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Abstract

A growing number of online services, such as Google, Yahoo!, and Amazon, are starting to
charge users for their storage. Customers often use these services to store valuable data such as
email, family photos and videos, and disk backups. Today, a customer must entirely trust such
external services to maintain the integrity of hosted data and return it intact. Unfortunately,
no service is infallible.

To make storage services accountable for data loss, we present protocols that allow a third-
party auditor to periodically verify the data stored by a service and assist in returning the data
intact to the customer. Most importantly, our protocols are privacy-preserving, in that they
never reveal the data contents to the auditor. Our solution removes the burden of verification
from the customer, alleviates both the customer’s and storage service’s fear of data leakage, and
provides a method for independent arbitration of data retention contracts.

1 Introduction

A growing number of online services, such as Amazon, Yahoo!, Google, Snapfish, and Mozy.com,
aim to profit by storing and maintaining lots of valuable user data. Example uses of this storage
include online backup, email, photo sharing, and video hosting. Many of these service offer a small
amount of “teaser” storage for free, and charge for larger, upgraded versions of the service.

Studies of deployed large-scale storage systems show that no storage service can be completely
reliable; all have the potential to lose or corrupt customer data [4, 5, 19, 21]. Today, a customer that
wants to rely on these services must make an uneducated choice. He has only negative newsworthy
anecdotes on which to base his decision [13, 27], and service popularity or “brand name” is not a
positive indicator of reliability [10]. To know if his data is safe, he must either blindly trust the
service or laboriously retrieve the hosted data every time he wants to verify its integrity, neither of
which is satisfactory. Unfortunately, to date, there are no fair and explicit mechanisms for making
these services accountable for data loss.

Our proposed solution to provide storage service accountability is through independent, third-
party auditing and arbitration. The customer and service enter into an agreement or contract for
storing data in which the service provides some type of payment for data loss or failing to return
the data intact, e.g. free prints, refunds, or insurance. In such an agreement, the two parties
have conflicting incentives. The service provider, whose goal is to make a profit and maintain a
reputation, has an incentive to hide data loss. On the other hand, customers are terribly unreliable,
e.g. casual home users. Customers can innocently (but incorrectly) or fraudulently claim loss to
get paid. Thus, we involve an independent, third party to arbitrate and confirm whether stored
and retrieved data is intact.
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Unfortunately, storage services are often reluctant to reveal their data to external parties for
two reasons [3]. First, storage services have legal, e.g. HIPAA, and social incentives to maintain
customers’ privacy. Second, customer data and its derivatives have value, so services want to
protect their business assets from competitors. Some efficient, challenge-response protocols have
been proposed for auditing [1, 2, 11, 22, 23] storage services, but they all have the potential to
reveal some information to the auditor. To address these concerns, we present third-party auditing
and data retrieval protocols that never reveal the data contents to the third party.

1.1 Solution Overview

Our protocols have three important operations, initialization, audit, and extraction, and we pri-
marily focus on the latter two. For audits, the auditor interacts with the service to check that the
stored data is intact. For extraction, the auditor interacts with the service and customer to check
that the data is intact and return it to the customer. These protocols have the following salient
features:

• Audit: With minimal long-term state, an auditor can efficiently and repeatedly check stored
contents on behalf of the customer. In these audits, the service must prove that contents are
completely unchanged.

• Extraction: Upon retrieval, if the customer doubts the integrity of the data, the customer
can use the extraction protocol which routes the data through the auditor to the customer.
During extraction, the auditor can determine which party is at fault: whether the service lost
data or which party is cheating by not obeying the protocol. Thus, the auditor can arbitrate
a data retention contract.

• All our protocols do not reveal the data contents to the auditor. Our auditing protocols are
zero-knowledge, providing no added information to the auditor. Our extraction protocols
prevent an adversarial auditor from recovering the data contents. Yet, they still allow the
auditor to check the integrity of retrieved data and forward it so that a customer can efficiently
recover the contents.

• A customer does not need to maintain any long-term state. For example, he does not need
to keep “fingerprints” or hashes to audit the stored data, or keep secret keys to decrypt the
stored data upon retrieval.

A straightforward solution for maintaining privacy during audits is for the customer to encrypt
his contents using symmetric-key encryption and keep those keys intact and secret from uninvited
parties. Then, the auditor can use existing provably secure, challenge-response schemes [1, 2, 11, 23]
on the encrypted contents. This solution is unsatisfactory because an unsophisticated customer is
increasingly likely over time either to lose the keys and be unable to recover the contents, or to
leak the keys [17].

In our protocols we shift the burden of keeping these secret keys to a storage service. Since
services are already in the business of maintaining customers’ data and privacy, the keys are safer
with them. Keeping the data content private from the service is optional. A customer can keep the
keys and encrypted data with the same service, thereby revealing the contents to that service and
allowing it to provide value-added features beyond storage like search. Otherwise, the customer can
separate the keys and encrypted data onto non-colluding services to maintain complete privacy.

The auditor is responsible for auditing and extracting both the encrypted data and the secret
keys. Our protocols, however, never reveal the secret key to the auditor. Although we present the
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protocols for handling the encrypted data for completeness, they are straightforward extensions of
existing techniques. Our main contributions are (1) in motivating and specifying the problem of
privacy-preserving audit and extraction of digital data (2) privacy-preserving protocols for auditing
and extracting the encryption key. In this paper, we present these protocols and show how they
provably ensure data integrity and data privacy from the auditor.

Paper Organization. Section 2 lists the assumptions that motivate the need for both privacy-
preserving auditing and extraction. Section 3 surveys other work in the same area and describes
how our work is different from other recently proposed auditing and retrieval schemes. Section 4
describes various auditing and extraction protocols and proves that they meet the required prop-
erties with varying assumptions. Section 5 briefly discusses simple variations of our protocols and
presents performance numbers and future work. Section 6 summarizes this work.

2 Basic Assumptions

We first describe the assumptions, incentives, and threats for ensuring integrity and privacy in our
scenario.

Customers: Customers can be unsophisticated and terribly unreliable when it comes to preserving
data. For example, they often accidentally or unknowingly lose data, e.g. by forgetting to back it
up or by mistakenly overwriting or erasing files. Another common premise is that customers can
maintain secret keys for the long term. We and others argue that this premise is invalid [6, 17, 26].
Customers are likely to lose, leak, or have their keys stolen over time. Diffie argues that the way “to
strong security is less reliance on secrets” [9]. Thus, we assume that we cannot rely on customers to
maintain any long-term state, such as secret keys or the hashes needed for auditing or extraction.

Although customers might not keep long-term secrets associated with the stored data, they still
can use other methods to identify themselves to storage providers. For example, websites today
often require users to authenticate themselves over the phone, mail, or through email to renew
“short-term” passwords or identity tokens.

