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Abstract. From the viewpoint of x-coordinate-only arithmetic on ellip-
tic curves, switching between the Edwards model and the Montgomery
model is quasi cost-free. We use this observation to speed up Mont-
gomery’s algorithm, reducing the complexity of a doubling step from
2M + 2S to 1M + 3S for suitably chosen curve parameters.

1 Montgomery’s algorithm

Aiming for an improved performance of Lenstra’s elliptic curve factorization
method [6], Montgomery developed a very efficient algorithm to compute in the
group associated to an elliptic curve over a non-binary finite field Fq, in which
only x-coordinates are involved [8].

The algorithm also proves useful for point compression in elliptic curve cryp-
tography. More precisely, instead of sending a point as part of some crypto-
graphic protocol, one can reduce the communication cost by sending just its
x-coordinate. From this, the receiver can compute the x-coordinate of any scalar
multiple using Montgomery’s method. This idea was first mentioned in [7].

The type of curves Montgomery considered are of the following non-standard
Weierstrass type

MA,B : By2 = x3 +Ax2 + x, A ∈ Fq \ {±2}, B ∈ Fq \ {0},

which is now generally referred to as a Montgomery form. His method works as
follows. Let P = (x1, y1, z1) be a point on MA,B , the projective closure of MA,B ,
and for any n ∈ N write n · P = (xn, yn, zn), where the multiple is taken in the
algebraic group MA,B ,⊕ with neutral element O = (0, 1, 0). Then the following
recursive relations hold: for any m,n ∈ N such that m 6= n we have

xm+n = zm−n ((xm − zm)(xn + zn) + (xm + zm)(xn − zn))2 ,
zm+n = xm−n ((xm − zm)(xn + zn)− (xm + zm)(xn − zn))2 .

(ADD)



and

4xnzn = (xn + zn)2 − (xn − zn)2,
x2n = (xn + zn)2(xn − zn)2,
z2n = 4xnzn

(
(xn − zn)2 + ((A+ 2)/4) (4xnzn)

) (DOUBLE)

(see also [3]). One can then compute ((xn, zn), (xn+1, zn+1)) from(
(x(n div 2), z(n div 2)), (x(n div 2)+1, z(n div 2)+1)

)
by one application of (ADD) and one application of (DOUBLE), the input of the
latter depending on n mod 2. Thus approximately log2 n applications of (ADD)
and (DOUBLE) suffice to recover (xn, zn).

Every application of (ADD) has a rough time-cost of 3M + 2S, where M is
the time needed to multiply two general elements of Fq, and S is the time needed
to square a general element (which is typically faster). Here we used that z1 = 1
in practice. Every application of (DOUBLE) needs 2M + 2S + 1C, where C is
the cost of multiplication of a general element of Fq with a curve constant. In
this case, the constant is (A+ 2)/4 (hence, if A is chosen carefully then C may
be much less than M).

2 Switching to Edwards curves and back

Following recent work of Edwards [4], Bernstein and Lange [2] proved that the
elliptic curves

Ed : X2 + Y 2 = 1 + dX2Y 2 d ∈ Fq \ {0, 1}

allow a very esthetic description of the algebraic group law on Ed, the (desingu-
larized) projective closure of Ed, with O = (0, 1) ∈ Ed ⊂ Ed as neutral element.
Namely, the formula

(X1, Y1)⊕ (X2, Y2) =
(

X1Y2 + Y1X2

1 + dX1X2Y1Y2
,
Y1Y2 −X1X2

1− dX1X2Y1Y2

)
holds at all affine point pairs for which the above denominators are nonzero. The
curve Ed is said to be in Edwards form. In [1, Theorem 3.2.] it is proven that
every Edwards form is birationally equivalent to a Montgomery form via

ϕ : M 2(1+d)
1−d , 4

1−d
99K Ed : (x, y) 7→

(
x
y ,

x−1
x+1

)
,

ψ : Ed 99K M 2(1+d)
1−d , 4

1−d
: (X,Y ) 7→

(
1+Y
1−Y , X

1+Y
1−Y

)
.

The dashed arrows indicate that the maps are not defined everywhere. However,
the maps can be extended to give an everywhere-defined isomorphism between
the respective (desingularized) projective models

M 2(1+d)
1−d , 4

1−d
−→ Ed

that maps the neutral elements O to each other. In particular, wherever ϕ and
ψ are defined, they commute with the group structures on M 2(1+d)

1−d , 4
1−d

and Ed.



