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Abstract. A significant amount of research has focused on methods to improve the efficiency
of cryptographic pairings; in part this work is motivated by the wide range of applications for
such primitives. Although numerous hardware accelerators for pairing evaluation have used
parallelism within extension field arithmetic to improve efficiency, similar techniques have not
been examined in software thus far. In this paper we focus on parallelism within one pairing
evaluation (intra-pairing), and parallelism between different pairing evaluations (inter-pairing).
We identify several methods for exploiting such parallelism (extending previous results in the
context of ECC) and show that it is possible to accelerate pairing evaluation by a significant
factor in comparison to a naive approach.

1 Introduction

Generally speaking, one uses the term cryptographic pairing to describe a non-degenerate
bilinear map of the form

e : G1 × G2 −→ GT .

In this paper we focus on the Ate pairing which takes the concrete form

e : E(Fp) × E(Fpk/2) −→ F
×
pk

where E is the quadratic twist of an elliptic curve E defined over Fpk/2. The type and vol-
ume of applications enabled by pairings of this form has dictated that methods for their
evaluation remain an ongoing research challenge. This is magnified by the fact that said ap-
plications have permeated both high-performance and embedded contexts: computational
efficiency and storage footprint are both important. Improvements to high-level algorithms
that relate to the pairing itself are clearly the most significant in terms of efficiency; for
an overview of the evolution of this topic, see the excellent description by Scott [38]. In
short, improvement of seminal but unpublished work by Miller [33] resulted in the first
practical algorithms for evaluation of the Tate pairing [5, 19]. These results were further
optimised by Duursma and Lee [15] who developed an inexpensive, closed form for specific
parameterisations later improved by Kwon [29]. Their techniques were generalised and ex-
tended to produce the Eta [4] and Ate [23] pairings, currently considered the fastest means
of evaluation.

However, as well as the pairing itself, one depends on lower-level algorithms for arith-
metic in the fields Fp, Fpk/2 and Fpk . Previous results have reported on analysis and efficient

? The work described in this paper has been supported in part by the European Commission through the
IST Programme under Contract IST-2002-507932 ECRYPT. The information in this document reflects
only the author’s views, is provided as is and no guarantee or warranty is given that the information is
fit for any particular purpose. The user thereof uses the information at its sole risk and liability.

?? The work described in this paper has been supported in part by EPSRC grant EP/E001556/1.



realisation of said algorithms; see for example [27, 20, 13]. One can readily identify two
types of parallelism within these algorithms and within pairing based cryptosystems more
generally: that within a single pairing evaluation (intra-pairing) or between several pair-
ing evaluations (inter-pairing). Put more simply, in the first case the aim is to compute
R = e(P,Q) for some P and Q from the appropriate groups; our focus is on parallelism
within algorithms for the pairing and constituent arithmetic. Efficient implementation of
pairings in hardware have used this feature to great effect; see [26] for an example design
where extension field arithmetic is realised using several parallel computational units to
reduce latency. In the second case, the aim is to compute all n pairings Ri = e(Pi, Qi)
for 0 ≤ i < n; our focus in on the fact that each Ri can be computed independently.
Although Granger and Smart [21] describe a method to improve performance where the
pairings form terms in a larger product, i.e. R =

∏n−1
i=0 e(Pi, Qi), actually capitalising on

the parallelism between disjoint pairings is less well examined. This is despite the fact that
numerous instances exist, verification of BLS signatures [9] to name one, where this could
be useful.

Identifying parallelism in algorithms for the pairing and constituent arithmetic is only
the first step: in order to exploit said parallelism, one must have effective methods to map
an algorithm onto the capabilities of a given host platform. Often this mapping is difficult
enough that any perceived advantage offered by parallelism is eliminated by implementa-
tion overhead, in other cases the correct choice of technique is limited by issues such as
parameterisation and use of the pairing in real applications. Our goal in this paper is to
focus on parallelism, realised using software techniques, as a means of optimising concrete
implementations of the Ate pairing. We organise the paper as follows. In Section 2 we recap
on the Ate pairing and standard methods for parameterisation and evaluation. Then, in
Section 3, we make a detailed study of parallelism within algorithms for the pairing and
constituent arithmetic. Section 4 describes details of our implementation including an effi-
cient algorithm for parallel multiplication in Fp. Using the identified techniques we present
and analyse experimental results derived from their implementation on Intel Core2 and
Pentium 4 processors; this is captured in Section 5. Finally, we summarise our findings and
conclude in Section 6.