The following are two additional important assumptions about customers that shape our pro-
tocols. First, customers have an incentive to claim data loss fraudulently, for instance, to receive
payment for losing data as specified by the retention contract. Second, customers want to keep
their data private from third parties.

Storage Service: A storage service provides voluminous long-term storage. Such large-scale
storage systems are complex and vulnerable to various threats that cause data loss. Baker et al. [6]
list threats to data preservation. Some of these include: bugs in storage system software, e.g.
drivers, filesystem, bugs in the hardware, e.g. block-storage firmware, bugs in the network path,
and human error, e.g. malicious or accidental deletion. Thus, Shah et al. [24] argue that even
well-run services must undergo end-to-end checks to verify the integrity of their stored data.

A storage service has an incentive to hide even the slightest data loss. News of data loss
can tarnish service’s reputation. Moreover, penalties in a data retention contract can diminish a
service’s profits. Thus, we assume a storage service may do whatever it can to fool an auditor into
believing it has the original data. The service, however, does not have an exponential amount (in
the size of the challenge during an audit) of storage or computing power. For reasons mentioned
above, we assume the service has incentives against revealing stored data to anyone.

Stored data is useless unless the customer can retrieve and use it. On the other hand, a storage
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service, to protect its business, prefers customer lock-in. So, the service may be passive and fail to
support extraction properly, hindering the customer from taking their data elsewhere. Or worse,
the service may take steps to prevent data extraction altogether. In fact, Baker et al. [6] argue that
lack of a reasonable “data exit” strategy is one of the main threats for long-term digital preser-
vation. If a data retention contract specifies that extraction should be allowed, then hindering or
preventing extraction must be caught. Our data extraction protocols, in which auditors assist in
extraction, can catch or discourage such behavior.

Auditor: Using reliable, trusted, independent auditors is not unprecedented. The insurance in-
dustry and regulatory agencies have traditionally employed auditors when service providers and
customers have conflicting goals [24], a practice from which we derive our setting and assumptions.

The auditor is independent, thus has no incentive to favor (or collude with) the service or cus-
tomer in assigning blame. To allow contract arbitration, the storage service and customer must
both trust the auditor in assigning blame. We assume the auditor, who is in the business of audit-
ing, is more reliable than customers and, thus, can maintain a small amount of state for the long
term. Finally, customer data and results derived from it have external value, so the auditor has a
temptation to learn its contents.

Other: Our protocols rely upon computationally hard problems, in particular the discrete log. We
assume that no party can efficiently (in polynomial time) solve this problem. Our protocol assumes
external authentication methods exist and uses them for secure communication between all parties.
Our protocols do not protect against denial of service attacks.

3 Related Work

Peer-to-peer storage systems: A few peer-to-peer (P2P) storage systems have been proposed
for long-term data preservation. LOCKSS [18] is a P2P archival system for library periodicals.
Although a library site in LOCKSS periodically performs audits of its content, there is no need for
complete privacy since the contents are published. OceanStore [12] periodically checks stored data
for integrity, but relies on users to keep secret keys for privacy and does not offer an interface for
external auditing. Lillibridge et al. [14] present a P2P backup scheme in which peers request ran-
dom blocks from their backup peers. This scheme can detect data loss from free-riding peers, but
does not ensure all data is unchanged. Samsara [8] is a similar P2P system in which data owners
query peers with replicas using a hash-based challenge-response protocol. In Samsara, however, the
protocol only saves network bandwidth since it requires owners to maintain a copy of their data.
Samsara nodes use probabilistic query and enforcement methods to dissuade peers from free-riding.

Auditing online storage services: Others have considered how to audit online storage services.
Schwarz and Miller [22] describe a scheme in which an object is split across multiple data and parity
chunks, and the service is asked to return algebraic signatures of various subsets of the chunks.
This signature scheme is more efficient to compute than our cryptographic hashes, but does not
simultaneously provide provable privacy and ensure full data integrity. Potshards is an archival
system in which archives use this technique to query their peer archives and ensure data integrity
[26]. Potshards keeps archived data private from unauthorized users (including other archives)
through secret splitting, but is limited by the security of this auditing technique. In contrast, we
are concerned with data privacy from a third-party auditor, and in our protocols, keeping data
private from the service is orthogonal.
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Lillibrigde and Eshghi describe two inventions that allow an archival service to commit provably
to storing documents and customers to ensure provably that retrieved documents are indeed the
original [15, 16]. The first scheme handles insertion into and retrieval from a collection without
requiring the customer to keep long-term secrets, and the second handles document deletion. Un-
like our protocols, these schemes require retrieving the entire document for auditing and reveal the
committed contents to the auditor.

Efficient and Provably Strong Audit and Extraction Ateniese et al. [1] define the “provable
data possession” (PDP) model for ensuring possession of file. They describe techniques based on
homomorphic tags for auditing this file. Although their scheme is provably strong, their technique
requires sufficient computation that it can be expensive for an entire file. They suggest randomly
sampling a few blocks of the file. Although sampling is sufficient to catch gross omissions, small
latent errors or data corruptions that perturb a few bits or single blocks may be missed. Such small
errors are likely in storage systems [4, 5].

In a subsequent report, Ateniese et al. [2] describe a PDP scheme that uses symmetric-key
encryption. It is similar to our scheme in that it relies on symmetric-key encryption and MACs
to verify integrity of stored data. This method has lower-overhead than their previous scheme and
still only provides probabilistic guarantees. This new scheme allows for updates, deletions, and
appends to the stored file.

Juels and Kaliski [11] describe a “proof of retrievability” (POR) model for ensuring possession
and retreivability of files. Their scheme embeds sentinels in a derivative of original file. The deriva-
tive is an encrypted version that has been redundantly coded for error correction. The redundancy
prevents small errors and the auditing checks for sentinels that catches large omissions in the file.
Moreover, extraction in their scheme is a by-product of auditing. Shacham and Waters [23] build
on this and present a POR scheme that requires less communication.

All of these schemes are complementary to ours. They present methods for efficiently and
provably ensuring that stored files are intact. Some ([1], [11], and [23]) allow a third-party audit
the data. However, to keep customer data private from the auditor, the customer must encrypt the
data and find a way to keep the decryption keys secret and intact for the long term. When used
directly, these protocols are not provably privacy preserving and, thus, may leak bits of the customer
data to the auditor. Moreover, none of these schemes considers privacy preserving extraction of
customer data. For future work, we should consider adapting these related proofs of possession or
retrievability models and auditing and extraction schemes to our setting.

