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Abstract

The irreducible factor r(z) of @ (u(x)) and u(x) are often used in con-
structing pairing-friendly curves. u(z) and u. = wu(x)¢ (mod r(x)) are
selected to be the Miller loop control polynomial in Ate pairing and Ate;
pairing. In this paper we show that when 4|k or the minimal prime which
divides k is larger than 2, some u(z) and r(x) can not be used as curve gen-
eration parameters if we want Ate; pairing to be efficient. We also show

that the Miller loop length can not reach the bound 1;’%;; when we use the

factorization of @ (u(x)) to generate elliptic curves.

1 Introduction

How to implement cryptosystem efficiently is very important in Public-key Cryp-
tography. As pairing-based Cryptography is concerned, the computation of Tate
pairing is the bottleneck. Many work have been done such as [8, 2]. All these work
are based on Miller’s algorithm[12, 13]. The loop length in Miller’s algorithm for
Tate pairing is about log,r. Recently a lot of works are focus on shorten the loop
length in Miller’s algorithm such as eta pairing [1] which extends [4], Ate pair-
ing [10], optimized Ate pairing [5], Ate; pairing [17], R-rate pairing [6], optimal
pairing [16]. u(z) and u, = u(x)¢ (mod r(z)) are selected to be the Miller loop
control polynomial in [10, 17]. The Ate; pairing can be more efficient for some
elliptic curves [17]. Usually we select these curves with short Miller loop by com-
puter search. In this paper, we show that some elliptic curves are not suitable for
Ate; pairing. This will aid computer searching. The remainder of this paper is
organized as following: in section 2 we describe some backgrounds on pairings. In
section 3 our results are presented.
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2 Some backgrounds

Let E(IF,) be an elliptic curve over finite field F; and #E(F) be its group order.
If its group order has a large enough prime factor 7 and r divides ¢* — 1 where
k is a small positive integer, but does not divide ¢ — 1, 0 < i < k. We call
k the embedding degree of E(IF,) and E(FF,) pairing-friendly curve. Usually we
use Brezing-Weng’s method [3] to generate pairing-friendly curves which can be
summarized as follows [7]:

Fix a integer k and a positive square free integer D :

1. Choose a number field K containing /—D and a primitive k-th root of unity
Ch-

2. Find an irreducible polynomial r(x) € Z[z] such that Q[z]/(r(z)) = K.

3. Let t(x) € Q|x] be a polynomial mapping to (x + 1 € K.

4. Let y(x) € Q[z] be a polynomial mapping to f/’“% € K.

5. Let p(x) € Q[z] be given by (t(x)? + Dy(x)?/4. If p(x) and 7(z) represent
primes, then the triple (¢(x), r(x), p(x)) represents a family of curves with embed-
ding degree k and discriminant D.

Let P € E[r] and f; p be an [ x-rational function whose divisor is (f; p) =
i(P) — ([i] P) — (i — 1)O. Then the Tate pairing is well-defined, non-degenerated,
bilinear pairing

e: Elr] x E(Fu)/rEF ) — Fry /(Fr )"

e(PvQ) - <P7Q> - f?‘,P(D)

For practical purposes, we often use the reduced Tate pairing

é(P,Q) = fr.p(D)"+

To compute Tate pairing, it requires about logyr iterations of Miller loop. The
Ate pairing [10] can short the loop length in Miller’s algorithm. Let E be an
ordinary elliptic curves over Fy, r a large prime which r|# E(F,) and ¢ the trace
of Frobenius(i.e. #E(F,;) = ¢+ 1 — t). Let m, be the Frobenius endomorphism,
gt E— E: (z,y) — (24,y?). For T =t — 1, Q € Gy = E[r] N Ker(mg — [q])
and P € Gy = E[r] nKer(my — [1]). fr,o(P) defines a bilinear pairing which
called Ate pairing. It requires about log(t — 1) iterations. Let T; = 7% (mod 7). In
[17], the authors define a new pairing fr, o(P) called Ate; pairing which iterates
T; times in pairing computation using Miller’s algorithm. If 7" and T are strictly
less than 7, we gain some advantages.

