
Encryption-on-Demand, [EOD-g8516] Page #-1

Encryption-On-Demand:
Practical and Theoretical Considerations

Gideon Samid
School of Engineering

Case Western Reserve University
Gideon.samid@case.edu

Alice and Bob may develop a spontaneous, yet infrequent need for online confidential
exchange. They may be served by an 'encryption-on-demand' (EoD) service which will
enable them to communicate securely with no prior preparations, and no after effects. We
delineate a possible EoD service, and describe some of its theoretical and practical
features. The proposed framework is a website which could tailor-make an encryption
package to be downloaded by both Alice and Bob for their ad-hoc use. The downloaded
package will include the cryptographic algorithm and a unique key, which may be of any
size, since Alice and Bob will not have to enter, or regard the key per se, they would
simply use the downloaded page to encrypt and decrypt their data. After their secure
exchange both Alice and Bob may ignore, or discard the downloaded software, and
restart the same procedure, with a different tailor-made package, exactly when needed.
This framework allows for greater flexibility in managing the complexity aspects that
ensures security. Alice and Bob will not have to know what encryption scheme they use.
The server based tailoring program could pseudo-randomly pick AES, DES, RSA, ECC,
select a short, or long key, and otherwise greatly increase the variability that would have
to be negotiated by a cryptanalyst. Encryption-on-demand is offered on
http://youdeny.com . Features are described.

: 1. INTRODUCTION: The online email community, which is fast spreading to
include the majority of humanity, is by and large shunning encryption offerings, and
rather communicating in plain language, reckoning that the vast majority of their
communication is too lame, too ordinary, too uninteresting for anyone to track and infer
upon. Whether this impression is true or not, it is prevailing, and only on rare occasions
two or more online communication partners experience the need to use encryption and
safeguard their exchange. Because of the low frequency of such requirement, most people
don't prepare, don't acquire encryption capability, don't own a personal cryptographic
key, and what is more, have little interest to burden their email program or document
processor with a crypto-add-on. They are also quite reluctant to spend time familiarizing
themselves with an obtuse protocol to follow, key management, security accounting and
suchlike.

mailto:Gideon.samid@case.edu
http://youdeny.com/

Encryption-on-Demand, [EOD-g8516] Page #-2

This reality may be well served by a service of encryption-on-demand, EoD.

: 1.1. ENCRYPTION-ON-DEMAND OUTLINED: The hub of the encryption-on-
demand service is an accessible website fitted with an encryption tailoring capability
(The encryption-on-demand server). Upon request, the website would tailor-make an
encryption program, the 'client' program, deliver it to the requesting client, for his or her
use. The client program will be uniquely identified by a tailoring id (TID). The same, or a
different Internet surfer (client) would be able to forward the same TID to the server and
receive the very same tailor-made copy. Hence, Alice and Bob may agree on a TID and
then both would download the same copy to their personal computers. The TID
agreement may be done a-priori, or ad-hoc using a different channel of communication.
For example, Alice and Bob may
exchange the TID over the
phone, or instant messaging, or
SMS. Since most of such privacy
needs are to be experienced
between close acquaintances, it
should be quite easy for Alice
and Bob to agree on a TID by
referencing a piece of
information they both know, but
strangers don't. Such may be,
birth city, date of birth, house
address, etc. While the TID may
look like a normal encryption
key, it is really a different entity
as outlined ahead.

With Alice and bob in possession
of identical client copies, they
can now exchange any messages
through email, instant messaging,
SMS, etc. The protocol is quite
simple. Alice types or pastes into
the client package, the secret
plain message she intends for
Bob. She activates it, and the
corresponding ciphertext is
displayed. Alice might be
oblivious to the logic and
processing that worked on her
plaintext. She needs not to
furnish any key, or any identifier.
Once the ciphertext is displayed, Alice copies it to the communication channel with Bob,

Encryption-on-Demand, [EOD-g8516] Page #-3

say an email. Bob, upon receipt of the ciphertext, copies it to his client encryption
software, activates it for decryption, and then faces the plaintext written by Alice. Like
Alice, Bob has no clue, and no need to know what algorithm processed his ciphertext. He
gets the plaintext clearly displayed and ready for consumption.

This protocol, will work in return, for Bob to write securely to Alice. The two can repeat
such secure conversation for as long as they please, and when done, they may either keep
their copy for future secure conversation or they may erase their copy to prevent anyone
from stealing or confiscating their encryption/decryption program. When the need arises
again for Alice and Bob to communicate with privacy then they may agree on another
TID number, download its corresponding client package and repeat the same procedure.

