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Abstract. The round complexity of interactive protocols is one of their
most important complexity measures. In this work we prove that existing
lower bounds for the round complexity of VSS can be circumvented by
introducing a negligible probability of error in the reconstruction phase.
Previous results show matching lower and upper bounds of three rounds
for VSS, with n = 3t + 1, where the reconstruction of the secrets al-
ways succeeds, i.e. with probability 1. In contrast we show that with a
negligible probability of error in the reconstruction phase:

1. There exists an efficient 2-round VSS protocol for n = 3t + 1. If
we assume that the adversary is non-rushing then we can achieve a
1-round reconstruction phase.

2. There exists an efficient 1-round VSS for t = 1 and n > 3.

3. We prove that our results are optimal both in resilience and number
of sharing rounds by showing:

(a) There does not exist a 2-round WSS 3 (and hence VSS) for
n ≤ 3t.

(b) There does not exist a 1-round VSS protocol for t ≥ 2 and n ≥ 4.

1 Introduction

Verifiable Secret Sharing (VSS) [3] is a fundamental building block for many
distributed cryptographic tasks. VSS is a two phase protocol (Sharing and Re-
construction) carried out among n parties in the presence of an adversary who
can corrupt up to t parties. Informally, the goal of the VSS protocol is to share
a secret, s, among the n parties during the sharing phase in a way that would
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later allow for a unique reconstruction of this secret in the reconstruction phase,
while preserving the secrecy of s until the reconstruction phase.

Due to the central importance of VSS in the context of many cryptographic
protocols such as multiparty computation, Byzantine agreement, etc, the prob-
lem has drawn much attention over the years (e.g. [12, 1, 2, 7, 8, 18, 5, 4, 6]) and
many aspects of the problem have been studied. Round complexity is one of
the most important complexity measures of interactive protocols. The study of
the round complexity of VSS in the information theoretic security setting, i.e.
under the assumption of a computationally unbounded adversary, was initiated
by Gennaro et al. [11]. Their investigation was conducted under the assumption
that the protocols are error-free. They refer to the round complexity of VSS as
the number of rounds in the sharing phase and prove that a 3-round error-free
VSS is possible only if n ≥ 3t+1, and match it with an inefficient upper bound.
Fitzi et al. [10] show an optimal efficient 3-round VSS protocol in this setting.
The protocol of Fitzi et al. used the broadcast channel in more than one round
of the sharing phase and Katz et al. [14] showed how to achieve the same result
while using a single round of broadcast. The lower bound from [11] (and the
matching upper bounds) consider error-free VSS, where the VSS properties are
satisfied without any probability of error.

In this work we investigate the question of whether the lower bounds for the
round complexity of VSS can be overcome by introducing a negligible probability
of error.
Our Results: We prove that existing lower bounds for the round complexity of
VSS can be circumvented by introducing a negligible probability of error in the
reconstruction phase. Specifically, we show that:

1. There exists an efficient 2-round VSS protocol for n = 3t + 1. This proto-
col has a 2-round reconstruction phase. If we assume that the adversary is
non-rushing then we can achieve a 1-round reconstruction phase. A rushing
adversary can wait to hear the incoming messages in a given round prior to
sending out its own messages.
This matches the sharing phase round complexity of the best known pro-
tocols in the computational setting [9, 16] with no set-up assumptions (but
note that these protocols use a one round reconstruction phase).

2. There exists an efficient 1-round VSS for t = 1 and n ≥ 4.
3. We prove that our results are optimal both in resilience and number of

sharing rounds by proving:
(a) There does not exist a 2-round WSS (and hence VSS) for n ≤ 3t.
(b) There is no 1-round VSS protocol for t ≥ 2 and n ≥ 44.

Our protocols also achieve the design optimization of Katz et al. [14] and use
a single round of broadcast in the sharing phase and no broadcasts at all in the
reconstruction phase.