2 The Ate Pairing

To recap, the Ate pairing is a bilinear map of the form

e : E(Fp) × E(Fpk/2) −→ F
×
pk .

Successful parameterisation requires an elliptic curve E(Fp) whose order n is divisible by
some large prime r. Let k, the embedding degree of the curve, be the smallest positive
integer such that r | pk − 1. A Barreto-Naehrig curve or BN-curve [6] of the form

E(Fp) : y2 = x3 + b

where b 6= 0, satisfies these requirements. In particular, such a curve has prime order, i.e.
r = n, and embedding degree k = 12. Additionally, the trace, curve order and characteristic



Algorithm 1: An algorithm to compute the Ate pairing.
Input : Q ∈ E(Fp), P ∈ E(Fp2), s = t− 1 ∈ Z.
Output: e(Q,P ).

T ← P
f ← 1
for i = |s| − 2 downto 0 do

f ← f2 · lT,T (Q)
T ← 2 · T
if si = 1 then

f ← f · lT,P (Q)
T ← T + P

return f (pk−1)/n

of Fp can be parameterised by x as follows

t(x) = 6x2 + 1
n(x) = 36x4 − 36x3 + 18x2 − 6x + 1
p(x) = 36x4 − 36x3 + 24x2 − 6x + 1.

We closely follow the excellent description of Devegili et al. [14] who show that by selecting
x = −6917529027641089837 for example, one specifies a 256-bit value p and associated
curve where n is of low Hamming weight. Selecting such an x makes the notation t(x),
for example, extraneous; using this specific value of x we simply write t instead. Since the
associated p satisfies various congruences, it enables an efficient construction of extension
field arithmetic using the tower

Fp2 = Fp[X]/(X2 − β)
Fp6 = Fp2[Y ]/(Y 3 − ξ)
Fp12 = Fp6[Z]/(Z2 − ξ′)

where β = −2 ∈ Fp, ξ = −1 −√
β ∈ Fp2 and ξ′ = 3

√
ξ ∈ Fp6.

Evaluation of the pairing is achieved using Algorithm 1 where lP,Q(R) denotes the line
function between points P and Q evaluated at R. The selection of a sparse x allows for
efficient realisation of the final exponentiation by (pk − 1)/n as described fully by Devegili
et al. [14].

3 Exploitation of Parallelism

SIMD and SWAR. Many commodity processors now support SWAR (SIMD Within
a Register), a form of vector processing; exemplar designs include several generations of
SSE by Intel, VIS by Sun, 3DNow! by AMD, and AltiVec by Apple, IBM and Motorola.
To utilise this feature, one packs say p sub-words, each q bits in size, into a large SWAR
vector. Using such vectors one can permit SIMD style vector operations. Let xi denote
the i-th sub-word packed into vector x = (x0, x1, . . . , xp−1)q. Using such a representation,
one can compute all p component-wise additions ri = xi + yi with one operation. The
choice of p and q which dictate the number and size of sub-words that can be packed into



a fixed vector length depends on the application. Often an instruction set will support a
(somewhat) orthogonal set of operations and choices of p and q. This approach has brought
significant performance improvements in easily vectorised kernels such as those found in
media processing; by making parallelism explicit the processor can maintain a high issue
rate and ensure a good trade-off between provision of computational resources and their
utilisation.