Let E(F,) be an elliptic curve whose trace ¢ # 0 and E(F,) has a subgroup of
order r. In [7] w is defined to be 11;)gg|:| . When the size of subgroup order is fixed, the
larger w is, the shorter the loop length is in Ate pairing. If we use the factorization
of @y (u(x)) to construct elliptic curves, then w < (k) [7]. It has been conjectured
in [16] that any non-degenerate pairing on an elliptic curves without efficiently
computable endomorphism different from powers of Frobennius requires at least
1;%,3; basic Miller iterations. If we take the k-th cyclotomic polynomial to represent
the subgroup 7, x the Frobenius trace and use Brezing-Weng’s method to generate

pairing-friendly elliptic curves, then the Miller loop length is about 1;%;; )




3 Polynomials for Ate pairing and Ate; pairing

In this section we assume that the use of an irreducible factor of @ (u(x)) to con-
struct pairing-friendly curves. As Ate paring is concerned, we have the following
Theorem.

Theorem 1. Ler degu(x) = a, the minimal Miller loop length for Ate pairing is
alogar

(a—1)(k)’

Proof. Suppose @i (u(x)) = ri(x)ra(x), from [7] we know that degri(x) =

a1p(k), degra(x) = agp(k) where a; + aa = a. If a1 > ag, we select r1(x) to

represent the subgroup . Then lim,_, li’fg”tl((x"; = —gp( ) = % ¢(k). Since
©(k)(.e. the minimal

@, (u(x)) splits, ag > 1. So the maximal value of w is 21

Miller loop length for Ate pairing is (alo%)- H

If a ia large enough, then w ~ (k).

To construct elliptic curves with property described above, we must find ()
and r(z) such that 7(z)| P (u(z)) and degr(x) = (a—1)¢(k) where degu(z) = a.
The method described in [15] can be used to find these polynomials. In [15] power
integral basis is employed to find u(z) which would make ®(u(z)) factorable
and we know that one irreducible factor of ®(u(z)) is of degree (k). Usually
@y (u(x)) splits into two irreducible factors, so the other has degree (a — 1)p(k).
The irreducible factor of degree (a — 1) (k) has some special property.

Proposition 1. For a fixed k, if ®i(u(x)) splits into two irreducible factors, then
there is an irreducible factor r(x) such that 2 - degu(x) < degr(x) iff (k) > 4

Proof. Assume @y (u(x)) = r1(x)re(x), degri(x) = a1p(k), degra(z) = agp(k),
where a1 + aa = a and a1 > ag. If a1(k) > 2a, then a1p(k) > 2(a; + az). It
follows that (k) > 2a2 + 2. Since 0 < 2 < 1 and 2|p(k ) we have p(k) > 4.

If (k) > 4, then algo(k) > 4ay. Smce ay > ag, a; > §. Soarp(k) > 4ay >
4.5 =2a.

O

Using PARI[14], we have following examples.

Example 1. k = 15, u(z) = 27 — 725 + 202° — 292 + 2023 — 222 — 4z,
®15(u(z)) = (28 — 927 + 352° — 7625 + 992 — 7623 + 3022 — 4o + 1)(z*® —
4744107424+ 482 +1), p(15) =8, a =7, (a—1)p(15) = (7—1)-8 = 48

Example 2. k = 8, u(z) = 23, ®g(u(z)) = (z* +1)(2® — 2* + 1).
Example 3. & = 10, u(x) = 9057 4 1305,6 4 4544916 5y 65i915 44 12803

8515 1034 1651
e+ 5T — s Pro(u(r)) = ggerermer (0 + 227+ —dr + 1)
(129600000000x204—868320000000x19—+---4—11009524377905)



According to Proposition 1, if ¢(k) > 4 then degr(z) = (a — 1)p(k) >
2a = 2 - degu(x). This provides important information for constructing pairing-
friendly curves. If some v/—D € Q|z]/(r(x)), Brezing-Weng’s method can be
used to generating curve with such property. Otherwise we can take Scott-Barreto’s
approach [7, 11].

Before discussing Ate; pairing, we introduce some properties about u(x) and
Ue(x) = u(z)® (mod r(x)) where 1 < ¢ < k.

The following lemma extends the result of Galbraith, McKee and Valenga [9].

Lemma 1. Let (}, be a primitive k-th root of unity and Q((y) the k-th cyclotomic
field. Then @y (u(z)) splits where u(z) € Q[z] iff there exists an finite extension E
of Q such that (j, € E and u(z) = (i, has a solution in E.