4 Protocols

Our protocol has three phases: initialization, audit, and extraction. To simplify our discussion, we
focus on storing, auditing, and retrieving a single customer object. For each of these phases, we
describe how to handle both the encrypted data and encryption key.
Preliminaries: We assume all parties communicate through secure, reliable, authenticated chan-
nels for all phases. Using standard methods, we assume the customer, auditor, and service have
agreed on a sufficiently large prime, p and a generator h of the group Z∗

p . To make the discrete log
difficult, we chose p to be a safe prime — p = 2q + 1 where q is prime. With these parameters,
the value g = h2(6= 1) generates all the quadratic residues of Z∗

p , a subgroup with order q. We will
use operations in this subgroup (with g) for manipulating the encryption key. These values can be
reused in all phases and for other instances of this protocol.
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Protocol 4.1 Initialization
1. C → S : K, EK(M), RC

1a. C → A : Wc= gK , Xc= EK(M), Yc= RC

2. S → A : Ws= gK , Xs= H(EK(M)), Ys= RC

3. A checks Wc = Ws, H(Xc) = Xs, Yc = Ys

4.1 Initialization

The initialization phase ensures that the service and customer agree on the stored object and
contract and prepares the auditor with state needed to audit. Initialization commits the service to
storing the customer’s object and binds the service and customer to a particular retention contract.
In this phase, the auditor ensures both the service and customer agree on contents of the encrypted
data and encryption key; otherwise, the auditor cannot resolve future disputes.

At start, the customer has an object M to archive and generates a secret key K, such that
1 < K < q. We use EK(M) to denote symmetric-key encryption of M (e.g. using AES) with key
K, H(M) to denote a collision-free hash of M (e.g. using SHA-2). RC is the retention contract,
which at least identifies the server and customer. We use A to denote the auditor, C to denote the
customer, and S to denote the service. Initialization is described in protocol 4.1.

In step 1, the customer sends the information that the service must retain, both K and EK(M),
along with the agreed-upon contract. In step 1a, the customer relays his understanding of the
agreement with the service to the auditor. The customer sends a key-commitment, gK , that fixes
a value for the key without revealing the key, sends the encrypted data, which conceals the actual
data, and sends the retention contract. In step 2, the service relays its understanding of the
agreement with the customer to the auditor. This information includes the service’s version of the
key-commitment, gK , a hash of the encrypted data, and retention contract.

At this point, A has enough information to check whether both C and S agree on a common
key, the encrypted data, and the retention contract. He performs this check in step 3. If it passes,
A sends accept to both S and C or sends reject to both S and C .

Note, we must choose a sufficiently large K to prevent the auditor (or others) from breaking
the encryption and q > K in order for our scheme to hide and verify the key. We recommend AES
for encryption, which supports 256 bit keys for encryption. Since K is small, the auditor’s storage
overhead for gK is also small.

On accept, the auditor generates n random numbers R1, . . . , Rn and computes l hashes H̃1, . . . , H̃n.
Each of these H̃i are collision-free functions of both Ri and EK(M), and require knowledge
of the entirety of EK(M). These hashes will be used in the auditing phase below to ensure
the integrity of the encrypted data. One way to implement these hashes is to use HMACs,
i.e. H̃i = HMAC(Ri, EK(M)). We will use this definition for ease of exposition. To avoid
the storage overhead of the encrypted data, the auditor discards it, and keeps the pairs: L =
{(R1, H̃1), . . . , (Rl, H̃n)}.

In this protocol, we trust and rely on the auditor to maintain the tuple: < gK ,H(EK(M)), RC >.
The key-commitment will be used later to verify that the service still has the secret key, and the
hash serves as a unique ID to reference the encrypted object.
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4.2 Auditing

In the auditing phase, the auditor repeatedly checks the stored data using a challenge-response
protocol. Each check establishes the data’s integrity immediately before the check. For the remain-
der of the paper, we will show how to handle the encrypted data and encryption key, one after the
other.

During auditing, the main threat from the storage service is that it lost some part of the
encrypted data or encryption key and can fool the auditor into believing that it has both. It may
fool the auditor in two main ways (1) by manipulating the current and cached past challenges
the auditor provides or (2) by combining these challenges and derived values from the data or the
encryption key, such that the encrypted data and encryption key cannot be entirely recovered from
the derived values. Thus, for both the encrypted data and encryption key, we need to prove two
properties (similar to standard proofs of knowledge) to ensure data integrity:

• Completeness: After receiving the challenge, if the service possesses all the bits of the
encrypted data and encryption key, the auditor accepts the responses.

• Soundness: After receiving the challenge, if the service is missing any bit in the encrypted
data or encryption key, the auditor accepts with negligible probability.

What entails “possession” of data bits ? Our definition is that the service can efficiently reproduce
all bits of the encrypted data and encryption key. In this paper, efficient means polynomial in the
size of the input (i.e. key or data).

The main threat from the auditor is that it may glean important information from the auditing
process that could compromise the privacy guarantees provided by the service. For example, even
a few bits from a file containing medical history could reveal whether a customer has a disease. To
ensure privacy, we rely on different standards for the encrypted data and the encryption key. For
the data, we rely on (1) the strength of the encryption scheme and (2) the zero-knowledge property
of the protocol for encryption-key audits. Thus, we must prove the following for the encryption-key
audits:

• Zero-knowledge: The service can be efficiently simulated such that the auditor’s interaction
is indistinguishable from one with a true service.

4.2.1 Encrypted Data Verification

We use a simple challenge-response protocol to check the encrypted data as described in protocol 4.2.
The auditor’s random challenge is selected and sent in steps (1-1a). The service’s response is
computed from this previously unseen challenge and sent in steps (2-2a), and the response is
accepted or rejected in step (3). Although we could use any key-based collision resistant hash, our
scheme is only practical when using a hash function whose range is small relative to the data size.
This property limits the state that the auditor must remember. HMACs, in particular, have a
range that is O(1) in size, e.g. SHA-224 based HMACs are 224 bits long.

Theorem 1. If L is non-empty (in step 1), the encrypted-data auditing protocol above is complete
and sound.

Proof. The completeness property is straightforward. Since the auditor generates the challenge-
response pairs < Ri, H̃i > from the encrypted data, if the service possesses the encrypted data, a
correctly computed response will match.
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Protocol 4.2 Encrypted Data Verification

1. A chooses any Rj , H̃j from L and L = L \ {(Rj , H̃j)}.

1a. A → S : Rj .

2. S computes H̃s = HMAC(Rj , EK(M)).

2a. S → A : H̃s.

3. A checks H̃s = H̃j else declares S lost data.

Protocol 4.3 Regenerate set L, encrypted data challenge-response pairs.
1. A → S : Xa= H(EK(M)).

2. S retrieves EK(M) using Xa.

2a. S → A : EK(M).

3. A verifies Xa = H(EK(M)).

3a. A generates (Ri, H̃i) pairs using EK(M).

To prove soundness, we must show that given the history of previous auditor interactions and
precomputed values from previous possession, an adversarial service cannot fool the auditor into
accepting. For this, we rely on the collision resistant properties of HMACs.