Use of SWAR style instruction sets have been successful used to accelerate kernels in
symmetric cryptography; for example [11, 10, 31, 36, 32]. Although exploiting parallelism
within point multiplication in vanilla Elliptic Curve Cryptography (ECC) is possible [2, 25],
vectorisation of the public-key cryptography is often more problematic. Consider two n-bit
multi-precision integers x and y represented by l = dn/we machine words where xi denotes
the i-th such w-bit word. Values represented as such are commonly manipulated within
cryptosystems such as RSA and ECC. For the sake of clarity, imagine we set n = 128 and
q = w = 32 such that p = l = 4. This implies that we can store x and y in one SWAR
register each, i.e.

(x0, x1, x2, x3)32 and (y0, y1, y2, y3)32

The problem is that to perform multi-precision addition, for example, one must deal with
carry from one sub-word into another sub-word within the same vector. That is, say we
want to compute r = x+y. The addition of x and y is not component-wise: for example, we
need to take the carry produced by the primitive addition x0 + y0 and factor it into x1 + y1

thereby destroying the component-wise nature of computation and hence the SIMD style
parallelism.

The flexibility of ECC parameterisations helps somewhat in resolving this problem.
One might view specific field representations such as Residue Number Systems (RNS) and
Optimal Extension Fields (OEF) [3] as more suitable for vectorisation; parameterisation
and parallel implementation over F2n has also been effective [7] since carries are essentially
eliminated by the nature of arithmetic. Motivated by application in RSA as well as ECC,
there is a similar effort to accelerate arithmetic in Fp (or more exactly modulo some integer
p). Work by Acar [1] and reports by Intel [24] and Apple [12] all investigate the use of
SIMD parallelism for implementing multi-precision integer arithmetic. Acar states that his
implementation of RSA on a processor with an MMX instruction set runs significantly slower
due to a lack of unsigned 16-bit and 32-bit multiplication. Intel are more positive in their
results that focus on the SSE2 instruction set. Their method applies a form of recoding into
a representation with a smaller digit size; this allows fast combination of partial products
without requiring carries at all. Hankerson et al. [22, Chapter 5.1.3] also discuss the same
technique within the context of ECC.

This previous work offers a natural way to exploit intra-pairing parallelism: one simply
accelerates arithmetic in Fp which, in turn, accelerates all higher layers of arithmetic and
therefore the pairing evaluation itself.

Bit-slicing and Digit-slicing. Considering a scalar processor with a w-bit word size, let
xi denote the i-th bit of a machine word x where i is termed the index of the bit. Such a
processor operates natively on word sized operands. For example, with a single operation



one might perform addition of w-bit operands x and y to produce r = x+y, or component-
wise XOR to produce ri = xi ⊕ yi for all 0 ≤ i < w. This ability is restricted however
when an algorithm is required to perform some operation involving different bits from the
same word. For example one might be required to combine xi and xj , where i 6= j, using
an XOR operation in order to compute the parity of x. In this situation one is required
to shift (and potentially mask) the bits so they are aligned at the same index ready for
combination via a native, component-wise XOR. The technique of bit-slicing, proposed
by Biham for efficient implementation of DES [8], offers a way to reduce the associated
overhead. Instead of representing the w-bit value x as one machine word, we represent x
using w machine words where word i contains xi aligned at the same fixed index j. As
such, there is no need to align bits ready for use in a component-wise XOR operation.
Additionally, since native word oriented logical operations in the processor operate on all
w bits in parallel, one can pack w different values (say x[k] for 0 ≤ k < w) into the w
words and proceed using an analogy of SIMD style parallelism. Conversion to and from a
bit-sliced representation can represent an overhead but this can be amortised if the cost of
computation using the bit-sliced values is significant enough: Biham used this technique to
extract a five-fold performance improvement from DES using a 64-bit Alpha processor.

