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【Abstract】Since the first collision differential with its full differential path was presented for MD5 function 
by Wang et al. in 2004, renewed interests on collision attacks for the MD family of hash functions have surged 
over the world of cryptology. To date, however, no cryptanalyst can give a second computationally feasible 
collision differential for MD5 with its full differential path, even no improved differential paths based on 
Wang’s MD5 collision differential have appeared in literature. Firstly in this paper, a new differential 
cryptanalysis called signed difference is defined, and some principles or recipes on finding collision 
differentials and designing differential paths are proposed, the signed difference generation or elimination rules 
which are implicit in the auxiliary functions, are derived. Then, based on these newly found properties and 
rules, this paper comes up with a new computationally feasible collision differential for MD5 with its full 
differential path, which is simpler thus more understandable than Wang’s, and a set of sufficient conditions 
considering carries that guarantees a full collision is derived from the full differential path. Finally, a 
multi-message modification-based fast collision attack algorithm for searching collision messages is 
specialized for the full differential path, resulting in a computational complexity of 362 and 322  MD5 
operations, respectively for the first and second blocks. As for examples, two collision message pairs with 
different first blocks are obtained.  
Key Words：MD5, differential cryptanalysis, collision attacks, collision differential, differential path design 

1． Introduction 
A hash function is a cryptographic primitive which computes a fixed size message digest from arbitrary 

size messages. The output value is used usually as the digital digest of the input message, so that 
a change of a single bit in the input would deterministically cause on average a half of the digest bits to change. 
Therefore, a cryptographic hash function is essentially a type of irreversible one-way functions built with 
nonlinear operations. MD2, MD4 and MD5 are hash functions that were developed in the early1990’s by Ron 
Rivest at MIT for RSA Data Security. A description of these hash functions can be found in RSA Laboratories 
Technical Report TR-101 [1]. The widespread popularity of the MD family of hash functions is a testament to 
their innovative and successful design. Indeed, MD4 in particular has been used as the basis for the design of 
many other hash functions (including MD5, SHA-1, RIPEMD) and, MD5 is one of the most widely used hash 
functions in the world today, specially designed for 32-bit machine. MD5 is deployed in many applications, 
including SSL/TLS, IPSec, and many other cryptographic protocols. It is also commonly-used in 
implementations of time-stamping mechanisms, commitment schemes, and integrity-checking applications for 
online software, distributed file systems, and random-number generation.  

There exists no sound mathematical security definition for cryptographic hash functions like MD5, but 
instead their security rely on the following intuitive notions: for a hash function ( )xhy =  with domain 

Dx∈  and range Ry∈ , we require the following three properties. 
Pre-image Resistance: For a given Ry∈ , it should be hard to find a Dx∈ such that ( ) yxh = . 

Second Pre-image Resistance: For a given Dx∈ , it should be hard to find a distinct Dx ∈• such that 
( ) ( )•= xhxh . 
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Collision Resistance: It should be hard to find distinct Dxx ∈•, such that ( ) ( )•= xhxh . 

A hash function for which it is hard to find either a preimage or a second preimage is sometimes called a 
one-way hash function, whereas a hash function that possesses all the three properties described above is called 
a collision-resistant hash function. In particular, the term “hard” is used above as “computationally infeasible”. 
  This paper mainly focused on collision attacks on MD5. While it is postulated in RFC [2]that the 
difficulty of coming up with two messages having the same message digest is on the order of 642 operations, 
researches on collision attacks have never stopped since the publication of MD5. In 1992, Berson[3] showed 
that using differential cryptanalysis, it is possible in reasonable time to find two messages that produce the 
same digest for a single-round MD5. In 1993, Den Boer and Bosselaer[4] found pseudo-collisions for the 
compression function of MD5 with different initial values but common input. In 1996, Dobbertin[5,6] 
constructed collisions of the MD5 compression function, that is, MD5 collisions with a wrong initial value. In 
2004, Wang et al.[7,8] succeeded in producing real collisions for the full MD5 hash function as well as 
collisions in a host of other hash functions including MD4, RIPEMD, and HAVAL-128.This new idea in their 
approach was to look for a collision after processing not one but two blocks of the message. Again at 2005 
CRYPTO conference, Wang et al[9]. detailed the applications of their methods to the hash functions SHA0 
and SHA1, with a generated collision for SHA0, and a description on how to obtain collisions in SHA1. Given 
the variety of hash functions efficiently attacked by Wang et al, it therefore seems worthwhile to seek a 
complete understanding of how this approach works, how it can be improved, and how it can be generalized 
[10]. 

Fundamentally, Wang’s differential collision attack is a hybrid differential cryptanalysis which takes 
advantages of both the modular difference and the XOR difference together. The modular differential 
cryptanalysis has been early used in the collision attacks of MD family of hash functions, with modular 
addition as the confusion method, including MD5, SHA0 and RIPEMD[3,11,12,13]. The XOR differential 
cryptanalysis is originally proposed for the cryptanalysis of the DES like block ciphers, with bitwise XOR 
operation as the confusion method [14]. Wang’s main contribution to MD5 attack is that, they have found a 
full two-block collision differential with its full differential path, which is computationally feasible, and for the 
first time constructed a full message collision pair for MD5. Wang ’s attack on MD5 has called its security 
especially in digital signature into question. To date, however, the method used by Wang et al has been fairly 
difficult to grasp, and furthermore, some small perhaps deliberately made errors (bugs) in the literature [8], 
might have constituted the appeal to have frustrated other cryptanalysts to grasp their technique. Since the 
publication of [8], quite a number of researchers have worked on the optimization of the set of sufficient 
conditions and hence the collision search algorithms, resulted in a great improvement on the collision search 
efficiency to 302 MD5 operations as declared [10,15]. What is really inexplicable consists in that, no second 
differential path which is more computationally feasible than the original one has been published as yet, say 
nothing of the second collision differential with its full differential paths. The authors of this paper, however, 
believed that, there must exist other more efficient differential paths corresponding to Wang’s collision 
differential and, even other collision differentials different from Wang’s as well. In this paper, we present a 
new collision differential completely different from Wang’s, offer a full differential path for this new collision 
differential, and the set of sufficient conditions to maintain the full differential path is also derived from the 
full differential path.  

The rest of this paper is organized as follows: In section 2, we give a concise description of the MD5 
algorithm and some notations used in this paper. Then in section 3, the definitions for XOR difference, 
modular difference as well as signed difference are given and a differentiation is provided, that the signed 
difference of a message word pair is a unique definition of both the corresponding XOR difference and 
modular difference. And in section 4, a new collision differential for MD5 with its full differential path is 
introduced, some principles or considerations on how to find collision differentials and design full differential 
path are made public, and the specific rules of how to generate or eliminate signed differences, which are 
implicit in the auxiliary functions, are derived. In section 5, a multi-message modification-based fast collision 
attack algorithm is specialized for the set of conditions which are derived directly from the full differential path. 
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Finally, in section 6, we summarize and conclude the paper, offer some suggests for verification and evaluation 
of collision differentials, and some remarks on differential collision attacks are also given. 

