
Preimage Attacks on 3-Pass HAVAL
and Step-Reduced MD5∗

Jean-Philippe Aumasson1†, Willi Meier1‡, and Florian Mendel2

1 FHNW, Windisch, Switzerland
2 IAIK, Graz University of Technology, Graz, Austria

Abstract. This paper presents preimage attacks on the hash functions 3-pass HAVAL
and step-reduced MD5. Introduced in 1992 and 1991 respectively, these functions un-
derwent severe collision attacks, but no preimage attack. We describe two preimage
attacks on the compression function of 3-pass HAVAL. The attacks have a complex-
ity of about 2224 compression function evaluations instead of 2256. We present several
preimage attacks on the MD5 compression function that invert up to 47 steps (out
of 64) within 296 trials instead of 2128. Although our attacks are not practical, they
show that the security margin of 3-pass HAVAL and step-reduced MD5 with respect
to preimage attacks is not as high as expected.

Keywords: cryptanalysis, hash function, preimage attack.

1 Introduction

A cryptographic hash function h maps a message M of arbitrary length to a fixed-length
hash value H and has to fulfill the following security requirements:

– Collision resistance: it is infeasible to find two messages M and M?, with M? 6= M ,
such that h(M) = h(M?).

– Second preimage resistance: for a given message M , it is infeasible to find a second
message M? 6= M such that h(M) = h(M?).

– Preimage resistance: for a given hash value H, it is infeasible to find a message M such
that h(M) = H.

The resistance of a hash function to collision and (second) preimage attacks depends in the
first place on the length n of the hash value. Regardless of how a hash function is designed,
an adversary will always be able to find preimages or second preimages after trying out
about 2n different messages. Finding collisions requires a much smaller number of trials:
about 2n/2 due to the birthday paradox. A function is said to achieve ideal security if these
bounds are guaranteed.

Recent cryptanalytic results on hash functions mainly focus on collision attacks but only
few results with respect to preimages have been published to date. In this article, we analyze
the preimage resistance of the hash functions MD5 and HAVAL. Both are iterated hash
functions based on the Merkle-Damg̊ard design principle. MD4 and MD5 both underwent
critical collision attacks [3, 6, 7, 16–18], and hence should not be used anymore. But in
practice MD5 is still widespread and remains secure for applications that do not require
collision resistance. While three preimage attacks on MD4 are known [2, 4, 5], the picture
is different for MD5: using a SAT-solver De et al. [2] inverted 26 (out of 64) steps of
MD5, and no analytical attack is known to date. Idem for HAVAL: while several collision

∗The work in this paper was supported in part by the Austrian Science Fund (FWF), project
no. P19863.

†Supported by the Swiss National Science Foundation, project no. 113329.
‡Supported by GEBERT RÜF STIFTUNG, project no. GRS-069/07.



attacks [6, 12, 19, 20] and even a second preimage attack [8] were published, no preimage
attack is known.

Independent Work. Sasaki and Aoki discovered preimage attacks on round-reordered
and step-reduced MD5 [13]: their best attack with original round-ordering inverts 44 steps
of the compression function within 296 trials, starting at the step 3 and ending at step 46.
They subsequently improved this result in a paper presented at this workshop [14].

Our Contribution. First, we invert the compression function of MD5 reduced to 45
steps by using a meet-in-the-middle approach. The attack makes about 2100 compression
function evaluations and needs negligible memory. Second, we exploit special properties of
the permutations used in the compression function to extend this attack to 47 steps (out
of 64). The attack has a complexity of 296 compressions and memory requirements of 236

bytes. Third, we extend the attacks on the compression function to the hash function by
using a meet-in-the-middle and tree-based approach. With this method we can construct
preimages for MD5 reduced to 45 and 47 steps with a complexity of about 2106 and 2102

compression function evaluations and memory requirements of 239 bytes.
Similar strategies can be applied to the compression function of HAVAL. We can invert

the compression function of 3-pass HAVAL with a complexity of about 2224 compression
function evaluations and memory requirements of 269 bytes. We can turn the attack on
the compression function into a preimage attack on the hash function with a complexity of
about 2230 compression function evaluations and memory requirements of 270 bytes.

Outline. The article is structured as follows. §2 presents two methods to invert to com-
pression function of MD5 reduced to 45 and 47 steps. We use the same methods to invert
the compression function of 3-pass HAVAL in §3. In §4, we show how the attacks on the
compression function of MD5 and HAVAL can be extended to preimage attacks on the hash
function, and §5 concludes.