Assume for the purpose of contradiction that the auditor accepts a response, with non-negligible
probability, from an adversarial service without all bits of EK(M). Let j denote the index of the
current round. Then, there are four possibilities four step 2. (1) The service guessed the response.
(2) The service precomputed H̃j and replayed it. (3) The service replayed a response from previous
round i such that HMAC(Ri, EK(M)) = H̃j . (4) The service computed the response using a
(potentially precomputed) value V 6= EK(M) such that HMAC(Rj , V ) = H̃j .

All lead to contradictions. The first (1) occurs with negligible probability. The second (2)
requires precomputing and storing an exponential number of responses, more than available storage.
Finally, since Ri 6= Rj with high probability (whp), both (3) and (4) contradict the collision
resistance property of HMACs. Because the strength of HMACs depend on the underlying hash
function, we recommend the SHA-2 family since they are still difficult to break.

If the set L becomes empty, the auditor generates a new set by retrieving the data from the
service using protocol 4.3. An adversarial service can only fool the auditor’s check in 3a, if he is
able to find a hash collision. Hence, this sub-protocol is also complete and sound.

4.2.2 Encryption Key Verification

To determine if the encryption key is in tact, we have a number of options. One option is to adapt
existing identification schemes to prove the service has K without revealing K. For example, pro-
tocol 4.4 uses the Schnorr identification scheme [20] to show that the service still has K. Schnorr’s
scheme is complete and sound. For soundness, the service can fool the auditor into accepting with
probability ε < 1/2t. But, this protocol is only provably zero-knowledge if the auditor honestly
follows the protocol.
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Protocol 4.4 Schnorr’s identification scheme adapted to show encryption key, K, is intact.
1. S chooses random r s.t. 1 < r < q.

1a. S → A : Cs= gr.

2. A chooses random z s.t. 1 < z < 2t, t is a security parameter.

2a. A → S : z.

3. S → A : Vs = r − zK.

4. A checks (gK)z(gVs) = Cs else declares S lost key.

Protocol 4.5 Key Verification — Honest, but Curious Auditor Zero-Knowledge.
1. A chooses a random β s.t. 1 < β < q and computes gβ.

1a. A → S : Va = gβ .

2. S computes Ws = (Va)K = gβK .

2a. S → A : Ws.

3. A computes Wa = (gK)β

3a. A checks Wa = Ws else declares S lost key.

We developed three additional protocols that rely on a non-standard assumption, the knowledge-
of-exponent assumption, and provide different zero-knowledge guarantees. The first requires one
round-trip, and, like Schnorr’s scheme, is zero-knowledge for an auditor that is honest, i.e. follows
the protocol. The second also takes one round-trip, but is zero-knowledge for all adversaries under
the random oracle model. The third requires two round trips and also is zero-knowledge for all
adversaries, but avoids the random oracle assumption.

Our schemes, reminiscent of Diffie-Hellman key-exchange, rely on the discrete log assumption
(DLA) for privacy. To show soundness, however, we need to rely on the knowledge of exponent
assumption (KEA) introduced by Damgard and later refined by others [7].

KEA 1. For any adversary A that takes input (p, g, gs) and returns (C, Y ) such that Y = Cs, there
exists an efficient “extractor” Ã, given the same inputs at A, returns x such that gx = C.

Informally, the original KEA assumption states that the only way to compute Cs is to know the
value x. As per the previous work, an extractor is efficient if it takes polynomial time.

Protocol 4.5 shows our simplest key verification scheme that is zero-knowledge with an honest-
but-curious auditor. In this protocol, the auditor computes the challenge in steps 1-1a, and the
service responds in steps 2-2a. Because exponentiations commute, the auditor, in steps 3, can
compute the expected answer directly from the key-commitment it has cached.

Theorem 2. The first audit protocol 4.5 is complete and sound.

Proof. Again, the completeness property is straightforward: Since exponentiation commutes, the
auditor can generate the correct response from the key-commitment in step 3a.

Next, we show that the protocol is sound in the face of an adversarial service with a history
of previous interactions and precomputed values from past possession of the key. Suppose an
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adversarial service generates a correct response in step 2, with non-negligible probability, without
possessing K. Then, there are three possibilities for step 2. (1) The service guessed or used a
precomputed value. (2) The service replayed a previous response. (3) The service has an algorithm
to compute the result with inputs (p, g, gβ, {f(K)}), where {f(K)} is a list of precomputed values
from previous rounds such that f() is one-way.

All three lead to contradictions. (1) Guessing occurs with negligible probability and precom-
puting the correct response is not possible because the service does not have exponential compute
power or storage. (2) Since β is chosen at random from a large space, βi 6= βj , so gβiK 6= gβjK for
any previous round i with high probability.

(3) In this case, we show that having the additional {f(K)} does not help an adversarial service in
computing the response without “knowing” K. In the initial round, the list {f(K)} is empty. If the
service successfully responds in the first round, then the service produced a result Y = (gK)β = Cβ .
Using KEA, there exists an efficient extractor that returns K.

Next, we show that if the service can fool the auditor in any subsequent round, then it could
have tricked the auditor in the initial round (a contradiction). Suppose in round i, the service
computes a correct response from the cached knowledge of {f(K)} (computed in previous rounds),
but cannot efficiently extract K. In that case, before the initial round, the service could simulate
i − 1 rounds of interaction with an honest auditor, compute {f(K)}, and destroy K. Simulating
i − 1 rounds is simple since the service only needs to generate random challenges gβ. Then, after
the true challenge in the initial round, the service can compute the correct response with inputs
(p, g, gβ , {f(K)}). This is a contradiction; hence, there exists an efficient extractor that returns K
for all correct responses. Note, if poly-time extraction is not sufficiently efficient, then we need to
strengthen our KEA assumption.

Theorem 3. The first audit protocol 4.5 is perfect zero-knowledge for an honest, but curious auditor
that strictly follows the protocol.

Proof. To show zero-knowledge, we show that an auditor can, by himself, simulate the transcript of
an interaction with a correct, real service. A real interaction transcript contains < gβi , gβiK > for
each round i. A simulator uses gK from initialization and βi from the auditor’s work tape to append
< gβi , (gK)βi > for each round. The simulated transcript is identical to a true interaction.

Although we believe the first protocol to be zero-knowledge with an arbitrarily malicious auditor,
we have not yet produced a workable simulation. To prove zero-knowledge with such an adversary,
we modify the protocol slightly. Instead of simply returning the response in step 2a, we hash the
response from the service using a one-way, collision resistant hash, H(). Then, in the last step,
compare the hashed values. That is, in step 2a, Ws = H(gβK), and in step 3a, Wa = H((gK)β).
Assuming that the hash function approximates a random function, this second protocol is zero-
knowledge in the random oracle model.