2． The MD5 Message Digest Algorithm 

There are several types of hash function construction methods, respectively based on block ciphers, 
modular arithmetic, knapsack problems, cellular automaton, algebraic matrices, or specially designed for 
message hashing which is called dedicated hash functions, like the MD family of hash functions. Dedicated 
hash functions are practically built on the Merkle-Damgard theory, which says that collision resistance of the 
compression function implies collision resistance of the hash function [17,18]. Practically, a Merkle-Damgard 
structure-based hash function is iterated by a compression function ( )XfY = , which compresses l -bit 
message block X to a s -bit hash valueY , where  sl > . For MD5, 512=l , 128=s . For a padded 
message M with multiple ( t ) of l -bit blocks, the iteration process can be described as:  
   ( )iii MHfH ,1 =+ , 10 −≤≤ ti ; 

Where ( )110 ,...,, −= tMMMM , iH is the 128-bit chaining variables (including four 32-bit words) which 

is updated during the processing of each block, 0H is the initial value IVs specified in MD5 algorithm, and 

the final tH is the hash value that we expect to obtain. The concrete padding rule is omitted here, since it has 
no influence on our attack. 

The processing of the thi block ( )ii MHf ,  involves four round functions FF , GG , HH and II as 

follows: ( ) ( )( )( )( )iiiiiiiii HMFFMGGMHHMIIHMHfH ,,,,,1 +==+ . 

The round functions are similar to one another in structure. The chaining variable iH  is treated as 
four-element shift register, with each element being one 32-bit word wide. The elements are referred to as 
a , b , c and d . Each 512-bit block iM is divided into 16 32-bit words, denoted as ( )1510 ,...,, mmmM i = , 

each round consists of 16 steps of operation, in each step operation the register is used with one word from iM . 

The step operation is formulated as a system of equations: ( )( )( )jjjj stwdcbaba <<<++Φ++= ,, , 

640 <≤ j . Where ( )ZYXj ,,Φ  is an auxiliary function which varies from round to round; jw is a word 

chosen from iM , jt and js are constant parameters associated with step j ; and js<<< signifies a js -bit left 

circular shift of a word. Note that each step involves four modular additions ( 322mod ), one auxiliary function 
and one <<<  operation.  

As the step operation of MD5 is reversible, the compression function ( )ii MHf , uses a feed-forward 

operation which adds the initial value iH of the register (the values at the start of the compression function) to 

their final values (obtained after 64 steps), so that ( )ii MHf , cannot be inverted. 

Here we define ( ) jjjj twdcbaa ++Φ+=∑ ,, for the extra conditions’ derivation late in section 5. 

The auxiliary functions ( )ZYXj ,,Φ  each take three 32-bit words from the register of chaining 
variable and produce one 32-bit word as output. The auxiliary functions for each round are given as follows: 

( ) ( ) ( ) ( )ZXYXZYXFZYXj ∧∨∧==Φ ,,,, , 160 <≤ j ; 

( ) ( ) ( ) ( )ZYZXZYXGZYXj ∧∨∧==Φ ,,,, , 3216 <≤ j ; 

( ) ( ) ZYXZYXHZYXj ⊕⊕==Φ ,,,, , 4832 <≤ j ;     
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( ) ( ) ( )ZXYZYXIZYXj ∨⊕==Φ ,,,, , 6448 <≤ j . 

Where ZYX ,, are 32-bit words. The four words of the chaining variable register are initialized as 
=a 0x67452301, =b 0xefcdab89, =c 0x98badcfe, =d 0x10325476. 

For a detailed description of MD5 algorithm, please refer to [2]. 

3． XOR Differential Plus Modular Differential = Signed Differential 

The first published effort appears to have been the cryptanalysis of a block cipher called FEAL by Murphy 
[19]. This is followed by a number of papers by Biham and Shamir, who demonstrated this form of attack on a 
variety of encryption algorithms and hash functions; their results are summarized in [14]. In its basic version, 
differential cryptanalysis is a method that analyses the effect of particular differences in plaintext pairs on the 
difference of the resultant ciphertexts. These differences can be used to assign probabilities to the possible keys 
and to locate the most probable key. Although this scheme, as reported in[14], can successfully cryptanalyze 
DES with an effort on the order of 472 , but the need to find 472 chosen plaintexts make this attack of only 
theoretical interest. Usually, the difference between message word pair can be defined as XOR difference or 
modular difference. The XOR difference of message word pair is defined as a bitwise XOR operation of every 
two corresponding bits, while the modular difference is defined as a modular integer subtraction of the two 
binary message words. Berson might be the first to have made modular 322 differential cryptanalysis on MD5 
function [3,11~13]. Modular differential was employed late in analyzing the propagation properties of static 
difference of the quadratic function in RC6, which has lager propagation probability than the static XOR 
differential [20].   

For any cryptographic system, Claude Shannon suggests two methods for frustrating statistical 
cryptanalysis: diffusion and confusion. In a binary block cipher, diffusion is achieved usually by repeatedly 
performing some permutations on the data followed by applying a function to that permutation, while 
confusion is achieved usually by the use of a complex substitution algorithm. In addition, both modular 
arithmetic operation and XOR operation are two types of confusion method that are widely employed in 
practical block ciphers. Whether XOR differential or modular differential or even both differentials should be 
chosen as the differential cryptanalytic tool, it depends on what confusion and diffusion methods are used in 
the cipher to be cryptanalyzed. The XOR difference is suitable for cryptanalysis of cipher in which the XOR 
operation is used as a confusion method, while the modular difference is adapted for cryptanalysis of cipher in 
which the modular addition is used as a confusion technique.  

A slight mathematical analysis reveals that, a modular difference might map to many different XOR 
differences, and a XOR difference might also map to many different modular difference, too. This gives a 
proof that either modular difference or XOR difference can not separately be a proper measure of message 
word pair in differential cryptanalysis. Therefore, we define the third type of difference for message word pair, 
that is the bitwise difference representation between the binary message pair, called as signed bitwise 
difference or directly as signed difference. Both the modular difference and XOR difference of the message 
word pair are completely incorporated into the corresponding signed difference. 

Given 10=w -bit messages as 1X =1001000101 and 2X =0000111010, the XOR difference denoted as ▽X , 
the modular difference denoted as △X  and the signed difference denoted as ◇X  between 1X and 2X are 
formulated and computed, respectively as follows: 

▽ 21 XXX ⊕= = ii

w

i
,2,1

1
|| XX ⊕
=

=1001111111;  

△ ( ) ( )10
21 2modXXX −= =1000001011; 
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◇X = ( )ii

w

i
,2,1

1
|| XX −
=

=1001-1-1-11-11. 