Although it overloads the term somewhat, one might describe previous SWAR based
implementations of public-key cryptography as digit-serial in the sense that they try to
extract parallelism from a series of digits representing one value. An alternative approach,
which one might describe as digit-sliced SWAR, represents the digit based analogy of the
bit based slicing approach outlined above. This seems to have been first investigated by
Montgomery in the context of ECM based factoring [35] and then rediscovered and applied
in the context of RSA by Page and Smart [37]. Following the example above, the basic idea
is that instead of representing an l-word multi-precision integer x by packing the digits xi

into one SWAR vector, we slice the digits into l separate SWAR vectors where vector i
contains xi aligned at the same fixed index j. For the case where n = 128, q = w = 32 and
p = l = 4 we therefore represent x and y using four SWAR registers

(x0, ·, ·, ·)32 (y0, ·, ·, ·)32
(x1, ·, ·, ·)32 and (y1, ·, ·, ·)32
(x2, ·, ·, ·)32 (y2, ·, ·, ·)32
(x3, ·, ·, ·)32 (y3, ·, ·, ·)32

where · denotes some arbitrary padding. The premise is that this makes carry easier to deal
with: we are now faced with carries between sub-words of different vectors which are aligned
at the same index rather than carries between sub-words in the same vector. As such and
in a naive sense, one expects the amount of sub-word reorganisation, which represents a
significant computational overhead, to be lower. Again there is an overhead in conversion to
and from the digit-sliced representation. However, in common with the bit-slicing approach,
we can operate on p packed values at the same time by replacing the padding (i.e. ·) with
useful data. This essentially allows us to compute p separate multi-precision additions (say
x[k] + y[k] for 0 ≤ k < p), for example, at the same time. We call each such parallel
digit-sliced operation a channel and term an implementation c-way digit-sliced if there are
c channels utilised.



Algorithm 2: An algorithm to compute the Ate pairing.
Input : Q ∈ E(Fp), P ∈ E(Fp2), s = t− 1 ∈ Z.
Output: e(Q,P ).

for i = 1 upto |s| − 1 do
τf [i]← τf [i− 1]2 · lτT [i−1],τT [i−1](Q)
τT [i]← 2 · τT [i− 1]

f0 ← 1, T0 ← O
f1 ← 1, T1 ← O
par

for i = 0 upto |s| − 1 do
if si = 1 and i = 0 (mod 2) then

f0 ← f0 · τf [i] · lT0,τT [i](Q)
T0 ← T0 + τT [i]

for i = 0 upto |s| − 1 do
if si = 1 and i = 1 (mod 2) then

f1 ← f1 · τf [i] · lT1,τT [i](Q)
T1 ← T1 + τT [i]

f ← f0 · f1 · lT0,T1(Q)

return f (pk−1)/n

In terms of the pairing and constituent arithmetic, the technique of digit-slicing is po-
tentially interesting. At any level, all the algorithms for arithmetic are (or are close to)
control-flow invariant; for example for any given pairing evaluation using some fixed pa-
rameterisation, one performs the same operation at a give step so only the data values
differ. As such, one can deploy digit-slicing to exploit intra-pairing parallelism (for example
performing c multiplications in Fp at once to accelerate arithmetic in Fp2), or inter-pairing
parallelism (for example evaluating c pairings at once).

Multi-core Processors. A modern trend in the design of microprocessors is that of multi-
core, i.e. having say n physical processor cores on a single die. This philosophy is in part
guided by the need to make effective use of advances in fabrication which allow dies to house
huge number of transistors, and the so-called memory wall which posits that memory access
dominates the performance of conventional single-core processors. In software, one can take
advantage of multi-core processors using, for example, the OpenMP standard; with suitable
compiler and operating system support this enables multiple code sequences to be executed
in parallel, one on each core.

The use of multi-core processors is an emerging research topic in the context of cryp-
tographic implementation, for example Fan et al. investigate modular multiplication [16]
and ECC [17] on this type of platform. Intra-pairing parallelism is clearly possible at the
field arithmetic level as evidenced by related hardware based approaches [26]. In software
however, the overhead of thread management is a limiting factor: if the threads are too fine-
grained then the cost of their management will dominate useful computation and eliminate
the advantage of parallelism. An alternative, therefore, is to consider more course-grained
parallelism. In this setting, inter-pairing parallelism is easy to exploit: we simply have each
core compute a separate pairing. Exploiting course-grained intra-pairing parallelism requires



more thought. For example, one might redesign Algorithm 1 to allow parallelism between
point arithmetic or line function evaluations.