Theorem 4. The second audit protocol is complete and sound for all services, and zero-knowledge
for all auditors under the random oracle model.

The completeness and soundness proofs for this second protocol are straightforward because
they follow the same line of reasoning as that for the first protocol. For soundness, we rely on the
collision resistance property of the hash. The proof for zero-knowledge is slightly different:

Proof. We assume by DLA, that the auditor cannot recover K although he knows gK . Since the
auditor is no longer honest, he might not produce a value β that is consistent with the challenge
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Protocol 4.6 Key Verification — Zero-Knowledge for all Auditors
1. A chooses a random β s.t. 1 < β < q and computes Va = gβ.

1a. A → S : Va.

2. S checks Va is a quadratic residue else Ws,1 = 0,Ws,2 = 0 goto 2b.

2a. S chooses a random α s.t. 1 < α < q and computes Ws,1 = (Va)αK = gβαK , Ws,2 = gαK

2b. S → A : Ws,1, Ws,2

3. A checks (Ws,2)β = Ws,1 else declares S lost key end.

3a. A → S : β.

4. S checks gβ = Va else α = 1.

4a. S → A : α.

5. A checks (gK)α = Ws,2 else declares S lost key.

in step 1. So, in this case, a true interaction of round i of the protocol contains the messages
< Xi,H(XK

i ) >.
To show zero-knowledge, we simulate the service and simulate the hash function H as a random

oracle. The simulation maintains a table with three columns: B, C, and D. Each row in this table
records the query, c, to the random oracle, the simulated response, d, and the corresponding b,
where c = bK . The simulation for the service and the random oracle is as follows.

For every auditor challenge, Xi, the simulator looks it up the B column. If it exists, the
simulator returns the corresponding d from that row as the service’s response. Otherwise, the
simulator considers all pairs (Xi, c) for all unpaired c in the table. The KEA assumption ensures
that if the auditor previously computed a c = XK

i , then there exists an extractor Ã that, with input
(p, g, gK , Xi, c), returns β s.t. gβ = Xi. Feeding Ã the (Xi, c) pairs, if Ã returns a consistent β for
some c in the table, the simulator fills that c’s row with Xi for B and returns the corresponding d
as the service’s response. If no consistent β is found, the simulator creates a new row with Xi for
B, selects a random R for D, adds the row to the table, and returns R as the service’s response.

For every query, Yj , to the random oracle by the auditor, the simulator performs an analogous
process to ensure it returns consistent results. If Yj exists in the C column, it returns the corre-
sponding d from that row. Otherwise, the simulator queries Ã with all pairs (b, Yi) for all unpaired
b in the table. Again, the KEA assumption ensures there is an efficient extractor Ã that returns β
s.t. b = gβ if Yj = bK . If Ã returns a consistent β s.t. b = gβ and Yi = gβK , then the simulator fills
that b’s row with Yi for C and returns the corresponding d value. Otherwise, the simulator adds a
new row with Yj for C, selects a random R for D, and returns R.

With such a simulator, all the queries to the random oracle (simulating H) will be consistent
with previously returned simulated service responses and vice-versa. All the computations are
polynomial in the input size. Most importantly, the auditor’s transcript with the simulated service
contains < Xi, R >, which is statistically indistinguishable from a true interaction.

Protocol 4.6 shows our four-message key verification protocol that is computational zero-knowledge
for all auditors. This protocol involves two round-trips. In the first steps (1-2b), the service ob-
fuscates his response, with a random α so that the auditor cannot learn anything. The service
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also responds with a commitment indicating that he has αK. In the second round-trip, the service
reveals α once he learns (in step 4) that the auditor has been honestly following the protocol. Thus,
this protocol forces the auditor to follow the protocol.

Theorem 5. The third audit protocol 4.6 is complete and sound for all services, and computational
zero-knowledge for all auditors.

Proof. Completeness: We show that an honest auditor will accept a correct service’s responses.
The auditor verifies that Ws,2 = gKα (step 5) and that W β

s,2 = Ws,1 (step 3). Thus, the auditor
accepts (in step 5) iff Ws,1 = gβαK , which is the value a correct service sends in step 2b.

Soundness: We rely on our KEA assumption for soundness. Suppose an adversarial service
generates correct responses in steps 2 and 4, with non-negligible probability without possessing K.
Let ζ = αK. Our argument works backward from step 5. At step 5, the auditor is sure that the
services possesses α, gK , and Ws,2 = gζ . If the service possesses ζ in step 3, then K = ζα−1 (mod
q). Hence, the service can efficiently compute and, thus, possesses K, which is a contradiction.

Suppose the service does not possess ζ in step 3. At that step, the auditor is certain that the
service knows Ws,1 and Ws,2 and that W β

s,2 = Ws,1. Since β is kept secret from the service, there
are three possibilities for the responses at step 3. (1) The service guessed or used precomputed
values. (2) The service replayed a previous response. (3) The service has an algorithm to compute
the results with inputs (p, g, gβ, {f(ζ)}), where {f(ζ)} is a list of precomputed values from previous
rounds such that f() is one-way.

All three lead to contradictions. (1) Guessing the right values occurs with negligible probability
and precomputing responses is not possible because the service does not have exponential compute
power or storage. (2) Since β is chosen at random from a large space, βi 6= βj , so gβiζ 6= gβjζ for
any previous round i with high probability. (3) The service produced a result (C, Y ) = (Ws,2,Ws,1)
s.t. Y = Cβ . Using KEA, there exists an efficient extractor that returns ζ s.t. gζ = Ws,2. As
before, the additional {f(K)} does not give the service any advantage in fooling the auditor.

Zero-Knowledge: To show zero-knowledge, we construct a simulator that generates an inter-
action transcript that is indistinguishable from an interaction with a real service. In this proof, the
simulator has black-box access to an adversarial auditor.

For step 1, the simulator invokes the auditor for a challenge Xi and appends it to the transcript.
For step 2, it chooses a random 1 < αi < q, and appends Xαi

i , gαi to the transcript. Then, for
step 3, it invokes the auditor and appends the returned βi. If gβi 6= Xi, the simulator appends 1.
Otherwise, if gβi = Xi, then the simulator rewinds the auditor to just before step 2. Instead, the
simulator appends (gK)αiβi , (gK)αi , βi, αi to the transcript.

For every round in which the auditor generates a valid βi, the transcript contains the following:
< gβi , gβiαiK , gαiK , βi, αi >. The simulated transcript is identical in a true interaction for this case.
When the auditor generates an invalid βx, the transcript contains < Xi, X

αi
i , gαi , βx, 1 >. A true

interaction would have < Xi, X
αiK
i , gαiK , βx, 1 >. Since Xi is a quadratic residue, it has order q.

Since (K, q) = 1, the distribution of αi (mod q) and αiK (mod q) are identical. Thus, the real and
simulated interaction have the same distribution and the two transcripts are indistinguishable.