By mathematically analyzing the relation between the signed difference and the XOR difference plus 
modular difference, the following relations are obtained: 

△ ( ) ( )w2mod21 XXX −= = ( ) ( )w
w

i

i
ii 2mod2

1

1
,2,1∑

=

−•− XX
( )w2mod
≡ ( )ii

w

i
,2,1

1
|| XX −
=

=◇X  

That is, a bijective mapping does exist between the signed difference ◇X and the XOR difference  
▽X plus the modular difference △ X , considering in a w -bit word, a MSB = +1 is equivalent to MSB = -1 
within modulo w2 . Namely, given a specific signed difference ◇ X , the corresponding XOR difference and 
modular difference are both uniquely determined and vice versa. Many useful properties in differential path 
designing can be derived from the relation given above. Since the space is limited here, a detailed mathematic 
analysis on the full properties of the signed difference is going to be published as a separate paper.  

For simplicity, we omit those “0”s in the signed difference ◇ X , but index the signed difference bits (+1 
or -1) with their bit position identity instead, starting from 1 (the LSB) in the word. Using 10-bit word as an 
example, the signed difference (1001-1-1-11-11) can be indexed as (10,7,-6,-5,-4,3,-2,1). 

In differential cryptanalysis, a differential is a pair formed of an input difference and an output difference, 
whereas a differential characteristic is a sequence of differences where the difference after each round is given. 
A signed differential characteristic for a hash function is a sequence of signed differences where the signed 
differences after each step is given for an input difference. A signed differential characteristic is also called a 
signed differential path. For hash function collision attacks, it is to design a computationally feasible signed 
differential path which leads to a collision. 
 
4． A New Collision Differential for MD5 

4．1  Some Principles for Collision Differential Finding  

Single block or multi-block collision differentials always exist for any iterated hash function based on 
Merke-Damgard theory, and the number of collision differentials may be numerous, but finite 
given the fact that MD5 puts a limit on the length of the message. To carry out a successful collision attack, the 
first and crucial step is to design or find an input message difference which can be controlled in the difference 
propagation during the computation of successive step operations, so that the difference can be eliminated by a 
single or multiple iterations in the final (four steps for MD5) steps.  

Given an input message difference, if a full differential path can be computed to a collision, then it is 
called a feasible collision differential, hence the corresponding differential path a feasible differential path, 
otherwise we call it an infeasible collision differential. If the probability to satisfy the set of necessary 
conditions that maintain the differential path is computationally feasible, then we call it a computationally 
feasible collision differential, hence a corresponding computationally feasible differential path, otherwise a 
computationally infeasible collision differential and path. In general, firstly a good collision differential should 
result in smaller and smaller differences beginning from round 2, so that an elimination of all differentials or 
most differentials can be achieved in the final round; secondly, the start differences in round 1 should be as far 
away as possible from the first step to ensure enough free message words in round 1, so that some intermediate 
states in round 2 can also be directly satisfied by these free message words. Wang has given the first collision 
differential [8] which properly meets the principles described above. 

Wang’s first two-block collision differential is listed below, and it is computationally feasible. 

0MΔ = ( ) )2mod( 32
00 MM −•  =  (0,0,0,0, 312 ,0,0,0,0,0,0, 152 ,0,0, 312 ,0); 

1MΔ = ( ) )2mod( 32
11 MM −•  =  (0,0,0,0, 312 ,0,0,0,0,0,0,- 152 ,0,0, 312 ,0); 

1HΔ = ( )dcba ΔΔΔΔ  , , , = ( )25312531253131 22 ,22 ,22 ,2 +++ . 
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In this section, we give a second collision differential, which is also computationally feasible, as follows: 

0MΔ = ( ) )2mod( 32
00 MM −•  =  (0,0,0,0,0,0,- 82 ,0,0, 312 ,0,0,0,0,0, 312 )； 

1MΔ = ( ) )2mod( 32
11 MM −•  = (0,0,0,0,0,0, 82 ,0,0, 312 ,0,0,0,0,0, 312 )； 

1HΔ = ( )dcba ΔΔΔΔ  , , , = ( )2331233123312331 22 ,22 ,22 ,22 −−−− . 
Note that, the message block differential index starts at 0 and th0  word differential start at the left. For 

example, for 0MΔ given by the author, the sixth word difference is - 82 and the ninth word difference is 312 . 

4．2  Some Principles For Differential Path Designing  

When a collision differential is found to be computationally feasible, the next work is to design a feasible 
differential path which leads to a collision. The basic design criterion is to decrease differentials in all rounds 
except round 1. In addition, less the differentials in round 1, better the differential path will be, provided it 
works. To design a good differential path with computational feasibility, the following principles could be 
benefited from if observed. 
1) The presence of a differential path for round 1 is critical to the feasibility of the collision differential; 
2) The differential path in round 2 must take only a small upper part of steps, so as to make it connect with the 

differential path in round 1; 
3) More free message words before the start differential in round 1, better the differential path will be; 
4) The path in round 2 must not make up a feedback with the path in round 1 through those free message 

words (directly related to the free state variables), so that multi-message modification works; 
5) The differentials in the path section within the round 3 and 4 must be as small as possible so that only the 

path section around the final 4 steps have differentials (difference diffusion) if unavoidable; 
6) Deduce a differential path bottom-up in a reverse computation way, starting from the inner collision step in 

round 2, and up to the step that is 4 or 5 steps away from the start differential in round 1, then compute the 
differentials up-down from the start differential in round 1 to meet with the bottom-up differential path; 

7) Use the properties implicit in the signed difference in each backward or forward iteration, to generate new 
signed differences or eliminate unwanted signed differences, and this is the basic rule for any hash function; 

8) Use the generation and elimination rules implicit in the auxiliary functions in each backward or forward 
iteration, and these are the special rules for a particular hash function. 

4．3  MD5 Differential Iteration 

A full MD5 differential path is composed of 64 consecutive differential steps of iteration. 
Four consecutive state variable differentials (◇ a ,◇ d ,◇ c and◇b ) are employed as input to the round 

function to generate the next output variable differential◇ •a , we call this computation a MD5 differential 
iteration step. 

In a MD5 iteration step, the signed differences in the next output variable can be : 
1) Directly derived from the signed difference in the top state variable; 
2) Directly derived from the signed difference in the last state variable; 
3) Indirectly generated by the auxiliary functions used in the step, provided that at least one signed difference 

exists at the same bit position in the last three state variables: 
i) A signed difference can be generated in many ways; 
ii) Actually, any signed differences can be generated in the last three state variables in an almost magic 

way, by utilizing the properties implicit in the signed difference; 
iii) Almost all intelligence of differential path designing is focused here.  

4) The signed difference generated by the auxiliary functions can be used to eliminate those derived directly 
from the top and last state variables. 

With the properties implicit in the signed difference, in each (forward or backward) differential iteration 
step, the critical technique will most probably be, on the one hand, to employ the auxiliary functions to 
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generate those signed differences, that are required by the next output variable but can not be directly derived 
from the top and last state variable; on the other hand, to employ the auxiliary functions to generate the 
complementary differentials for those directly derived from the top and last state variable, but not required by 
the next output variable, so that two complementary signed differences be eliminated. 

4．4 The Signed Difference Rules Due to Auxiliary Functions 

Part of the techniques that is shrouded in the differential path finally falls on the auxiliary functions. 
The auxiliary functions contribute to the generation and elimination of signed differences by bit-wise Boolean 
operation, and the properties implicit in the signed difference are employed to provide the context for the 
auxiliary functions as required. Table 1 only gives the rules of signed difference generation and elimination for 
the auxiliary function  ( ) ( ) ( )ZXYXZYXF ∧∨∧=,,  in round 1, the rules corresponding to other three 
auxiliary functions can be similarly analyzed.  

