in E2,
the view of R at the end of odd phase i will be (αi

2,⊥, Γi) and the view of S
at the end of even phase i will be (αi

2,⊥, Γi). Finally, R will output m2.
Now consider another execution E3 that sends m1. In E3, the adversary’s

behavior is as follows: The adversary controls wires w1, . . . , wtb
in Byzantine

fashion and wires wtb+1, . . . , wtb+tf
in fail-stop fashion respectively. In odd

phase i, the adversary blocks the communication over wires wtb+1, . . . , wtb+tf
.

Moreover, the adversary changes αi
1 sent by S over wires w1, . . . , wtb

into αi
2.

Thus, at the end of odd phase i, the view of R will be (αi
2,⊥, Γi) and he

will think, as if he is in execution E2 and will accordingly send αi
2 over wires

w1, . . . , wtb
and Γi over wires wtb+tf +1, . . . , wn to S in even phase i. But now,

the adversary changes αi
2 into αi

1. Thus at the end of even phase i, the view
of S will be (αi

1,⊥, Γi) and he will think that he is in execution E1. Thus, in
odd phases, the adversary controls the wires in such a way that R believes
that he is in E2. On the other hand, in even phases, the adversary controls
the wires in such a way that S believes that he is in E1. Finally, at the end of
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the protocol, R will output m2, while S wanted to send m1. This is a violation
of perfect reliability property of Π, which is a contradiction.

From the above discussion, we conclude that the information sent over any
set of n − (tb + tf ) wires in Π is dependent on m. 2

Now in any multi phase PSMT, Astatic
(tb,tf ,tp) can eavesdrop at most tb+tp wires.

From the above lemma, the information sent over any set of n−(tb+tf ) wires in
any multi phase PSMT tolerating Astatic

(tb,tf ,tp) is dependent on the message. From

these two facts, we can conclude that in any multi phase PSMT tolerating
Astatic

(tb,tf ,tp), n − (tb + tf ) > (tb + tp) should hold, otherwise it will violate the

perfect secrecy property of PSMT protocol. Thus, in any multi phase PSMT
tolerating Astatic

(tb,tf ,tp), n > (2tb+tf +tp) should hold. This completes the necessity

proof of Theorem 10.

Sufficiency: In order to prove the sufficiency of the condition of Theorem 10,
we design a four phase OPSMT protocol with n = 2tb + tf + tp + 1 tolerating
Astatic

(tb,tf ,tp) in Section 6.4.4. This completes the proof of Theorem 10. 2

Comparison 2 (Significance of Theorem 10 Over Theorem 9). The sig-
nificance of Theorem 10 over Theorem 9 is established by the following two facts:

1. Theorem 10 generalizes Theorem 9, as we get the later by substituting
tf = tp = 0 in the former.

2. Theorem 10 shows the possibility of tolerating more faults in comparison
to Theorem 9. For a better understanding of the above statement, consider
a network with four wires between S and R. From Theorem 9, the network
can tolerate one Byzantine corruption. However, from Theorem 10, the
network can tolerate one Byzantine corruption, along with one additional
fault, which can be either passive or fail-stop type. This example clearly
justifies the need to study PSMT in the context of mixed adversary. Had
we treated the passive of fail-stop corruption as Byzantine corruption, we
would have required five wires between S and R (Theorem 9), which is
clearly more than what is actually needed.

6.2. Lower Bound on Communication Complexity of Multi Phase PSMT Tol-
erating Astatic

(tb,tf ,tp)

We now derive the lower bound on the communication complexity of Multi
phase PSMT tolerating Astatic

(tb,tf ,tp). For this, we use similar arguments used

for deriving the lower bound on the communication complexity of single phase
phase PSMT, along with few other arguments.

Theorem 11. Let S and R be connected by n ≥ 2tb+tf +tp+1 wires. Then any
multiple phase PSMT tolerating Astatic

(tb,tf ,tp) over the n wires must communicate

Ω
(

nℓ
n−(2tb+tf )

)

field elements to securely send a message m containing ℓ ≥ 1

field elements.
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To prove the theorem, we first observe the communication pattern of any multi
phase PSMT protocol and show that the communication complexity of any
multi phase PSMT protocol is not less than the communication complexity of
a special type of single phase PSMT protocol. We then derive the lower bound
on the communication complexity of this special type of single phase PSMT.
More specifically, the proof of Theorem 11 follows from Lemma 8 and Lemma
9, which are proved below.

Lemma 8. The communication complexity of any multi phase PSMT protocol
to send a message m tolerating an adversary corrupting up to B (≤ tb), F (≤ tf )
and P (≤ tp) wires in Byzantine, fail-stop and passive manner respectively is not
less than the communication complexity of distributing n shares for the message
m such that any set of n−(B+F ) shares has full information about the message
while any set of (P + B) shares has no information about the message.

To prove this lemma, we begin with a definition of a weaker version of single
phase PSMT called PSMT with Error Detection (PSMTED). We then prove the
equivalence of the communication complexity of PSMTED protocol to send a
message m and the share complexity (i.e., the length of the shares) of distribut-
ing n shares for m such that any set of n− (F + B) shares has full information
about m while any set of (P + B) shares has no information about m (Claim
1). Finally, we will show that the communication complexity of any multi phase
PSMT protocol is at least equal to the communication complexity of single
phase protocol PSMTED (Claim 3). These two equivalences will prove the
desired equivalence as stated in this lemma.

Definition 11. A single phase PSMT protocol, tolerating an adversary cor-
rupting up to B(≤ tb), F (≤ tf ) and P (≤ tp) wires in Byzantine, fail-stop and
passive fashion respectively is called (B, F, P )-PSMTED, if it satisfies the fol-
lowing properties:

1. If the adversary eavesdrops P +B wires and does no other type of corrup-
tion, then R correctly and securely receives the message sent by S.

2. If the adversary maliciously changes the information over B wires (B ≤
tb), then R detects it and aborts.

3. If adversary blocks at most F +B wires and does no malicious corruption,
then R recovers the message correctly.

4. The adversary obtains no information about the transmitted message in
information theoretic sense.

Observe that PSMTED is a strictly weaker version of PSMT, as a PSMT pro-
tocol not only detects errors but also corrects them and recovers the message.
We next show that the properties of PSMTED protocol for sending message m
is equivalent to the property of the problem of distributing n shares for m such
that any set of n − (F + B) shares has full information about m while any set
of P + B shares has no information about m.
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Claim 1. Let Π be a PSMTED protocol executed over n wires between S and
R. In an execution of Π for sending a message m, the data si, 1 ≤ i ≤ n sent by
the S along the wires wi, 1 ≤ i ≤ n, forms n shares for m such that any set of
n− (F + B) shares has full information about m while any set of P + B shares
has no information about m.

Proof: The fact that any set of P + B shares has no information about m
follows directly from property 1 and 4 of definition of PSMTED. We now show
that any set of n − (F + B) shares has full information about m. The proof
is by contradiction. For a set of wires A, let Message(m, A) denote the set of
messages sent along the wires in A during the execution of PSMTED to send
m. Now for any set of wires C with |C| ≥ n− (F + B) , Message(m, C) should
uniquely determine the message m. Suppose not, then there exists another
message m′ such that Message(m, C) = Message(m′, C). Now by definition,
the fail-stop controlled wires as well as the Byzantine controlled wires can block
all the messages sent along those wires. So assume R does not receive any
information over F +B wires that are not in C. Thus for two different executions
of PSMTED to send two distinct message m and m′, there exists an adversary
strategy such that view of R at the end of two executions is exactly same. This
is a contradiction to the property 3 of PSMTED protocol Π, which must output
the correct message if at most F + B wires block the communication and no
malicious corruptions take place. 2

The above claim shows that the communication complexity of PSMTED
protocol to send m is same as the share complexity (sum of the length of all
shares) of distributing n shares for m such that any set of n−(F +B) shares has
full information about m while any set of P shares has no information about
the message. Now we step forward to show that the communication complexity
of PSMTED protocol is the lower bound on the communication complexity of
any multi phase PSMT protocol.

Before we take a closer look at the execution of any multi phase PSMT
protocol, we model S and R as polynomial time Turing machines with access to
a random tape. The number of random bits used by S and R are bounded by a
polynomial q(n). Let r1, r2 ∈ {0, 1}q(n) denote the contents of the random tapes
of S and R respectively. The message m is an element from the set {0, 1}p(n),
where p(n) is a polynomial. A transcript for an execution of a multi phase
PSMT protocol Π is the concatenation of all the messages sent by S and R
along all the wires.

Definition 12. A passive transcript T (Π, m, r1, r2) is a transcript for the exe-
cution of the multi phase PSMT protocol Π with m as the message to be sent,
r1, r2 as the contents of the random tapes of sender S and the receiver R and the
adversary remaining passive throughout the execution of Π, doing no other type
of corruption. Let T (Π, m, r1, r2, wi) denote the passive transcript restricted to
messages exchanged along the wire wi. When Π, m, r1, r2 are obvious from the
context, we drop them and denote the passive transcript restricted to a wire wi

by Twi
. Similarly, T∆ denote the passive transcript restricted to the set of wires

in ∆.
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Given (m, r1, r2) it is possible for S to compute the passive transcript T (Π, m, r1, r2)
by simulating R with random tape r2. Similarly given (m, r1, r2) R can com-
pute passive transcript T (Π, m, r1, r2) by simulating S with random tape r1.
Note that although S and R require both r1, r2 to generate the passive tran-
script, R requires only r2 in order to obtain the message m from the passive
transcript T (Π, m, r1, r2). This is clear since R does not have access to r1 dur-
ing the execution of Π but still can retrieve the message m from the messages
exchanged.

We next define a special type of passive transcript and prove its properties.

Definition 13. A passive transcript T∆, with n − F ≤ |∆| ≤ n is said to be
a valid fault-free transcript with respect to R, if there exists random string r2

and message m, such that PSMT protocol Π at R, with r2 as the contents of
the random tape and T∆ as the messages exchanged, terminates by outputting
the message m.

Definition 14. Two transcripts T∆ and T ′
∆, where n−F ≤ |∆| ≤ n are said to

be adversely close if the two transcripts differ only on a set of wires A such that
|A| ≤ B + (|∆| − (n − F )). Formally |{wi|Twi

6= T ′
wi
}| ≤ B + (|∆| − (n − F )).

We next claim an important property of valid fault free transcripts.

Claim 2. No two valid fault-free transcripts T∆(Π, m, r1, r2) and T∆(Π, m′, r′1, r
′
2)

with two different message inputs m, m′, can be adversely close to each other,
where n − F ≤ ∆ ≤ n, irrespective of the value of r1, r

′
1, r2 and r′2.

Proof: Suppose there exists r1, r
′
1, r2, r

′
2 and two different messages m, m′,

such that the valid fault-free transcripts T∆(Π, m, r1, r2) and T∆(Π, m
′

, r
′

1, r
′

2)
are adversely close. This implies that there is a set of wires A, where |A| ≤
B + (|∆| − (n − F )), such that the two transcripts differ only on messages
sent along the wires in A. Without loss of generality, assume that the last
B + (|∆| − (n − F )) wires belong to A, with A = X ◦ Y , where |X | = B
and |Y | = (|∆| − (n − F )). If such transcripts exist, then adversary can also
generate T∆(Π, m, r1, r2) by simulating S with message m and random coin r1

and simulating R with random coin r2. In a similar way, he can simulate S and
R and generate T∆(Π, m

′

, r
′

1, r
′

2)
Now consider the following adversary behavior: in each execution of Π,

irrespective of the random coins of S, R and irrespective of the message selected
by S, adversary guesses that random coins of S and R are r1 and r′2 respectively.
Moreover, adversary also guesses that S wants to send m. Now irrespective
of whether adversary’s guess is correct or not, adversary blocks the messages
over the wires in Y and tries to change the messages along wires in X such
that the view of S becomes T∆−Y (Π, m, r1, r2) while the view of R becomes
T∆−Y (Π, m′, r′1, r

′
2).

Notice that if either S or R (or both) behaves differently, as opposed to
adversary’s guess then adversary will not be able to generate the above views
at S and R’s end and will be caught. But in an execution of Π, where S indeed
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wants to send m using randomness r1, while R is using randomness r′2, adversary
will be successful in causing T∆−Y (Π, m, r1, r2) and T∆−Y (Π, m′, r′1, r

′
2) to be S

and R’s view respectively, at the end of the protocol. In such an execution, R
will end up outputting m′ 6= m, which violates the perfect reliability property
of PSMT. This shows a contradiction. 2

Till now, we have shown that a transcript over at least n − F honest wires
allows R to output m correctly. We now show how to reduce a multi phase
PSMT protocol into a single phase PSMTED protocol.

Protocol PSMTED

1. S computes the passive transcript T (Π, m, r1, r2) for some random r1 and r2 and
sends T (Π, m, r1, r2, wi) to R along wi.

2. If R does not receive information through at least n − F wires then R outputs
ERROR and terminate.

3. Let R receive information over the set of wires ∆ where n − F ≤ |∆| ≤ n.
R concatenates the values received along these wires to obtain a transcript T∆
(which may be corrupted along tb wires) and does the following:

• For each m ∈ {0, 1}p(n) and r2 ∈ {0, 1}q(n), R checks whether T∆ is a
valid transcript with random tape contents r2 for message m. If yes, then
R outputs m and terminate.

4. If the above checking fails for all m ∈ {0, 1}p(n) and r2 ∈ {0, 1}q(n), then R
outputs ERROR and terminate.

Claim 3. The Communication complexity of any multi phase PSMT protocol Π
to send m is at least equal to the communication complexity of PSMTED pro-
tocol. Moreover protocol PSMTED satisfies the properties given in Definition
11.

Proof: Let Π be any multi phase PSMT protocol and Πpassive denotes an
execution of Π where the adversary does only eavesdropping and does no other
type of corruption during the complete execution. It is easy to see that the
communication complexity of Πpassive is trivially a lower bound on the commu-
nication complexity of any multi phase PSMT protocol (where the adversary
may do other types of corruptions, in addition to eavesdropping). We now show
that the communication complexity of Πpassive is same as the communication
complexity of PSMTED protocol. Once we do this, then the communication
complexity of PSMTED protocol is a trivial lower bound on the communica-
tion complexity of any multi phase PSMT protocol.

In PSMTED, S assumes its random tape contains r1 and random tape of
R contains r2. S also assumes that in Π, the adversary will only do eaves-
dropping and no other type of corruption and generates the passive transcript
T (Π, m, r1, r2). As explained earlier, S can do so by simulating R, assuming
the content of R’s random tape to be r2. However, note that R neither knows
m, nor r1, r2, which S has used for generating T . S then communicates T to
R, by sending the components of T restricted to wire wi, along wi. It is easy
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to see that the cost of communicating such a transcript by PSMTED is same
as the communication complexity of Πpassive.