4.3 Data Extraction

In the extraction phase, the auditor verifies that the data returned to the customer is the same
as when it was ingested. Extraction starts with the service returning the encrypted data and key
to the customer. Once received, the auditor uses one of the above verification protocols with the
customer to ensure integrity. Typically, the data is intact and the customer does not contest the
integrity of the data.

12



Protocol 4.7 Encrypted Data Extraction
1. S → A : EK(M)

2. A checks H(EK(M)) with its cached copy else declares S lost data end.

2a. A → C : EK(M)

If the check fails, the auditor is unsure whether the customer or the service is faulty. The
service could have returned incorrect data or the customer could be buggy or maliciously trying
to claim data loss. One option is to re-verify the stored data at the service and have the service
resend the encrypted data and key to the customer. If after several tries verification continues
to fail with the customer, we could simply conclude that the customer must be faulty. But, this
policy is dangerous. The process for extracting data at the service may differ from the process of
checking, so a simple bug could cause the service to be repeatedly faulty during extraction but not
verification. Worse yet, since the service prefers customer lock-in, it may fail to fix the problem or
actively hinder extraction.

To arbitrate such cases, we resort to a secondary protocol in which the auditor assists in re-
turning the data to the customer. Henceforth, we simply refer to this secondary protocol as the
extraction protocol. In extraction, the encrypted data and a “blinded” version of the encryption key
are passed to the auditor. The auditor checks their integrity and forwards them to the customer.
With these values, the customer can then recover the original data. We have several extraction
protocols for the encryption key, each with different assumptions. In some of these, both the ser-
vice or the customer may send bogus values that can prevent extraction from completing properly.
Fortunately, these protocols allow the auditor to identify which party is sending the bogus values
and therefore obstructing extraction.

For the extraction protocols, the analogues of the completeness, soundness, and privacy-preserving
properties are as follows.

• Completeness: If the service returns the original copies, the auditor accepts and forwards
the encrypted data to the customer and forwards enough information for the customer to
efficiently compute the encryption key.

• Soundness: If the service is missing any bit of the encrypted data or encryption key, the
auditor accepts the encrypted data or encryption key, respectively, with negligible probability.

In some of our protocols, the auditor needs responses from the customer to determine if the
service lost data. In such case, soundness includes the following. If a dishonest customer
cheats to implicate the service, the auditor will reject the customer’s responses with high
probability.

• Privacy-preserving: We rely on the strength of the encryption scheme to protect all the
bits of the encrypted data. Unfortunately, we do not have zero-knowledge proofs for most of
our key-extraction protocols. That is, we could not construct an efficient simulator for the
external parties (service and customer). Instead, for those protocols, we assume that if the
key cannot be recovered in its entirety, the data is private from the auditor.

The procedure for extracting the encrypted data is straightforward, as shown in Protocol 4.7.
Like data verification above, this protocol relies on the strength of the encryption scheme to ensure
privacy of the data. This data extraction protocol is also complete and sound for all services. The
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Protocol 4.8 Encrypted Key Extraction with Trusted Fourth Party
0. Assume that S and C agree on a random shared secret R s.t. 1 < R < q and A knows

gR which are established by a trusted fourth party.

1. S → A : Bs = K + R (mod q).

2. A checks gBs = gKgR = gK+R (mod p) else declares S lost key (stop).

2a. A → C : Bs.

3. C computes Bs −R = K (mod q).

proof is straightforward: completeness follows from the deterministic property of the hash function,
and soundness follows from the collision resistance property of the hash.

4.3.1 Encryption Key Extraction

Protocol 4.8 is our simplest key-extraction protocol, which relies on a trusted fourth party and is
zero-knowledge. The trusted external party generates and sends a shared secret R to the service
and customer and sends a secret-commitment, gR, to the auditor. The service sends a “blinded”
version of the key in step 1, which appears no different from a random value. The auditor can
check the blinded-key using the key-commitment and secret-commitment in step 2. In step 3, the
customer recovers the original key.

Theorem 6. Encryption key extraction protocol 4.8 is complete, sound, and zero-knowledge.

Proof. Completeness is straightforward to check. We show soundness by contradiction. Assume
the service does not know K. Suppose the auditor accepts in step 2 and the service sent a value
Bs = α. The check ensures that α = K + R. Since the service knows R, the service can efficiently
compute K = α−R, contradiction.

We show zero-knowledge by simulating the other parties: service and trusted party. The simu-
lator, acting as the trusted party, chooses a random β s.t. 1 < β < q and sends gβ(gK)−1 = gβ−K

to the auditor. Acting as the service, the simulator sends β. The distribution of < gK , gR, R + K
(mod q) > is identical to < gK , gβ−K , β (mod q) >. Thus, sending the blinded key with the secret
commitment reveals no information to the auditor.

Unfortunately, the above protocol involves an additional party for every extraction. Instead,
since public-key infrastructure (PKI) already exists to manage identities and allow authenticated
and private communication, we leverage this infrastructure for enabling extraction. Although PKI
relies on trusted authorities, we involve them only for maintaining public-key certificates rather than
for every extraction. We have several protocols that accomplish key extraction using public-private
keys for encryption and signatures. To denote message M signed by S , we write Msig(S).

Protocol 4.9 shows how to use RSA based encryption to transfer the key to the customer. In
step 1, the service encrypts the key and sends a key-commitment and encryption to the auditor.
In step 2, the auditor checks that the signature and key-commitment are consistent. Then, he
forwards the pair to the customer. In step 3, the customer checks the signature and checks that the
decrypted key corresponds to the key-commitment. If not, the customer sends the incorrect version
of the key to the auditor. The signature ensures that the data comes from the service; otherwise,
the auditor could inject a bogus value for A and cause the customer to reveal the true key. In step
4, the auditor checks that the encryption of the customer-returned key matches B, provided by the
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Protocol 4.9 Encrypted Key Extraction using RSA
1. S computes D = {A = gK , B = Ke (mod N) } where (N, e) is C ’s RSA public key.

1a. S → A : Dsig(S).

2. A checks A = gK and checks signature else declares S faulty (stop).

2a. A → C : Dsig(S).

3. C checks S ’s signature else F = {Error, 0} goto 3c.

3a. C decrypts K ′ = Bd (mod N) where d is C ’s RSA private key.

3b. if (gK′
= gK): F = {OK} else F = {Error,K ′}.

3c. C → A : F .

4. if ((F = {Error,K ′}) and (gK 6= gK′
) and (B = (K ′)e (mod N))):

A declares S faulty
else

A declares C faulty.

