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Abstract. From the viewpoint of z-coordinate-only arithmetic on ellip-
tic curves, switching between the Edwards model and the Montgomery
model is quasi cost-free. We use this observation to speed up Mont-
gomery’s algorithm, reducing the complexity of a doubling step from
2M + 2S to 1M + 3S for suitably chosen curve parameters.

1 Montgomery’s algorithm

Aiming for an improved performance of Lenstra’s elliptic curve factorization
method [6], Montgomery developed a very efficient algorithm to compute in the
group associated to an elliptic curve over a non-binary finite field F,, in which
only z-coordinates are involved [8].

The algorithm also proves useful for point compression in elliptic curve cryp-
tography. More precisely, instead of sending a point as part of some crypto-
graphic protocol, one can reduce the communication cost by sending just its
z-coordinate. From this, the receiver can compute the x-coordinate of any scalar
multiple using Montgomery’s method. This idea was first mentioned in [7].

The type of curves Montgomery considered are of the following non-standard
Weierstrass type

Map: By* =23+ Az® + 2, AcF,\{£2}, BeF,\ {0},

which is now generally referred to as a Montgomery form. His method works as
follows. Let P = (z1,91,21) be a point on M 4 g, the projective closure of M4 g,
and for any n € N write n - P = (2, Yn, 2n), where the multiple is taken in the
algebraic group M 4 g, ® with neutral element O = (0,1,0). Then the following
recursive relations hold: for any m,n € N such that m # n we have

Zm+4+n = Tm—n ((xm - Zm)(wn + Zn) - (:L'm + Zm)(l'n — Zn .



and

A2y = (T + 20)?% — (X0 — 20)?,
Ton = (2 + 20) 2 (20 — 20)?, (DOUBLE)
Zom = 4T p2n ((mn —2,)% 4+ ((A+2)/4) (4xnzn))

(see also [3]). One can then compute ((zn, 2n), (Tnt1, 2n+1)) from

(@(n div 2)> Z(n div 2))s (T(n div 2)+15 2(n div 2)41))

by one application of (ADD) and one application of (DOUBLE), the input of the
latter depending on n mod 2. Thus approximately log, n applications of (ADD)
and (DOUBLE) suffice to recover (2, zy).

Every application of (ADD) has a rough time-cost of 3M + 2S, where M is
the time needed to multiply two general elements of Iy, and S is the time needed
to square a general element (which is typically faster). Here we used that z; = 1
in practice. Every application of (DOUBLE) needs 2M + 2S + 1C, where C is
the cost of multiplication of a general element of F, with a curve constant. In
this case, the constant is (A 4 2)/4 (hence, if A is chosen carefully then C may
be much less than M).

2 Switching to Edwards curves and back

Following recent work of Edwards [4], Bernstein and Lange [2] proved that the
elliptic curves

Ey: X?*+Y?=1+4+dX?*Y? deF,\{0,1}

allow a very esthetic description of the algebraic group law on Eg4, the (desingu-
larized) projective closure of E4, with O = (0,1) € E; C FE4 as neutral element.
Namely, the formula

X1+ Y1 Xo  YYo — X1 Xo
X1,V Xo,Y5) =
(X1, Y1) @ (X2, Y2) <1+dX1X2Y1Y2’ 1 —dX1X2Y1Y2>
holds at all affine point pairs for which the above denominators are nonzero. The
curve E, is said to be in Edwards form. In [1, Theorem 3.2.] it is proven that

every Edwards form is birationally equivalent to a Montgomery form via

. . z x—1
P M%qfﬁ -2 Ed . (Z‘,y) = (ga 9:+1) )

1 Ba--» Magan o (X,Y) o (%X%) .

The dashed arrows indicate that the maps are not defined everywhere. However,
the maps can be extended to give an everywhere-defined isomorphism between
the respective (desingularized) projective models
M2(1+d) 4 T Ed
1—-d '1—d
that maps the neutral elements O to each other. In particular, wherever ¢ and

1 are defined, they commute with the group structures on Msa+a) 4 and Eg.
1—-d ’1—d



Now the Y-coordinate of ¢(x,y) only depends on z, and conversely the z-
coordinate of ¥(X,Y") only depends on Y. In projective coordinates this corre-
spondence becomes remarkably simple:

p:(x,2)—(x—z,24+2) and ¢: (Y, Z2)— (Z+Y,Z-Y).