The messages sent along wire wi in PSMTED protocol is the concatenation
of the messages that would have been exchanged between S and R along wi in
Πpassive. Since Πpassive is a special type of execution of PSMT protocol Π, by
the secrecy property of Π, the adversary cannot obtain any information about
the message m by passively listening P +B wires in PSMTED protocol. From
Claim 2, we know that valid transcripts of two different messages cannot be
adversely close to each other. So irrespective of the actions of the adversary,
the transcript received by R cannot be a valid transcript for any message other
than m for any value of r2. Hence if R outputs a message m then it is the same
message sent by S. Thus protocol PSMTED satisfies the properties given in
Definition 11. 2

Claim 1, along with Claim 3 completes the proof of Lemma 8. Till now, we
have shown that the communication complexity of PSMTED protocol is the
lower bound on the communication complexity of any multi phase PSMT proto-
col tolerating Astatic

(tb,tf ,tp). Moreover, the communication complexity of PSMTED

protocol to send a message m is same as the share complexity of distributing
n shares for the message m, such that any set of n − (F + B) shares has full
information while any set of P + B shares has no information about the mes-
sage. All these facts implies that share complexity of such a distribution gives
the lower bound on the communication complexity of any multi phase PSMT
protocol tolerating Astatic

(tb,tf ,tp). We now proceed to derive the share complexity

of such a distribution scheme.

Lemma 9. The share-complexity (that is the sum of length of all shares) of
distributing n shares for a message m containing ℓ field elements from F, using
protocol (B, F, P )-PSMTED, such that any set of n− (F + B) shares has full
information about the message, while any set of P +B shares has no information

about the message is Ω
(

nℓ
(n−2B−F−P )

)

.

Proof: To prove this lemma, we use similar arguments as used in Theorem
6. Let Π be a (B, F, P )-PSMTED protocol. We now define the following
notations:

1. M denotes the message space from where the message m is selected. In
our context, M = F

ℓ.

2. For i = 1, . . . , n, Xm
i denotes the set of all possible ith share that could

be generated by protocol Π, corresponding to message m ∈ M.

3. For j ≥ i, Mm
i,j ⊆ Xm

i × Xm
i+1 × . . . × Xm

j denotes the set of all possible

{ith, (i + 1)th, . . . , jth} shares, that could be generated by protocol Π,
corresponding to message m ∈ M.

4. Mi,j =
⋃

m∈M Mm
i,j and Xi =

⋃

m∈M Xm
i . We call Xi as the capacity

of ith share and Mi,j as the capacity of the set of {ith, (i + 1)th, . . . , jth}
shares.
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To generate n shares for message m, one element from the set Xi is selected
as the ith share, for i = 1, . . . , n. Moreover, each element of the set Xi can be
represented by log |Xi| bits. Thus, the share complexity corresponding to m
will be Σn

i=1 log |Xi| bits. In the sequel, we try to estimate Xi.
From the properties of share distribution, any set of B + P shares is inde-

pendent of the message. Thus, for any two messages m1, m2 ∈ M, it must hold
that

Mm1

B+F+1,2B+F+P = Mm2

B+F+1,2B+F+P .

Notice that the relation above must hold for any selection of B + P shares.
We focussed on the set of {(B + F + 1)th, . . . , (2B + F + P )th} shares just for
simplicity. Also, from the properties of share distribution, any set of n−(F +B)
shares has full information about the message m and uniquely determine m.
Thus it must also hold that

Mm1

B+F+1,n ∩Mm2

B+F+1,n = ∅.

We again stress that the above relation must hold for any selection of n−(B+F )
shares. We focussed on the set of {(B + F + 1)th, . . . , nth} shares just for
simplicity. As mentioned earlier, Mm

B+F+1,2B+F+P will be same for all messages
m. Thus, in order that the above relation holds, it must hold that Mm

2B+F+P+1,n

is unique for every message m. This implies that

|M2B+F+P+1,n| = |M|.

From the definition of Xi and Mi,j , we get

Πn
i=2B+F+P+1|Xi| ≥ |M2B+F+P+1,n| ≥ |M|.

Let g = n− (2B +F +P ). The above inequality holds for any set of g shares D,
where |D| = g; i.e., Πi∈D |Xi| ≥ |M|. In particular, it holds for every selection
Dk of {(kg + 1)th mod n, (kg + 2)th mod n, . . . , (kg + g)th mod n} shares, with
k ∈ {0, . . . , n − 1}.

If we consider all the Dk sets collectively, each share is counted exactly g
times in the collection. Thus, the product of the capacities of all Dk yields the
capacity of the full share set to the g-th power, and since each Dk has capacity
at least |M|, we get

|M|n ≤ Πn−1
k=0Πj∈Dk

|Xj | = (Πn
i=1|Xi|)

g
,

and therefore
n log(|M|) ≤ gΣn

i=1 log(|Xi|).

As log(|M|) = ℓ log(|F|), from the above inequality, we get

Σn
i=1 log(|Xi|) ≥

(

nℓ log(|F|)

g

)

≥

(

nℓ log(|F|)

n − (2B + F + P )

)

.

As mentioned earlier, Σn
i=1 log(|Xi|) denotes the share complexity in bits of dis-

tributing n shares of a message m using protocol Π. From the above inequality,
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we find that the share complexity of protocol Π is Ω
(

nℓ log(|F|)
n−(2B+F+P )

)

bits. Now

each field element from F can be preprsented by log(|F|) bits. Thus the share

complexity of protocol Π is Ω
(

nℓ
n−(2B+F+P )

)

field elements. This completes the

proof of Lemma 9. 2

Since P ≤ tp, F ≤ tf and B ≤ tb, Ω
(

nℓ
n−2B−F−P

)

= Ω
(

nℓ
n−(2tb+tf +tp)

)

.

Theorem 11 now follows from Lemma 8 and Lemma 9. 2

In the sequel, we design a four phase OPSMT protocol, whose total commu-
nication complexity matches the bound proved in Theorem 11. This will show
that the bound is tight. Before that, we formally discuss why the techniques
used in existing OPSMT tolerating Astatic

tb
cannot be extended in a straightfor-

ward manner for designing OPSMT tolerating Astatic
(tb,tf ,tp).

6.3. Existing OPSMT Protocols Tolerating Astatic
tb

and Their Limitations

We now describe a two phase sub-protocol, called Πi
tb

, which was proposed
in [45] and has been used in the three phase OPSMT protocol of [36], tolerating
Astatic

tb
. A slight variation of Πi

tb
is also used in the exponential time two phase

OPSMT protocol of [1] and polynomial time two phase OPSMT protocol of
[25], tolerating Astatic

tb
. We then point out the reasons for the sub-protocol for

not scaling up into the design of OPSMT protocols tolerating mixed adversary.
In the OPSMT protocols tolerating Astatic

tb
, S and R are connected by n =

2tb + 1 wires. The OPSMT protocols concurrently execute the sub-protocol
Πi

tb
, corresponding to each wire wi, for 1 ≤ i ≤ n. The current description

of Πi
tb

(given in Table 6) has been taken from [1]. In Πi
tb

, A and B are two
nodes (any of them can be S or R), who are connected by n = 2tb + 1 wires,
w1, w2, . . . , wn, of which any tb can be under the control of Astatic

tb
. A attempts

to privately transmit a random value s ∈ F to B over wire wi and obtains the
feedback afterward. The protocol has the following properties:

(a) If wi is corrupted, then it is disqualified by A at the end of the second
phase.

(b) If wi is uncorrupted, then A is certain at the end of second phase that B
has correctly received the value s.

(c) If wi is not under the control of Astatic
tb

, then adversary obtains no infor-
mation about s.

We now prove the properties of Πi
tb

.

Claim 4 (Property (a)). If wi is corrupted and has communicated p′i(x) 6=
pi(x) to B, then it will be disqualified by A at the end of the second phase.

Proof: To prove the claim, we show that there will be at least one pair
(p′i(αj), r

′
ij), for some j, such that p′i(αj) 6= pi(αj), which will be detected by B

and sent over to A reliably. From this pair, A can always detect that wi is cor-
rupted and has transmitted a wrong polynomial. So being a corrupted wire, let
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Protocol Πi
tb

Phase I: A to B

• A selects a random polynomial pi(x) over F of degree tb, such that pi(0) = s.
A sends over wi, the polynomial pi(x) (We assume that a polynomial is sent
by communicating its coefficients) and over each wire wj , 1 ≤ j ≤ n, A sends
rij = pi(αj), where αj , 1 ≤ j ≤ n are publicly known values from F.

Phase II: B to A

• Let B receive the polynomial p′i(x) over wi and the value r′ij , 1 ≤ j ≤ n over wire
wj , 1 ≤ j ≤ n.

• For every pair of values such that p′i(αj) 6= r′ij , B tries to reliably send these

values to A. For this, B broadcasts (In [50, 36], these values are transmitted
using efficient reliable protocol, using a technique called Matching Technique,
which ensures that A correctly receives them) the pair (p′i(αj), r

′

ij).

Local Computation by A

• For every broadcasted pair (p′i(αj), r
′

ij), A verifies p′i(αj)
?
= pi(αj) and r′ij

?
= rij .

• If the first test fails, then it implies that B has received incorrect pi(x) over wi

and hence A discards wire wi. If the first test succeeds but the second test fails,
then A concludes that B has received incorrect rij = pi(αj) over wj and hence
discards wire wj .

• After completing the above test for each broadcasted pair, if wi is not discarded,
then A concludes that B has received s correctly.

Table 6: Sub-protocol used in existing PSMT/OPSMT protocols against Astatic
tb

, n = 2tb + 1

wi has transmitted p′i(x) 6= pi(x). Out of the n wires between A and B, at most
tb are under the control of Astatic

tb
. Hence those corrupted tb wires may transmit

values corresponding to p′i(x). Since both pi(x) and p′i(x) are polynomials of
degree tb, they may have at most tb common points (lying on both of them). In
the worst case, polynomial p′i(x) may match with the values received over 2tb
wires (tb corrupted wires + tb honest wires). But since n = 2tb + 1, there is
n − 2tb = 1 honest wire, say wj , who will correctly delivers r′ij = rij = pi(αj)
to B and p′i(αj) 6= pi(αj). In this case, wi and wj will conflict each other and
hence B will broadcast (p′i(αj), r

′
ij).

At the end of second phase, A will correctly receive (p′i(αj), r
′
ij) and will

identify that p′i(αj) 6= pi(αj) and hence will conclude that wi is corrupted. 2

Claim 5 (Property (b)). If wi is uncorrupted, then A is certain at the end
of second phase that B has correctly received the value s.

Proof: If wi is uncorrupted then p′i(x) = pi(x). Moreover, the honest wires
will correctly deliver r′ij = rij . So for every honest wj , p′i(αj) = r′ij will hold.
However, a corrupted wj may deliver r′ij 6= rij and so p′i(αj) 6= r′ij . In this case,
B will broadcast (p′i(αj), r

′
ij). On receiving such pairs, A will identify that

p′i(αj) = pi(αj) but r′ij 6= rij and hence will discard wj . Since wi has delivered
pi(x) correctly, A will be certain that B has correctly received the value s. 2
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Claim 6 (Property (c)). If wi is not under the control of Astatic
tb

, then ad-
versary obtains no information about s.

Proof: If wi is not under the control of Astatic
tb

, then adversary will not know
pi(x). However, Astatic

tb
will know tb distinct points on pi(x) by eavesdropping

at most tb wires. However, degree of pi(x) is tb and hence Astatic
tb

will be short
by one point to uniquely interpolate pi(x). Thus, Astatic

tb
will not know any

information about s = pi(0). 2

The three phase OPSMT protocol of [36] performs n = 2tb + 1 parallel
executions of sub-protocol Πi

tb
, one for each wire wi. By replacing the broadcast

in second step of Phase II of Πi
tb

, with the technique called matching technique
[50], of reliably sending the conflicting pair of values (p′i(αj), r

′
ij), the OPSMT

protocol of [36] incurs a total communication cost of O(n2). The OPSMT
protocol of [36] is communication optimal due to the following high-level idea:
Since there are n − tb = tb + 1 honest wires free from Astatic

tb
, the execution

of the sub-protocol Πi
tb

corresponding to these honest wires will be successful.
Thus the s values which are transmitted using these executions will be correctly
and secretly established between A and B. These s values can be treated as a
random one time pad of length n − tb = tb + 1, established between S and R,
about which Astatic

tb
has no information. Using this pad, S can mask a message

of size tb + 1 = Θ(n) by X-ORing it with the pad. S then reliably sends the
blinded message by broadcasting it, incurring a communication cost of O(n2).
This results in the three phase OPSMT protocol of [36], which sends a message
of size Θ(n) by communicating O(n2) field elements over n = 2tb + 1 wires.

Similarly, the two phase OPSMT protocol of [1] and [25] parallely executes
a slightly modified version of sub-protocol Πi

tb
, one for each wire wi and tries

to establish an information theoretic secure one time pad of appropriate length
between S and R.

Now for designing OPSMT protocol against Astatic
(tb,tf ,tp), we require n = 2tb +

tp + tf + 1 wires between S and R (see Theorem 10). Let Πi
(tb,tf ,tp) be the

extended version of sub-protocol Πi
tb

, tolerating Astatic
(tb,tf ,tp). The only change

in Πi
(tb,tf ,tp) is that the degree of the polynomial pi(x) is now tb + tp instead

of tb. This is because Astatic
(tb,tf ,tp) can passively listen the contents of at most

tb + tp wires out of 2tb + tp + tf + 1 wires. Out of the n wires, there are only
n− (tb + tf + tp) = tb +1 wires which are completely free from Astatic

(tb,tf ,tp). Hence

the execution of sub-protocol Πi
(tb,tf ,tp) corresponding to these honest wires will

contribute to the establishment of common secret information between S and
R, about which Astatic

(tb,tf ,tp) will have no information. Note that the remaining

tb + tf + tp executions of sub-protocol Πi
(tb,tf ,tp) corresponding the wires under

the control of Astatic
(tb,tf ,tp), may not lead to the establishment of any common

secret information between S and R. This is because along tf wires the sub-
protocol may fail due to fail-stop corruption. Furthermore, the adversary may
know the secret corresponding to the execution of remaining tb + tp executions
of Πi

tb,tf ,tp
by passively listening to the polynomials of these wires. Thus, in
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the worst case, the resultant protocol establishes a random one time pad of
length tb + 1 between S and R by communicating O(n2) field elements, where
n = 2tb + tf + tp + 1. Now using this pad, S can securely send a message
containing tb + 1 field elements by communicating O(n2) field elements. Now
notice that unlike in the case of only Byzantine adversary (where n = 2tb + 1
and tb = Θ(n)), tb may not be Θ(n) in the presence of mixed adversary, where
n = 2tb + tf + tp + 1. In the worst case, tb may be constant. This does not lead
to an OPSMT protocol tolerating Astatic

(tb,tf ,tp) (see Theorem 11). This is because

if n = 2tb + tf + tp + 1 and the total communication complexity of the protocol
is O(n2), then the protocol is OPSMT in the presence of Astatic

(tb,tf ,tp) only if it

sends a message of size tb + tf + tp = Θ(n).
Hence the techniques of [36] and [1, 25] for designing OPSMT protocol

against Astatic
tb

cannot be extended in a straightforward manner for the design
of OPSMT protocol against mixed adversary. To achieve optimality, S should
be able to securely establish a one time pad of size tb + tf + tp, instead of tb +1
by communicating O(n2) field elements. Thus we require new techniques for
designing OPSMT protocol against mixed adversary, which we explore in the
sequel.