2 Preimage Attacks on Step-Reduced MD5

This section presents two techniques to invert the MD5 compression function. The first
attack on 45 steps is based on a standard meet-in-the-middle (MITM) and requires about
2100 trials. The second attack inverts up to 47 steps, and exploits special properties of the
message ordering. Combined with a MITM, we construct a preimage attack with complexity
about 296 trials. But prior to that, we provide a brief description of MD5 and illustrate the
basic idea of our attacks over 32 steps.

2.1 Short Description of MD5

The MD5 compression function takes as input a 512-bit message block and a 128-bit chain
value and outputs another 128-bit chain value.

The input chain value H0 . . . H3 is first copied into registers A0 . . . D0:

(A0, B0, C0, D0)← (H0,H1,H2,H3). (1)

This inner state is then transformed by a series of 64 steps and the output is

(H?
0 , H?

1 ,H?
2 ,H?

3 ) = (A64 + A0, B64 + B0, C64 + C0, D64 + D0). (2)



Fig. 1. The step function of MD5.

where A64 . . . D64 are defined by the recursion below:

Ai = Di−1

Bi = Bi−1 + (Ai−1 + fi(Bi−1, Ci−1, Di−1) + Mσ(i) + Ki) ≪ ri

Ci = Bi−1

Di = Ci−1

(3)

The Ki’s and ri’s are predefined constants and σ(i)’s are in Table 1. The function fi is
defined as

fi(B,C, D) = (B ∧ C) ∨ (¬B ∧D) if 0 < i ≤ 16
fi(B,C, D) = (D ∧B) ∨ (¬D ∧ C) if 16 < i ≤ 32
fi(B,C, D) = B ⊕ C ⊕D if 32 < i ≤ 48
fi(B,C, D) = C ⊕ (B ∨ ¬D) if 48 < i ≤ 64

(4)

Fig. 1 gives a schematic view of the step function, and [11] gives a complete specification.

Table 1. Values of σ(i) in MD5 for i = 1, . . . , 64 (we boldface the M2 key inputs used in the
attacks on 32 and 47 steps, and the M6 and M9 key inputs used in the attack on 45 steps).

Step index i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Message word σ(i) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Step index i 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Message word σ(i) 1 6 11 0 5 10 15 4 9 14 3 8 13 2 7 12

Step index i 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
Message word σ(i) 5 8 11 14 1 4 7 10 13 0 3 6 9 12 15 2

Step index i 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
Message word σ(i) 0 7 14 5 12 3 10 1 8 15 6 13 4 11 2 9

Fact 1 At step i only Bi is a really new value, the others are just shifted as in a feedback
shift register. Hence for i = 0, . . . , 60 we have Bi = Ci+1 = Di+2 = Ai+3.

Fact 2 The step function is invertible, i.e. from Ai . . . Di and Mσ(i) we can always com-
pute Ai−1 . . . Di−1. Removing the feedforward by H0 . . . H3 in Eq. (2) would thus make the
compression function trivially invertible.



2.2 Preimage Attack on 32 Steps

This attack computes preimages for the 32-step compression function within about 296 trials
(instead of 2128). It introduces two tricks used in the 45- and 47-step attacks: absorption of
changes in C0 and exploitation of the ordering of the message words.

Key Facts. Observe in Table 1 that M2 is only input at the very beginning and the very
end of 32-step MD5, namely at steps 3 and 30. Hence, if we could pick a message and freely
modify M2 such that B3 stays unchanged, we would be able to “choose” B30 = C31 = D32

(cf. Fact 1). A key observation is that the function fi can either preserve or absorb an input
difference: indeed for 0 < i ≤ 16 and any C and D we have

fi(0x00000000, C, D) = (0 ∧ C) ∨ (0xffffffff ∧D) = D (5)
fi(0xffffffff, 0, D) = (0xffffffff ∧ 0) ∨ (0 ∧D) = 0 (6)

These properties will be used to “absorb” a change in C0 = D1 = A2 at steps 1 and 2.
More precisely, we need that B0 = 0 to absorb the changes of C0 at step 1. And to absorb
the change in D1 = C0 we need that B1 = 0xffffffff. We can now sketch the attack:

1. pick a chain value H0 . . .H3 = A0 . . . D0 (with certain constraints)
2. pick a message M0 . . . M15 (with certain constraints)
3. modify M2 to choose B30 = C31 = D32

4. modify H2 = C0 such that the change in M2 doesn’t alter subsequent Ai . . . Di

Our strategy is inspired from Leurent’s MD4 inversion [5]; the main difference is that [5]
exploits absorption in the second round, whereas we use it in the early steps.