Table 1：The signed difference rules derived from the function ( )ZYXF ,,  

Some comments for table 1 are summarized below: 
1) The three consecutive state variables each have signed difference at the same bit position: there are totally 

8 situations, the first two situations produce a positive signed difference +1 and the final two situations a 
negative difference -1, whereas the other 4 situations will result in a bit value 0. 

2) Two of the three consecutive state variables have signed difference at the same bit position: there are 
totally 12 situations, a signed difference +1 or -1 can be generated or eliminated in the first 8 situations, 
depending on the value of the bit that has no signed difference; whereas the final 4 situations will only 
result in a signed difference +1 or -1, and no difference elimination occurs. 

3) Only one of the three consecutive state variables has signed difference at the same bit position: there are 
totally 6 situations, these situations can produce a signed difference +1 or -1 or directly result in a 
difference elimination, depending on the values of the other two bits that have no signed difference. 

One particular situation which should be paid much attention to is that, when the top and last state 
variables have signed difference at the same bit position, there are totally 2 situations, i.e. the two signed 
differences being equal or complementary each other. If the objective in this step operation is to eliminate the 
signed difference due to the top and last state variable, and when two signed differences are equal, the two bits 
at the same position in the middle two state variables as it is concerned with, need to be specified so that a 
complementary difference will be generated to eliminate the top bit difference. This will, however, 
unfortunately result in new signed differences in the last two state variables. When the two bit differences are 
complementary each other, two bits at the same position in the middle state variables as it is concerned with, 
can be specified so that a complementary difference can be generated to eliminate the top bit difference but 
without introducing any new differences in the last two state variables. 

In table 1, •a is the next variable generated by the three consecutive state variables d , c and b according to 
the auxiliary function ( ) ( ) ( )dbcbdcbF ∧∨∧=,, , i.e. ( )dcbFa ,,=• . Where, +1 or -1 denote signed 
difference, unsigned numbers (1, 0) and the space represent no difference bit value or bit to be specified. The 
option for the next variable •a if available, depends on the value of the corresponding bits without no 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

a                            

0 1 1 0 0 0 d  +1 +1 +1 +1 -1 -1 -1 -1 
1 0 0 1

+1 +1 -1 -1 +1 +1 -1 -1
1 1 

  +1 -1

1 0 0 1 0 0 c  +1 +1 -1 -1 +1 +1 -1 -1 +1 +1 -1 -1
0 1 1 0 

+1 -1 +1 -1
1 1 

+1 -1   

0 0 0 0 1 1 0 0 b  +1 -1 +1 -1 +1 -1 +1 -1 +1 -1 +1 -1 +1 -1 +1 -1
1 1 1 1 

+1 -1 
0 0 1 1 

+1 +1 -1 -1 +1 +1 -1 -1 +1 -1 ±1 ±1 +1 -1 +1 -1•a  +1 +1 0 0 0 0 -1 -1 
1 0 0 1 0 1 1 0

+1
-1 +1

-1
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difference. 
Following the differential path designing principles recommended for MD5, by utilizing the generation 

and elimination rules implicit in the signed differential and auxiliary functions, we have designed a full 
differential path for the collision differential given in section 4.1, they are listed in table 3 and table 5. Table 4 
and table 6 are the set of sufficient conditions derived respectively from table 3 and table 5, message block 
pairs with the given collision differential can keep control of the differential paths till collision occurs, if the 
set of sufficient conditions are satisfied by the input messages. 

In table 3, the first column denote the step operation number, the second column iX denotes the 32-bit 

output variable of the step operation, the third column denotes the message word for 0M in each step, the 
fourth column denotes the shift rotation number, the fifth column denotes the modular difference in the 
message word, the sixth column △ iX denotes the modular difference in the step operation output, the 

seventh column ◇ iX denotes the step operation output for •
0M by signed differential. The empty items and 

unlisted steps have zero difference in the fifth and sixth columns. The same denotations are employed for 
table 5 which is specified for the iteration of the second message block 1M . By table 4 and 6, we count up the 
number of conditions for the first and second message blocks to be 222 (including 13 extra conditions) and 
321 (including 15 extra conditions), respectively.   

 
5． Multi-Message Modification Algorithm and Collision Pairs 

The differential path shown in table 3 starts at the 7th step in round 1, hence 4 message words 

1m , 2m , 3m and 4m remain free. This is the context that multi-message modification technique can take to 
improve the collision attack efficiency, by directly satisfying some necessary conditions corresponding to those 
free message words in round 2. The effect of new changes on the corresponding output variables in round 1 
can be absorbed by computing new message words for successive steps, this method is due to [12], and further 
developed in [10,15,16]. We give the fast collision attack algorithm specialized for our collision differential 
path, based on the improved multi-message modification method.  

5.1 Fast Attack Algorithm For The First Block 
Step1: Select random 32-bit value for the output variables 1c and 1b , and randomly select 32-bit value for the 

output variables from 2a to 4b  but ensure that all the conditions in table 4 hold;  
Step2: By the output values from 1c to 4b  given in step1, message words from 6m to 15m are computed by 
reformulating the step operation equation in the same way as follows: 

0xa830461317 1122226 −−−−= c), b, aF(d), d RR(cm ；  

Step3: Randomly select 32-bit value for 5a , but make the conditions 09,5 =a , 

123,5 =a and 127,5 =a satisfied; 

Step4: To compute 5d . If the condition 023,5 =d does not hold, then make 023,5 =d by modifying 6m , and 

this is followed by modifying 1c to counteract the changes induced by the modified 6m ; 

     0xc040b3409 4445556 −−−−= d), c, bG(a),  aRR(dm ； 

0xa830461317 6122221 −−−−= m), b, aF(d), dRR(cc ； 

5644455 9 ,0xc040b340  a)    m d) , c, b RL(G(a d ++++= ；  

Step5: To compute 5c . If the conditions 27,527,5 dc = and 032,5 =c do not hold, then modify 18,2b or both 
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13,2b and 13,3a together. By the modified 2b and 3a , the message word 11m is recomputed, and followed by a 

update of 5c ; 

0x895cd7be22 23333311 −−−−= b), a, dF(c), cRR(bm ； 

51144555 14 ,0x265e5a51, d)mc), ba RL(G(d c ++++= ； 

Step6: Randomly select 32-bit value for 5b , but make the conditions 23,523,5 cb = and 032,5 =b satisfied, then 

make a update of 0m , 1m , 1a , 1d , 2m , 3m , 4m and 5m in sequence; 

0xe9b6c7aa20 4555550 −−−−= b), a, dG(c), c RR(b m ； 

0xf61e25625 4444451 −−−−= a), d, cG(b),  b RR(a m ； 

0000001 70xd76aa478 b),  ma), d,c RL(F(b a ++++= ； 

1100011 120xe8c7b756 a), md), c, b RL(F(a d ++++= ； 

    0x242070db17 0011112 −−−−= c), b, aF(d), d RR(cm ；    

     0xc1bdceee - 22 0111113 ) - b, a, d) - F(c, - c RR(bm   = ；  

        0xf57c0faf - 7 1111124 )- a, d, c) - F(b,   - b RR(a m = ； 

    0x4787c62a12 1112225 −−−−= d), c, bF(a), a RR(d m ； 

Step7: To compute 6a . If the condition 127,6 =∑a does not hold, then modify both 7,2d and 7,2c together. 