6.4. Four Phase OPSMT Tolerating Astatic
(tb,tf ,tp)

Let S and R be connected by n = 2tb + tf + tp + 1 wires wi, 1 ≤ i ≤ n.
We design a four phase OPSMT protocol 4-OPSMT-Static, which securely sends
a message containing n field elements by communicating O(n2) field elements,
tolerating Astatic

(tb,tf ,tp). We first design few sub-protocols and finally combine them

to obtain 4-OPSMT-Static.

6.4.1. Protocol Pad-Establishment-Static - A Conditional Single Phase Protocol
to Establish a One Time Pad Tolerating Astatic

(tb,tf ,tp)

Suppose A and B are connected by n = 2tb + tf + tp + 1 wires that are
under the influence of Astatic

(tb,tf ,tp). Also assume that A in advance knows the

identity of at least tb

2 wires which are under the control of Astatic
(tb,tf ,tp) in Byzantine

fashion. Under this assumption, we design a single phase protocol called Pad-

Establishment-Static, which securely establishes a random one time pad of length
n between A and B, which is information theoretically secure from Astatic

(tb,tf ,tp).

The protocol is given in Table. 7.
We now prove the properties of protocol Pad-Establishment-Static.

Lemma 10 (Correctness). Suppose A in advance knows the identity of at
least tb

2 wires which are under the control of Astatic
(tb,tf ,tp) in Byzantine fashion.

Then protocol Pad-Establishment-Static correctly establishes the n tuple q =
[q1(0) . . . qn(0)] between A and B in a single phase, tolerating Astatic

(tb,tf ,tp).

Proof: From Lfault, B identifies |Lfault| ≥
tb

2 Byzantine corrupted wires and
neglects them. Among the remaining wires, at most tf may fail to deliver
any information due to fail-stop corruption. So in the worst case, N ′ = n −
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Protocol Pad-Establishment-Static: n = 2tb + tf + tp + 1

Assumption: A knows the identity of at least tb
2

wires, which are Byzantine corrupted.

Computation by A :

1. A saves the identity of the wires which are known to be Byzantine corrupted,
in a list Lfault. According to the assumption, tb

2
≤ |Lfault| ≤ tb.

2. A selects n random polynomials qj(x), 1 ≤ j ≤ n, over F, each of degree
tb − |Lfault|+ tp.

3. For j = 1, . . . , n, using qj(x), A computes RS codeword Qj =
[qj1 qj2 . . . qjn] of size n, where qji = qj(αi), for i = 1, . . . , n.

Communication by A :

1. For i = 1, . . . , n, if wi 6∈ Lfault, then A sends to B the ith component of
the n codewords, namely q1i, q2i, . . . , qni over wi.

2. A broadcasts Lfault to B.

Computation by B :

1. B correctly receives Lfault and neglects any information received over wi ∈
Lfault.

2. Among the wires in {w1, . . . , wn} − Lfault, let wi1 , . . . , wiN′
be the wires

that delivered some information to B. Note that n− tf − |Lfault| ≤ N ′ ≤
n − |Lfault|. Moreover, N ′ is at least n − tf − |Lfault|, as among the
n− |Lfault| wires, at most tf wires may fail to deliver any information due
to fail-stop corruption.

3. For j = 1, . . . , n, let B receive q′ji1
, . . . , q′jiN′

over wires wi1 , . . . , wiN′
,

respectively. Let Q′

j = [q′ji1
. . . q′jiN′

].

4. For j = 1, . . . , n, B recovers qj(x) (and hence qj(0)) by executing RS −
DEC(N ′, Q′

j , tb − |Lfault|, 0, tb − |Lfault|+ tp + 1).

The n tuple q = [q1(0) . . . qn(0)] is established correctly and securely between A and B.

Table 7: Single Phase Protocol to Establish a One Time Pad of length n = 2tb + tf + tp + 1

|Lfault|− tf . The received vector Q′
j corresponds to the RS codeword Qj that is

encoded using polynomial qj(x) of degree tb−|Lfault|+tp. Since B has neglected
information corresponding to |Lfault| Byzantine corrupted wires, there are at
most tb − |Lfault| corrupted values in each Q′

j . Now B can recover the original
polynomial qj(x) corresponding to each Q′

j . In fact, substituting N ′ = n −
|Lfault|−tf , k = tb−|Lfault|+tp+1, c = tb−|Lfault| and d = 0 in the inequality
of Theorem 2, we find that RS−DEC(N ′, Q′

j, tb−|Lfault|, 0, tb−|Lfault|+tp+1)

will be able to correct all the tb − |Lfault| ≤
tb

2 Byzantine errors in Q′
j. 2

Lemma 11 (Security). In protocol Pad-Establishment-Static, Astatic
(tb,tf ,tp) will

get no information about the pad q = [q1(0) . . . qn(0)].

Proof: In the protocol, the adversary gets at most tb − |Lfault| + tp distinct
points on each tb−|Lfault|+tp degree polynomial qj(x). This implies information
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theoretic security of each qj(0). 2

Lemma 12 (Communication Complexity). Protocol Pad-Establishment-Static

communicates O(n2) field elements.

Proof: For each qj(x), 1 ≤ j ≤ n, A sends n − |Lfault| = O(n) values which
incurs a total communication complexity of O(n2). Also communication com-
plexity of broadcasting Lfault is O(n2). 2

6.4.2. Protocol Error-Identification-Static - A Three Phase Protocol to Identify
at least tb

2 Byzantine Corrupted Wires Tolerating Astatic
(tb,tf ,tp)

As before, let A and B are connected by n = 2tb + tf + tp + 1 wires that are
under the influence of Astatic

(tb,tf ,tp). We now design a three phase protocol called

Error-Identification-Static that has the following properties:

1. If at most tb

2 wires get Byzantine corrupted during first phase, then A
securely establishes a one time pad of length n with B at the end of
second phase.

2. If more than tb

2 wires get corrupted during first phase, then the pad will
not be established. However, either A comes to know the identity of at
least tb

2 Byzantine corrupted wires at the end of second phase or B comes
to know the identity of at least tb

2 Byzantine corrupted wires at the end
of third phase, depending upon the adversary behavior.

Thus the protocol creates a win-win situation against the adversary as fol-
lows: if the adversary does at most tb

2 Byzantine faults in the first phase, then
an information theoretic secure one time pad is established between A and
B. Otherwise, either A or B will come to know the identity of more than tb

2
Byzantine corrupted wires. Informally, the protocol works as follows: A selects
n polynomials each of degree tb + tp and sends a RS codeword of length n for
each of these polynomials to B. B applies RS − DEC to the received vectors,
assuming the number of errors in the vectors to be at most tb

2 and tries to re-
cover the n polynomials. If corresponding to some vector, B is unable to recover
anything, then B concludes that more than tb

2 errors occurred in that vector.
In this case, B sends back this vector to A, who after comparing it with its
corresponding original codeword, finds the identity of at least tb

2 + 1 corrupted
wires. Otherwise, B recovers n polynomials of degree tb + tp, but is unable to
decide about their correctness. In this case, B broadcasts the n error lists to
A, that are output by applying RS − DEC to the codewords. A then verifies
whether all the error lists are “good” or not. If yes, then A concludes that B
has correctly recovered all the n polynomials. Otherwise, A identifies at least
one polynomial that is not recovered correctly by B because of more than tb

2
faults during Phase I. A then broadcasts to B, the original codeword of that
polynomial, generated by him during Phase I. This broadcast enables B to
identify more than tb

2 faults after local verification at the end of Phase III.
The protocol is now presented in Table 8.

We now proceed to formally prove the properties of protocol Error-Identification-

Static.
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Protocol Error-Identification-Static

Phase I: (A to B) :

Computation by A :

1. A randomly selects n polynomials p1(x), . . . , pn(x) over F, each of degree tb +tp.

2. For j = 1, . . . , n, A computes RS codeword Pj = [pj1 pj2 . . . pjn], where for
i = 1, . . . , n, pji = pj(αi).

Communication by A :

1. For i = 1, . . . , n, A sends the ith component of all n codewords, namely
p1i, p2i, . . . , pni, over wi.

Phase II: (B to A) :

Computation by B :

1. Let B receive information over wires wi1 , . . . , wiN′
, where N ′ ≥ n− tf .

2. For j = 1, . . . , n, let B receive p′ji1
, . . . , p′jiN′

over wires wi1 , . . . , wiN′
respec-

tively. Let P ′

j = [p′ji1
. . . p′jiN′

].

3. For j = 1, . . . , n, B executes RS −DEC(N ′, P ′

j , tb
2

, 0, tb + tp + 1).

Communication by B :

1. If ∃j ∈ {1, 2, . . . , n} such that RS − DEC(N ′, P ′

j , tb
2

, 0, tb + tp + 1) does not
output any polynomial of degree tb + tp, then B broadcasts “ERROR” signal
and vector P ′

j , along with its index j.

2. If for each P ′

j , RS − DEC outputs some polynomial of degree tb + tp and an
error list, then B proceeds as follows:

– For j = 1, . . . , n, let Error Listj denote the error list output by RS −DEC
for P ′

j . Also let Lj be the number of pairs in Error Listj . By the property of

RS−DEC (as described in section 4), Lj ≤
tb
2

will hold, where tb
2

is the number
of errors that RS−DEC is instructed to correct. B broadcasts Error Listj for
j = 1, . . . , n.

Computation by A at the End of Phase II :

1. If A receives “ERROR” signal and index j along with P ′

j , then A locally compares

P ′

j with Pj ( after restricting Pj to wires wi1 , . . . , wi
N′

), finds the identity of at least
tb
2

+1 faulty wires which delivered incorrect components of Pj during first phase and
terminates the protocol.

2. If A receives n error-lists and all the n error lists are “good”, then A concludes that B
has recovered each pj(x), 1 ≤ j ≤ n correctly and terminates the protocol. Otherwise,
A finds at least one j ∈ {1, 2, . . . , n}, such that Error Listj is ”bad”. If there are
multiple such j’s, A randomly selects one. In this case, A concludes that B has
reconstructed p̄j(x) 6= pj(x) and initiates Phase III as follows:

Conditional Phase III: (A to B) :

1. If A has identified a j such that B has reconstructed p̄j(x) 6= pj(x), then A broadcasts
to B the index j and Pj = [pj1 pj2 . . . pjn].

2. B correctly receives Pj , compares it with the vector P ′

j (which it had received during

Phase I), identifies more than tb
2

faulty wires and terminates the protocol.

Table 8: A Three Phase Protocol to Identify More than tb
2

Byzantine Faults
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Lemma 13. 1. If at most tb

2 Byzantine errors occur during Phase I, then
an information theoretically secure pad p = [p1(0) p2(0) . . . pn(0)] of
length n is established between A and B at the end of Phase II.

2. If more than tb

2 Byzantine errors occur during Phase I, then either A or
B comes to know the identity of more than tb

2 corrupted wires at the end
of Phase II or Phase III respectively.

Proof: We prove the theorem for the worst case where during Phase I, tf
wires failed to deliver any information to B. Thus B receives information over
N ′ = n− tf = 2tb + tp +1 wires during first phase. For j = 1, . . . , n, each of the
received vectors P ′

j will contain N ′ = 2tb + tp + 1 values, out of which at most
tb could be corrupted. Also, each P ′

j corresponds to the RS codeword Pj that is
encoded using polynomial pj(x) of degree tb + tp. During Phase II, B tries to
correct at most c = tb

2 and detect additional d = 0 errors in each P ′
j by applying

RS −DEC. By substituting N ′ = 2tb + tp + 1, c = tb

2 , d = 0 and k = tb + tp +1
in the inequality of Theorem 2, we find that RS−DEC(N ′, P ′

j ,
tb

2 , 0, tb + tp +1)

will be able to correct at most tb

2 errors and detect no additional errors in P ′
j .

Moreover, B has no information about the exact number of Byzantine errors
that occurred during Phase I (except that it is at most tb). Now there are
following two cases:

Case I: At most tb

2 Byzantine errors occurred during Phase I : In this
case at most tb

2 values in each P ′
j could be corrupted. Hence for each P ′

j ,
RS − DEC will output pj(x) and a ”good” error list after successfully
correcting all the errors in P ′

j . However, B will not know whether the
recovered polynomials are correct or not. This is because the number of
actual errors that can happen (i.e t′b) can be more than the error correction
capability (i.e c) of RS−DEC. Moreover, as RS−DEC has no capability
of detecting additional errors (as d = 0 here), B is not sure whether pj(x)
is the original polynomial used for encoding Pj and the error list is ”good”.
The situation here is similar to the one that arises in Example 2. Hence to
know the status of the recovered polynomials, B broadcasts each error list
to A who will correctly receive them. When A gets the error lists from
B and finds them to be ”good”, he concludes that B has recovered each
pj(x) correctly. Hence the vector p = [p1(0) p2(0) . . . pn(0)] is established
correctly between A and B.

The security of p follows from the fact that during Phase I, the adversary
gets at most tb+tp points (by passively listening over tb+tp wires) on each
pj(x), which is of degree tb + tp. Thus each pj(0) is information theoretic
secure. Also notice that each of the n error lists are ”good”, thus they
leak no extra information about pj(x)’s to Astatic

(tb,tf ,tp). This is because in

this case, the values in each error lists are indeed corrupted, which are
already known to the adversary and hence add no extra information to
the knowledge of adversary.

Case II: More than tb

2 Byzantine errors occurred during Phase I : With-
out loss of generality, let pj(x) be one of the polynomials, corresponding
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to which at least tb

2 + 1 values have been corrupted by adversary dur-
ing Phase I. Thus jth received vector P ′

j will have more than tb

2 cor-
rupted values. So B will fail to correctly reconstruct pj(x) by executing
RS − DEC(N ′, P ′

j ,
tb

2 , 0, tb + tp + 1). Now there are two possible cases:

1. Suppose the values in P ′
j are corrupted in such a way that RS−DEC,

when applied to P ′
j , fails to output any tb + tp degree polynomial.

In this case, B knows that more than tb

2 values in P ′
j are corrupted.

However, he will not the exact identity of the corrupted wires, who
delivered those corrupted values. In order to facilitate A to find
the identity of those corrupted wires, B broadcasts P ′

j to A, along
with “ERROR” signal and index j. Once A correctly receives these
values and performs local comparison of P ′

j with Pj , A will know

the identity of all the corrupted wires (at least tb

2 + 1) who delivered
incorrect values of Pj to B during first phase.

2. Suppose the values in P ′
j are corrupted in such a way that RS−DEC,

when applied to P ′
j , outputs a tb + tp degree polynomial p̄j(x), along

with Error Listj. In this case p̄j(x) 6= pj(x). Moreover, Error Listj
is “bad” and contains a correct value of Pj in it (pointed as a cor-
rupted value) 13. The reason is that there are tb + tp +1 honest wires
which will deliver correct points on pj(x). Among them at most tb+tp
could lie on p̄j(x) as well, as pj(x) and p̄j(x) (both of degree tb + tp)
may have at most tb + tp common points lying on them. But the
remaining one honest value lies on only pj(x) and not lies on p̄j(x).
Hence that honest value will be considered as an error location and
will be included in Error Listj.
However as described in Case I, B will not know whether the recov-
ered polynomial is correct or not. Hence, B broadcasts Error Listj
to A. Once A correctly receives Error Listj and performs local ver-
ification, A will find Error Listj to be ”bad” and will conclude that
B has recovered incorrect pj(x) because of more than tb

2 incorrect
values in P ′

j . But A will not know the identity of these corrupted
wires. To facilitate B to find out the identity of corrupted wires,
A will execute third phase, where he will broadcast Pj to B. After
receiving Pj correctly, B finds the identity of corrupted wires (more
than tb

2 ) after performing local comparison of Pj and P ′
j .