Protocol 4.10 Encrypted Key Extraction using Verifiable Encryption

1. S → A : ÊC(2K), Ŵ

2. A checks V (ÊC(2K), Ŵ , gK = h2K , h) = 1 else declares S lost key (stop).

3. A → C : ÊC(2K).

4. C decrypts K = D̂C(ÊC)2−1 (mod p).

service, and declares the service faulty, otherwise declares the customer faulty. Note, to protect his
own privacy, we assume the customer never sends a correct value of the key to the auditor.

Protocol 4.9 is complete and sound. Completeness is straightforward. Soundness is also straight-
forward. If the service sends a bogus key commitment, the auditor will catch him in step 2, and if
he sends a bogus key, the customer and auditor will catch him in steps 3 and 4. Moreover, if the
customer sends an incorrect decryption of B, then the auditor will catch the customer in step 4.
This latter holds because, with simple RSA encryption, the cipher-text of a message is the same
on each invocation of encryption. Finally, we conjecture that the auditor cannot recover K using
this protocol unless he can break RSA or the discrete-log.

Our next protocols are provably privacy-preserving and also use public-private key encryption.
These protocols rely on the verifiable encryption scheme of Stadler [25]. Let logh(R) (mod p)
denote the discrete logarithm of R base h, where h is a generator of Z∗

p . Moreover, let ÊC(M)
denote the verifiable encryption of M using C ’s public key. Using Stadler’s scheme, a party A can
send an encrypted value of the discrete log of R, ÊC(logh(R)), to B along with a short witness,
Ŵ , that proves to B that the encryption is of the discrete log without revealing it. We denote this
verification function, V (Ê, Ŵ , R, h) → {0, 1}, which returns 1 on success. Stadler’s scheme is based
on ElGamal encryption [25].

Theorem 7. Protocol 4.10 is complete, sound, and privacy-preserving.

Protocol 4.10 shows how to use this scheme for key extraction. Since Stadler has shown that
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verification is zero-knowledge and the pair {h2K , Ê(2K)} does not reveal the entirety of 2K, our
protocol is privacy-preserving [25]. Also, our protocol is complete and sound since Stadler’s scheme
is complete and sound. Note, there is no need for the service to sign the message it sends since the
customer never reveals anything to the auditor.

In Stadler’s scheme, the verification protocol requires the auditor to know the generator h (the
square root of g) from initialization. Thus, the auditor must maintain it along with the other
metadata. Moreover, the short proof, Ŵ , relies on a cryptographic hash function such as SHA-256.
Although practical, this proof’s security depends on the hash function. We can modify Stadler’s
scheme in our setting to remove the use of such hash functions for key-extraction. This next
extension is purely of theoretical interest since our protocols for the encrypted data also rely on
such hash functions.

Protocol 4.11 is one such scheme that combines elements of the previous two extraction pro-
tocols 4.9 and 4.10. It splits Stadler’s verification into two parts: part of the witness is provided
by the service and the other by the customer. In step 1, the auditor encrypts 2K using standard
ElGamal encryption (E) and computes one part of the witness, W .

In step 2, the auditor ensures that the witness values are consistent with the first element of
the encryption, E1 = gα. At this point, the auditor cannot verify that the second element of the
encryption (E2) contains the key since he does not have access to the customer’s private key z. In
fact, in the next step, the customer provides the necessary data to perform this check in case E2 is
invalid. However, to ensure that the customer is honest, the auditor, in step 2, chooses challenges
that are indistinguishable from the first element of each pair in W . Then, the auditor forwards the
key-commitment, the encryption, and {(xi,1, xi,2)}, the challenges intermingled with the witness
values from the service.

In step 3, the customer decrypts and checks that key is consistent with the key-commitment
value. If not, he sends the second part of the witness, W ′, computed from the challenges and his
private key, which the auditor will use to verify the encryption. In step 4, the auditor ensures
that the customer correctly computed W ′. If so, the auditor then checks to see if the encryption
contains the discrete log of the key-commitment. The identity used for verification is essentially
the same as that used by Stadler [25].

Theorem 8. Protocol 4.11 is complete, sound, and privacy-preserving for a honest, but curious
auditor.

Proof. Complete and Sound: Completeness is straightforward to verify. For soundness, we need
to show (1) if the service sends an incorrect encryption he will be caught (2) if the customer sends
incorrect witness, he will be caught.

For (1), we assume the auditor and customer are correct. If the first element of the encryption
is invalid, i.e. E1 6= gα, the auditor will discover that in step 2. The other possibility is that E1 is
consistent with the witness values, but E2 is invalid. The service could have used an incorrect key
or used the wrong multiplier for the encryption. In either case, the service will be caught in the
second verification in step 4.

For (2), we assume the auditor and service are correct. In that case, the customer could send
incorrect values in W ′ in step 3 to fool the auditor into rejecting the service’s encryption in step
4. To compute W ′, the customer must exponentiate challenges xi,1 and xi,2 using his private key.
For each i, in step 4, the auditor can verify that the customer gave the correct response for only
one of w′

i,1 or w′
i,2; the one derived from ζi. The customer, however, cannot tell which challenge

(xi,1 or xi,2) the service generated and which the auditor generated since they are drawn from the
same distribution. So, for each i, the customer can fool the auditor with probability 1/2. Thus,
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Protocol 4.11 Encrypted Key Extraction using Modified version of Stadler’s Verifiable Encryption
0. Let z s.t. 1 < z < q be C ’s private key and y = gz be C ’s public key.

1. S chooses a random 1 < α < q and computes E = (E1 = gα, E2 = (2K)−1yα) (mod p).
S chooses k random 1 < γi < q and computes

W = {(wi,1 = gγi (mod p), wi,2 = (γi − α) (mod q) )} for 1 ≤ i ≤ k.
S → A : (E,W ).

2. A checks (wi,1 · g−wi,2 = E1) for 1 ≤ i ≤ k else declares S faulty (stop).
for 1 ≤ i ≤ k do:
A chooses random 1 < ζi < q.
A chooses random bit, bi.
if (bi = 0):

xi,1 = wi,1 and xi,2 = gζi (mod p)
else

xi,1 = gζi (mod p) and xi,2 = wi,1

A → C : (h, E, gK , {(xi,1, xi,2)} for 1 ≤ i ≤ k).

3. C decrypts: M = (E2 · E−z
1 )−1 = ((2K)−1yαg−αz)−1 = 2K (mod p).

if (hM = gK): /* Key in cipher-text is correct. */
D = {OK}

else /* Key in cipher-text is incorrect. */
W ′ = {(w′

i,1 = h(xi,1)z
, w′

i,2 = h(xi,2)z
)} for 1 ≤ i ≤ k.