1.1.1. THE TID vs. AN ENCRYPTION KEY: An encryption key is defined with respect to an
unambiguous algorithm that would use the key to either transform the plaintext to its
ciphertext, or vice versa. The TID, by contrast, serves just as a reference pointer to insure
that Alice and Bob download the same piece of software. The server that uses this TID
has great flexibility in determining what that downloaded client software will be
comprised of. The server may be using every encryption scheme known to man, and
string a software package that uses any number of these schemes in succession, say,
through a pseudo random algorithm. Alice and Bob could not care less. They use the
downloaded client by inputting either the plaintext, or the ciphertext, and outputting the
opposite form. Alas, the cryptanalyst will face all that added variety which the server can
use in setting up the tailored version. What is more, having concluded their ad-hoc
communication, Alice and Bob can discard their client copy, and so even if the
cryptanalyst invades their computer he would not be the wiser.

2. ENVIRONMENT AND PROCESS: The environment of concern features
Alice and Bob, two online surfers with occasional need for secure communication. It
features a server site that offers encryption-on-demand services.

The server offers the following service: any Internet surfer may request a fully
autonomous and standalone encryption package (the client software). The server defines
a range of selection numbers: 1 to S, with S sufficiently large to make it infeasible for
harry the hacker to guess the value of 1 ≤ s ≤ S picked by Alice, or Bob. We may
prescribe for the server to produce S distinct client packages, so that no two package
selection numbers s1 ≠ s2 will encrypt the same plaintext p to the same ciphertext c, or
vice versa.

The client package is complete, in the sense that it allows a user to enter a plaintext, p,
and receive a corresponding ciphertext c, and vice versa. It contains the algorithms and
the keys in a working single unit. This configuration allows the server to tailor the client
package from a much larger set of possible clients than is the tailoring selection set of

Encryption-on-Demand, [EOD-g8516] Page #-4

size S. The server set, S0, may remain a secret, and might change and vary as the server
sees fit. This server flexibility would allow it to keep up with observed cryptanalysis
capabilities. As the latter develop, so would the server’s encryption.

 2.1. THE SERVER: The server will be using any number of encryption systems: E1,
E2, E3,En and for each such system, the server would consider a full range of keys.
The server might string these encryption schemes in any desired configuration, and in
fact re-encrypt the output of one system with another, or perhaps another copy of the
same encryption system, using the same or a different key. The full range of possibilities,
and the exact algorithm for how the server uses the tailoring number to configure a
particular client package may remain a secret held by the server without any need for it to
be exposed to the using clients.

2.2. APPLICATION INTEGRATION: The encryption-on-demand protocol was
described above as a standalone operation. Alice and Bob access their identical copy of
the client software and generate either the ciphertext or the plaintext from the opposite
form. However, the same protocol can be applied by integrating the client software to any
document processing software used by Alice or Bob. Such would be mail programs, word
processor, spread sheets, etc. Such integration would allow Alice and Bob to seamless
communicate with security while each of them only sees the plaintext.

3. VISIBILITY AND CRYPTANALYSIS: The encryption-on-demand protocol
removes the burden and flexibility of choosing an encryption key from the actual users of
the encryption capability. Alice and Bob will have a tailored encryption software with the
encryption key fitted in. Since they can always restart the same operation with another
client package, they might choose to erase and destroy the package they used before. Or
they might lose it for that matter. Since Alice and bob don't pick keys, they also don't
have to manage any keys.

The server entity may have complete visibility over the client package fitted with the key
since the server 'cooked' that client package and sent it over to Alice and Bob. If then the
server intercepts the communicated ciphertext, it can readily extract the plaintext. This
analysis can be modified under two conditions:

• 1. anonymous download.
• 2. multitude of clients.

The first case is when Alice and Bob approach the server anonymously, say from a public
computer. The server sends off the client, which Alice and Bob copy to their private
storage device then use it on their own computer. The server would not know the identity
of Alice and Bob. The second case refers to the situation where the encryption-on-
demand protocol becomes popular and at given interval of time there are too numerous
downloads to work with. In both cases, it would be a bit more difficult for the server to
break the intercepted communication, but not insurmountably so.

Encryption-on-Demand, [EOD-g8516] Page #-5

The interesting aspect of this encryption-on-demand protocol is that the outsider
cryptanalyst (not the server) would have a much more daunting task to break the
ciphertext. The greater the variety of the server's options to configure clients packages,
the more difficult is it for the cryptanalyst to crack the code. Normally it as assumed that
the cryptanalyst is aware of the system used, the exact algorithm and anything else except
the cryptographic key. This assumption definitely does not hold with this encryption-on-
demand protocol. The cryptanalyst will have to consider the full range of configuration
possibilities handled by the server. That means that the cryptanalyst will have to break in
the server security because the server does not communicate its configuration variability -
- it does not have to. So as long as the server team keeps the server facility secure, the
cryptanalyst will find it nearly impossible to crack the ciphertext used by Alice and bob.

The fact that the server has cryptanalysis visibility while nobody else does, may suggest
for the server to be run by an agency of authority, be it a corporate management,
dispensing encryption clients to its people, or be it the government offering this service.
In the latter case the government will insure that other governments, terrorists, and
criminal organizations will be in the dark, while it enjoys operational visibility.