This completes the proof of the lemma. 2

Lemma 14. The communication complexity of protocol Error-Identification-Static

is O(n2tb).

Proof: During first phase, A sends a RS codeword of length n for n polynomials,
thus communicating O(n2) field elements. During second phase, in the worst

13This case is similar to Property 4 as explained in Section 4.
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case, B broadcasts n error-lists, each containing at most tb

2 pairs, thus com-
municating O(n2tb) field elements. Communication complexity of conditional
third phase is O(n2) field elements. Hence overall complexity is O(n2tb) field
elements. 2.

6.4.3. Reducing the Communication Complexity of Protocol Error-Identification-

Static

In protocol Error-Identification-Static, the most communication oriented step
is in Phase II, where B may have to broadcast n error lists to reliably send
them to A. This incurs a communication cost of O(n2tb). We now present
a nice trick to reduce the communication complexity of sending n error-lists
from O(n2tb) to O(n2) during Phase II of protocol Error-Identification-Static,
without changing the properties of the protocol.

Let ERROR ListJ be the error-list with maximum number of pairs LJ ,
where J ∈ {1, 2, . . . , n}. If there are several error-lists with LJ pairs, then
B arbitrarily selects one. B then broadcasts only Error ListJ and sends the
remaining error-lists concatenated into a list Y by executing protocol PRMT-

Mixed(Y, |Y |, n, tb, tf , LJ). A correctly receives Error ListJ and verifies whether
it is ”good” . If it is good, then A concludes that B has correctly recovered
pJ(x). Moreover, A will identify LJ faulty wires from Error ListJ as all the
pairs listed in Error ListJ are indeed corrupted values. Now from Theorem 3,
protocol PRMT-Mixed will correctly deliver the list Y containing the remaining
error-lists. The rest of the protocol will now be same.

On the other hand, if A finds that Error ListJ is ”bad”, then A concludes
that B has not recovered pJ(x) correctly. In this case, A fails to know LJ faults
from Error ListJ and hence PRMT-Mixed will fail to deliver Y correctly. But
A identifies one polynomial, namely pJ(x), which is not recovered correctly by
B (due to more than tb

2 errors during Phase I). Note that while the properties
of protocol Error-Identification-Static (Lemma 13) remain intact by incorporating
these changes, the communication complexity reduces to O(n2). We now provide
the complete description of Error-Identification-Static that incorporates the above
mentioned changes for attaining a communication complexity of O(n2) in Table
9.

Lemma 15. The communication complexity of new Error-Identification-Static

(presented in Table 9) after incorporating new steps is O(n2).

Proof: During first phase, A sends a RS codeword of length n for n polynomials,
thus communicating O(n2) field elements. During second phase, broadcasting
a single error-list (Error ListJ) requires communicating O(n2) field elements.
From Lemma 2 and Theorem 3, sending the remaining error-lists by executing

PRMT-Mixed(Y, |Y |, n, tb, tf , LJ) will require communication of O
(

|Y |
LJ

∗ n
)

=

O(n2) field elements as |Y | ≤ (n − 1) ∗ (2LJ). Communication complexity of
conditional third phase is O(n2) field elements. Hence overall complexity is
O(n2) field elements. 2
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Protocol Error-Identification-Static

Phase I: (A to B) : Same as presented in Table 8.

Phase II: (B to A) :

Computation by B: Same as presented in Table 8.

Communication by B:

1. If ∃j ∈ {1, 2, . . . , n} such that RS − DEC(N ′, P ′

j , tb
2

, 0, tb + tp + 1) does not
output any polynomial of degree tb + tp, then B broadcasts “ERROR” signal
and vector P ′

j , along with its index j.

2. If for each P ′

j , RS − DEC outputs some polynomial of degree tb + tp and an
error list, then B proceeds as follows:

(a) For j = 1, . . . , n, let Error Listj denote the error list output by RS−DEC
for P ′

j . Also let Lj be the number of pairs in Error Listj . By the property

of RS −DEC (as described in section 4), Lj ≤
tb
2

will hold, where tb
2

is
the number of errors that RS −DEC is instructed to correct.

(b) Let J ∈ {1, 2, . . . , n} be the smallest index, such that Error ListJ has
maximum number of pairs LJ .

(c) B concatenates all the error-lists, except Error ListJ to form a list Y .
(d) B broadcasts Error ListJ along with its index J to A.
(e) B sends the list Y by executing the protocol PRMT-

Mixed(Y, |Y |, n, tb, tf , LJ).

Computation by A at the End of Phase II :

1. If A receives “ERROR” signal and index j along with P ′

j , then A locally com-

pares P ′

j with Pj ( after restricting Pj to wires wi1 , . . . , wiN′
), finds the identity

of at least tb
2

+1 faulty wires which delivered incorrect components of Pj during
first phase and terminates the protocol.

2. If A receives the index J and Error ListJ , then A locally verifies Error ListJ
and then performs the following steps:

(a) If Error ListJ is “bad” then A concludes that B has reconstructed
p̄J(x) 6= pJ(x) and executes conditional Phase III.

(b) If Error ListJ is ”good” then A concludes that B has correctly recovered
pJ(x). A also identifies LJ Byzantine corrupted wires from Error ListJ
and hence from Theorem 3, correctly receives Y delivered by PRMT-Mixed.

(c) From Y , A obtains the remaining n − 1 error lists. A then checks if the
remaining n − 1 error-lists are “good”. If yes then A concludes that B
has recovered each pj(x), 1 ≤ j ≤ n correctly and terminates the proto-
col. Otherwise, A finds at least one j ∈ {1, 2, . . . , n} \ {J}, such that
Error Listj is ”bad”. If there are multiple such j’s, A randomly selects
one. In this case, A concludes that B has reconstructed p̄j(x) 6= pj(x) and
initiates Phase III.

Conditional Phase III: (A to B) :

1. If A has identified an α (notice that α can be J or j) such that B has
reconstructed p̄α(x) 6= pα(x), then A broadcasts to B the index α and
Pα = [pα1 pα2 . . . pαn].

2. B correctly receives Pα, compares it with the vector P ′

α (which it had received

during Phase I), identifies more than tb
2

faulty wires and terminates the pro-
tocol.

Table 9: A Three Phase Protocol to Identify More than tb
2

Byzantine Faults with a Commu-

nication Complexity of O(n2)
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Lemma 16. The properties given in Lemma 13 will hold for new Error-Identification-

Static (presented in Table 9) even after incorporating new steps.

Proof: If at most tb

2 Byzantine errors occur during Phase I, then each of the n
error lists will be ”good”. In this case, A on receiving Error ListJ will identify
that it is ”good” and hence will know the identity of LJ Byzantine corrupted
wires. So from Theorem 3, protocol PRMT-Mixed will correctly deliver the
remaining n − 1 error lists. A will find all the remaining n − 1 error lists to be
”good” and hence he concludes that B has recovered each pj(x) correctly. Thus
the vector p = [p1(0)p2(0) . . . pn(0)] will be established correctly between A and
B. The secrecy of p = [p1(0)p2(0) . . . pn(0)] can be argued in the same way as
done in Lemma 13.

Now consider the case when more than tb

2 wires are Byzantine corrupted
during Phase I. Then, we have the following two cases:

1. If there exists some j ∈ {1, 2, . . . , n} such that after applying RS − DEC
on P ′

j , B does not obtain any tb + tp degree polynomial, then property 2
of Lemma 13 will follow from the proof of part 1 of Case II of Lemma
13.

2. If for each P ′
j , RS−DEC outputs a polynomial of degree tb + tp, then we

have the following two sub-cases:

Sub-Case I : If Error ListJ is ”good”, then it implies that B has cor-
rectly recovered pJ(x). In this case, A on receiving Error ListJ will
also conclude the same. Moreover, since each value in Error ListJ is
indeed corrupted, the wires which delivered those values to B during
Phase I are Byzantine corrupted. Thus A will know the identity of
LJ Byzantine corrupted wires from Error ListJ . Now, from The-
orem 3, protocol PRMT-Mixed will correctly deliver the remaining
n−1 error lists, concatenated to a list Y . Since more than tb

2 Byzan-
tine errors has occurred during Phase I, at least one of the error lists
in the remaining n − 1 error lists, say Error Listj, will be ”bad”,
which will be identified by A. In this case, A will execute the condi-
tional Phase III and hence at the end of Phase III, B will know
the identity of Byzantine corrupted wires (more than tb

2 ), which de-
livered incorrect values of Pj during Phase I. Thus property 2 of
Lemma 13 will hold.

Sub-Case II : If Error ListJ is ”bad”, then it implies that B has not
correctly recovered pJ(x) because of more than tb

2 corrupted values in
P ′

J . In this case, A on receiving Error ListJ will conclude the same
and will execute conditional Phase III. At the end of Phase III,
B will know the identity of Byzantine corrupted wires (more than
tb

2 ), which delivered incorrect values of PJ during Phase I. Thus
property 2 of Lemma 13 will hold in this case as well.

This completes the proof of the lemma. 2
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6.4.4. Protocol 4-OPSMT-Static: A Four Phase OPSMT Tolerating Astatic
(tb,tf ,tp)

We now design a four phase OPSMT called 4-OPSMT-Static tolerating Astatic
(tb,tf ,tp),

where S and R are connected by n = 2tb+tf +tp+1 wires. The protocol sends a
message m containing n field elements by communicating O(n2) field elements.
This also shows the sufficiency of the condition given in Theorem 10. The proto-
col uses Error-Identification-Static and Pad-Establishment-Static as sub-protocols.
By using these two sub-protocols, S and R tries to establish an information the-
oretically secure pad containing n field elements. Once this is done, S can blind
the message by X-ORing it with the pad and broadcast the blinded message to
R. On receiving the blinded message, R extracts the message by X-ORing the
blinded message with the pad. The protocol is presented in Table 10.

Protocol 4-OPSMT-Static

R and S starts executing protocol Error-Identification-Static, where Phase I is initiated
by R.

1. IF at the end of Phase II of protocol Error-Identification-Static, R finds that the
pad p = [p1(0) p2(0) . . . pn(0)] is established securely between R and S, then
R broadcasts “SUCCESS-R” signal to S in the Phase III. S on receiving the
signal “SUCCESS-R”, computes Γ = m ⊕ p, broadcasts Γ to R in Phase IV
and terminates the protocol. R correctly receives Γ, recovers m = Γ ⊕ p and
terminates the protocol.

2. IF at the end of Phase II of protocol Error-Identification-Static, R identifies at
least tb

2
+ 1 Byzantine corrupted wires, then R securely establishes the one time

pad q = [q1(0) q2(0) . . . qn(0)] with S at the end of Phase III by executing
the single phase protocol Pad-Establishment-Static. Once this is done, S computes
Γ = m⊕ q, broadcasts Γ to R during Phase IV and terminates the protocol. R
correctly receives Γ, recovers m = Γ⊕ q and terminates the protocol.

3. IF conditional Phase III of protocol Error-Identification-Static is executed, then
S identifies at least tb

2
+ 1 Byzantine corrupted wires at the end of third phase.

S then securely establishes the one time pad q = [q1(0) q2(0) . . . qn(0)] with
R by executing the single phase protocol Pad-Establishment-Static during Phase
IV. Moreover, S also computes Γ = m⊕ q, broadcasts Γ to R during Phase IV
and terminates the protocol. R gets the pad q at the end of Phase IV, recovers
m = Γ⊕ q and terminates the protocol.

Table 10: A Four Phase OPSMT Tolerating Astatic
(tb,tf ,tp)

, n = 2tb + tf + tp + 1, |m| = n

We now prove the properties of protocol 4-OPSMT-Static.

Lemma 17 (Correctness). Protocol 4-OPSMT-Static correctly delivers m in
four phases.

Proof: In the protocol, m is masked by S using either the pad p or q. To prove
the lemma, we show that R will also get the same pad in four phases. In the
protocol, there are following two possibilities:

Case I: Error-Identification-Static terminates in two phases : Here there
are further two possibilities:

Sub-Case (a): At the end of second phase, R concludes that the
pad p is correctly established with S: In this case, R broadcasts
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“SUCCESS-R” signal to S during Phase III. So at the end of Phase
III, S will know that pad p is established between him and R.

Sub-Case (b): At the end of Phase II, R identifies at least tb

2 +1
Byzantine corrupted wires: In this case, with the knowledge of
tb

2 +1 Byzantine corrupted wires, R executes the single phase protocol
Pad-Establishment-Static to establish the pad q. From Lemma 10, S
will correctly get the pad q at the end of Phase III.

Case II: Error-Identification-Static terminates in three phases : In this
case, S will identify at least tb

2 + 1 Byzantine corrupted wires at the end
of Phase III (Lemma 13). Now with the knowledge of tb

2 + 1 Byzantine
corrupted wires, S executes the single phase protocol Pad-Establishment-

Static to establish the pad q. From Lemma 10, R will correctly get the
pad q at the end of Phase IV.

This completes the proof of the lemma. 2

Lemma 18 (Security). In protocol 4-OPSMT-Static, m will be information
theoretically secure.

Proof: The secrecy of m depends upon the secrecy of the pad, using which m
is masked. If p is used as the masking pad, then secrecy of m follows from the
secrecy of pad p (see Lemma 13). On the other hand, if q is used as the masking
pad, then secrecy of m follows from the secrecy of pad q (see Lemma 11). 2

Lemma 19 (Communication Complexity). Communication complexity of
protocol 4-OPSMT-Static is O(n2).

Proof: From Lemma 15 and Lemma 12, establishing the pad by executing
protocols Error-Identification-Static and Pad-Establishment-Static incurs a com-
munication cost of O(n2). Moreover, since the message size is n, the blinded
message Γ will also contain n field elements and hence broadcasting it will re-
quire communicating O(n2) field elements. Thus the communication complexity
of the protocol is O(n2). 2

Theorem 12. Protocol 4-OPSMT-Static is an efficient OPSMT protocol toler-
ating Astatic

(tb,tf ,tp).