Proof. See [15]. L]

Lemma 2. If ®;(u(x)) is reducible and has r(x) as an irreducible factor, then
O i (uc(x)) is also reducible where 1 < ¢ < k and u.(r) = u(z)¢ (mod r(zx)).
(c;k)

r(x) is a common factor for (p% (ue(x)) .
c,k

Proof. Let 6 be a root for the equation u(x) = ¢} and r(6) = 0, then u(0)¢ = ¢},
isa ﬁ—th primitive root of unity(i.e. u(6)¢ = Cﬁ)' Hence u(x)¢ = C(Tkk) has
a solution 6, according to Lemma 1, . (u(z)¢) splits. Since (I)ﬁ (u(0)¢) =0
and r(z) is irreducible, we have r(m)\(bﬁ(u(x)c) From the assumption we
know that u(x)¢ = f(x)r(z) + uc(z), hence u.(0) = C(fk)
mentioned above, we can draw the conclusion. OJ

. By the same reason

Let S denote the set {u.(z) = u(z)¢ (mod r(x)),ged(c, k) = 1}. These
are the k-th primitive root of unity modulo r(z). They form a group. There is
some Upmin(z) € S has minimal degree. Given u. € S, there exists s € 7+
such that u.(z) = Umin(2)® (mod r(z)). If u(x) = Umin(z)¢ (mod r(x)), then
degu(z) > Umin(x). By lemma 2, r(x)|Px (wmin(x)). So if we use wmq, (x) and
r(x) as curve’s generation parameters, we gain no advantages in using Ate; pairing
when k is prime.

Exampled. k =8, u(z) = 223+ 322+ 2— 3, and r(z) = 1628+ 3227 + 8825 —
82° — 31z* — 30823 — 162% — 44z + 353, let ¢ = 3,5, 7 such that ged(c, k) = 1,

_ 2,7 1.6 11,..5 29 .4 2,.3 14 .2 25 49 —
S A T AT AP S LV U
Bxample & & = 5, Jhula) = ifa’ = Gipe’ £ 5o ~ Spal G-
LTt + g+ app then @5(u(w)) = gepemigrar 1 (2)r2(x) where r1(z) =
28227 +72% 1025 +162* — 1023 —222 +42+1 and ro (x) = 129600000000220 —
8683200000002+ - -+11009524377905, we select r(x) = ro(x), then degus () =

14, degus(z) = 19, deguq(z) = 19.



Theorem 2. Suppose 4|k or the minimal prime which divides k is larger than 2,
if ®(u(z)) = ri(z)ro(x) and degri(x) > degra(x), then there does not exist
ue(z) = u(x)¢ (mod r1(x)), where ged(c, k) # 1,1 < ¢ < k and ¢ # “0 ) such
that degu.(x) < degu(x).

Proof. Letk = plt - - plm where py < pa - -+ < P, te(z) = u(z)® (mod 71 (z)),
degu.(x) = band degr;(x) = a1p(k), then the degree 0f<1>% (uc(x))is bcp((c—kk)).
c,k )

By Lemma 2, ® » (u.(z)) is factorable and has rl( ) as an irreducible factor.

(e,k)
) When ged(c, k) # 1, the

Hence we have bnp(( k )) > arp(k)Ge. b >

maximal value for go((c k)) is (—)1 ifly =1or ( ) if [y > 1. If a > b where

a = degu(z), it follows that a; < p—l ora; < m% Since 4|k or the minimal
prime which divides k is larger than 2, we have a1 < % But a; > £, a contradic-
tion. So degu.(z) > degu(z). O

90(( )

Example 6. Let k = 8, u(x) = 280$ +11490x5+ 19490$3+35£U we have ®g(u(z)) =

stisesoooa "1 ()2 (@) where 11 = 2® + 1220 + 562 + 722% + 100 and ry =
8122 + 3132218 4 - - — 4425523222 + 61465600, we select r(x) = ro(x), when
¢ = 2,6 we have degua(z) = 14, degug(z) = 14.

Hence if upmin(x) € {us(z) = u(z)® (mod r(x)),1 < s < k,ged(s, k) =1}
such that %, (z) has minimal degree, by Theorem 2, degu.(z) > degumin(x)
for all u.(x) = u(x)® (mod r(z)),1 < ¢ < k. Hence curves that have such
property should be avoided in Ate; pairing.

Proposition 2. If the irreducible factors of Py (u(x)) are used to generate pairing-

friendly curves, then the Miller loop length of Ate; pairing can not reach the bound
logr
e(k)"

Proof. Suppose r(x) is an irreducible factor of ®(u(z)) and degr(z) = ap(k),
by Lemma 2, r(x )|<I> ke (ue(x)) where ue = u(z)¢ (mod r(x)). Let degu,(x) =

ogr

b, if the Miller loop length of Ate; pairing is o) then b = a, which means that

deg® » (uc(x)) =a- go((c k)). Since r(z) is irreducible factor of & & (u.(z)),
(c;k) ’ (c;k)
then degr(z) = a - p(k) < deg@< E (uc(z)) =a- Lp(ﬁ), a contradiction. [
c,k ’
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