The described protocol, suffers, of course, from a weak link in the very communication
of the client to Alice and Bob. Hackers can intercept the client, and use it to read the
information traffic between Alice and Bob. This weak link can be handled either by
sending the client via a different channel, or by employing standard asymmetric security
protocols routinely used for commercial transactions.

4. APPLICATIONS: The encryption-on-demand protocol could be used for self
encrypting files, for communication between and among acquaintances, as well as among
strangers. It could be used for authentication, for subliminal communication. The latter
will be through using several client packages, and one that is being actually used signals
something to the recipient.

Alice and Bob could amplify their security by deciding to use the encryption-on-demand
protocol through two or more successive applications (where the ciphertext from one
cycle becomes the plaintext for the next cycle). They can decide to combine two or more
clients for one message, thereby further complicating the work of a cryptanalyst.

This encryption-on-demand concept is in line with the trend known as 'cloud computing'
or web-based computing. Alice and Bob don't need to worry whether they have a robust
enough encryption software. They trust the server to keep their client software up-to-date,
and robust enough against any present danger of cryptanalysis. Otherwise Alice and Bob
have to keep up-to-date, and upgrade their software on their own.

Encryption-on-demand is currently offered by YouDeny.com.

Encryption-on-Demand, [EOD-g8516] Page #-6

 4.1. YouDeny.com: This active site implements the above described encryption-on-
demand. Alice and Bob may choose a TID in the range of 1-999999999. The client
software they receive in return is a full, autonomous, TID-tailored implementation of the
Samid cipher, US Patent 6,823,068. The client package they receive appears as locally
saved browser page with both the encryption and decryption algorithm implemented in
JavaScript and completely transparent by using the "view source" option on the browser.
The package features a message window and an encryption window. The user types or
pastes the plain message onto the message window, clicks "Encrypt!" and the ciphertext
appears in the encryption window. The user could then copy and paste the ciphertext to
any email, or instant message stream, sending it to its destination. His or her partner, will
copy the ciphertext from the incoming email or instant message, and paste it into the
encryption window, click "Un-Encrypt!" and read the plaintext in the message window.
This would conclude the secure communication. The two users may discard their
YouDeny copy, and download another one for any subsequent secure communication.

The YouDeny server tailors for its users a customized unique instance of the Samid
cipher. The Samid cipher has a variable size key, and a cryptanalyst must examine all key
sizes in attempting to crack the cipher. The users, on their part could request YouDeny to
send them a tailored copy that would link the sent ciphertext to an innocuous plaintext, in
case they are under pressure to reveal the content of their encrypted message.

5. HIERARCHICAL EXTENSION: In the basic setup described above Alice and
Bob receive from the server a "fully cooked" client. We suppose now that Alice and Bob
are given some latitude in deciding the exact makeup of their client package. That
latitude is in the form of a selection key, k. In that case the client package downloaded
from the server would have K degrees of freedom, and Alice and Bob when they pick a
selection value 0 ≤ k ≤ K they eliminate this degree of freedom. We may regard any
entity with some degrees of freedom as a subserver. In other words, the setup is modified
by replacing Alice and Bob with 'sub-servers' who send the server a tailoring identifier,
and receive in return a limited version of the server, with a smaller degree of freedom.
Such a sub-server could work with Alice and Bob much the same way as the original
server. But, in turn it could spawn a sub-sub-server, with a smaller variability of
encryption configuration, and that sub-sib-server would either spawn its own 'sub' or
work directly with Alice and Bob. We thus define a hierarchy.

In the basic setup the server can readily cryptanalyze the ciphertext exchanged between
Alice and Bob because they have zero degree of freedom. However, two subservers may
communicate securely by picking the same tailoring identifier. The server that
downloaded to those subservers will be able to cryptanalyze the subserver
communication by brute force trying all the possible copy selection options, that the
server downloaded to the sub. This builds a visibility gradient whereby a parent node
may control its ability to read its children's communication. And the higher up the node
the less visibility thereto.

Encryption-on-Demand, [EOD-g8516] Page #-7

Reference:

Samid, G. 2001 "Re-Dividing Complexity Between Algorithms and Keys (Key Scripts)" The Second International
Conference on Cryptology in India, Indian Institute of Technology, Madras, Chennai, India. December 2001. " Samid,
G. 2002 " At-Will Intractability Up to Plaintext Equivocation Achieved via a Cryptographic Key Made As Small, or As
Large As Desired - Without Computational Penalty " 2002 International Workshop on CRYPTOLOGY AND NETWORK
SECURITY San Francisco, California, USA September 26 -- 28, 2002

Samid, G. 2001 "Anonymity Management: A Blue Print For Newfound Privacy" The Second International Workshop on
Information Security Applications (WISA 2001), Seoul, Korea, September 13-14, 2001 (Best Paper Award).

Samid, G. 2005 "The Myth of Invincible Encryption" Digital Transactions May-June 2005

	Encryption-On-Demand: Practical and Theoretical Considerations