Proof: From Theorem 11, any four phase PSMT over n = 2tb+tf +tp+1 wires
must communicate Ω(n2) field elements to securely send a message containing
n field elements against Astatic

(tb,tf ,tp). From Lemma 19, the total communication

complexity of the protocol is O(n2). Hence protocol 4-OPSMT-Static is an
OPSMT protocol tolerating Astatic

(tb,tf ,tp). It is easy to see that both S and R

performs polynomial computation in the protocol. 2

Theorem 13. Let S and R be connected by n = 2tb + tf + tp + 1 wires. Then
there exists an efficient four phase OPSMT protocol which securely sends a
message containing ℓ ≥ n field elements by communicating O(nℓ) field elements
against Astatic

(tb,tf ,tp).
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Proof: In order to send the message, S will divide it into several sub-blocks and
securely sends each sub-block by concurrently executing the protocol 4-OPSMT-

Static. Since each of these protocols will take four phases, the over all protocol
will terminate in four phase. Moreover, the communication complexity of the
protocol will be O

(

ℓ
n
.n2

)

= O(nℓ). From Theorem 11, any four phase PSMT
over n = 2tb+tf +tp+1 wires must communicate Ω(nℓ) field elements to securely
send a message containing ℓ ≥ n field elements tolerating Astatic

(tb,tf ,tp). Thus the

resultant protocol will be an efficient OPSMT protocol tolerating Astatic
(tb,tf ,tp). 2

Remark 2. Note that 4-OPSMT-Static sends only codeword of polynomials, in
contrast to the existing protocol summarized in section 6.3, which sends both
polynomial and its codeword. The advantage that we get by sending only code-
word is that we obtain one information theoretic secure value per codeword (af-
ter some intermediate information exchanges and then applying RS decoding).
Soon, we will show that this technique can be used to design OPSMT protocols
even against mobile mixed adversary.

7. Network Model and Definitions Used For Mobile Adversary

Till now, we have considered a static adversary, who corrupts the same set of
wires in each phase of the protocol. We now move on to design PSMT protocols
against mobile mixed adversary. For that, we describe the network model used
in the presence of mobile mixed adversary.

As in the case of Astatic
(tb,tf ,tp), we assume that S and R are two nodes in an

undirected synchronous network and the network is abstracted as wires, where
S and R are connected by n parallel and bi-directional wires. We assume that
there exists an adversary Amobile

(tb,tf ,tp), who has unbounded computing power and

controls different set of tb, tf and tp wires (among n wires), in Byzantine, fail-
stop and passive fashion respectively, in different phases of a protocol. Hence if a
wire is corrupted by the adversary in Byzantine/fail-stop/passive fashion in ith

phase, then it is healed at the end of that phase. Hence a wire controlled by the
adversary in ith phase will be free from the influence of adversary in (i + 1)th

phase unless the adversary chooses the wire to corrupt in (i + 1)th phase as
well. Though Amobile

(tb,tf ,tp) controls different set of wires in different phases of the

protocol, it does not allow the adversary to gain any information which has
previously passed (in earlier phases of the protocol) through the wires under its
control in current phase. This is because the wires (and hence the nodes along
these wires) erases all the local information from their memory at the end of
each phase.

The mobile mixed adversary gain information from the wires in a cumu-
lative fashion. For example, suppose during first phase of a protocol, Amobile

(1,1,1)

controls w1, w2 and w3 in Byzantine, fail-stop and passive fashion respectively in
a network, where S and R are connected by wires w1, w2, . . . , w5. Now suppose
during second phase, it controls w2, w4 and w5 in Byzantine, fail-stop and pas-
sive fashion respectively. Then w1 and w3 will behave correctly during second
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phase and adversary has no access to the information passing through them in
second phase. At the end of second phase, adversary will know the information
which passed through w1 and w3 during first phase and the information that
passed through w2 and w5 during second phase.

8. Existing Literature and Our Contributions For PSMT Tolerating
Mobile Mixed Adversary

A mobile Byzantine adversary, denoted by Amobile
tb

, corrupts different set
of tb nodes in different phases of the protocol in Byzantine fashion. PSMT
tolerating Amobile

tb
was studied by Srinathan et.al in [54]. They have shown that

any two or more phase PSMT tolerating Amobile
tb

is possible iff S and R are
connected by n ≥ 2tb + 1 wires. This shows that the connectivity requirement
for PSMT is same for both static and mobile Byzantine adversary.

Since Amobile
tb

is stronger than Astatic
tb

, the lower bound on communication

complexity of any multi phase PSMT tolerating Astatic
tb

(i.e., Ω
(

nℓ
n−2tb

)

) will

trivially define a lower bound for multi phase PSMT tolerating Amobile
tb

. Surpris-
ingly, in [39], Patra et. al have shown the tightness of this bound by designing
a three phase polynomial time OPSMT protocol, which sends a message of size
ℓ by communicating O(nℓ) field elements against Amobile

tb
, where S and R are

connected by n ≥ 2tb + 1 wires. This shows that communication complexity for
PSMT is same against both static and mobile Byzantine adversary. Thus the
results of [54] and [39] shows contradictions to the intuition that the connec-
tivity requirement and communication complexity of PSMT protocols will be
more against Amobile

tb
in comparison to Astatic

tb
.

8.1. Our Contribution in PSMT over Undirected Synchronous Networks Toler-
ating Amobile

(tb,tf ,tp)

We present the characterization, lower bound on communication complexity
and protocols that matches the lower bound for PSMT tolerating Amobile

(tb,tf ,tp).

Specifically, we show the following:

1. Any two or more phase PSMT tolerating Amobile
(tb,tf ,tp) is possible iff there

exists n ≥ 2tb + tf + tp + 1 wires between S and R.

2. Any two or more phase PSMT protocol over n ≥ 2tb + tf + tp + 1

wires tolerating Amobile
(tb,tf ,tp) must communicate Ω

(

nℓ
n−(2tb+tf+tp)

)

field ele-

ments to securely transmit a message containing ℓ field elements. More-
over, we show that this bound is asymptotically tight by designing a nine
phase OPSMT protocol that sends ℓ field elements by communicating

O
(

nℓ
n−(2tb+tf+tp)

)

= O(nℓ) field elements, where n = 2tb + tf + tp + 1.

Finally, we design a three phase OPSMT tolerating Amobile
(tb,tf ,tp) by extending

and employing an intelligent technique introduced by [25] (for Byzantine
adversary).
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Our results reiterate the contradiction to the tuition that the connectiv-
ity requirement and communication complexity of PSMT protocols will be more
against Amobile

(tb,tf ,tp) in comparison to Astatic
(tb,tf ,tp).

Remark 3 (Single Phase PSMT Tolerating Amobile
(tb,tf ,tp)). Notice that any sin-

gle phase PSMT tolerating Astatic
(tb,tf ,tp) will also work against Amobile

(tb,tf ,tp). This is

because the protocol has only one phase. So Theorem 5, Theorem 6 and Theorem
8 will hold against Amobile

(tb,tf ,tp) as well.

8.2. Techniques Used for Designing PSMT Protocols Against Amobile
(tb,tf ,tp)

The techniques used for designing three phase OPSMT against Amobile
tb

[39]

cannot be extended for designing OPSMT against Amobile
(tb,tf ,tp). Moreover, the

techniques used for designing protocol 4-OPSMT-Static against Astatic
(tb,tf ,tp) will

not work against Amobile
(tb,tf ,tp) (a formal discussion on this is given in Section 9.2).

So to design our nine phase OPSMT tolerating Amobile
(tb,tf ,tp), we describe few new

techniques and sub-protocols, which can tolerate Amobile
(tb,tf ,tp). Furthermore, we

design a three phase OPSMT by extending a technique proposed in [25] for
Byzantine adversary, to mixed adversary.

9. Multi Phase PSMT Tolerating Amobile
(tb,tf ,tp)

In this section, we provide the necessary and sufficient condition for the
existence of any multi phase PSMT tolerating Amobile

(tb,tf ,tp). We then prove the

lower bound on the communication complexity of multi phase PSMT toler-
ating Amobile

(tb,tf ,tp). We then point out why the techniques used in designing

OPSMT tolerating Amobile
tb

and the techniques used in designing protocol 4-

OPSMT against Astatic
(tb,tf ,tp) can not be reused/extended for designing OPSMT

tolerating Amobile
(tb,tf ,tp). We then design a protocol for reliable message transmis-

sion tolerating Amobile
(tb,tf ,tp) and then using it is as a building block, we design a

nine phase OPSMT tolerating Amobile
(tb,tf ,tp).

9.1. Characterization and Lower Bound On Communication Complexity of PSMT
Tolerating Amobile

(tb,tf ,tp)

The characterization and lower bound on communication complexity of any
multi phase PSMT tolerating Amobile

(tb,tf ,tp) is given by the following theorem:

Theorem 14. Any r ≥ 2 phase PSMT tolerating Amobile
(tb,tf ,tp) is possible iff there

exists n ≥ 2tb + tf + tp + 1 wires between S and R. Moreover, any such protocol

must communicate Ω
(

nℓ
n−(2tb+tf )

)

field elements to securely send a message m

containing ℓ field elements.
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Proof: Since Amobile
(tb,tf ,tp) is stronger than Astatic

(tb,tf ,tp), the characterization and

lower bound on communication complexity of any multi phase PSMT tolerat-
ing Astatic

(tb,tf ,tp) will also hold against Amobile
(tb,tf ,tp). Thus the theorem follows from

Theorem 10 and Theorem 11. In the sequel, we design a nine phase OPSMT
protocol tolerating Amobile

(tb,tf ,tp) with n = 2tb + tf + tp + 1 in Section 9.4. 2

9.2. Existing OPSMT Tolerating Amobile
tb

and Astatic
(tb,tf ,tp) and Their Limitations

In [39], the authors have designed a three phase OPSMT tolerating Amobile
tb

,
where S and R are connected by n = 2tb + 1 wires. The protocol uses sub-
protocol Πi

tb
, described in Section 6.3, as a building block to establish an infor-

mation theoretic secure one time pad between S and R. However, as explained
in Section 6.3 (for Astatic

(tb,tf ,tp)), the extended sub-protocol of Πi
tb

for mixed adver-

sary, namely Πi
(tb,tf ,tp) cannot be used for designing OPSMT protocol tolerating

Amobile
(tb,tf ,tp).

The techniques used for designing protocol 4-OPSMT-Static tolerating Astatic
(tb,tf ,tp)

cannot be reused for designing OPSMT protocol tolerating Amobile
(tb,tf ,tp). This is

due to the failure of protocol Error-Identification-Static to achieve its properties
with a communication of O(n2) in the presence of Amobile

(tb,tf ,tp). Recall that in

Error-Identification-Static, B reliably sends n error lists during second phase.
This was done by broadcasting the error list with maximum number of pairs LJ

and then jointly sending the remaining n − 1 error lists by executing protocol
PRMT-Mixed, with a block size of LJ . Also recall that when the maximum
sized error list is ”good”, then from the error list, A will know the identities
of LJ wires, which were Byzantine corrupted during first phase. Now since
the adversary was static, the same set of wires will be Byzantine corrupted in
the second phase as well and hence A could neglect them. This facilitated A
to correctly recover the remaining n − 1 error lists from the PRMT-Mixed (see
Theorem 3). However, this will not work against Amobile

(tb,tf ,tp). This is because the

LJ wires which were Byzantine corrupted during first phase, may not be under
the control of Amobile

(tb,tf ,tp) in the second phase. In the worst case, all these LJ

wires may be completely honest and hence by neglecting them, A will loose in-
formation sent through LJ honest wires. Thus protocol PRMT-Mixed will fail to
correctly deliver the remaining n− 1 error lists to A in the presence Amobile

(tb,tf ,tp).

So even when the maximum sized error list is ”good”, B will fail to reliable
receive the remaining n − 1 error lists. To reliably send the error lists in the
presence Amobile

(tb,tf ,tp), B may broadcast all of them to A. Though broadcasting

the n error lists ensures their proper delivery, it will increase the communica-
tion complexity of Error-Identification-Static from O(n2) to O(n2tb). Thus the
resultant PSMT protocol incorporating Error-Identification-Static will not be an
OPSMT protocol tolerating Amobile

(tb,tf ,tp). In order to deal with this problem, we

design a three phase reliable message transmission protocol against Amobile
(tb,tf ,tp)

in the next section. Then using the protocol as a building block, we design our
nine phase OPSMT tolerating Amobile

(tb,tf ,tp).
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9.3. Three Phase Reliable Message Transmission Tolerating Amobile
(tb,tf ,tp)

Let S and R be connected by n = 2tb + tf + 1 wires, under the influence of
Amobile

(tb,tf ,tp). We now design a three phase reliable message transmission protocol

called 3-PRMT-Mobile, which reliably sends a message m containing n(tb + 1)
field elements by communicating O(n2) field elements. The protocol is given in
Table 11.

Our three phase protocol works in the presence of Amobile
(tb,tf ,tp) as in Phase II

and Phase III, R/S uses only broadcast for reliably sending some information.
Broadcast sends any information reliably even in the presence of Amobile

(tb,tf ,tp). We

now prove the properties of protocol 3-PRMT-Mobile.

Lemma 20 (Correctness). Protocol 3-PRMT-Mobile correctly delivers the mes-
sage m in three phases tolerating Amobile

(tb,tf ,tp).

Proof: We prove the theorem for the worst case, when R receives information
over N ′ = n− tf = 2tb + 1 wires during Phase I. Thus each received vector C′

j

will be of length 2tb + 1. Each C′
j corresponds to a RS codeword encoded using

a polynomial of degree tb

2 . Moreover, at most tb errors could be present in C′
j .

By putting N ′ = 2tb +1, c = d = tb

2 and k = tb

2 +1 in the inequality of Theorem
2, we find that RS−DEC(N ′, C′

j ,
tb

2 , tb

2 , tb

2 +1) will be able to correct tb

2 errors

in C′
j and detect additional tb

2 errors in C′
j (if any). Now there are two possible

cases:

At most tb

2 Errors are Present in Each C′
j : In this case, RS −DEC will

correct all these errors and will detect no additional errors. Thus RS −
DEC will correctly output each Bj . Moreover, R will know that Bj

outputted by RS − DEC is correct. This is because the error correction
plus detection capability of RS−DEC is equal to the maximum number of
errors that can happen (i.e c + d = tb). So R will correctly recover m and
will terminate the protocol by broadcasting ”TERMINATE” signal 14. S
on receiving this signal will conclude that R has recovered m and hence
will terminate the protocol. So, in this case, the protocol will terminate
in two phases.

More than tb

2 Errors are Present in Some C′
j : In this case, RS − DEC

will correct tb

2 errors in C′
j and will detect the remaining errors (which can

be at most tb

2 ). Since RS − DEC can only detect remaining errors and
has no capability of correcting them, it will not output anything. This will
indicate to R that more than tb

2 errors are present in C′
j . However, R has

no means to know the identity of the corrupted wires, who delivered those
corrupted components of C′

j
15. To know their identities, R broadcasts

C′
j to S.

14This case is similar to Property 1 given in Section 4.
15This case is similar to Property 2 in Section 4.
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Protocol 3-PRMT-Mobile

Phase I: S to R :

Computation and Communication by S:

1. S divides the message m into blocks B1, B2, . . . , Bz , each containing 1+ tb
2

field elements.

2. For j = 1, . . . , z, S computes the n length RS codeword Cj = [cj1 cj2 . . . cjn] corre-
sponding to block Bj .

3. For i = 1, . . . , n, S sends ith component of all the z codewords, namely c1i, c2i, . . . , czi

over wire wi.

Phase II: R to S :

Computation and Communication by R:

1. Let R receive information over wires wi1 , . . . , wi
N′

, where n− tf ≤ N ′ ≤ n.

2. For j = 1, . . . , z, let R receive c′ji1
, . . . , c′ji

N′
over wires wi1 , . . . , wiN′

respectively. Let

C′

j = [c′ji1
. . . c′ji

N′
].