Description of the Attack. Suppose we seek a preimage of H̃ = H̃0 . . . H̃3. The algorithm
below first sets B0 = 0 and B1 = 0xffffffff, to guarantee that a change in C0 will only
affect A2. Then, from an arbitrarily chosen message, Algorithm 1 modifies M2 in order to
“meet in the middle”. Finally, C0 corrects the change in M2, and this new value of C0 does
not affect the initial steps of the function.

Algorithm 1 Preimage attack on 32-step MD5.
1. set B0 = 0 and A0, C0, D0 to arbitrary values
2. repeat
3. pick M0 such that B1 = 0xffffffff

4. pick arbitrary values for M1 . . . M15

5. compute A30 . . . D30

6. modify M2 to get B30 = D32 = H̃ −D0

7. correct C0 to keep B3 unchanged
8. compute the final hash value H? = H?

0 . . . H?
3

9. if H? = H̃ then
10. return A0 . . . D0 and M0 . . . M15

Algorithm 1 makes about 296 trials by choosing 32 bits in the 128-bit image and bruteforcing
the 96 remaining bits. (We denote H? = H?

0 . . . H?
3 a final hash value, so our goal is to have

in the end H? = H̃.)



Correctness of the Attack. We now explain in details why the attack works. First, the
operation at line 3 of our algorithm is feasible because it corresponds to setting

M0 = 0xffffffff−A0 −D0 −K0. (7)

Then right after line 4 we have for any choice of C0:

1. f1(B0, C0, D0) = f1(0, C0, D0) = D0

2. f2(B1, C1, D1) = f2(0xffffffff, C1 = B0, D1) = 0

In other words, the first two steps are independent of C0. This will allow us to modify
C0 = D1 = A2—to correct a change in M2—without altering Ai . . . Di between steps 4 and
30.

Now, at line 6 we set

M2 = (H̃3 −D0 −B29) ≫ 9−G(B29, C29, D29)−A29 −K30 (8)

With this new value of M2 we get in the end H?
3 = H̃3.

Finally we “correct” this change by setting

C0 = (B3 −B2) ≫ r3 − f3(B2, C2, D2)−M2 −K2. (9)

With this new value of C0 = A2 we keep the same B3 as with the original choice of M2.

We can thus choose the output value H?
3 by modifying M2 and “correcting” C0. However,

H?
0 , H?

1 and H?
2 are random for the attacker. Hence, 96 bits have to be bruteforced to invert

the 32-step function. This gives a total cost of 296 trials.
We experimentally verified the correctness of our algorithm by searching for inputs that

give H?
2 = H?

3 = 0 (see Appendix A).

2.3 Preimage Attack on 45 Steps

We present here an attack that computes 45-step preimages within 2100 trials and negligi-
ble memory. This combines a MITM with a conditional linear approximation of the step
function. In short, the attack is based on the fact that M2 appears at the very beginning
and that M6 and M9 appear at the very end of 45-step MD5. Another key observation is
that M2 is used only once in the first 25 steps, and M6 and M9 are used only once after
step 25. Algorithm 2 describes the attack for finding a preimage of H̃0 . . . H̃3.

Correctness of the Attack. First, we use again (at line 1) the trick to absorb the
modification of C0, necessary to keep the forward stage unchanged with the new value of
M2. Then, observe that

– between steps 25 and 45, M6 and M9 are input at steps 44 and 45 (cf. Table 1)
– at line 7 we use values of M6 and M9 distinct from the ones used in the forward stage

(line 5)

Hence, by setting M6 and M9 to the values chosen the matching L entry, we would expect
different values of B44 = C45 and B45 than the (zero) ones used for the backward compu-
tation. Recall (cf. line 1) that we need A45 = 0, B45 = H̃1, D45 = 0, hence the values of
C45 will not matter; we would however expect a random B45 from the new values of M6

and M9.
The trick used here is that the condition imposed on M6 and M9 at line 5 implies that

the new B45 equals the original H?
1 = H̃1 with probability 2−4 instead of 2−32 for random

values (see below). The attack thus succeeds to find a 96-bit preimage when the MITM
succeeds and B45 = H̃1, that is with probability 2−64 × 2−4 = 2−68. Storage for 268 bytes
is required for the MITM. For full (128-bit preimage) we bruteforce the 32 remaining bits
thus the costs grows to 2100 trials.