Consider Algorithm 2 which is derived from a specialisation of so-called fixed-base win-
dowing [22, Algorithm 3.41] for w = 1. Use of the par keyword shows that after a precom-
putation phase comprised of point (resp. line) doublings, two threads can compute point
(resp. line) additions in parallel (one thread deals with odd-indexed bits in s, the other
even-indexed bits). The clear advantage of this approach is parallelism; the clear disadvan-
tage is the significant memory overhead for tables τf and τT , and the fact that the point
(resp. line) additions are now projective rather than mixed.

4 Implementation Details

In the following we elaborate on the concrete implementation of the field arithmetic using
scalar (i.e. non-SIMD) as well as SIMD (i.e. MMX, SSE) instruction sets. Both implementa-
tions have in common that the modular multiplication (resp. squaring) operation is realised
via Montgomery reduction [34]. The inversion is performed using the Extended Euclidean
Algorithm (EEA).

4.1 Field Arithmetic with the IA32/IA64 Instruction Set

The IA32 architecture provides an add-with-carry instruction (adc) and a 32-bit unsigned
multiply instruction yielding a 64-bit result (mul). Thanks to the availability of these two
instructions, the arithmetic operations in Fp can be implemented in a fairly straightforward
way: a field element is simply represented in form of an array of single-precision (i.e. 32-bit)
words and the software routines for addition and multiplication loop through these arrays
and produce the result using the afore-mentioned instructions. Our implementation of the
field arithmetic is written in ANSI C and contains some hand-optimised assembly language
sections for the performance-critical inner-loop operations. As the size of the fields used in
pairing-based cryptography is relatively small, it is possible to unroll the inner loops and
gain some extra performance at the expense of a slight increase in code footprint.

Algorithm 3 shows the Coarsely Integrated Operand Scanning (CIOS) method for cal-
culating the Montgomery product Z = A · B · 2−n mod M [28]. The n-bit operands A, B,
M are represented by arrays of s single-precision w-bit words. The algorithm has a nested
loop structure with two inner loops; the first contributes to the calculation of the product
A·B and the second implements the modular reduction operation. Both inner loops perform
the same operation: two single-precision words are multiplied together, and then two other
words are added to the product. Therefore, each iteration of the inner loop executes a mul,
two add, and two adc instructions, respectively.

4.2 Field Arithmetic with the MMX/SSE Instruction Set

In order to accelerate the execution of multimedia kernels, Intel introduced the MMX in-
struction set in 1997 as a SIMD extension to the IA32 architecture. MMX provides eight
64-bit registers and adds 57 new instructions. Most of these instructions operate on packed



Algorithm 3: Montgomery multiplication (CIOS method).
Input : An s-word modulus M = (ms−1, . . . , m1, m0), two operands A = (as−1, . . . , a1, a0) and

B = (bs−1, . . . , b1, b0) with A, B < M , and the constant m′
0 = −m−1

0 mod 2w .
Output: The Montgomery product Z = A ·B · 2−n mod M .

Z ← 0
for i from 0 by 1 to s− 1 do

u← 0
for j from 0 by 1 to s− 1 do

(u, v)← aj × bi + zj + u
zj ← v

(u, v)← zs + u
zs ← v
zs+1 ← u
q ← z0 ×m′

0 mod 2w

(u, v)← z0 + m0 × q
for j from 1 by 1 to s− 1 do

(u, v)← mj × q + zj + u
zj−1 ← v

(u, v)← zs + u
zs−1 ← v
zs ← zs+1 + u

if Z ≥M then
Z ← Z −M

return Z = (zs−1, . . . , z1, z0)

64 bits 64 bits

29 bits 29 bits

Fig. 1. The packed 29-bit digits within a single 128-bit SSE register, as detailed by [24].

data types, which means that a 64-bit MMX operand can also be treated as either two
32-bit, four 16-bit, or eight 8-bit quantities. The Streaming SIMD Extensions (SSE) further
enhance the capabilities of the IA32 architecture through the integration of eight 128-bit
registers and appropriate instructions. For example, the SSE2 instruction pmuludq allows
one to execute two 32 × 32-bit multiplications independently and in parallel, each yielding
a 64-bit result. However, the main drawback of the MMX and SSE instruction sets in the
context of multi-precision integer arithmetic is the lack of an add-with-carry instruction.