3. For j = 1, . . . , z, R executes RS − DEC(N ′, C′

j , tb
2

, tb
2

, tb
2

+ 1) and tries to correct tb
2

errors and simultaneously detect additional tb
2

errors in C′

j .

4. If ∃J ∈ {1, 2, . . . , z}, such that RS − DEC(N ′, C′

j , tb
2

, tb
2

, tb
2

+ 1) does not output any

polynomial of degree tb
2

, then R broadcasts C′

J and index J to S.

5. Else for each C′

j , RS − DEC(N ′, C′

j , tb
2

, tb
2

, tb
2

+ 1) outputs correct Bj . R recovers m
by concatenating all Bj ’s, broadcasts “TERMINATE” signal to S and terminate the
protocol.

If S receives “TERMINATE” signal, then S terminates the protocol. Else S executes third
phase as follows:

Phase III: S to R :

Computation and Communication by S:

1. S receives C′

J and index J . S locally compares C′

J with CJ and identifies more than tb
2

wires which were Byzantine corrupted during Phase I. S saves the identities of these
wires in a list Lfault.

2. S broadcasts to R the list Lfault and terminates the protocol.

Local Computation by R at the End of Phase III :

1. R correctly receives Lfault and identifies |Lfault| ≥
tb
2

+1 wires, which delivered incorrect
values during Phase I.

2. For j = 1, . . . , z, R removes from C′

j , the c′ji’s received over these corrupted wires during
Phase I.

3. For j = 1, . . . , z, R executes RS −DEC(N ′ − |Lfault|, C
′

j , tb − |Lfault|, 0, tb
2

+ 1).

4. For j = 1, . . . , z, RS − DEC(N ′ − |Lfault|, C
′

j , tb − |Lfault|, 0, tb
2

+ 1) outputs Bj . R
recovers m by concatenating all Bj ’s and terminate the protocol.

Table 11: A Three Phase Reliable Message Transmission Protocol Tolerating Amobile
(tb,tf ,tp)

, n =

2tb + tf + 1, |m| = ntb

59



Upon receiving C′
j and locally comparing it with Cj , S will identify at least

tb

2 + 1 Byzantine corrupted wires who had send incorrect values during
Phase I. S saves the identities in a list Lfault. S then broadcasts Lfault

to R. On receiving Lfault, R removes all the components of C′
j received

over the wires in Lfault. Thus each C′
j will now contain 2tb + 1− |Lfault|

components, out of which at most tb − |Lfault| < tb

2 could be corrupted.
Now putting N ′ = N ′−|Lfault| = 2tb +1−|Lfault|, c = tb−|Lfault|, d = 0
and k = tb

2 +1 in the inequality of Theorem 2, we find that RS−DEC will
be able to correct all tb − |Lfault| errors present in C′

j and will correctly

output Bj . Moreover, since R now knows that at most tb − |Lfault| < tb

2
errors are present in C′

j , he concludes that outputted Bj is correct. Thus
by combining all Bj ’s, R will recover m correctly. So, in this case, the
protocol will terminate in three phases.

This completes the proof of the correctness. 2

Lemma 21 (Communication Complexity). Protocol 3-PRMT-Mobile sends
m containing ntb field elements by communicating O(n2) field elements.

Proof: During Phase I, S sends an n length RS codeword for each Bj of size

1+ tb

2 . So the total communication cost of Phase I is O

(

|m|
tb
2

∗ n

)

= O(n2), as

|m| = ntb. In the second phase, R may either broadcast ”TERMINATE” signal
or an N ′ length received vector C′

j . So in the worst case, the communication

cost of Phase II is O(n2). If Phase III is executed, then S broadcasts Lfault,
where tb

2 +1 ≤ |Lfault| ≤ tb. This incurs a communication cost of O(ntb). Thus
the overall communication cost of 3-PRMT-Mobile is O(n2). 2

9.4. Nine Phase OPSMT Tolerating Amobile
(tb,tf ,tp)

Let S and R be connected by n = 2tb + tf + tp + 1. We now present a
nine phase OPSMT protocol called 9-OPSMT-Mobile, which securely sends a
message containing Θ(n) field elements by communicating O(n2) field elements
against Amobile

(tb,tf ,tp). The protocol uses several ideas from protocol 4-OPSMT-

Static and uses protocol 3-PRMT-Mobile as a black-box. The protocol establishes
an information theoretically secure one time pad of length either n−1 = Θ(n) or
n
2 = Θ(n) between S and R, depending upon the behavior of the adversary, by
communicating O(n2) field elements. Accordingly, S sends a message containing
either n − 1 or n

2 field elements by communicating O(n2) field elements. The
protocol is given in Table 12, Table 13 and Table 14.

Note that according to the description provided in section 9.3, protocol 3-

PRMT-mobile is executed with 2tb+tf +1 wires between S and R. So in protocol
9-OPSMT-Mobile, 3-PRMT-mobile is executed with any set of predefined 2tb +
tf + 1 wires between S and R. Thus S and R neglects a pre-determined set of
tp wires and run protocol 3-PRMT-mobile on the remaining 2tb + tf + 1 wires.
This does not affect the correctness and working of protocol 9-OPSMT-Mobile.
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Protocol 9-OPSMT-Mobile

Phase I: S to R :

Computation by S:

1. S selects n random polynomials p1(x), . . . , pn(x) over F, each of degree
tb + tp. Let for j = 1, . . . , n, pj(0) = sj , where sj is a random element in F.

2. For j = 1, . . . , n, S computes an n length RS codeword Cj =
[cj1 cj2 . . . cjn] using polynomial pj(x).

Communication by S:

1. For i = 1, . . . , n, S sends the ith component of all the n codewords, namely
c1i, . . . , cni over wi.

Phase II: R to S :

Computation by R:

1. Let R receive information over wires wi1 , . . . , wiN′
, where n− tf ≤ N ′ ≤ n.

2. For j = 1, . . . , n, let R receive c′ji1
, . . . , c′jiN′

over wires wi1 , . . . , wi
N′

re-

spectively. Let C′

j = [c′ji1
. . . c′jiN′

].

3. For j = 1, . . . , n, R executes RS −DEC(N ′, C′

j , tb
2

, 0, tb + tp + 1).

4. If ∃J ∈ {1, 2, . . . , n}, such that RS − DEC(N ′, C′

j , tb
2

, 0, tb + tp + 1) does

not output any polynomial of degree tb + tp, then R broadcasts C′

J and
index J to S. If R executes this step then the remaining protocol will follow
the steps provided in Table 13.

5. Else let RS − DEC(N ′, C′

j , tb
2

, 0, tb + tp + 1) output polynomial p̄j(x) of

degree tb +tp, along with error list Error Listj containing at most tb
2

pairs,
for each j = 1, . . . , n. R then combines only the first n

2
error lists and

reliably sends them to S using three phase protocol 3-PRMT-Mobile. This
will occupy Phase II, Phase III and Phase IV. If R executes this step
then the remaining protocol will follow the steps provided in Table 14.

Table 12: A Nine Phase OPSMT Tolerating Amobile
(tb,tf ,tp)

, n = 2tb + tf + tp + 1

Theorem 15. Protocol 9-OPSMT-Mobile correctly and securely sends a mes-
sage containing Θ(n) field elements in at most nine phases by communicating
O(n2) field elements tolerating Amobile

(tb,tf ,tp).

Proof: We prove the theorem for the worst case where exactly tf wires (proba-
bly different set) failed to deliver any information in each phase due to fail-stop
corruption. Thus each vector C′

j received during first phase will be of length
N ′ = n − tf = 2tb + tp + 1. Each C′

j corresponds to a RS codeword Cj en-
coded using a polynomial of degree tb+tp. Now consider the following two cases:

Case I: At most tb

2 wires are Byzantine Corrupted During Phase I: In

this case, for each C′
j , RS − DEC(N ′, C′

j ,
tb

2 , 0, tb + tp + 1) will output the cor-
rect pj(x) and a corresponding ”good” error list at the end of Phase II. But as
RS−DEC does not have extra error detecting capability apart from capability
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Execution I - Protocol 9-OPSMT-Mobile Continued . . .
(This Part Will be Executed if R Executes Step 4 During Phase II)

Phase III: S to R :

Computation by S:

1. S correctly receives index J and vector C′

J .

2. After locally comparing C′

J with the corresponding original codeword CJ ,

S identifies at least tb
2

+1 wires which delivered incorrect components of C′

J
to R during Phase I. S saves the identity of these wires in a list Lfault.

3. For j ∈ {1, 2, . . . , n} \ {J}, S lists all cji’s, which were sent during Phase
I over wi ∈ Lfault, in a list ReSendValues. Thus |ReSendValues| = (n −

1)|Lfault| ≥ (n− 1)( tb
2

+ 1).

4. S constructs a pad p consisting of n − 1 sj ’s with j ∈ {1, 2, . . . , n} \ {J}
where sj = pj(0).

5. With a message m containing n− 1 field elements, S computes Γ = m⊕ p.

Communication by S:

1. S reliably sends Lfault and Γ to R by broadcasting it.

2. S reliably re-sends the values in list ReSendValues to R by executing the
three phase protocol 3-PRMT-Mobile. This will run in Phase III, Phase
IV and Phase V. S then terminates 9-OPSMT-Mobile.

Message Recovery by R (At the end of Phase V):

1. R correctly receives Γ, Lfault and the values in ReSendValues.

2. From Lfault, R identifies |Lfault| >
tb
2

wires which had delivered incorrect
values during Phase I.

3. For j ∈ {1, 2, . . . , n} \ {J}, corresponding to each C′

j , R replaces the c′ji’s,
which were received during Phase I over wi ∈ Lfault, with the correspond-
ing actual cji’s from the list ReSendValues.

4. After replacement, R knows that for each j ∈ {1, 2, . . . , n} − {J}, at
most tb − |Lfault| values could be corrupted in C′

j . R executes RS −

DEC(N ′, C′

j , tb − |Lfault|, 0, tb + tp + 1) to recover pj(x).

5. Once the pj(x)’s for j ∈ {1, 2, . . . , n} \ {J} are obtained, R constructs the
pad p in the same way as done by S.

6. R computes m = Γ⊕ p and terminates protocol 9-OPSMT-Mobile.

Table 13: Remaining Execution of Protocol 9-OPSMT-Mobile if R Executes Step 4 During
Phase II. In this case, |m| = n− 1

of correcting tb

2 errors, R will not know whether reconstructed pj(x) are correct
or not. So R follows step 5 in Phase II and sends first n

2 error lists to S by ex-
ecuting protocol 3-PRMT-Mobile. By the correctness of 3-PRMT-Mobile, S will
correctly receive all the n

2 error lists and will find all of them to be ”good”. So
S will conclude that first n

2 polynomials, namely p1(x), . . . , pn
2
(x), are recovered

correctly by R. Hence S uses p = [p1(0), . . . , pn
2
(0)] as a pad to blind a message

m of size n
2 and sends the blinded message Γ to R by broadcasting it. Once R re-

ceives Γ, he can recover the message using Γ and the pad p = [p1(0), . . . , pn
2
(0)].

Thus in this case protocol 9-OPSMT-Mobile sends n
2 field elements in five phases.

62



Execution II - Protocol 9-OPSMT-Mobile Continued . . .
(This Part Will be Executed if R Executes Step 5 During Phase II)

Local Computation by S (At the end of Phase IV):

1. S correctly receives the first n
2

error lists, sent by R using protocol 3-PRMT-Mobile.

2. S then checks the status of these error lists.

(a) If all the n
2

error lists are ”good”, then S concludes that R has correctly re-
covered pj(x) for j = 1, . . . , n

2
and an information theoretically secure pad

p = [p1(0) p2(0) p n
2
(0)] is established with R. So, S considers a message m

containing n
2

field elements and computes Γ = m ⊕ p.
(b) Else ∃J ∈ {1, 2, . . . , n

2
}, such that Error ListJ is “bad”. In this case, S concludes

that more than tb
2

values has been changed in Jth codeword during Phase I.

Phase V: S to R:

1. If S has computed Γ, then S broadcasts Γ and a terminating signal to R.

2. Else S broadcasts index J along with “ERROR” signal, asking R to broadcast the Jth

vector C′

J as received by R during Phase I.

Local Computation by R (At the End of Phase V):

1. If R receives terminating signal and Γ, then R concludes that it has correctly recovered
p1(x), . . . , p n

2
(x) during Phase I. R then forms the pad p = [p1(0) p2(0) p n

2
(0)],

computes m = p⊕ Γ and terminates protocol 9-OPSMT-Mobile.

2. Else R receives index J and ”ERROR” signal. In this case, R concludes that more
than tb

2
corrupted values are present in C′

J . So R executes Phase VI as follows:

Phase VI: R to S:

1. R broadcasts the vector C′

J to S.

Local Computation by S (At the End of Phase VI):

1. Upon receiving C′

J and comparing it with CJ , S identifies more than tb
2

wires which
were Byzantine corrupted during Phase I and saves them in a list Lfault.

2. Corresponding to each j ∈ {n
2

+ 1, . . . , n} and each wi ∈ Lfault, S adds the value cji

to a list ReSendValues.

3. With the pad p = [p n
2

+1(0) . . . pn(0)] and a message m containing n
2

field elements, S

computes Γ = m⊕ p.

Phase VII: S to R:

1. S reliably sends Γ and Lfault to R by broadcasting them.

2. S reliably sends ReSendValues by executing the three phase protocol 3-PRMT-Mobile

and terminates protocol 9-OPSMT-Mobile. This will run in Phase VII, Phase VIII
and Phase IX.

Message Recovery by R at the End of Phase IX:

1. R recovers m in the same way as in Execution I, given in Table 13. The only difference
is that R performs the computation with respect to vectors C′

n
2

+1
, . . . , C′

n.

Table 14: Remaining Execution of Protocol 9-OPSMT-Mobile if R Executes Step 5 During
Phase II. In this Case, |m| = n

2
.

Case II: More than tb

2 wires are Byzantine Corrupted During Phase I:

This case may lead to further two cases:
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(1) RS − DEC outputs some polynomial of degree tb + tp for each C′
j

(2) There exists a J ∈ {1, 2, . . . , n} for which RS − DEC fails to output any
polynomial.

While in (1), occurrence of more than tb

2 faults cannot be immediately de-
tected by R (as RS −DEC is applied with d = 0), in (2) it can be immediately
detected by R. Now in (1), if more than tb

2 Byzantine errors occur in the code-
words of only last n

2 polynomials i.e for pJ(x) such that n
2 + 1 ≤ J ≤ n (this

implies that at most tb

2 Byzantine errors took place in the first n
2 codewords),

then the proof is same as in Case I. On the other hand, if more than tb

2 faults
occurs for J th codeword, where J ∈ {1, 2, . . . , n

2 }, then the proof is given below.