By the modified 2d and 2c , 5m is recomputed under the pre-specified extra condition 7,17,2 ba = , while 

6m  is not changed. Recompute 6a and make a update of 7m , 8m , 9m and 10m in sequence, so that 

2b , 3a , 3d and 3c keep unchanged;  

0x4787c62a 12 1112225 −−−−= d), c, bF(a), aRR(dm ； 

5555556 50xd62f105d a),  ma), d, cRL(G(ba ++++= ； 
Step8: Go on with next step operations that have not been processed above, go to step6 provided that at least 

one condition in table 4 does not hold; if the number of iterations exceeds a pre-specified bound, then go to 
step 1; if all conditions in table 4 hold, store the first message block and output 0aa , 0bb , 0cc and 0dd to 
the second message block attack algorithm as chaining value, then stop. 

5.2 Fast Attack algorithm for the second block 
Step1: Randomly select 32-bit value for the output variables from 1a to 4c but ensure that all the conditions in 

table 6 hold; 
Step2: By the output values from 1a to 4c  given in step1 and the initial value 0aa , 0bb , 0cc and 0dd obtained 

in the fast attack algorithm for the first block, message words from 0m to 14m are computed by reformulating 
the step operation equations in sequence, in the same way as follows: 

0xd76aa4787 0000010 −−−−=  aa), dd, cc F(bb) ,  bb RR(a m ； 

Step3: Randomly select 32-bit value for the output variable 4b , but ensure that all the conditions for 4b in table 
6 hold, then compute 15m by reformulating the step operation equation as follows: 

    ( ) ( ) 0x49b40821,,22, 34444415 −−−−= badcFcbRRm ; 

Step4: To compute 5a . If conditions 19,5 =a , 123,5 =a and 127,5 =a do not hold, modify 2,1d and 31,1d or both 
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16,1d and 16,1c together. By the modified 1d or 1c , a update of 1m , 2m , 3m , 4m , 5m or 6m  is made in 

sequence, and this is followed by a recomputation of 5a according to the updated 1m ; 

0xe8c7b75612 0001111 −−−−= dd), cc, bbF(a),  a  RR(d m ; 

     4144445 50xf61e2562 b), ma), d, c RL(G(b a ++++= ; 

Step5: To compute 5d . If condition 023,5 =d does not hold, then modify 31,2c . By the modified 2c , 6m  is 

updated, hence 5d  is recomputed, and this is followed by a sequential update of 7m , 8m , 9m and 10m ; 

0xa830461317 1122226 −−−−= c), b, aF(d),d RR(c m ； 

5644455 90xc040b340 a),  md), c, b RL(G(a d ++++= ； 

Step6: To compute 5c . If conditions 27,527,5 dc = and 032,5 =c do not hold, then modify 3,3b or 

both 18,2b and 18,3a together. By the modified 2b or 3b , 11m is updated, hence 5c is recomputed, and this is 

followed by a sequential update of 12m , 13m , 14m and 15m , or 7m , 8m , 9m , 10m , 11m and 12m as well; 

0x895cd7be22 23333311 −−−−= b), a, dF(c), c RR(b m ； 

41144555 140x265e5a51 c), mc), b, a RL(G(d c ++++= ； 

Step7: To compute 5b .If conditions 23,523,5 cb = and 032,5 =b do not hold, then go to step3; 

Step8: To compute 6a . If condition 127,6 =∑a does not hold, then go to step3; 

Step9: To compute 6d . If condition 023,6 =∑d does not hold, then modify both 8,3c and 8,3b together. By the 

modified 3c and 3b , 10m is updated under the pre-specified extra condition 8,38,3 ad = , while 11m is not 

changed. And then, 6d is recomputed, this is followed by a sequential update of 12m , 13m , 14m and 15m ; 

         0xffff5bb117 22333310 −−−= c), b, a) - F(d,  d RR(c m ； 

61055566 90x02441453 a),  md), c, b RL(G(a d ++++= ； 
Step10: Go on with next step operations that have not been processed above, and go to step3 provided that at 

least one condition in table 6 does not hold; if the number of iterations exceeds a pre-specified bound, then 
go to step 1; if all conditions in table 6 hold, store the second message block and come to a full stop. 

5.3 Computational Complexity Analysis 

According to the fast attack algorithms for two message blocks and table 4 and table 6, there are totally 36 
conditions that need to be probabilistically satisfied in round 2 to round 4 for the first block, whereas the 
probability of satisfying the condition ( 25,16d or ~ 25,15b )=1 exceed 75.05.01 2 =− , consequently the 

computational complexity of the first block does not exceed 362 MD5 operations. There are totally 32 
conditions that need to be probabilistically satisfied in round 2 to round 4 for the second block, whereas the 
probability of satisfying the condition ( 25,16d or ~ 25,15b )=1 exceeds 75.05.01 2 =− , hence the computational 

complexity of finding the second block does not exceed 322 MD5 operations. Two collision pairs are presented 
in table 2, which are obtained by the fast attack algorithms described above. 
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Table2: Two pairs of collision blocks with the corresponding MD5 values (underlined bits with difference） 

0M  
0x9d133b36,  0xec2a44c9,  0x7e32bcdd,  0x5498e911, 0x78b8c3b6, 0x1a629661, 0xb456c47f, 0xccec27cb, 

0x7c1eede2,  0xd3934205,  0xfa24921c,  0x3bb373cc, 0x0aabfa31, 0xa7bc4d44,  0xba91559, 0x567d9653 

1M  
0x1522683e,  0x3e598084, 0xbc74fad, 0x854881fa,  0xcec6c0fb, 0x9ee808b5,  0x1acbe9f8,  0xe77779b2, 

0xc81afd90, 0xa85ec52a, 0x6d16ba45, 0x629b30e8,  0x6e00673,  0xa232e472,  0xedcaac9,  0xb7d754f6 

∗
0M  

0x9d133b36,  0xec2a44c9,  0x7e32bcdd,  0x5498e911, 0x78b8c3b6, 0x1a629661, 0xb456c37f, 0xccec27cb, 

0x7c1eede2,  0x53934205,  0xfa24921c,  0x3bb373cc, 0xaabfa31,  0xa7bc4d44, 0xba91559,  0xd67d9653

∗
1M  

0x1522683e,  0x3e598084,  0xbc74fad,  0x854881fa,  0xcec6c0fb, 0x9ee808b5, 0x1acbeaf8, 0xe77779b2, 