Algorithm 2 Preimage attack on 45-step MD5.
1. set A0 = H̃0, B0 = 0, D0 = H̃3

(We thus need A45 = 0, B45 = H?
1 , D45 = 0. Note that we’ll have

f45(B44, C44, D44) = f45(C45, D45, A45) = C45.)
2. repeat
3. pick M0 such that B1 = 0xffffffff

4. set arbitrary values to the remaining Mi’s except M6 and M9

5. for all 264 choices of C0 and (M6, M9) such that

M9 = −((M6 ≪ 19) + (M6 ≪ 23))

(Here 23 coincides with r44 and 19 = r44 − r45)
6. compute A25 . . . D25, store it in a list L
7. for M6 = M9 = 0 and all 264 choices of C45 and M2

8. compute A25 . . . D25

9. if this A25 . . . D25 matches an entry in L then
10. correct C0 to keep B3 unchanged
11. return A0 . . . D0 and M0 . . . M15

(Here the message contains the M2, M6, M9 corresponding to the matching entries)

Reducing the Memory Requirements. By using a cycle-finding algorithm (as for in-
stance [10, 15]) the memory requirements of the meet-in-the-middle step of the attack can
be significantly reduced. Hence, we can find a preimage for 45-step MD5 with a complexity
of about 2100 and negligible memory requirements.

On the Choice of M6 and M9. We explain here why the condition

M9 = −(M6 ≪ 19 + M6 ≪ 23) (10)

gives B45 = H̃1 with high probability.
Consider the last two steps (44 and 45): because A45 = D45 = 0 we have C44 = D44 = 0

and B43 = C43 = 0. Hence we have

fi(B, C,D) = B ⊕ C ⊕D = B + C + D (11)

in these two steps.
Note that A43 and D43 depend on the C45 used for the backward computation. Now we

can compute B44 and B45 (note r44 = 23, r45 = 9)

B44 = (A43 + D43 + K43 + M6) ≪ 23 (12)
B45 = (A44 + B44 + K44 + M9) ≪ 4 + B44 (13)

For simplicity we rewrite

B44 = (X + M6) ≪ 23 (14)
B45 = ((Y + B44 + M9) ≪ 4) + B44 (15)

Now we can express B45:

B45 = ((Y + ((X + M6) ≪ 23) + M9) ≪ 4) + ((X + M6) ≪ 23) (16)

Since (cf. line 7 of the algorithm) we chose (M6,M9) = (0, 0) this simplifies to

B45 = ((Y + (X ≪ 23)) ≪ 4) + (X ≪ 23) (17)



Consider now the case M9 = −(M6 ≪ 19 + M6 ≪ 23); Eq. (16) becomes:

B45 = ((Y + ((X + M6) ≪ 23)− ((M6 ≪ 19) + (M6 ≪ 23))) ≪ 4) (18)
+((X + M6) ≪ 23)

We will simplify this equation by using the generic approximation:

(A + B) ≪ k = A ≪ k + B ≪ k (19)

Daum showed [1, §4.1.3] that Eq. (19) holds with probability about 2−2 for random A and
B. We first use this approximation to replace (X + M6) ≪ 23 by

(X ≪ 23) + (M6 ≪ 23). (20)

Thus Eq. (18) yields

B45 = ((Y + (X ≪ 23)− (M6 ≪ 19)) ≪ 4) + (X ≪ 23) (21)
+(M6 ≪ 23)

Finally we approximate (Y + (X ≪ 23)− (M6 ≪ 19)) ≪ 4 by

((Y + (X ≪ 23)) ≪ 4)− ((M6 ≪ 19) ≪ 4) (22)

and Eq. (21) becomes

B45 = ((Y + X ≪ 23) ≪ 4) + (X ≪ 23) (23)

Note that this is the same equation as for (M6,M9) = (0, 0) in Eq. (17). Hence, we get the
correct value in B45 with a probability of 2−4, since we used two approximations3.

Delayed-Start Attack. This attack strategy can be applied to invert the 47 steps from
step 16 to 62, using M6 in place of M2, and the pair (M4,M11) instead of (M6,M9).

2.4 Preimage Attack on 47 Steps

In the following we will show how to construct a preimage for the compression function of
47-step MD5 with a complexity of about 296. This attack combines the 32-step attack with
a meet-in-the-middle (MITM) strategy. The latter is made possible by the invertibility of
the step function.

The attack on 47-step MD5 can be summarized as follows:

1. set initial state variable to absorb a change in C0, as in the 32-step attack
2. compute A29 . . . D29 for all 232 choices of C0 and save the result in a list L
3. compute A30 . . . D30 for all 232 choices of C47 and “meet in the middle” by finding a

matching entry in L

Algorithm 3 describes the attack more formally.
Again this attack essentially exploits the “absorption” of 32 bits during the early steps to
save a 232 complexity factor. Note that when the MITM succeeds, i.e. when the line 10
predicate holds, we only have a 96-bit preimage because H?

2 = C47 + C0 is random. This is
because both C0 and C47 are random for the attacker.

Each repeat loop hence succeeds in finding a 96-bit preimage with probability 2−32,
and costs 232 trials. This is respectively because

3The exact probability is 2−3.9097 according to Daum’s formulas.