1. During Phase II, R reconstructs p̄J(x) 6= pJ(x), J ∈ {1, 2, . . . , n
2 }: In

this case, Error −ListJ is a “bad” error list. Since R reliably sends back
first n

2 error lists using 3-PRMT-Mobile, S correctly receives Error−ListJ
and finds it to be ”bad”. S concludes that R has reconstructed some
p̄J(x) 6= pJ(x). So S asks R to broadcast the J th vector C′

J , as received
during Phase I. On receiving C′

J , S compares it with its corresponding
original codeword CJ and identifies |Lfault| ≥

tb

2 + 1 wires which deliv-
ered incorrect values to R during Phase I. Now by executing 3-PRMT-

Mobile, S re-sends the components of the last n
2 codewords, which were

sent through these corrupted wires during Phase I. S also broadcasts the
identity of these corrupted wires. Note that re-sending these values, does
not leak any additional information about the last n

2 pj(x)’s to Amobile
(tb,tf ,tp)

as the adversary already knew these values during Phase I. But now with
the new values received, R have N ′ = 2tb + tp + 1 components for each
of the last n

2 vectors and at most tb − |Lfault| ≤ tb

2 − 1 of these N ′

components could be corrupted. By substituting N ′ = 2tb + tp + 1, c =
tb − |Lfault|, d = 0 and k = tb + tp + 1 in the inequality of Theorem 2, we
find that RS − DEC(N ′, C′

j , tb − |Lfault|, 0, tb + tp + 1), can correct all

the remaining tb − |Lfault| < tb

2 errors present in C′
j and can output the

corresponding polynomial pj(x) where j ∈ {n
2 +1, . . . , n}. R then consid-

ers the constant term of these last n
2 pj(x)’s as the secret pad established

with S. The secrecy of the pad follows from the fact that at any stage of
the execution, Amobile

(tb,tf ,tp) will not get more than tb + tp points on the last
n
2 pj(x)’s, each of which are of degree tb + tp. Once R obtains the pad, he
can compute the message from the blinded message Γ. Thus in this case
protocol 9-OPSMT-Mobile sends n

2 field elements in nine phases.

2. During Phase II, R is Unable to Recover Some p̄J(x) Where J ∈ {1, . . . , n
2 }:

In this case R broadcasts only the J th received codeword C′
J , from which

S (after local verification) identifies at least tb

2 + 1 wires, which delivered
incorrect values to R during Phase I. Now the rest of the proof is same
as in the above case. The only difference is that here a pad of length n−1
will be established between S and R.
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In protocol 9-OPSMT-Mobile, S communicates O(n2) field elements for sending
n codewords during the first phase. In second phase R either sends a codeword
or n

2 error lists each of size at most tb

2 . Sending the codeword by broadcasting
requires O(n2) communication complexity. On the other hand, sending n

2 error
lists each of size at most tb

2 (so total n
2 ∗

tb

2 = O(ntb)) using 3-PRMT-Mobile also
requires a communication of O(n2) field elements from Lemma 21. Similarly,
re-sending O(ntb) values corresponding to codewords by executing 3-PRMT-

Mobile requires communicating O(n2) field elements. It is easy to see that no
more than O(n2) field elements are communicated in any other phase as well.
Hence the overall communication complexity of the protocol is O(n2). 2

Theorem 16. Protocol 9-OPSMT-Mobile is an OPSMT protocol tolerating Amobile
(tb,tf ,tp).

Proof: From Theorem 14, any nine phase PSMT over n = 2tb + tf + tp + 1
wires must communicate Ω(n2) field elements to securely send a message con-
taining Θ(n) field elements tolerating Amobile

(tb,tf ,tp). Since the total communication

complexity of protocol 9-OPSMT-Mobile is O(n2), protocol 9-OPSMT-Mobile is
an OPSMT protocol tolerating Amobile

(tb,tf ,tp).

Theorem 17. Let S and R be connected by n = 2tb + tf + tp + 1 wires. Then
there exists an efficient nine phase OPSMT protocol which securely sends a mes-
sage containing ℓ = Ω(n) field elements by communicating O(nℓ) field elements
against Amobile

(tb,tf ,tp).

Proof: In order to send the message, S will divide it into several sub-blocks
and securely sends each sub-block by concurrently executing the protocol 9-

OPSMT-Mobile. Since each of these protocols will take at most nine phases, the
over all protocol will terminate in nine phases. Moreover, the communication
complexity of the protocol will be O

(

ℓ
n
.n2

)

= O(nℓ). From Theorem 14, any
nine phase PSMT over n = 2tb + tf + tp + 1 wires must communicate Ω(nℓ)
field elements to securely send a message containing ℓ = Ω(n) field elements
tolerating Amobile

(tb,tf ,tp). Thus the resultant protocol will be an efficient OPSMT

protocol tolerating Amobile
(tb,tf ,tp). 2

10. OPSMT Tolerating Amobile
(tb,tf ,tp) with Reduced Phase Complexity

Till now, we have designed a four phase OPSMT and nine phase OPSMT
tolerating Astatic

(tb,tf ,tp) and Amobile
(tb,tf ,tp) respectively using some interesting properties

of RS codes. We now design a three phase OPSMT called 3-OPSMT. The
striking feature of this protocol is that it will work against both Astatic

(tb,tf ,tp) as

well as against Amobile
(tb,tf ,tp). To design the protocol we use some more interesting

properties of RS codes, which are described in the sequel.
We now describe the notion of Pseudo-Basis and Pseudo-Dimension, a novel

and interesting concept, introduced by Kurosawa et.al. in [25]. These notions
were introduced with respect to Astatic

tb
to design a two phase polynomial time

OPSMT protocol tolerating Astatic
tb

. We now extend these notions for mixed
adversary and then use them to design protocol 3-OPSMT in the next section.
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Assumption 1 (Assumption Used in this Discussion and in Protocol 3-OPSMT).
Without loss of generality, for the ease of exposition, we use the following as-
sumption in the following discussion and also in protocol 3-OPSMT: if S (R) is
expecting some information in some specific format from R (S) along a wire in
a phase and if no/syntactically incorrect information comes, then S (R) substi-
tutes some default value(s) from F in the desired format and proceeds with his
computation. Thus we separately do not consider the case when no/syntactically
incorrect information is received along a wire.

Now let A and B be two specific nodes (A (B) can be S or R) which are
connected by n = 2tb + tf + tp + 1 wires denoted by w1, . . . , wn, of which at
most tb, tf and tp can be corrupted in Byzantine, fail-stop and passive fashion
respectively. Let C be the set of all possible n length RS codewords over F, which
are RS encoded using polynomials of degree tb + tp over F. So the hamming
distance [27] of code C is n− (tb + tp) = tb + tf + 1. We may call the individual
codewords in C as n-dimensional vectors. But it should be noted that any n
length codeword is an n length vector but the reverse is not true.

If A sends several codewords, say γ codewords C1, . . . , Cγ ∈ C over the n
wires by transmitting ith component of all the codewords over ith wire wi, then
the locations at which Byzantine and fail-stop errors occur in these codewords
are not random. This is because for all the codewords, the Byzantine and fail-
stop errors always occur at the same tb + tf (or a smaller subset) locations. The
concept of pseudo-basis is based on this simple and interesting observation.

Let B receive vectors Y1 . . . , Yγ over these wires, such that for i = 1, . . . , γ,

Yi = Ci + Ei, (2)

where
Ei = (ei1, . . . , ein)

is an error vector introduced by the adversary. Since at most tb Byzantine and
at most tf fail-stop corruptions could occur, each Ei may have at most tb + tf
non-zero components. Let

support(Ei) = {j | eij 6= 0}. (3)

Then there exists a set {wj1 , . . . , wj(tb+tf )
} of wires that are Byzantine and fail-

stop corrupted, such that each error vector Ei satisfies

support(Ei) ⊆ {j1, . . . , j(tb+tf )} (4)

This means that the space E spanned by the error vectors E1, . . . , Eγ has
dimension at most tb + tf . The notion of pseudo-basis exploits this idea.

10.1. Pseudo-Basis and Pseudo-Dimension

Let V denote the n-dimensional vector space over F. For i = 1, . . . , γ, sup-
pose that the receiver received vector Yi, such that

66



Yi = Ci + Ei, (5)

where Ci ∈ C is a codeword that the sender sent and Ei is the error vector
caused by the adversary. We say that {E1, . . . , Eγ} is the real error vector set
of Y = {Y1, . . . , Yγ}. We also say that E is the real error vector space if it is
spanned by the real error vector set {E1, . . . , Eγ}.

For two vectors V1, V2 ∈ V , we write

V1 = V2 mod C (6)

if V1 − V2 ∈ C. Notice that for i = 1, . . . , γ, for every triplet (Yi, Ci, Ei),

Yi = Ei mod C (7)

holds, as Yi − Ei = Ci ∈ C. We say that {E1, . . . , Eγ} is an admissible error
vector set of Y if each Ei satisfies Yi = Ci + Ei, for some codeword Ci ∈ C and

|support(E1) ∪ . . . support(Eγ)| ≤ tb + tf (8)

We say that E is an admissible error vector space of Y if it is spanned by an
admissible error vector set {E1, . . . , Eγ}. Notice that for a given Y, there exists
a unique real error vector set and real error vector space, while there may exists
several admissible error vector set and corresponding admissible error vector
space. Also notice that the real error vector set (real error vector space) is also
an admissible error vector set (admissible error vector space) but the reverse
may not be true. Even though an admissible error vector set {E1, . . . , Eγ} for a
given Y may not be unique, the following results hold for any admissible error
vector set.

We begin with the definition of linearly pseudo-express.

Definition 15 (Linearly Pseudo-Express). We say that a vector Y ∈ Y is
linearly pseudo-expressed by {B1, . . . , Bk} if there exists some α = (a1, . . . , ak),
such that

Y = a1B1 + . . . + akBk mod C

We now state the following lemma:

Lemma 22. Let {E1, . . . , Eγ} be an admissible error vector set of Y. Then
Ei is linearly expressed by {Ej1, . . . , Ejk} iff Yi is linearly pseudo-expressed by
{Yj1, . . . , Yjk}.

Proof: Let Ei be linearly expressed by {Ej1, . . . , Ejk}. This implies that

Ei = a1Ej1 + . . . + akEjk

for some a1, . . . , ak. Since {E1, . . . , Eγ} is an admissible error vector set of Y, it
implies that for each i, Yi = Ci + Ei, where Ci is some codeword. Then in mod
C, we have:
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Yi − (a1Yj1 + . . . + akYjk)

= (Ci + Ei) − a1(Cj1 + Ej1) − . . . − ak(Cjk + Ejk)

= (Ci − a1Cj1 − . . . − akCjk) + (Ei − a1Ej1 − . . . − akEjk)

= (Ci − a1Cj1 − . . . − akCjk) + 0

= (Ci − a1Cj1 − . . . − akCjk)

Now notice that Ci, Cj1, . . . , Cjk are valid RS codewords belonging to C and
hence are encoded using polynomials of degree tb + tp. So from the linearity
property of polynomials, Ci−a1Cj1−. . .−akCjk will also be a valid RS codeword
belonging to C and hence is encoded using polynomial of degree tb + tp. So
Ci − a1Cj1 − . . . − akCjk ∈ C. Therefore, Yi − (a1Yj1 + . . . + akYjk) ∈ C. Thus
if Ei is linearly expressed by {Ej1, . . . , Ejk} then Yi is linearly pseudo-expressed
by {Yj1, . . . , Yjk}.

Next suppose that Yi is linearly pseudo-expressed by {Yj1, . . . , Yjk}. Then
in mod C, we have

Yi = (a1Yj1 + . . . + akYjk) mod C (9)

for some non-zero a1, . . . , ak. The above equation can be written as

(Ci + Ei) = {a1(Cj1 + Ej1) + . . . + ak(Cjk + Ejk)} mod C

⇒ (Ci − a1Cj1 − . . . − akCjk) + (Ei − a1Ej1 − . . . − akEjk) ∈ C

Now Ci, Cj1, . . . , Cjk are valid RS codewords, encoded using polynomials of
degree tb + tp. So from the linearity property of polynomials, we have

(Ci − a1Cj1 − . . . − akCjk) ∈ C (10)

The linearity property of polynomials also implies:

(Ei − a1Ej1 − . . . − akEjk) ∈ C

as the sum of a valid RS codeword (encoded using polynomial of degree tb + tp)
with another vector can be a valid RS codeword (encoded using polynomial of
degree tb + tp) only if the other vector is also a valid RS codeword (encoded
using polynomial of degree tb + tp). As the number of non-zero components in
Ei, Ej1, . . . , Ejk is at most tb + tf , the vector (Ei − a1Ej1 − . . .− akEjk) will have
at least n − (tb + tf ) ≥ tb + tp + 1 zero components. However, in C, there is
only one codeword, namely 0-codeword (i.e. an n length tuple containing all
0’s) (0, . . . , 0), which has at least tb + tp + 1 zero components. This is because
each element of C represents n distinct points on a tb + tp degree polynomial

and tb + tp + 1 zero’s uniquely define the zero polynomial f(x) =
∑tb+tp

i=0 0xi.
These two facts together implies that the vector (Ei − a1Ej1 − . . .− akEjk) is an
all zero vector (0-codeword) which further implies that

Ei = a1Ej1 + . . . + akEjk
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This means that if Yi is linearly pseudo-expressed by {Yj1, . . . , Yjk}, then Ei

is linearly expressed by {Ej1, . . . , Ejk}. 2

We next define pseudo-span.

Definition 16 (Pseudo-Span [25]). We say that {Yj1 . . . , Yjk} ⊂ Y pseudo-
spans Y if each Yi ∈ Y can be linearly pseudo-expressed by {Yj1 . . . , Yjk}. That
is, each Yi = (a1Yj1 + . . . + akYjk) mod C, for some a1, . . . , ak.

Definition 17 (Pseudo-Basis [25]). We say that {Yj1 . . . , Yjk} ⊂ Y is a
pseudo-basis of Y if it is the minimum subset of Y which pseudo-spans Y.

Definition 18 (Pseudo-Dimension [25]). If {Yj1 . . . , Yjk} ⊂ Y is a pseudo-
basis of Y and k = |{Yj1 . . . , Yjk}|, then we say that Y has pseudo-dimension
k.

We now prove the following theorem:

Theorem 18. Let {E1, . . . , Eγ} be an admissible error vector set of Y. Then
Be = {Ej1, . . . , Ejk} ⊂ {E1, . . . , Eγ} is a basis of the admissible error vector space
E iff By = {Yj1, . . . , Yjk} ⊂ Y is a pseudo-basis of Y (Note that Be and By have
the same indices). In particular, the pseudo-dimension of Y is equal to the
dimension of E.

Proof: Suppose that Be is a basis of E . This implies that Be is the minimum
set which spans E . Since Be spans E , from Lemma 22, By pseudo-spans Y.
Next we show that By is the minimum subset of Y which pseudo-spans Y. On
the contrary, assume that By is not minimum. That is, suppose that there
exists a smaller subset of Y which pseudo-spans Y. Then from Lemma 22, the
corresponding subset of {E1, . . . , Eγ} also spans E . However, this contradicts the
fact that Be is a basis of E . This implies that By is the minimum subset of Y
which pseudo-spans Y, which further implies that By is the pseudo-basis of Y.

Similarly, if By is a pseudo-basis of Y then Be is a basis of E . Hence the
pseudo-dimension of Y is equal to the dimension of E . 2

Since the real error vector set is also an admissible error vector set, we obtain
the following corollary of Theorem 18.