0xc81afd90,  0x285ec52a,  0x6d16ba45,  0x629b30e8,  0x6e00673, 0xa232e472, 0xedcaac9, 0x37d754f6 
 MD5 value: 0x5812e272 0x23d0af39 0xaa5d4744 0xe6eba22d 

0M  
0x57d07f13, 0x52afeaaa,  0xaeb4dd08,  0x547968e8,  0x483c5bc6, 0x184e7b7a, 0x3c90d783,  0x06a13ef3,

0x58c55475, 0xc43133c9,  0xf1f92143,  0x740d40ae,  0x17a9f89d,  0x6062bd01, 0xa2adc70a, 0x9d38855d

1M  
0x3381ac8c, 0x3f126c23, 0x698959b9, 0xe8f77bb3, 0x7ca95c2b, 0x164f075a,  0x04be0ef7,  0xa585f0a8, 

0x4c12fd8b, 0x7bdec156, 0x705cda20, 0x669f2d24, 0xe60c23b0, 0xf35c6097,  0xfa38665c,  0xbf1d3b8b 

∗
0M  

0x57d07f13, 0x52afeaaa, 0xaeb4dd08, 0x547968e8, 0x483c5bc6,  0x184e7b7a,  0x3c90d683,  0x06a13ef3, 

0x58c55475, 0x443133c9, 0xf1f92143, 0x740d40ae, 0x17a9f89d,  0x6062bd01,  0xa2adc70a,  0x1d38855d 

∗
1M  

0x3381ac8c, 0x3f126c23,  0x698959b9, 0xe8f77bb3,  0x7ca95c2b, 0x164f075a,  0x04be0ff7,  0xa585f0a8,

0x4c12fd8b, 0xfbdec156,  0x705cda20, 0x669f2d24, 0xe60c23b0,  0xf35c6097,  0xfa38665c,  0x3f1d3b8b 
 MD5 value: 0x2f9f3cf8 0xd16d7fb4 0xf7e726ec 0xbcb232a7 

6 Summary and Conclusions 
MD5 function is a widely deployed cryptographic algorithm for digital digest and message authentication, 

along with the evolution of techniques for collision differential path designing, more new feasible collision 
differentials will be found. A new collision differential with its full differential path might offer more new 
design criteria for the next generation of hash function, and raise a shocking alarm for those who are still 
working with MD5. In this paper, a new differential cryptanalysis called signed differential is proposed, some 
principles or recipes for MD5 collision differential finding and differential path designing are offered, the 
signed difference generation or elimination rules implicit in auxiliary functions are derived. Based on this 
background of knowledge, this paper presents a second two-block collision differential with its 
computationally feasible full differential path, the set of conditions sufficient to maintain the differential path is 
derived. By the fast collision attack algorithms, at most 362 and 322 MD5 operations are needed to obtain the 
first and second collision blocks, respectively. 

It will continue to be an uneasy work and perhaps partly depends on your lucks to find a feasible collision 
differential, and furthermore, it is probably going to be a challenging work to design a full differential path 
with respect to a known collision differential. Whether a collision differential is feasible or not, it depends on if 
you can design a full differential path leading to a collision. The computational feasibility of a full differential 
path is determined by the number of necessary conditions that can only be probabilistically satisfied, or 
directly measured by the computational complexity. Given a full differential path, it will not be a difficult work 
to design a specialized (fast) collision attack algorithm, while the debugging process for collision attack takes 
pains. 

A collision differential can be evaluated according to the following five factors: 
1) Whether the differential path depends on the fixed IVs of hash function or not? 
2) The number of bits with difference in collision blocks; 
3) The number of blocks comprising of the collision differential; 
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4) The number of necessary conditions which must be satisfied to make collision; 
5) The number of necessary conditions in all rounds except the first round, or the number of necessary 

conditions that can not be satisfied directly by message modification; 

Considering practically cryptanalytic attacks, a differential path which does not rely on the fixed initial 
value IVs will obviously be better than that must rely on it; a collision differential which has less bits with 
difference will more easily be used to construct meaningful attacks; a collision differential with less blocks will 
be more efficient for practical attacks; less the conditions necessary to maintain the full differential path, 
higher the density of collision message will be; less the computational complexity of finding collision blocks, 
more probably an instant collision attack will succeed.  
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Table 3: The Differential Path For The First Block 

Step 
Chaining 
variables iX  iw  is  △ iw △ iX  ◇ iX (signed difference)  

6  d2  m5  12    
7  c2  m6  17 −28 −225 c2[26,27,28,29,30,31, -32] 
8  b2  m7  22  −218−225 b2[19,20,21, 22,-23,-26] 
9  a3  m8  7   −218 a3[-19] 
10  d3  m9  12 231 21+25+210−218+231 d3[2,-6,-7,8,-11,…,-16,17,19,-20,32] 
11  c3  m10 17  −20−223−228−231 c3[-1,24,25,26,-27,-29, -32] 
12  b3  m11 22  218−231 b3[19,-32] 
13  a4  m12 7   −222 a4[-23] 
14  d4  m13 12  213+217 d4[14, -18, -19, -20, -21,22] 
15  c4  m14 17  −28 c4[-9] 
16  b4  m15 22 231  b4 
17  a5  m1  5   −226 a5[-27] 
18  d5  m6  9  −28 222 d5[23] 
19  c5  m11 14   c5 
20  b5  m0  20   b5 
21  a6  m5  5   231 a6[∗32] 
22  d6  m10 9    d6 
23  c6  m15 14 231  c6  
24  b6  m4  20   b6  
25  a7  m9  5  231  a7  
26  d7  m14 9    d7  
...  ...  ...  ...  ...  ...  ...  
44 b11 m6 23 −28  231  b11[∗32] 
45  a12 m9  4  231 231 a12[∗32] 
46  d12 m12 11  231 d12[∗32] 
47  c12 m15 16 231 231 c12[∗32] 
48  b12 m2  23  231 b12[32] 
...  ... ...  ...  ... ...  ...  
57 a15  m8  6   231  a15[-32] 
58  d15 m15 10 231 231 d15[32] 
59  c15 m6  15 −28 −223+231 c15[-24,-32] 
60  b15 m13 21  −223+231 b15[-24, 32] 
61  aa0=a16+a0 m4  6   −223+231 a16[24, -25, -32], aa0'=aa0[-24, ∗32] 
62  dd0=d16+d0 m11 10  −223+231 d16[-24, 32],    dd0'=dd0[24, -25, 32]
63  cc0=c16+c0 m2  15  −223+231 c16[24, -25, 32],  cc0'=cc0[24, -25, 32]
64  bb0=b16+b0 m9  21 231 −223+231 b16[-24, ∗32],    bb0'=bb0[-24, ∗32] 
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Table 4: The Sufficient Conditions For The First Block 

 
 
 
 
 
 
 