Therefore, from the /Y -coordinate-only viewpoint, switching between Edwards
curves and Montgomery curves is quasi cost-free. As a consequence, one is free
to pick the best from either world. In the next section we show that it is worth
considering the (DOUBLE) step in the Edwards setting.

3 Y-coordinate-only doubling on Edwards curves

A general affine point (X,Y) on E4 doubles to a point whose second coordinate
equals

Y2 X2 Y2(1-dY?) - (1-Y?)  —142Y2—dv*

1-dX2Y2 (1-dY2?)—dY2(1-Y?2) 1-2dY2+dYy?4’

Here we used the curve equation X2+Y? = 1+dX?2Y?2. Therefore the (DOUBLE)
analog becomes

Yo, = —Z& +2Y272 —dY} = —(Z2 +dY}) +2Y,2 72,
Zon = Z% —2dY2Z2 +dY,r = (Z2 +dY,}) —2dY2Z2.

Suppose that d has a square root v/d in F,. Then the above step can be done
using 1M + 3S + 3C by computing
Y2

no

Z2, Y2Z2, NVAY?, VAY2ZzZ:, dY}PZE, (Z2+VdY?)?

and then recovering Z2 + dY,* as (Z2 +V/dY;?)? — 2v/dY,? Z?2. 1f d is nonsquare,
one easily verifies that a time cost of 5S + 2C can be achieved.

4 Conclusion and additional remarks

To sum up, our proposal is to work with a Montgomery curve of the type
Msa+ay 4, and to replace (DOUBLE) by

1-d '1—d

Y, =%, — zn

Ly = Tpn + 2n
Yo = —(Z24+dY;}) +2Y2 22
Zon = (Z4 + YY) — 24Y2 22
Ton = Zon + You

Zop = Zop — Yon.

These formulas are complete, in the sense that for every input (x,, z,) they give
the correct output (xay,, 22, ). This is in contrast with the switching maps ¢ and ¢



and with the Edwards doubling formulas. But under the above composition, the
incompleteness disappears: this can be checked by directly expressing (za,, z25,)
in terms of (z,, z,) and verifying that — up to scalar multiplication by —2d + 2
— it matches with classical Montgomery doubling.

If the curve constant d is a square such that multiplication by v/d is cheap,
then the above method improves upon Montgomery doubling by roughly M — S,
i.e. it replaces a multiplication by a squaring. Therefore, our simple ideas can
serve in constructing slightly improved ECC protocols for devices with limited
computational power and memory. We remark that an even better speed-up of
2M — 28 has been independently! obtained by Gaudry and Lubicz [5], who work
however on a Kummer line instead of directly on a Montgomery form.

Not every Montgomery form is birationally equivalent to an Edwards curve,
but this is resolved by extending to the class of so-called twisted Edwards forms
aX?+Y?=1+dX?Y? (a # d), as was pointed out in [1]. For this class, exactly
the same ideas apply, resulting in a doubling algorithm using 1M + 3S + 6C if
ad is a square, and 5S + 4C in general.

We end by recalling that the Edwards-Montgomery setting only covers non-
binary fields. Over binary fields there is less need for arithmetic directly on com-
pressed representations, since a received point can be typically decompressed by
solving a quadratic equation, which is easy in characteristic two. The transmis-
sion of an extra bit then allows the decompressor to decide upon the correct
solution.
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us by Dan Bernstein and Tanja Lange.