To achieve our goal of constructing a VSS protocol, we follow the structure
of [18, 17], where we first design a Weak Secret Sharing (WSS) protocol and
4 We note that there exists a 1-round WSS protocol with n > 3t (see Appendix A).



then use it as a building block for VSS. Informally WSS is a primitive which
satisfies the same properties as VSS except for the commitment property. VSS
has a strong commitment, which requires that at the end of the sharing, there is a
fixed value s∗ and that the honest parties output this value in the reconstruction
phase. In contrast, WSS has a weaker commitment property which requires that
at the end of the reconstruction phase, the honest parties output s∗ or NULL.
The novelty of our protocol is in the specific design of the WSS component and
the way we use it to build the round optimal VSS.

On the Definition of Round Complexity of VSS: As we have stated ear-
lier, the common definition for the round complexity of VSS is the number of
rounds in the sharing phase. This is a natural definition for the perfect (i.e.,
zero error) setting, as the reconstruction can always be done in one round (by
having all parties reveal their complete view generated at the end of sharing
phase). However, in our protocols we have a reconstruction phase that cannot
be collapsed into a single round. This indicates that a different definition for the
round complexity of VSS may be needed, which is the total number of rounds in
the sharing plus the number of rounds in the reconstruction. Both the previous
VSS results [11, 10, 14] and our result exhibit a VSS with a total of four rounds5.
This introduces the question of what is the lower bound on the total number of
rounds for VSS.

2 Preliminaries

We follow the network model of [18, 11]. Specifically, we consider a setting with
n parties P = {P1, P2, . . . , Pn} that are pairwise connected by a private and
authenticated channel. We further assume that all parties have access to a com-
mon broadcast channel and there exists a malicious, computationally unbounded
adversary At, that can corrupt up to t parties, out of n parties. The adversary
controls and coordinates the actions of the corrupted/faulty parties. We further
allow the adversary to be rushing, i.e. in every round of communication it can
wait to hear the messages of the honest parties before sending his own messages.
For simplicity we describe our protocols for a static adversary, who corrupts all
the parties at the beginning of the protocol. However, our results also hold for
a stronger adaptive adversary. Given a security parameter k, we assume that
the protocols operate with values from a finite field F = GF (q), where q = 2k.
Thus, each element of F can be represented by k bits. Moreover, without loss
of generality, we assume that n = poly(k). The error probability of our proto-
cols will be 2−Ω(k). We say that our protocols are efficient if the communication
and computation of the parties are polynomial in the security parameter k. All
the protocols presented in this paper perform computation and communication
which are poly(k). We assume the system to be synchronous. Therefore the pro-
tocols operate in a sequence of rounds, where in each round, a party performs
5 As the total number of rounds in both protocols is the same, the question of which

protocol to use depends on the application. For applications where there is a need
of more efficiency during the sharing, i.e. fewer number of rounds, the two round
sharing protocol should be used.



some local computation, sends new messages to the other parties through the
private channels and broadcasts some information over the broadcast channel,
then it receives the messages that were sent by the other parties in this round
on the private and broadcast channels.

2.1 Verifiable Secret Sharing (VSS)

We now present the definition of VSS [3]. In a VSS protocol there is a distin-
guished party D ∈ P, that holds an input s ∈ F referred to as the secret. The
protocol consists of two phases, a sharing phase and a reconstruction phase. We
call an n party protocol with adversary At an (n, t)-VSS protocol if it satisfies
the following conditions for dealer D holding secret s :

Secrecy. If D is honest then the adversary’s view during the sharing phase re-
veals no information on s. 6 More formally, the adversary’s view is identically
distributed for all different values of s.

Correctness. If D is honest then the honest parties output s at the end of the
reconstruction phase.

Strong Commitment. If D is corrupted, then at the end of the sharing phase
there is a value s∗ ∈ F∪{NULL}, such that at the end of the reconstruction
phase all honest parties output s∗.

Note: This definition is equivalent to saying that s∗ ∈ F, by fixing a default
value in F, which may be output in case the reconstruction ends with a NULL.
However, we prefer this presentation of the definition as to distinguish it from
a stronger definition of VSS [13, 11]. The stronger definition also requires that
at the end of the sharing there is a commitment to an actual value in F, i.e. the
dealer cannot commit to NULL, and furthermore that all parties hold a share of
this actual value. Thus, using the above definition points to the fact that NULL
is a possible value, instead of setting it to a default value in F.