Conditions derived from table 3 Extra conditions derived from ∑i 
a2 a2,26=0, a2,29=1 
d2 d2,19=1, d2,20=0, d2,26=0, d2,27=a2,27, d2,28=a2,28, d2,29=0, d2,30=a2,30, d2,31=a2,31, d2,32=a2,32 
c2 c2,19=0, c2,20=1, c2,21=d2,21, c2,22=d2,22, c2,23=d2,23, c2,26=0, c2,27=0, c2,28=0, c2,29=0, c2,30=0, c2,31=0, c2,32=1 
b2 
 

b2,2=0, b2,7=0, b2,12=0, b2,16=0, b2,17=1, b2,19=0, b2,20=0, b2,21=0, b2,22=0, b2,23=1, b2,26=1, b2,27=0, b2,28=0, 
b2,29=0, b2,30=0, b2,31=0, b2,32=0 

a3 a3,2=1, a3,6=b2,6, a3,7=1, a3,8=b2,8, a3,12=1, a3,13=b2,13, a3,14=b2,14, a3,15=b2,15, a3,16=1, a3,17=0, a3,19=1, a3,20=1, 
a3,21=0, a3,22=1, a3,23=0, a3,26=0, a3,27=1, a3,28=1, a3,29=1, a3,30=1, a3,31=0, a3,32=0 

d3 
 

d3,1=a3,1, d3,2=0, d3,6=1, d3,7=1, d3,8=0, d3,11=1, d3,12=1, d3,13=1, d3,14=1, 
d3,15=1, d3,16=1, d3,17=0, d3,19=0, d3,20=1, d3,21=0, d3,22=0, d3,23=0, 
d3,24=a3,24, d3,25=a3,25, d3,26=1, d3,27= a3,27, d3,29=0,  d3,32=0 

∑d3,20=0  <=  d3,31=1 
∑d3,31=0  <=  d3,10=1,a3,10=0 
             a3,11=b2,11 

c3 
 

c3,1=1, c3,2=1, c3,6=0, c3,7=1, c3,8=1, c3,11=1, c3,12=1, c3,13=1, c3,14=1, c3,15=1, c3,16=1, c3,17=1, c3,19=1, 
c3,20=0, c3,24=0, c3,25=0, c3,26=0, c3,27=1, c3,29=1, c3,32=1 

b3 
 

b3,1=0, b3,2=1, b3,6=1, b3,7=1, b3,8=1, b3,11=1, b3,12=0, b3,13=1, b3,14=1, 
b3,15=1, b3,16=0, b3,17=1, b3,19=0, b3,20=1, b3,23=c3,23, b3,24=0, b3,25=1, 
b3,26=0, b3,27=0, b3,29=0, b3,32=1 

∑b3, 29 ~ ∑b3,31 not all 1’s 

a4 
 

a4,1=1, a4,9=1, a4,14=1, a4,18=b3,18, a4,19=1, a4,20=1, a4,21=b3,21, 
a4,22=b3,22, a4,23=1, a4,24=1, a4,25=1, a4,26=1, a4,27=1, a4,29=1 

∑a4,25=0   <=  b3,31=0, 
a4,31=1,a4,32=1

d4 d4,9=1, d4,14=0, d4,18=1, d4,19=1, d4,20=1, d4,21=1, d4,22=0, d4,23=0, d4,32=0 
c4 c4,9=1, c4,14=0, c4,18=0, c4,19=0, c4,20=0, c4,21=0, c4,22=0, c4,23=1, c4,27=0 ∑c4,29 ~ ∑c4,31 not all 0’s 
b4 b4,9=1, b4,14=0, b4,18=0, b4,19=0, b4,20=0, b4,21=0, b4,22=1, b4,23=0, b4,27=1 
a5 a5,9=0, a5,23=1, a5,27=1 
d5 d5,23=0 
c5 c5,27=d5,27, c5,32=0 
b5 b5,23=c5,23, b5,32=0 ∑a6,27=1 <=  a2,7=b1,7, c2,7=d2,7 
c6 c6,32=d6,32 ∑d6,23=0， ∑b11,9=1 
c12- 
b14 

b12,32=d12,32, a13,32=c12,32, d13,32=b12,32, c13,32=a13,32, b13,32=d13,32, a14,32=c13,32, d14,32=b13,32, c14,32=a14,32, 
b14,32=d14,32 

a15 a15,24=0, a15,32=c14,32+1 
d15 d15,24=1, d15,32=b14,32 
c15 c15,24=1, c15,25=0, c15,32=a15,32 
b15 b15,24=1, b15,32=d15,32 
a16 a16,24=0, a16,25=1, a16,32=c15,32 
d16 d16,24=1, (d16,25 or ~b15,25)=1, d16,32=b15,32, dd0,24=0, dd0,25=1 
c16 c16,24=0, c16,25=1, c16,32=a16,32+1, cc0,24=0, cc0,25=1, cc0,32=dd0,32 
b16 bb0,24=1 
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Table 5: The Differential Path For The Second Block 

 
 

Step 
Chaining 
variables iX  iw  is  △ iw △ iX  ◇ iX (signed difference)  

IV aa0,dd0,cc0,bb0    aa0[-24, 32],  dd0[24,-25, 32],  cc0[24, -25, 32],  bb0[-24, 32] 
1 a1 m0 7  -223 a1[-24] 
2 d1 m1 12  -23-223 d1[-4,-24] 
3 c1 m2 17  -23-29-223 c1[-4,10,11,12,13,-14,-24] 
4 b1 m3 22  20+22-29-214+221-223 b1[1,-3…-8,9,-10,15,16,-17,22,24…27,-28]
5 a2 m4 7  -218 a2[-19] 
6  d2  m5  12   212+221 d2[-13,-14,15,22] 
7  c2  m6  17  28 −222 c2[-23] 
8  b2  m7  22   224−231 b2[25,-32], 
9  a3  m8  7   −224 +231 a3[25…29,-30,32] 
10  d3  m9  12  231 21+25+29+231 d3[2,-6,7,-10…-22,23,32] 
11  c3  m10 17   −20−228+231 c3[-1,-29, 32] 
12  b3  m11 22   218+231 b3[19,-32] 
13  a4  m12 7   −221 a4[22,23,-24] 
14  d4  m13 12   213+217 d4[14, 18] 
15  c4  m14 17   −28 c4[-9] 
16  b4  m15 22  231  b4 
17  a5  m1  5   −226 a5[-27] 
18  d5  m6  9  28 222 d5[23] 
19  c5  m11 14    c5 
20  b5  m0  20    b5 
21  a6  m5  5   231 a6[*32] 
22  d6  m10 9    d6 
23  c6  m15 14  231  c6  
24  b6  m4  20    b6  
25  a7  m9  5  231  a7  
26  d7  m14 9    d7  
...  ...  ...  ...  ...  ...  ...  
44 b11 m6 23  28  231  b11[*32]  
45  a12 m9  4  231 231 a12[*32] 
46  d12 m12 11   231 d12[*32] 
47  c12 m15 16  231 231 c12[*32] 
48  b12 m2  23   231 b12[32] 
...  ... ...  ...  ... ... ... 
57 a15  m8  6   231  a15[-32]  
58  d15 m15 10  231 231 d15[32] 
59  c15 m6  15  28 223+231 c15[24,-32] 
60  b15 m13 21   223+231 b15[24, 32] 
61  a16+aa0 m4  6   223+231 a16+aa0=a16'+aa0' 
62  d16+dd0 m11 10   223+231 d16+dd0=d16'+dd0' 
63  c16+cc0 m2  15   223+231 c16+cc0=c16'+cc0' 
64  b16+bb0 m9  21  231 223+231 b16+bb0=b16'+bb0' 
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Table 6: The Sufficient Conditions For The Second Block   