Algorithm 3 Preimage attack on 47-step MD5.
1. set B0 = 0 and A0, C0, D0 to arbitrary values
2. repeat
3. pick M0 such that B1 = 0xffffffff

4. pick arbitrary values for M1 . . . M15

5. for all 232 choices of C0

6. compute A29 . . . D29, store it in a list L
7. set A47 = H̃0 −A0, B47 = H̃1 −B0, D47 = H̃3 −D0

8. for all 232 choices of C47

9. compute (backwards) A30 . . . D30

10. if L contains an entry A30 = D29, C30 = B29, D30 = C29 then
11. modify M2 to have

B30 = ((A29 + f(B29, C29, D29) + M2 + K29) ≪ 9) + B29

12. correct C0 to keep B3 unchanged
13. compute the final hash value H?

0 . . . H?
3

14. return A0 . . . D0 and M1 . . . M15

1. we have 232 × 232 = 264 candidate pairs that each match with probability 2−96

2. the cost of the two for loops amounts to 232 computations of the compression function

The total cost for finding a 128-bit preimage is thus 232 × 232 × 232 = 296, with a required
storage of 236 bytes (64 Gb) for the MITM. This allows us to find preimages on the 47-step
MD5 compression function 232 times faster than bruteforce. However it doesn’t directly give
a preimage attack for the hash function because the initial value is here partially random,
whereas in the hash function it is fixed.

3 Preimage Attacks on 3-Pass HAVAL

HAVAL was proposed with either 3, 4, or 5 passes, i.e. 96, 128, or 160 steps. It has message
blocks and hash values twice as large as MD5, i.e. 1024 bits (32 words) and 256 bits (8 words)
respectively. In the following, we present two methods to invert the compression function
of 3-pass HAVAL. Both attacks have a complexity of about 2224 compression function
evaluations. Like in the attacks on step-reduced MD5, we combine a generic MITM with
weaknesses in the design of the compression function. In detail, we exploit the properties of
the Boolean functions to absorb differences in its input and special properties of the message
ordering in 3-pass HAVAL. But before describing the attacks, we give a short description
of 3-pass HAVAL.

3.1 Short Description of 3-Pass HAVAL

The structure of HAVAL is similar to that of MD5: registers A0, B0, . . . , G0,H0 are initial-
ized to the input chain values and finally the function returns

(H?
0 , . . . , H?

7 ) = (A96 + A0, B96 + B0, . . . , G96 + G0, H96 + H0) (24)

after 96 steps that set

Ai = Bi−1,
Bi = Ci−1

. . . . . .
Gi = Hi−1

Hi = Ai−1 ≫ 11 + fi(Bi−1, Ci−1, Di−1, Ei−1, Fi−1, Gi−1,Hi−1) ≫ 7 + Ki + Mσ(i)

(25)



Fig. 2. The step function of HAVAL.

Table 2. Values of σ(i) in 3-pass HAVAL for i = 1, . . . , 96 (we boldface the key inputs of M5 and
M6).

Step index i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Message word σ(i) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Step index i 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Message word σ(i) 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Step index i 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
Message word σ(i) 5 14 26 18 11 28 7 16 0 23 20 22 1 10 4 8

Step index i 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
Message word σ(i) 30 3 21 9 17 24 29 6 19 12 15 13 2 25 31 27

Step index i 65 66 67 68 69 70 77 72 73 74 75 76 77 78 79 80
Message word σ(i) 19 9 4 20 28 17 8 22 29 14 25 12 24 30 16 26

Step index i 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
Message word σ(i) 31 15 7 3 1 0 18 27 13 6 21 10 23 11 5 2

We thus have Hi = Gi+1 = Fi+2 = Ei+3 = Di+4 = Ci+5 = Bi+6 = Ai+7 for i =
0 . . . 89. Like in MD5 the step function is invertible, and uses step-specific constants, Boolean
functions fi, and message words Mσ(i). The step functions are defined as (with e.g. BC =
(B ∧ C)):

fi(B,C, . . . , H) = FE ⊕BH ⊕ CG⊕DF ⊕D if 0 < i ≤ 32
fi(B,C, . . . , H) = ECH ⊕ CGH ⊕ CE ⊕ EG⊕ CD ⊕ FH

⊕GF ⊕BC ⊕B if 32 < i ≤ 64
fi(B,C, . . . , H) = CDE ⊕ CF ⊕DG⊕ EB ⊕ EH ⊕H if 64 < i ≤ 96

(26)

The σ(i)’s are in Table 2. See [21] or [19] for a complete specification.