Protocols that do not satisfy the stronger VSS definition are not suitable for
use in multiparty computations. The protocols in this paper satisfy the standard
VSS definition, which leave the open question of whether a 2-round VSS protocol
can be designed that satisfies the stronger definition. However, when examining
the round complexity of VSS as a stand alone application, the above definition
is sufficient and was used in [11] (with the variation s∗ ∈ F) to prove the lower
bounds.
VSS in External Dealer Model: In the external dealer model, the system
is assumed to consist of a dealer and n parties. The dealer is considered as an
external party. Moreover, the adversary At is allowed to corrupt D and up to t
additional parties. We stress that all the protocols and lower bounds presented
in this paper will work for this model as well.

6 If D is corrupted, then s will be known to the adversary. In such a case, the secrecy
property does not apply.



2.2 Weak Secret Sharing (WSS)
In order to construct our VSS protocol we use another form of secret sharing
called Weak Secret Sharing (WSS) [18, 17]. The setting is the same as for the
VSS and the definition satisfies the Secrecy and Correctness properties. However,
we relax the Commitment property as follows:

Weak Commitment. If D is faulty then at the end of the sharing phase there
is a value s∗ ∈ F∪{NULL} such that at the end of the reconstruction phase,
each honest party will output either s∗ or NULL.

Notice that it is not required that all honest parties output the same value,
i.e. some may output s∗ and some may output NULL. The above definition is
standard and follows many of the existing definitions [17, 18, 14].

2.3 Statistical VSS and Statistical WSS
We say that a VSS (WSS) protocol is a (1−ε) statsitical VSS (WSS) if it achieves
correctness and strong (weak) commitment with probability 1−ε, where given a
security parameter k we have that ε = 2−Ω(k). Note that we assume secrecy to
be perfect7.

3 Statistical-WSS, 2-Round Sharing, n = 3t + 1

In this section we present our 2-round share, 2-round reconstruct statistical-WSS
protocol with n = 3t+1. The protocol appears in Figure 1. For ease of exposition,
we describe our protocol using multiple rounds of broadcast. We follow this with
a brief description on how to modity the protocol to a variation that uses a single
round of broadcast.
Note: Following the notation of [11], whenever we say that dealer is disqualified
during the sharing phase of WSS/VSS, we mean to say that all honest parties
accept the sharing of NULL (or a default value from F) as the dealer’s secret.

Before we turn to our proofs we draw the readers attention to the following
interesting points that enable us to achieve the final result. The bi-variate poly-
nomial F (x, y) (defined by D) has a tweak, the x variable is of degree nk + 1,
which results in the polynomials fi(x) being of degree nk + 1 (where as this
degree is typically t in other protocols). We further create a situation where
these polynomials never need to be reconstructed and thus the parties need not
hold large number of points on the polynomials to interpolate them. These two
properties put together, enable us to give each party many evaluation points
and values on these polynomials and to further allow them to expose a portion
of them without exposing the underlying polynomial. In addition, we adapt an
interesting technique from Tompa and Woll [20] and use secret evaluation points.

The fact that we can expose points on the high degree polynomials and that
the evaluation points are secret, facilitates the cut-and-choose proof, carried out
7 We conjecture that the lower bounds in this paper hold also for the case when the

secrecy is statistical.



Protocol WSS

Sharing Phase

Local Computations: D does the following:
1. Picks a random bivariate polynomial F (x, y) over F of degree t in the

variable y and degree nk + 1 in the variable x, such that F (0, 0) = s.
2. Defines fi(x) = F (x, i) for 1 ≤ i ≤ n.
3. Picks random polynomials ri(x) over F, deg(ri(x)) = nk+1 for 1 ≤ i ≤ n.
4. nk random, non-zero, distinct elements from F, denoted by

αi,1, αi,2, . . . , αi,k for 1 ≤ i ≤ n.
Round 1: D sends to party Pi:

– The polynomials fi(x), ri(x). Let fi(0) be Pi’s share of D’s secret s.
– The random evaluation points αi,` for 1 ≤ ` ≤ k.
– aj,i,` = fj(αi,`) and bj,i,` = rj(αi,`) for 1 ≤ ` ≤ k, 1 ≤ j ≤ n.