 

Conditions derived from table 5 Extra conditions derived from ∑i
a1 a1,4=bb0,4, a1,10=0, a1,11=0, a1,13=0, a1,14=1, a1,24=1, a1,25=1 ∑a1,25=1 
d1 d1,3=0, d1,4=1, d1,5=1, d1,8=1, d1,10=0, d1,11=1, d1,12=a1,12, d1,13=1, d1,14=0, d1,15=1, d1,17=1, d1,22=0, d1,24=1, 

d1,25=0,  d1,26=1, d1,28=0, d1,32=0 
c1 c1,1=d1,1, c1,3=1, c1,4=1, c1,5=0, c1,6=d1,6, c1,7=d1,7, c1,8=0, c1,9=d1,9, c1,10=0, c1,11=0, c1,12=0, c1,13=0, c1,14=1, 

c1,15=0,  c1,16=d1,16,  c1,17=0,  c1,22=d1,22 ,  c1,24=1, c1,25=1, c1,26=0, c1,27=d1,27, c1,28=1 
b1 b1,1=0, b1,3=1, b1,4=1, b1,5=1, b1,6=1, b1,7=1, b1,8=1, b1,9=0, b1,10=1, b1,11=0, 

b1,12=1, b1,13=1, b1,14=1, b1,15=0, b1,16=0, b1,17=1, b1,19=c1,19, b1,22=0, 
b1,24=0, b1,25=0, b1,26=0, b1,27=0, b1,28=1 

∑b1,32=0  <=  d1,22=0 
            b1,21=1,c1,21=0

a2 a2,1=1, a2,3=0, a2,5=1, a2,6=1, a2,7=0, a2,8=1, a2,9=1, a2,10=0, a2,11=1, a2,12=1, a2,13=1, a2,14=1, a2,15=0, a2,16=0, 
a2,17=0, a2,19=1, a2,22=0, a2,23=1, a1,24=1, a2,25=0, a2,26=0, a2,27=0, a2,28=0 

d2 
 

d2,1=1, d2,3=1, d2,4=0, d2,5=1, d2,6=0, d2,7=1, d2,8=1, d2,9=0, d2,10=1, d2,13=1, d2,14=1, d2,15=0, d2,16=1, 
d2,17=1, d2,19=0, d2,22=0, d2,23=0, d2,24=0, d2,25=1, d2,26=1, d2,27=1, d2,28=0, d2,32=0 

c2 c2,13=0, c2,14=0, c2,15=1, c2,19=1, c2,22=1, c2,23=1, c2,24=0, c2,25=1, c2,26=0, c2,30=1, c2,32=1 
b2 
 

b2,12=0, b2,13=1, b2,14=1, b2,15=1, b2,16=0, b2,17=0, b2,21=0, b2,23=0, b2,25=0, 
b2,26=1, b2,27=c2,27, b2,28=c2,28, b2,29=c2,29, b2,30=0, b2,31=0, b2,32=1 

∑b2,10=1 <=  b2,31=0 
             

a3 
 

a3,2=b2,2, a3,6=b2,6, a3,7=b2,7, a3,10=b2,10, a3,11=b2,11, a3,12=1, a3,13=1, a3,14=1, a3,15=1, a3,16=1, a3,17=1, 
a3,18=b2,18, a3,19=b2,19, a3,20=b2,20, a3,21=1, a3,22=b2,22, a3,23=1, a3,25=0, a3,26=0, a3,27=0, a3,28=0, a3,29=0, 
a3,30=1, a3,32=0 

d3 
 

d3,1=a3,1, d3,2=0, d3,6=1, d3,7=0, d3,10=1, d3,11=1, d3,12=1, d3,13=1, d3,14=1, 
d3,15=1, d3,16=1, d3,17=1, d3,18=1, d3,19=1, d3,20=1, d3,21=1, d3,22=1, d3,23=0, 
d3,25=1,  d3,26=1, d3,27=1, d3,28=1, d3,29=1, d3,30=1, d3,32=0 

∑d3,30 ~ ∑c3,31 not all 1’s 

c3 
 

c3,1=1, c3,2=0, c3,6=0, c3,7=1, c3,10=0, c3,11=1, c3,12=1, c3,13=1, c3,14=1, c3,15=1, c3,16=1, c3,17=1, c3,18=1, 
c3,19=1, c3,20=1, c3,21=1, c3,22=1, c3,23=1, c3,25=0, c3,26=0, c3,27=0, c3,28=0, c3,29=1, c3,30=1, c3,32=0 

b3 
 

b3,1=0, b3,2=1, b3,6=1, b3,7=1, b3,10=1, b3,11=1, b3,12=0, b3,13=1, b3,14=1, 
b3,15=0, b3,16=1, b3,17=1, b3,18=1, b3,19=0, b3,20=1, b3,21=1, b3,22=1, 
b3,23=c3,23, b3,24=c3,24, b3,29=0, b3,32=1 

∑b3, 29 ~ ∑b3,31 not all 1’s 

a4 a4,1=1, a4,9=1, a4,14=1, a4,18=1, a4,19=0, a4,22=0, a4,23=0, a4,24=1, a4,29=1 ∑a4,25=1 <=  a4,32=1, 
a4,31=0,b3,31=1

d4 d4,9=1, d4,14=0, d4,18=0, d4,19=1, d4,22=0, d4,23=0, d4,24=1, d4,32=0 
c4 c4,9=1, c4,14=0, c4,18=0, c4,22=1, c4,23=1, c4,24=1, c4,27=0 ∑c4,29 ~ ∑c4,31 not all 0’s, 
b4 b4,9=0, b4,14=0, b4,18=0, b4,23=0, b4,27=1 
a5 a5,9=1, a5,23=1, a5,27=1 
d5 d5,23=0 
c5 c5,27=d5,27, c5,32=0 
b5 b5,23=c5,23, b5,32=0 ∑d6,23=0<= b3,8=c3,8,d3,8=a3,8

c6 c6,32=d6,32 ∑a6,27=1,  ∑b11,9=0 
c12- 
b14 

b12,32=d12,32, a13,32=c12,32, d13,32=b12,32, c13,32=a13,32, b13,32=d13,32, a14,32=c13,32, d14,32=b13,32, c14,32=a14,32, 
b14,32=d14,32 

a15 a15,24=0, a15,32=c14,32+1, d15,24=1, d15,32=b14,32 
c15 c15,24=0, c15,25=0, c15,32=a15,32 
b15 b15,24=0, b15,32=d15,32 
a16 a16,24=1, a16,25=0, a16,32=c15,32 
d16 d16,24=0, (d16,25 or ~b15,25)=1, d16,32=b15,32 
c16 c16,24=1, c16,25=0, c16,32=a16,32+1 