3.2 Preimage Attack A

Suppose we seek a preimage of H̃0 . . . H̃7 with an arbitrary value for H̃6; that is, we only
want a 224-bit preimage. In the attack below we exploit the properties of the Boolean
function fi to absorb a difference in the input, and combine it with a MITM to improve on
bruteforce search. Algorithm 4 describes the attack in detail.
In the end the computed image H? is the same as the image sought H̃ except (with probabil-
ity 1−2−32) for H?

6 = G96 +G0. Here M5 and M6 are used as “neutral words”, respectively



Algorithm 4 Preimage attack A on 3-pass HAVAL.
1. set C0 = 0, D0 = H̃3 − 0xffffffff, E0 = F0, H0 = 0, and arbitrary A0B0G0

(We need to assume D96 = 0xffffffff for our attack to work)
2. repeat
3. choose an arbitrary message for which H1 = 0xffffffff and H3 = H5 = 0

(This guarantees that differences in G0 will be absorbed in the first 6 rounds)
4. for all 264 choices of G0 and M5

(A difference in M5 only changes G96 after step 48)
5. compute A48 . . . H48 and store it in a list L.
6. set A96 = H̃0 −A0, . . . , H96 = H̃7 −H0

7. for all 264 choices of G96 and M6

8. compute A48 . . . H48 by going backwards
9. if this A48 . . . H48 matches an entry in L then

10. correct G0 such that A7 . . . H7 remains unchanged
11. return A0 . . . H0 and M0 . . . M31

in the second and the first part of the attack; the change in G0 will correct the change in
M6, while being absorbed during the first six steps. Furthermore, if the MITM condition
at line 8 is satisfied then we directly get a 224-bit preimage, because at line 6 we choose
A96 . . . F96H96.

Indeed we have 264 candidates for A48, . . . , H48 resulting from the forward computation
and 264 candidates resulting from the backward computation, so we’ll find a match and
thus a partial preimage with probability 2−128. Hence, by repeating the attack 2128 times
we’ll find a 224-bit preimage with about 2128×264 = 2192 compression function evaluations.
We need storage for 269 bytes to perform the MITM. Note that a full (256-bit) preimage is
obtained by bruteforcing the 32 remaining bits, increasing the cost to 2224 trials.

3.3 Preimage Attack B

This attack exploits the fact that M2 appears at the very beginning in the first pass and at
the very end in the last pass. By combining this with absorption of the Boolean function
in the early steps (similarly to our attack on 47-step MD5), we can construct a 192-bit
preimage within about 2160 trials. By repeating the attack about 264 times we can con-
struct a preimage for the compression function with complexity of about 2224 instead of
the expected 2256 compression function evaluations. Algorithm 5 computes a preimage of
H̃0 . . . H̃7 where all H̃i’s are fixed but H̃2 and H̃6 (i.e. a 192-bit preimage):

The MITM will succeed (line 8 of Algorithm 5) with probability 2−96 = 264 × 264/2224,
hence 296× 264 = 2160 trials are required to get a 192-bit preimage (and storage 269 bytes).
A full (256-bit) preimage is obtained by bruteforcing the 64 remaining bits, which increases
the cost to 2224 trials.

4 Extension to the Hash Functions

In this section, we will show how to extend the preimage attacks on the compression of
step-reduced MD5 and 3-pass HAVAL to the hash function. The extension of the attacks
to the hash function is constrained by the padding rule and the the predefined IV . The
padding rule of MD5 and HAVAL forces the last bits of the message to encode its length.
Thus a preimage attack should find messages that match this constraint. In our attacks we
have no restrictions on the last message words and hence the padding rule is no problem;
in each of the attacks proposed, we shall simply choose the end of the message to be of the



Algorithm 5 Preimage attack B on 3-pass HAVAL.
1. set A0 = H̃0, B0 = H̃1, D0 = H̃3, E0 = H̃4, F0 = H̃5, G0 = 0.

(To get a 192-bit preimage we thus need A96 = B96 = 0, D96 = E96 = F96 = 0,
G96 = H̃7)

2. repeat
3. pick an arbitrary message for which the state variable H1 = 0.

(This guarantees that a change in C0 will only affect A2)
4. for all 264 choices of C0 and H0

5. compute A60 . . . H60 and store it in a list L.
6. for all 264 choices of C96 and H96

7. compute A61 . . . H61

8. if L contains a tuple such that A61 = B60, . . . , G61 = H60 then
9. modify M2 to have

H61 = (A60 ≫ 11) + (f61(. . . ) ≫ 7) + M2 + K61

10. correct C0 and H96 accordingly
11. return A0 . . . H0 and M0 . . . M15

form 100 · · · 0〈`〉, where 〈`〉 represents the bitlength of the original message (without the
padding bits).