The fact that neither MMX nor SSE provide an add-with-carry instruction not only
makes multiple-precision addition relatively costly, but also defines how multiple-precision
multiplication must be implemented in order to exploit SIMD-level parallelism. In [24],
Intel recommends that multi-precision integers should be represented as arrays of 29-bit
words (instead of the more intuitive representation with 32-bit words) and to pack two
such 29-bit words into a 128-bit quantity which can be loaded into SSE registers using
the movdqa instruction; this is detailed in Figure 1. Two 29 × 29-bit multiplications can be
executed in parallel and several 58-bit products can be accumulated without overflow. More
precisely, the 29-bit representation eliminates the need to propagate carry bits from less to
more significant words during a multiple-precision multiplication; a single carry propagation



Table 1. Timings for Montgomery multiplication and squaring (in cycles as reported by rdtsc) on a Pentium
4 processor for 256-bit, 384-bit and 512-bit operands.

Implementation 256-bit 384-bit 512-bit

SIMD Montgomery Mul. 1182 2104 2978

GMP (mpn mul n+ redc) 1171 2429 3700

SIMD Montgomery Sqr. 1063 1875 2523

GMP (mpn sqr n+ redc) 1051 2257 3151

must be performed at the very end to obtain the correct result. We implemented the CIOS
method for Montgomery multiplication following these guidelines which also allowed us
to fuse the two inner loops. This loop fusion does not only reduces the loop overhead,
but also eliminates a number of load/store instructions as, for example, the quantity zj in
Algorithm 3 needs to be loaded only once. However, a disadvantage of the multiplication
technique described in [24] is that two arrays are necessary for storing the intermediate
results during a Montgomery multiplication. This “redundant” representation makes the
outer loop of Algorithm 3 relatively costly, in particular the calculation of the quotient q.

Table 1 compares the execution times (in clock cycles) of our Montgomery arithmetic
implemented according to Algorithm 3 using the 29-bit representation detailed in [24], and
the corresponding functions1 from the GMP library version 4.2.2. Our implementation is
slightly slower for 256-bit operands, but outperforms GMP for 384-bit and 512-bit operands.
As mentioned previously, our implementation of Algorithm 3 is characterised by a relatively
costly outer loop, while the inner loop is extremely efficient. However, for short operands,
the operations in the outer loop dominate the execution time, which renders the 29-bit
representation less attractive.

5 Implementation Results

In order to evaluate the options for exploiting parallelism introduced in previous sections,
we used two experimental platforms; the rational for their selection was that they repre-
sent previous (NetBurst) and current (Core2) generation micro-architectures in commodity
microprocessors:

Platform A housed a 2.80GHz Intel Pentium 4 processor running a 32-bit installation of
Linux including a 2.6.9 series kernel and 32-bit Intel C compiler version 10.1. The SIMD
instruction set on this platform was limited to SSE2 series (and earlier) instructions
only.

Platform B housed a 2.40GHz Intel Core2 Duo processor running a 64-bit installation of
Linux including a 2.6.18 series kernel and 64-bit Intel C compiler version 10.1. The SIMD
instruction set on this platform was limited to SSE3 series (and earlier) instructions only.

Since our goal is to highlight issues with existing processors, we do not investigate the
impact of altering the number of execution pipelines within a particular micro-architecture
1 Note that GMP features a function for Montgomery reduction (redc), but not for Montgomery multipli-

cation. Therefore, a Montgomery multiplication must be composed of mpn mul n and redc. We evaluated
the execution times of mpn mul n, mpn sqr n, and redc with help of the speed program.



Table 2. Timings for major operations (in cycles as reported by rdtsc) on experimental platform A (Pentium
4). Fp is a 256-bit prime field.