Corollary 1. Let {E1, . . . , Eγ} be the real error vector set of Y. If By =
{Yj1, . . . , Yjk} ⊂ Y is a pseudo-basis of Y, then Be = {Ej1, . . . , Ejk} ⊂ {E1, . . . , Eγ}
is a basis of the real error vector space.

Let {E1, . . . , Eγ} be the real error vector set of Y and let {C1, . . . , Cγ} be
the corresponding original codewords which A sent. Then define

CORRUPTED = ∪γ
i=1support(Ei) (11)

Then CORRUPTED is the set of wires that the adversary has corrupted in
Byzantine and fail-stop fashion. We now state the following important theorem:
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Theorem 19. Let By = {Yj1, . . . , Yjk} be the pseudo-basis of Y and let Cj1, . . . , Cjk

be the corresponding original codewords. Then

CORRUPTED = ∪i=k
i=1support(Yji − Cji)

Proof: From the definition of CORRUPTED, we get

CORRUPTED = ∪γ
i=1support(Ei)

From Corollary 1, since {Yj1, . . . , Yjk} is the pseudo-basis of Y, it implies
that {Ej1, . . . , Ejk} is the basis of real error vector space. This implies that

∪γ
i=1support(Ei) = ∪i=k

i=1support(Eji)

The above relationship further implies that

CORRUPTED = ∪γ
i=1support(Ei)

= ∪i=k
i=1support(Eji)

= ∪i=k
i=1support(Yji − Xji)

2

Theorem 20. The pseudo-dimension of Y is at most tb + tf .

Proof: The dimension of the real error vector space is at most tb + tf be-
cause the adversary can Byzantine and fail-stop corrupt at most tb and tf wires
respectively. Hence from Theorem 18, the pseudo-dimension of Y is at most
tb + tf . 2

From the above discussion, we find that if B can correctly find the pseudo-basis
of Y and reliably sends it back to A, then A can identify the wires which are
Byzantine and fail-stop corrupted after doing the local computation. In the
next section, we present a polynomial time algorithm, which allows B to find
the pseudo-basis of Y.

10.2. How to Find Pseudo-Basis

In [25], the authors have presented a polynomial time algorithm to find
pseud-basis against Astatic

tb
. We now extend the algorithm against mixed adver-

sary. We begin with the definition of linearly pseudo-express.
We first present a polynomial time algorithm which checks whether Y can be

linearly pseudo-expressed by {B1, . . . , Bk}. For a non-zero β = (a1, . . . , ak) ∈
F

k, we define X(β) as

X(β) = Y − (a1B1 + . . . + akBk). (12)

It is clear that Y can be linearly pseudo-expressed by {B1, . . . , Bk} iff there
exists some non-zero β such that X(β) ∈ C. The algorithm for checking whether
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Y can be linearly pseudo-expressed by {B1, . . . , Bk} is presented in Table 15.
The algorithm will output YES iff X(β) ∈ C for some non-zero β. In the
algorithm, each xj(β) will be a linear expression of (a1, . . . , ak), as Y,B are
known and β is unknown. Similarly, each coefficient of fβ(x) will be a linear
expression of (a1, . . . , ak). Hence each fβ(αj) = xj(β) will give a linear equation
on (a1, . . . , ak). So we will get n − (tb + tp + 1) ≥ tb + tf linear equations in
(a1, . . . , ak). Moreover, in our context, k will be at most tb +tf , as will be shown
in the sequel. Thus if Y can be indeed linearly pseudo expressed by B, then
after solving these linear equations, some non-zero solution for β = (a1, . . . , ak)
will be obtained and the algorithm will output YES.

Algorithm Pseudo-Linear-Express(Y,B = {B1, . . . , Bk})

1. Let β = (a1, . . . , ak), where a1, . . . , ak are unknown variables.

2. Let X(β) = (x1(β), . . . , xn(β)), where X(β) is given by Equation 12.

3. By using Lagrange interpolation, construct a polynomial fβ(x) of degree tb + tp
such that

fβ(αi) = xi(β)

for i = 1, . . . , tb + tp + 1.

4. Output YES iff the following set of linear equations on β has a non-zero solution:

fβ(αtb+tp+2) = xtb+tp+2(β),

...

fβ(αn) = xn(β).

Otherwise output NO.

Table 15: Algorithm to Check Whether Y Can be Linearly Pseudo-Expressed by B

We now finally present the polynomial time algorithm which takes the set of
vectors Y received by B as input and finds in polynomial time, the pseudo-basis
B = {Yj1, . . . , Yjk} ⊂ Y, pseudo-dimension k = |B| ≤ tb + tf and an index set
I = {j1, . . . , jk} ⊂ {1, . . . , γ} containing the indices of the vectors selected in
B. The algorithm uses algorithm Pseudo-Linear-Express as a black-box and is
provided in Table 16.

Algorithm Find-Pseudo-Basis(Y)

1. Let i = 1 and B = ∅.

2. While i ≤ γ and |B| < tb + tf , do:

(a) By using Algorithm Pseudo-Linear-Express, check whether Yi can be linearly
pseudo-expressed by B. If NO, then add Yi to B.

(b) Set i← i + 1.

3. Output B as a pseudo-basis, k = |B| as the pseudo-dimension and index set I,
containing the indices of the k vectors selected in B.

Table 16: Algorithm to Find the Pseudo-Basis of Y
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Theorem 21. Algorithm Find-Pseudo-Basis correctly finds the pseudo-basis and
pseudo-dimension of Y.

Note 1 (Convention For Using Algorithm Find-Pseudo-Basis). In the rest
of the paper, we will use the notation (k,B, I) = Find-Pseudo-basis(Y) while in-
voking algorithm Find-Pseudo-Basis.

10.3. Three Phase OPSMT Tolerating Astatic
(tb,tf ,tp) / Amobile

(tb,tf ,tp)

Let S and R be connected by n = 2tb + tf + tp +1 wires, under the influence
of Amobile

(tb,tf ,tp). We now present a three phase OPSMT protocol called 3-OPSMT,

which securely sends a message containing n2 field elements by communicating
O(n3) field elements tolerating Amobile

(tb,tf ,tp). Since Astatic
(tb,tf ,tp) is a special type of

Amobile
(tb,tf ,tp), the protocol will also work against Astatic

(tb,tf ,tp). In the protocol, S

establishes a random, information theoretically secure one time pad of size n2

with R. Once the pad is established, S uses the pad to blind the message and
sends the blinded message reliably to R. Let C denote the set of all possible RS
codewords of length n = 2tb + tf + tp + 1 encoded using polynomials of degree
(tb+tp) over F. We now present protocol 3-OPSMT. Recall that we are following
Assumption 1 in protocol 3-OPSMT.
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Protocol 3-OPSMT

Phase I: S to R :

Computation by S:

1. Let P = n2 + tb + tf . S selects P random polynomials F1(x), . . . , FP (x) over F, each
of degree (tb + tp).

2. For i = 1, . . . , P , S computes n length RS codeword corresponding to Fi(x), denoted
by Ci = [ci1 . . . cin], where cij = Fi(αj), for j = 1, . . . , n.

Communication by S:

1. For j = 1, . . . , n, S sends jth component of all the P codewords, namely c1j , . . . , cPj

over wire wj .

Phase II: R to S :

Computation by R:

1. For i = 1, . . . , P , let R receive the n length vectors Yi, where Yi = Ci + Ei and Ei is
the error vector introduced by Byzantine and fail-stop corrupted wires. R does not
know Ci and Ei.

2. Let Y = {Y1, . . . , YP }. R executes (k,B,I) = Find-Pseudo-Basis(Y) to find pseudo-
basis B = {Yj1, . . . , Yjk} ⊂ Y , pseudo-dimension k = |B| and index set I =
{j1, . . . , jk} ⊂ {1, . . . , P}, where |I| ≤ (tb + tf ).

Communication by R:

1. R reliably sends the triplet (B, k,I) to S by broadcasting it.

Phase III: S to R :

Computation by S:

1. S correctly receives the triplet (B, k,I).

2. S finds Ej1 = Yj1 − Cj1, . . . , Ejk = Yjk − Cjk and computes CORRUPTED =

∪k
i=1support(Eji).

3. S concatenates all the Fi(0)’s such that i ∈ {1, . . . , P} \ I and forms an information
theoretic secure pad Z of length at least n2 (since |I| ≤ tb + tf and P = n2 + tb + tf ).

4. Let Zn2 denote the first n2 elements of Z. S computes Γ = Zn2 ⊕m.

Communication by S:

1. S reliably sends (to R) Γ and list CORRUPTED containing the identity of Byzantine
and fail-stop corrupted wires by broadcasting them.

Local Computation by R at the End of Phase III :

1. R correctly receives Γ and the list CORRUPTED.

2. R ignores all information received over the wires in CORRUPTED during Phase I.

3. R then reconstructs all the polynomial Fi(x) such that i ∈ {1, . . . , P} \ I, by consid-
ering the correct values on Fi(x) received over remaining wires during Phase I.

4. Finally, R recovers pad Z (and hence Zn2 ) by concatenating Fi(0)’s for all i ∈
{1, . . . , P} \ I and hence the message m = Γ⊕ Zn2 .

We now prove the properties of protocol 3-OPSMT.
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Lemma 23 (Correctness). In Protocol 3-OPSMT, R will correctly recover m.

Proof: First notice that R will correctly receive the blinded message Γ and list
CORRUPTED, as they are broadcasted by S. Now to prove that R correctly
recovers the message m sent by S, we show that S and R shares the same pad
Z. S and R will share Z if:

1. I is same at both ends and

2. R is able to correctly recover polynomials Fi(x) for i ∈ {1, . . . , P} \ I.

Since R sends the triplet (B, k, I) to S by broadcasting, I will be same
at both ends. Now we show that irrespective of the behavior of Amobile

(tb,tf ,tp),

R will always recover all the polynomials Fi(x) for i ∈ {1, . . . , P} \ I. Since S
correctly receives (B, k, I), CORRUPTED will contain all the wires which were
corrupted in Byzantine and fail-stop fashion during Phase I. R also correctly
receives CORRUPTED from S. Now ignoring the values received over the wires
in CORRUPTED during Phase I, R recovers all the polynomials with the
remaining values. This is possible because each polynomial is of degree tb + tp
and at least n − |CORRUPTED| ≥ n − (tb + tf ) = tb + tp + 1 clean values
on each polynomial, obtained over the wires in {w1, . . . , wn} \ CORRUPTED
during Phase I, are available to R, at the end of Phase III. 2

Lemma 24 (Secrecy). In Protocol 3-OPSMT, m will be information theoret-
ically secure.

Proof: The message m will be information theoretically secure from Amobile
(tb,tf ,tp)

if the pad Z is information theoretically secure. According to the protocol, Z
contains Fi(0) iff i ∈ {1, . . . , P} \ I. Since (B, k, I) was sent by R by broad-
casting, it may be eavesdropped by Amobile

(tb,tf ,tp) during its transmission. But for

remaining polynomials Fi(x)’s where i ∈ {1, . . . , P} \ I, Amobile
(tb,tf ,tp) will know

at most tb + tp points by eavesdropping tb + tp wires during Phase I. Since
the degree of each of these polynomials is tb + tp, Amobile

(tb,tf ,tp) will lack one point

on these polynomials to uniquely interpolate them and hence each Fi(0) with
i ∈ {1, . . . , P} \ I will be information theoretically secure. 2

Lemma 25 (Communication Complexity). Protocol 3-OPSMT sends a mes-

sage m containing ℓ = n2 field elements by communicating O(n3) = O
(

nℓ
n−(2tb+tf +tp)

)

=

O(nℓ) field elements, tolerating Amobile
(tb,tf ,tp). Moreover, the protocol is an OPSMT

protocol.

Proof: During Phase I, S communicates P = n2 + tb + tf codewords to R
which requires communication of Pn = (n2 + tb + tf ).n = O(n3) field elements.
In Phase II, R sends triplet (B, q, I) through all the wires. This incurs a com-
munication cost of O((tb + tf ).n.n) = O(n3). The communication complexity
of Phase III for sending CORRUPTED and Γ is O(n2.n) = O(n3). Hence
overall communication complexity of the protocol is O(n3).
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From Theorem 10, any three phase PSMT tolerating Amobile
(tb,tf ,tp) over n =

2tb + tf + tp + 1 wires, must communicate Ω(n3) field elements to securely
send a message containing n2 field elements. Since the total communication
complexity of protocol 3-OPSMT is O(n3), the protocol is an OPSMT protocol
tolerating Amobile

(tb,tf ,tp). 2

Theorem 22. Let S and R be connected by n = 2tb+tf +tp+1 wires, under the
influence of Amobile

(tb,tf ,tp). Then there exists a three phase polynomial time OPSMT

protocol, which securely sends a message containing ℓ ≥ n2 field elements by
communicating O(nℓ) field elements tolerating Amobile

(tb,tf ,tp). Moreover, the same

protocol will work against Astatic
(tb,tf ,tp).

Proof: In order to send a message m containing ℓ ≥ n2 field elements, S
can divide m into several sub-blocks, each of size n2 and concurrently send
them to R by executing protocol 3-OPSMT for each sub-block. This will incur
communication cost of O( ℓ

n2 .n3) = O(nℓ). The correctness and security of the
resultant protocol follows from Lemma 23 and Lemma 24. 2

11. Conclusion and Open Problems

In this paper, we initiated the study of PSMT tolerating static and mobile
mixed adversary. We have given the complete characterization of single phase
and multiphase PSMT protocols in undirected networks tolerating threshold
static/ mobile mixed adversary. We have also proved the lower bound on the
communication complexity of any single phase and multi phase PSMT protocol.
Moreover, we have shown that our bounds are asymptotically tight by designing
communication optimal protocols. Our investigation shows that it is appropriate
to model different type of corruptions in the network by a mixed adversary,
rather than considering every fault as Byzantine corruption.

Few questions remain unanswered in the paper which are as follows:

1. We have designed a three phase OPSMT protocol against static/mobile
mixed adversary. It would be interesting to see if there exists a two phase
OPSMT protocol against static/mobile mixed adversary.

2. Our proposed OPSMT protocols are communication optimal only for mes-
sages of some minimum size. It would be interesting to see if there exists
OPSMT protocol for a given message of any size.
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[5] Z. Beerliová-Trub́ıniová and M. Hirt. Perfectly-Secure MPC with Linear
Communication Complexity. In R. Canetti, editor, Theory of Cryptography,
Fifth Theory of Cryptography Conference, TCC 2008, New York, USA,
March 19-21, 2008, volume 4948 of Lecture Notes in Computer Science,
pages 213–230. Springer, 2008.

[6] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness Theorems for
Non-Cryptographic Fault-Tolerant Distributed Computation. In Proceed-
ings of the Twentieth Annual ACM Symposium on Theory of Computing,
2-4 May 1988, Chicago, Illinois, USA, pages 1–10. ACM, 1988.

[7] R. Canetti and T. Rabin. Fast Asynchronous Byzantine Agreement with
Optimal Resilience. In Proceedings of the Twenty-Fifth Annual ACM Sym-
posium on Theory of Computing, 1993, pages 42–51. ACM, 1993.
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