However, the IV of our preimages for the compression function is different from the
fixed one; e.g. in the attack on MD5 reduced to 47-steps we require B0 = 0, and get a
random value for C0. There are several methods to turn our attacks into preimage attacks
starting from the predefined IV , as described in the next two sections; the general idea will
be to find many preimages (with partially random initial value) and to find many images
of the fixed IV, and then combine them to “bridge the gap” between the IV and the image.

4.1 Basic Meet-in-the-Middle

Suppose we want a preimage of H. This attack sets a parameter 0 < x < n, and first
computes 2x preimages (H̃i, M̃i), i = 0, . . . , 2x − 1, that is, such that f(H̃i, M̃) = H; the
M̃i’s are chosen to have convenient padding bits. Then the attack computes 2n−x random
images Hj = f(IV,Mj), j = 0, . . . , 2n−x − 1, for random Mi’s and the IV specified for
the function. Finally we find a pair (i, j) such that H̃i = Hj , and return the message
M = Mj‖M̃i as a preimage of H. Because there’s in total 2n pairs (i, j), the attack will
work with high probability.

For reduced-step MD5 with the optimal x we compute forward 2112 random chain values
and compute backward 216 preimages within 296 × 216 = 2112 trials. The total cost of the
47-step preimage attack is thus about 2113 trials and memory for a preimage attack. For
3-pass HAVAL we compute forward 2240 chain values and backward 216 preimages within
2224 × 216 = 2240 trials. The total cost is 2241 trials plus memory for a preimage attack.

4.2 Tree Approach

This attack is an improved version of the meet-in-the-middle above. It is based on the
finding of multi-target preimages, and the construction of a tree whose root is the target
image. This is exactly the technique described in [5], (a similar approach was published
before by Mendel and Rijmen in [9]). To summarize, we proceed in two stages

1. Backward stage: use a tree-based technique to compute a set S of multi-block preimages
2. Forward stage: compute images of random message blocks with the predefined IV until

one lies in S



For MD5 the forward stage costs 296 trials and the backward stages costs 32 × 297 = 2102

trials to compute 32-block preimages, plus storage for 233 message blocks (i.e. 239 bytes).
Applied to 3-pass HAVAL we get a preimage attack that makes 2230 trials and needs 271

bytes of storage.

5 Conclusion

We presented the first preimage attacks for the hash functions 3-pass HAVAL and step-
reduced MD5: we described several preimage attacks on the MD5 compression function that
invert up to 47 (out of 64) steps within 296 compression function evaluations, instead of the
expected 2128, and two preimage attacks on the 3-pass HAVAL compression function that
cost 2224 compression function evaluations instead of 2256. We extended our best attacks to
the hash functions (with padding and fixed IV) for a cost of 2230 and 2102 trials, respectively.
Although these attacks are not practical (notably due to large memory requirements), they
show that the security margin of 3-pass HAVAL and step-reduced MD5 with respect to
preimage attacks is not as high as expected.

Acknowledgments

We would like to thank Kazumaro Aoki and Yu Sasaki for communicating us theirs results
on MD5 and making helpful comments.

References

1. Magnus Daum. Cryptanalysis of Hash Functions of the MD4-Family. PhD thesis, Ruhr Uni-
versität Bochum, 2005.

2. Debapratim De, Abishek Kumarasubramanian, and Ramarathnam Venkatesan. Inversion at-
tacks on secure hash functions using SAT solvers. In João Marques-Silva and Karem A.
Sakallah, editors, SAT, volume 4501 of LNCS, pages 377–382. Springer, 2007.

3. Bert den Boer and Antoon Bosselaers. Collisions for the compression function of MD5. In Tor
Helleseth, editor, EUROCRYPT, volume 765 of LNCS, pages 293–304. Springer, 1993.

4. Hans Dobbertin. The first two rounds of MD4 are not one-way. In Serge Vaudenay, editor,
FSE, volume 1372 of LNCS, pages 284–292. Springer, 1998.

5. Gaëtan Leurent. MD4 is not one-way. In Kaisa Nyberg, editor, FSE 2008, LNCS. Springer,
2008. To appear.

6. Jongsung Kim, Alex Biryukov, Bart Preneel, and Sangjin Lee. On the security of encryption
modes of MD4, MD5 and HAVAL. In Sihan Qing, Wenbo Mao, Javier Lopez, and Guilin
Wang, editors, ICICS, volume 3783 of LNCS, pages 147–158. Springer, 2005.

7. Vlastimil Klima. Tunnels in hash functions: MD5 collisions within a minute. Cryptology ePrint
Archive, Report 2006/105, 2006. http://eprint.iacr.org/.

