TITLE:

Simultaneous field divisions: an extension of Montgomery’s trick

AUTHOR: David G. Harris
Department of Defense
9206 Daleview Court
Silver Spring, MD USA 20901

davidgharris29@hotmail.com

ABSTRACT:

Montgomery’s trick is a technique which can be used to quickly compute
multiple field inversions simultaneously. We extend this technique to simul-
taneous field divisions (that is, combinations of field multiplications and field
inversion). This generalized Montgomery’s trick is faster in some fields than
a simple inversion with Montgomery’s trick followed by a simple field multi-

plication.

KEYWORDS: Montgomery’s trick, simultaneous inversion, simultaneous

division

1 Introduction

Field inversions are typically expensive to compute, requiring far more oper-
ations than simpler computations such as addition and multiplication. For
example, inversion in a prime field requires computing an Extended GCD. If

we have many independent inversions to compute, i.e. we want to compute

L1 N

Yi
then the algorithm known as Montgomery’s trick can be used to produce all
N inverses simultaneously, at the cost of just one field inversion and 3N — 2
field multiplications. In Section 2, we will review this algorithm.

Often, however, the field inversion is part of a larger arithmetic compu-

tation. Suppose we wish to compute

c C x;
— or

Yi Yi

Here, ¢ is some constant multiplier applied to all of the N computations,
and z; (optional) is some numerator that varies among the N separate com-
putations. For example, to double an elliptic curve point (X,Y) in affine

coordinates, one needs to compute

33X +a

A
2Y

where a is a constant parameter of the elliptic curve.

In this case, the simplest approach would be to use the numerator z; =
3X? + a, the denominator y; = Y, and the constant multiplier ¢ = 1/2. As
we will see, a better approach is to set z; = X? + (a/3), y; = Y, and the

constant multiplier ¢ = 3/2.

Of course, we could use Montgomery’s trick to compute all the denom-
inators 1/y;, and then multiply by the numerators ¢ and z;, at the cost
of additional field multiplications. There have been many applications of
Montgomery’s trick to elliptic curve arithmetic, such as [1] and [2], and they
apparently have all followed this plan.

However, there is an alternative, which is to modify Montgomery’s trick
to incorporate the multiplication of x; and ¢ with the field inversion. In
Section 4, we will describe how to do this. Because our algorithm incorporates
a numerator as well as a denominator, we refer to this as a field division

algorithm, as opposed to merely field inversion.

2 Montgomery’s trick
for multiple field inversions

We will first review Montgomery’s trick for simultaneous field inversions as
described in [1]. We are given N field elements y; € F, and wish to compute
1/y; fori =1,..., N. We will do this by performing two separate “passes”
through the data. In the forward pass, we initialize r; = y; and compute the
forward products

Ty =Ti—1 X Yi, i=2,...,N

When this is done, we have ry = sz\;l yi. We compute a single field
inversion

o1
I =ry

Next, we enter the backward pass. To begin, we set ¢t = [and then for

i=N,...,2, we compute the two products

Ly =t X riq

ti-1 =1t Xy,

To finish, we set
Ly =1
In total, this algorithm requires a single field inverse; in the forward pass,
it requires N — 1 field multiplications; and in the backward pass, it requires
2N — 2 field multiplications.
One observation has been apparently overlooked or at least underesti-
mated: the backward pass’s two multiplications share a common factor. That

is, instead of performing two unrelated multiplications
axb cxd

we are performing two related multiplications
axb aXxc

For some fields, it may be faster to compute these two related multipli-
cations as compared to unrelated multiplications. We will discuss this more
in Section 3. For the moment, let us simply summarize the cost of this

algorithm as

t — (N 1Y M. (9N — 92\ v M, 1 Invercion
4 i) T~ \&) T L 1

na
uovu AN AVL] iV Vs

7
.
<
b~

[V

where M; is the cost of an ordinary field multiplication; M, is half the cost
of a pair of “double multiplications”, i.e. multiplications involving a shared

multiplicand; and Inversion is the cost of a field inversion.

To simplify the costing, Cost/N as N — oo goes to

Cost/N — My + 2M;

3 Double multiplication
Depending on the specific field, computing a double multiplication
axb a X c

may be less expensive than computing two unrelated multiplications. In
costing field arithmetic, it is well-known that squaring may be cheaper than
a general multiplication. By the same token, these double multiplications
may be cheaper too and should be accounted separately. The reason is that
many methods of multiplication are based on “transforming” one or both
multiplicands. In a double multiplication, we need only transform a once.

For example, in very large prime fields, (e.g. 2000+ bits), field multiplica-
tion is generally structured as first an ordinary integer multiplication followed
by a modular reduction. For the integer multiplication one views the mul-
tiplicands as integer polynomials, which one Fourier transforms, multiplies
pointwise, and then inverse transforms the product. A double multiplication
saves a transform compared to two ordinary multiplications.

As another example, in small prime fields F, (e.g. 100—400 bits) one

a=WHag+aW +a;W? + -+ ap_ W*) mod p

To double-multiply a by b and ¢, we can use the Montgomery multiplica-

tion formula

k—1

ab = Z((aW‘i) mod p) X bg_1_;

<.
(e}

B
—_

ac = Z((aW‘i) mod p) X ¢x_1_4

i=0
Again, we are “transforming” a by successively dividing it by powers of W
and this transformation can be shared between the two products.