D = {Error,W ′}
C → A : D

4. A checks: if (D = {Error,W ′}):
/* Check if C ’s response is valid */
for 1 ≤ i ≤ k do:

if (bi = 0):
vi,1 = w′

i,1 and vi,2 = w′
i,2

else
vi,1 = w′

i,2 and vi,2 = w′
i,1 /* If C is honest, vi,1 = hgγiz

and vi,2 = hgζiz
*/

if (v1,2 6= hyζi ): A declares C faulty (stop).
/* Check if S encrypted correctly */
if ((gK)(E2·ywi,2 ) 6= vi,1 for all i): /* expands to (gK)((2K)−1gαz)(gz(γi−α)) 6= hgγiz

*/
A declares S faulty.

else
A declares C faulty.
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the overall probability that the auditor will fail to catch a dishonest customer is 1 − 1
2k . This is

negligible for sufficiently large k.
Privacy preserving: To show that the protocol is privacy preserving, we show that (1) the

data that an honest service sends does not reveal the key and (2) the data that an honest customer
sends in response to an auditor that follows the protocol (honest, but curious) does not reveal the
key.

For (1), we note that this protocol is basically a variant of Stadler’s scheme. Stadler showed that
extracting 2K from V = {h2K , gα, (2K)−1gαz} is as hard as the Decisional Diffie Hellman problem.
Now, suppose the auditor could extract K with the additional information from the witness, W ,
using some algorithm, E, that takes input (V,W ). Then, with E and just V alone, the auditor
could extract the key, K. To do so, he picks k random βi, computes gβi−α, and uses these as the
witness values (wi,2 and wi,1) along with V as the input to E. The simulated witness values have
the same distribution as W from a true service; thus, W gives no additional knowledge. Since
Stadler showed that recovering K from V is difficult, recovering K is still difficult with witness W .

For (2), the auditor receives responses for two types of challenges. The response for the first
type results from the ζi that the auditor generates. That response, hgζiz

, the auditor can generate
himself (and does so in step 4). The response for the second type, hgγiz

is the value that the auditor
computes from the encryption that the service provides. Thus, the customer offers no additional
information and the auditor cannot recover either K or z.

Note, unlike our second extraction protocol 4.9, protocol 4.11 never reveals K in plaintext to
the auditor, even if the customer is faulty and incorrectly decrypts the data. Although we believe
that protocol 4.11 is privacy-preserving with adversarial auditors that do not follow the protocol,
we could not develop a workable simulation. A simple extension, therefore, is to use the same
trick as we did in the auditing protocol 4.6. In step 3, the customer instead chooses a random
1 < β < q and returns h(xi,1)βz

and h(xi,2)βz
(which are hgγiβz

and hgζiβz
). The auditor then sends

the customer evidence, γi − α and ζi, that these challenges were formed according to the protocol.
The customer verifies this evidence and then sends β to the auditor. Although this extension adds
an additional round-trip, it makes the protocol provably zero-knowledge for all auditors. Thus, it
is as secure as Stadler’s interactive proof scheme without incurring numerous network round trips.

5 Discussion

5.1 Variations and Extensions

There are a number of variations of this protocol. We briefly mention a few.

• An important property of our protocols is that the minimal state needed for auditing, the
key-commitment and the encrypted-data hash, reveals nothing about the stored data, so that
state can be shared publicly. Thus, instead of storing that state with the auditor, we can
store it with a public commitment storage service. Using such a service, we need not rely on a
single auditor, but can use multiple auditors to audit our content. Thus, if auditors are faulty
and Byzantine, we can use existing Byzantine agreement protocols to resolve disagreements.

• During initialization, instead of sending the data to both service and auditor, the customer
can precompute the challenge-response pairs for the encrypted data and send the data to the
service and the pairs to the auditor. However, we must worry about the customer sending
fraudulent challenge-response pairs. In this case, the auditor can use the customer-supplied
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challenges to audit and upon verification failure, he can retrieve the encrypted data from the
service and check it against the non-keyed hash.

• For verification, instead of using our scheme based on cryptographic hashes for the encrypted
data, we can use the provably strong techniques of Ateniese et al. [1], Shacham and Wa-
ters [23], or Juels and Kaliski [11]. Although these schemes might leak information when
used on the plaintext, the first two are superior to our straightforward scheme in that they
do not limit the number audits that can be performed. A simple hybrid of our scheme with
one of these provides the privacy-preserving benefits of our scheme as well as the robustness
of these other schemes.

5.2 Performance and Future Work

To support our protocols, storage services must export hooks for challenge-response queries and
compute expensive functions for responses. To avoid these overheads, we can batch many files
together into a single file and check that single file all at once. Since our protocols mostly send
small hashes and auditing keys requires at most two exponentiations, the main overhead comes
from computing HMACs over the entire contents. If we limit the number of checks, however, this
overhead can be tolerable for a service.

We measured the performance of a SHA-1 HMAC over files stored on five 500GB SATA disks
with a 2-core 2GHz Intel Xeon 5130 at 362 MB/s. At this peak rate, 50 CPUs in parallel can
check 1PB in 16 hours. Spread over 30 days, this work imposes less than 2% overhead. Since
many large-scale storage services handle an archival workload in which most data is rarely touched,
checking monthly is reasonable.

For future work, we should consider modifying previous schemes [1, 2, 11, 23] to allow privacy-
preserving audit and extraction. Certainly a hybrid as mentioned above is simple, but it still
imposes the encryption and decryption overheads that the storage service and customer experience
with our protocols. It may be possible to eliminate the encryption key altogether. To do so, we
must first extend the formal definitions of proofs of possession or proofs of retrievability to include
a notion of privacy from the auditor.

Finally, our current schemes require the auditor to be trusted and not collude with either party.
In real world auditing situations in other contexts (e.g. financial auditing), such collusions can occur
and have occurred in the past. In this case, a scheme that allows auditing by multiple auditors
without the traditional overheads of Byzantine fault-tolerance techniques would be useful.

6 Conclusion

We describe methods for privacy preserving auditing and extraction of digital contents. Our two
main contributions are (1) the motivation, assumptions, and setting for third-party privacy preserv-
ing auditing and extraction, and (2) various privacy-preserving protocols for auditing and extraction
of data stored with a service provider. Auditing involves a third-party auditor that remotely verifies
that the stored data are intact. For extraction, the auditor verifies the data is intact and returns
it to the customer, ensuring that he received the original data. Thus, with our schemes, an auditor
can arbitrate data retention contracts between storage provider and customer.

Our schemes divide the data into two pieces, an encryption key and the encrypted data. Our
protocols allow an auditor, with minimal long-term state, to audit both those pieces and extract
those pieces without revealing the underlying contents of either. Using our protocols, all these
properties can be achieved without requiring the customer to maintain any long-term state (secret
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keys or hashes). The protocols for the encrypted data rely on cryptographic hashes and symmetric-
key encryption. We present protocols for the encryption key that have varying assumptions, but
all assume that the computing the discrete log is difficult. We believe protocols like ours will be
necessary if outsourcing is truly to catch-on for preserving digital contents.
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