8. Eunjin Lee, Jongsung Kim, Donghoon Chang, Jaechul Sung, and Seokhie Hong. Second
preimage attack on 3-pass HAVAL and partial key-recovery attacks on NMAC/HMAC-3-pass
HAVAL, 2008. To appear.

9. Florian Mendel and Vincent Rijmen. Weaknesses in the HAS-V compression function. In
Kil-Hyun Nam and Gwangsoo Rhee, editors, ICISC, volume 4817 of LNCS, pages 335–345.
Springer, 2007.

10. Jean-Jacques Quisquater and Jean-Paul Delescaille. How easy is collision search? Applica-
tion to DES (extended summary). In Jean-Jacques Quisquater and Joos Vandewalle, editors,
EUROCRYPT, volume 434 of LNCS, pages 429–434. Springer, 1989.

11. Ronald Rivest. RFC 1321 - The MD5 Message-Digest Algorithm, 1992.
12. Bart Van Rompay, Alex Biryukov, Bart Preneel, and Joos Vandewalle. Cryptanalysis of 3-

pass HAVAL. In Chi-Sung Laih, editor, ASIACRYPT, volume 2894 of LNCS, pages 228–245.
Springer, 2003.



13. Yu Sasaki and Kazumaro Aoki. Preimage attack on step-reduced MD5. In Yi Mu and Willy
Susilo, editors, ACISP 2008, LNCS. Springer, 2008. To appear.

14. Yu Sasaki and Kazumaro Aoki. Preimage attacks on one-block MD4, 63-step MD5 and more.
In Roberto Avanzi, Liam Keliher, and Francesco Sica, editors, SAC 2008, LNCS. Springer,
2008. To appear.

15. Robert Sedgewick, Thomas G. Szymanski, and Andrew Chi-Chih Yao. The complexity of
finding cycles in periodic functions. SIAM Journal of Computing, 11(2):376–390, 1982.

16. Marc Stevens, Arjen K. Lenstra, and Benne de Weger. Chosen-prefix collisions for MD5 and
colliding X.509 certificates for different identities. In Moni Naor, editor, EUROCRYPT, volume
4515 of LNCS, pages 1–22. Springer, 2007.

17. Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen, and Xiuyuan Yu. Cryptanalysis of the
hash functions MD4 and RIPEMD. In Ronald Cramer, editor, EUROCRYPT, volume 3494 of
LNCS, pages 1–18. Springer, 2005.

18. Xiaoyun Wang and Hongbo Yu. How to break MD5 and other hash functions. In Ronald
Cramer, editor, EUROCRYPT, volume 3494 of LNCS, pages 19–35. Springer, 2005.

19. Hirotaka Yoshida, Alex Biryukov, Christophe De Cannière, Joseph Lano, and Bart Preneel.
Non-randomness of the full 4 and 5-pass HAVAL. In Carlo Blundo and Stelvio Cimato, editors,
SCN, volume 3352 of LNCS, pages 324–336. Springer, 2004.

20. Hongbo Yu, Xiaoyun Wang, Aaram Yun, and Sangwoo Park. Cryptanalysis of the full HAVAL
with 4 and 5 passes. In Matthew J. B. Robshaw, editor, FSE, volume 4047 of LNCS, pages
89–110. Springer, 2006.

21. Yuliang Zheng, Josef Pieprzyk, and Jennifer Seberry. HAVAL - a one-way hashing algorithm
with variable length of output. In Jennifer Seberry and Yuliang Zheng, editors, ASIACRYPT,
volume 718 of LNCS, pages 83–104. Springer, 1992.

A Partial Preimage for 32-Step MD5

With the IV

H0 = 0x67452301 H2 = 0x382ca539

H1 = 0x00000000 H3 = 0x10325476

and the message

M0 = 0xb11de410 M8 = 0x6d32a030

M1 = 0x5c0cd1ec M9 = 0x16b2e752

M2 = 0xd7d35ac7 M10 = 0x3b70c422

M3 = 0x5704c13b M11 = 0x685cb2aa

M4 = 0x792a351e M12 = 0x1dd5ec6d

M5 = 0x420582b7 M13 = 0x4794f768

M6 = 0x77v8de3d M14 = 0x04fef18f

M7 = 0x2476b43b M15 = 0x00000000

we get the image

H?
0 = 0xb4df93c9 H?

2 = 0x00000000

H?
1 = 0x3348e3f2 H?

3 = 0x00000000

This was found in fewer than five minutes on our 2.4 GHz Core 2 Duo, whereas brute force
would take about 264 trials (thousands of years on the same computer).