Now the Y -coordinate of ϕ(x, y) only depends on x, and conversely the x-
coordinate of ψ(X,Y ) only depends on Y . In projective coordinates this corre-
spondence becomes remarkably simple:

ϕ : (x, z) 7→ (x− z, x+ z) and ψ : (Y,Z) 7→ (Z + Y,Z − Y ).

Therefore, from the x/Y -coordinate-only viewpoint, switching between Edwards
curves and Montgomery curves is quasi cost-free. As a consequence, one is free
to pick the best from either world. In the next section we show that it is worth
considering the (DOUBLE) step in the Edwards setting.

3 Y -coordinate-only doubling on Edwards curves

A general affine point (X,Y ) on Ed doubles to a point whose second coordinate
equals

Y 2 −X2

1− dX2Y 2
=

Y 2(1− dY 2)− (1− Y 2)
(1− dY 2)− dY 2(1− Y 2)

=
−1 + 2Y 2 − dY 4

1− 2dY 2 + dY 4
.

Here we used the curve equationX2+Y 2 = 1+dX2Y 2. Therefore the (DOUBLE)
analog becomes

Y2n = −Z4
n + 2Y 2

nZ
2
n − dY 4

n = −(Z4
n + dY 4

n ) + 2Y 2
nZ

2
n,

Z2n = Z4
n − 2dY 2

nZ
2
n + dY 4

n = (Z4
n + dY 4

n )− 2dY 2
nZ

2
n.

Suppose that d has a square root
√
d in Fq. Then the above step can be done

using 1M + 3S + 3C by computing

Y 2
n , Z2

n, Y 2
nZ

2
n,
√
dY 2

n ,
√
dY 2

nZ
2
n, dY 2

nZ
2
n, (Z2

n +
√
dY 2

n )2

and then recovering Z4
n + dY 4

n as (Z2
n +
√
dY 2

n )2 − 2
√
dY 2

nZ
2
n. If d is nonsquare,

one easily verifies that a time cost of 5S + 2C can be achieved.

4 Conclusion and additional remarks

To sum up, our proposal is to work with a Montgomery curve of the type
M 2(1+d)

1−d , 4
1−d

, and to replace (DOUBLE) by

Yn = xn − zn

Zn = xn + zn

Y2n = −(Z4
n + dY 4

n ) + 2Y 2
nZ

2
n

Z2n = (Z4
n + dY 4

n )− 2dY 2
nZ

2
n

x2n = Z2n + Y2n

z2n = Z2n − Y2n.

These formulas are complete, in the sense that for every input (xn, zn) they give
the correct output (x2n, z2n). This is in contrast with the switching maps ϕ and ψ



and with the Edwards doubling formulas. But under the above composition, the
incompleteness disappears: this can be checked by directly expressing (x2n, z2n)
in terms of (xn, zn) and verifying that – up to scalar multiplication by −2d+ 2
– it matches with classical Montgomery doubling.

If the curve constant d is a square such that multiplication by
√
d is cheap,

then the above method improves upon Montgomery doubling by roughly M−S,
i.e. it replaces a multiplication by a squaring. Therefore, our simple ideas can
serve in constructing slightly improved ECC protocols for devices with limited
computational power and memory. We remark that an even better speed-up of
2M−2S has been independently1 obtained by Gaudry and Lubicz [5], who work
however on a Kummer line instead of directly on a Montgomery form.

Not every Montgomery form is birationally equivalent to an Edwards curve,
but this is resolved by extending to the class of so-called twisted Edwards forms
aX2 +Y 2 = 1 +dX2Y 2 (a 6= d), as was pointed out in [1]. For this class, exactly
the same ideas apply, resulting in a doubling algorithm using 1M + 3S + 6C if
ad is a square, and 5S + 4C in general.

We end by recalling that the Edwards-Montgomery setting only covers non-
binary fields. Over binary fields there is less need for arithmetic directly on com-
pressed representations, since a received point can be typically decompressed by
solving a quadratic equation, which is easy in characteristic two. The transmis-
sion of an extra bit then allows the decompressor to decide upon the correct
solution.
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