In some fields, a double multiplication is not noticeably faster than two
ordinary multiplications. For example, in medium prime fields F,, multi-
plication is most efficiently computed by Karatsuba multiplication followed

by modular reduction or Montgomery reduction. The Karatsuba algorithm

does not take advantage of the common factor.
In general, then, we can say that double multiplication can sometimes be

faster, for some fields, than ordinary multiplication.

4 Simultaneous field divisions:
constant numerator

To return to the problem at hand, suppose we wish to compute something
more complicated than a simple field inversion. At first, let us analyze the

computation

c/y; i=1,....N

Using the inversion algorithm, we could compute the denominators 1/y; at

a per-unit cost M;+2M,. We could then multiply by the constant numerator

¢ to get a total cost of
Cost = N x M; + (2N — 2) x My + Inversion + N M.,
As N — oo, the per-unit cost is
Cost/N — My + 2My + M.,

Note that we are treating multiplication by c¢ differently than an ordi-
nary multiplication. In many applications, ¢ is small or has special structure
making multiplication by c¢ significantly cheaper than a general field mul-
tiplication. For example, in the case of elliptic curve affine point doubling,
¢ = 3/2. We can multiply by 3/2 with just a few bit-shifts and field additions,
so the cost to multiply by ¢ will be small, although not totally negligible.

We will now show how to combine the multiplications by ¢ with the

multiple inversion algorithm, resulting in a lower cost. As before, we have a

forward pass, a field inversion, and a backward pass.
To begin, we initialize the forward pass with 1 = 1, and then for i =

2,..., N compute

Ty =Ti—1 X Yy

When this is done, we have ry = [v;. We next compute
I=cxry

Next, we enter the backward pass. To begin, we set {5 = I and then for

i=N,...,2 we compute the two products
c/yi =ti X i1
lic1=1; X y;
and finish by
c/yr =1t
In total, the cost of the foward pass is (N — 1) x M;j; we then perform

a modular inversion and a single multiplication by c¢; finally, the backward

pass costs (N — 1) x 2M,. In total, the cost is
Cost = (N — 1)M, + (2N — 2) My + M, + Inversion
As N — oo, the per-unit cost tends to

Cost/N — My + 2M,

Note that the multiplication by ¢ has been completely amortized away,
just like the field inversion. Although the cost of multiplying by ¢ may be
small, it is not negligible. A side benefit is that, even if ¢ has a special form,
there is no need for specialized computer code to multiply by it since it is no

longer a time-critical step.

5 Simultaneous field divisions:
variable numerator

Now let us consider the case of a variable numerator as well as variable

denominator. We now wish to compute
¢ i/ y; i=1,...,N

9

Using the algorithm of Section 3, we could compute the fractions ¢/y; at
a per-unit cost My + 2M,. We could then multiply by the numerators z; to

get a total cost of
Cost = 2NM; + (2N — 2) M, + Inversion
As N — oo, the per-unit cost is
Cost/N — 2M; + 2M;

We will now show how to interleave the multiplications by x; and ¢ with
the multiple inversion algorithm, resulting in a lower cost. As before, we
have a forward pass, a field inversion, and a backward pass. All these stages
are changed however.

To begin, we start the forward pass by setting
=%
and then for ¢ = 2,..., N we compute

Ty =Ti—1 X Yi

S =Ti—1 X I

Note that the two multiplications share a common factor, and thus this is a
double multiplication.

When this is done, we have ry = [] ;. We next compute

_ ~1
I'=cxry

10

Next, we enter the backward pass. To begin, we set {5 = I and then for

i =N,...,2 we compute the two products
C Tifyi = ti X 8
Licy=1; Xy
and finally finish with
C xl/yl = tl X X1

In total, the cost of the foward pass is (N — 1) x 2Ms; we then perform
a modular inversion and a single multiplication by ¢; finally, the backward

pass costs My + (N — 1) x 2Ms. In total, the cost is
Cost = My + (4N — 4) My + M, + Inversion
As N — oo, the per-unit cost tends to
Cost/N — 4M,

As compared to our previous cost, we have replaced the two unrelated

multiplications by a double multiplication.

6 Conclusion

Inversion in a field can be quite costly. For this reason, if many field inversions
need to be computed, Montgomery’s trick is a useful technique for replacing
them all with a single field inversion and many multiplications.

In many cases, such as elliptic curve affine point doubling, these field

inversions go along with field multiplications, a combination we define as a

11

field division. We have described an algorithm which incorporates this nu-
merator into the Montgomery’s trick, resulting in a computation which is
faster than the simple Montgomery’s trick in two cases: 1) If the numerator
involves a constant term; or 2) If double multiplication (a pair of multiplica-
tions with common factor) can be computed more quickly than two unrelated

multiplications.

7 Acknowledgements

Thanks to Joana Silva for helping edit this paper, and for helping me with

the publication process.

8 Reference

[1] H. Cohen, “A Course in Computational Algebraic Number Theory.”
Graduate Texts in Math. 138, Springer-Verlage, 1993.

[2] P. Mishra, S. Palash, “Application of Montgomery’s trick to scalar
multiplication for elliptic and hyperelliptic curves using a fixed base

point.” PKC 2004, March 2004, pp. 41-54.

12