Fp Fp12 e(P, Q)

Inv Add Mul Inv Add Mul

A 278754 188 5826 892508 1870 347249 177634471

B − − − − − − −
C 271063 226 1182 624667 2144 174774 58266382

D 278012 186 5813 633801 1803 229323 127986142

E − − − − − − −
F − − − − − − −
G 299268 566 3444 818690 6134 312738 147441219

H − − − − − − −

(which could be interesting). Note that the second experimental platform includes a multi-
core processor: it has two processor cores. Using the platforms we constructed eight separate
implementations which represent a cross-section of the presented approaches to intra-pairing
and inter-pairing parallelism (recalling that we have a fixed parameterisation where p is a
256-bit prime):

Implementation A uses the scalar (i.e. non-SIMD) instruction set and a 32-bit digit size;
evaluates one pairing at a time using Algorithm 1.

Implementation B uses the scalar (i.e. non-SIMD) instruction set and a 64-bit digit size;
evaluates one pairing at a time using Algorithm 1.

Implementation C uses the SIMD (i.e. SSE) instruction set and a 29-bit digit size to
perform digit-serial Fp arithmetic; evaluates one pairing at a time using Algorithm 1.

Implementation D uses the SIMD (i.e. SSE) instruction set and a 32-bit digit size to
perform 2-way digit-sliced Fp2 arithmetic (i.e. two Fp operations in parallel); evaluates
one pairing at a time using Algorithm 1.

Implementation E takes Implementation B as a starting point, uses OpenMP to perform
parallel Fp6 arithmetic within Fp12 and parallel Fp2 arithmetic within Algorithm 1 in
order to evaluate one pairing at a time.

Implementation F takes Implementation B as a starting point, but uses OpenMP to
implement Algorithm 2 and thereby evaluate one pairing at a time.

Implementation G uses the SIMD (i.e. SSE) instruction set and a 32-bit digit size to
perform 2-way digit-sliced pairing evaluation (i.e. two e(P,Q) operations in parallel)
and therefore evaluates two pairings at a time.

Implementation H takes Implementation B as a starting point, but uses OpenMP to
execute two instances of Algorithm 1 in parallel and therefore evaluate two pairings at
a time.

5.1 Analysis of Results

Timings obtained by executing these implementation on the two experimental platforms
are detailed in Tables 2 and 3. In each case the number of cycles (as reported by rdtsc)
required for the entire operation is quoted. That is, if an operation generates n results in
parallel then the tables quote the total time: the per-result time requires division by n.



Table 3. Timings for major operations (in cycles as reported by rdtsc) on experimental platform B (Core2
Duo). Fp is a 256-bit prime field.

Fp Fp12 e(P, Q)

Inv Add Mul Inv Add Mul

A 156179 132 1117 287160 1061 76002 44814516

B 155567 107 395 208603 779 31484 23319673

C 155514 114 477 290536 842 64490 28452901

D 154295 132 1106 278503 1062 73336 35215963

E 154217 107 399 207236 787 24494 14429439

F 155567 108 394 208612 781 31491 25321173

G 157287 261 1444 390626 2705 137356 64879334

H 155567 108 390 208607 773 31485 25925534

Although our results are not exhaustive, for the given parameterisation they prompt
some interesting conclusions. On the Pentium 4 based platform, if one is required to evalu-
ate a single pairing then the best option is to parallelise arithmetic in Fp (Implementation
C); if the requirement is for two pairing evaluations, the best option is actually two invo-
cations of Implementation C. On the Core2 based platform, if one is required to evaluate
a single pairing then it makes more sense to use 64-bit scalar arithmetic in Fp and multi-
core parallel arithmetic within Fp12 and the pairing itself (Implementation E) than consider
SIMD parallelism; if the requirement is for two pairing evaluations, the slightly moronic con-
clusion is that one can perform one pairing on each core (Implementation H), doubling the
performance versus two sequential invocations of any other method that does not already
use multi-core parallelism internally.

5.2 Analysis of Platforms

Design of SIMD Instruction Sets. Interestingly, in early 2008 Intel announced an
updates to the SSE lineage of SIMD instruction sets, and a totally new instruction set
specialised toward implementation of AES. Specifically, the Advanced Vector Extensions
(AVX) includes the pclmulqdq instruction for carryless multiplication that can be used to
accelerate arithmetic in binary finite fields. In addition, the Advanced Encryption Standard
Instructions Set (AES-NI) includes instructions that perform whole AES rounds with the
view to improving performance and eliminating cache based side-channel attack.

In contrast with this new emphasis on supporting cryptography, our results show that
on a current Core2 platform, a 64-bit implementation (Implementation B) is faster than
that based on SIMD parallel techniques. In the short term, microprocessors with a 64-
bit datapath width seem sure to be ubiquitous before longer operands (e.g. 512-bit). One
might conclude that using current technology, non-parallel implementation is best; given
the specific nature of the updates described above, it seems this will remain the fact in next-
generation processors. This seems an unattractive conclusion since it implies that current
support for SIMD parallelism is less effective that it could be for this particular domain. We
posit that this problem demands research into more public-key cryptography centric SIMD
instruction sets: in the longer term, the chance of the processor datapath width doubling
(e.g. from 64-bit to 128-bit) is less likely than the operand length doubling and so effective
use of parallelism is crucial to scalability.



In a sense, it is not a surprise that Implementation B outperforms C on the Core2 plat-
form. For example, the SSE3 instruction set allows 2-way parallel 32×32-bit multiplication;
the cost of such multiplication plus the overhead of data reorganisation will intuitively be
greater than native 64 × 64-bit multiplication. Furthermore, the SSE3 instruction set lacks
a method for performing an add-with-carry operation that exists in the scalar instruction
set. As such, enhancements over SSE3 such as the pshufb instruction help to reduce said
overhead but the instruction set still lacks features which could improve performance of our
results. For example, the PLX [30] processor eases the issue of shuffles between sub-words
by including odd and even multiplication, i.e. both

r2i+1...2i+0 = x2i+0 · y2i+0

and
r2i+1...2i+0 = x2i+1 · y2i+1

for i ∈ {0, 1}. Another improvement would be provision of hardware support for add-with-
carry via vector-carry registers; Fournier [18] investigates this approach within the context
of a dedicated vector processor. The upcoming SSE5 instruction set offers an alternative
approach by departing from purely 3-address instructions by adding support for a range
of 4-address alternatives. In this context, it seems possible to extend the instruction set
further and allow explicit specification of a vector-carry register rather than via an implicit,
special purpose register as proposed by Fournier.

Effective Utilisation of Multi-core. Another interesting feature is that using the multi-
core capabilities of the Core2 platform to evaluate one pairing, we are presented with two
problems. Firstly, the overhead from use of OpenMP limits where we can exploit the inher-
ent parallelism within field arithmetic; if the processor had a more light-weight means of
managing fine-grained threads, Implementation E would potentially be even more lucrative.
The results from using course-grained threads in Algorithm 2 are underwhelming. The low
Hamming weight of s coupled with the significant overhead introduced by using projective
rather than mixed point (resp. line) addition means it is slower than the non-parallel alter-
native. The first problem motivates research into fine-grained multi-core and multi-threaded
processors; an exemplar design is the XCore. The second problem motivates research into
forms of easily parallelised pairing algorithms.

6 Conclusions

The efficient evaluation of cryptographic pairings underpins a wide range of modern cryp-
tographic applications. There are a wide range of parameterisation and implementation
options to consider, in this paper we focused on the exploitation of parallelism in software.
The capabilities of modern processors in this respect are diverse; the correct option and
realisation in terms of implementation is therefore far from trivial. In particular we found
that, unlike implementation in hardware, on a Pentium 4 based platform one should par-
allelise arithmetic in Fp rather than a higher level; on a Core2 based platform one should
utilise native support for 64-bit arithmetic and then harness the multi-core features to par-
allelise arithmetic in Fp12 and the pairing itself. Although our results improve significantly



on a naive approach, we identified areas for further improvement through study of new
algorithm types and changes to processor architecture. The results for arithmetic in Fp

have a direct implication for vanilla ECC in which it seems a similar argument wrt. to
implementation approach should apply.
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