Round 2: Party Pi broadcasts the following:
– A random non-zero value ci and polynomial gi(x) = fi(x) +

ciri(x), deg(gi(x)) = nk + 1.a

– For a random subset of indices `1, ..., ` k
2
, the evaluation points

αi,`1 , ..., αi,` k
2

and aj,i,`1 , ..., aj,i,` k
2

and bj,i,`1 , ..., bj,i,` k
2

for 1 ≤ j ≤ n.

Local Computation: For all parties:
1. Party Pi is accepted by party Pj if ai,j,` + cibi,j,` = gi(αj,`) for all ` in the

set of indices broadcasted by Pj in Round 2.
2. Initiate the set SH = ∅. Place Pi in SH if it is accepted by at least 2t + 1

parties.
3. If |SH| ≤ 2t disqualify dealer D. Note that SH computed by all honest

parties are identical.

Reconstruction Phase, 2-rounds:

Round 1: Each Pi in SH broadcasts fi(x), deg(fi(x)) = nk + 1.
Round 2: Each Pj ∈ P broadcasts all the evaluation points αj,` which were not

broadcasted in the sharing phase and ai,j,` corresponding to those indices, for
i = 1, . . . , n.

Local Computation: For all parties:

1. Party Pi ∈ SH is re-accepted by Pj ∈ P if for one of the newly revealed points
it holds that ai,j,` = fi(αj,`).

2. Initiate the set REC = ∅. Place Pi in REC if it is re-accepted by at least
t + 1 parties. If the shares of the parties in REC interpolate to a t degree
polynomial g(y) then output s = g(0). Otherwise output NULL.

a When ever we say that a party broadcasts a polynomial of a certain degree we
assume that if this is not done then the party is disqualified.

Fig. 1. (2-Round Share, 2-Round Reconstruct) Statistical-WSS, n = 3t + 1



by the parties in Round 2. It should be noted that if we allow rushing, then
a cheating prover may try to foil the cut-and-choose proof during the sharing
phase. However, surprisingly we show that this proof is sufficient for our needs
and that we can deal with such faulty parties in the reconstruction phase.

Lemma 1. Protocol WSS satisfies the (1−ε)-correctness property.

Proof: It is easy to see that if D is honest, then every honest party Pi is
present in SH as well as in REC. Given that all honest parties are present in
SH the dealer will not be disqualified during the sharing phase. In order to show
that the correct secret is reconstructed, we prove that if a faulty Pi broadcast
a polynomial f̄i(x) 6= fi(x), then with high probability Pi will not be added to
REC. In order for a faulty Pi to be included in REC, it needs to be re-accepted
by t + 1 parties and thus by at least one honest party. The polynomial f̄i(x)
can agree with fi(x) in at most nk + 1 evaluation points. Without knowing the
secret evaluation points of an honest party, say Pj , the probability that Pi will
be re-accepted by Pj is at most nk

|F| . Thus, the probability that any faulty party

is in REC is (nk)(2t+1)(t)
|F| ≈ 2−Ω(k). Hence with very high probability, the parties

will reconstruct s = f(0), which is D’s secret. 2

Note that in the previous proof we did not claim, and in fact cannot claim,
that there are no faulty parties in SH. As we allow the adversary to be rushing,
it can cause faulty parties, i.e. parties that have broadcasted inconsistent poly-
nomials (during the second round of the sharing phase), to be included in this
set. This is done by waiting to hear the evaluation points of the honest parties (in
the second round of the sharing phase). However, this does not affect the result
of the reconstruction because the parties in SH broadcast their polynomials in
the first round while the secret evaluation points of the parties are revealed only
in the second round of the reconstruction.

Lemma 2. Protocol WSS satisfies the (1−ε)-weak commitment property.

Proof: To prove this lemma we need to show that in case that a faulty D was
not disqualified, i.e. |SH| ≥ 2t + 1, then with high probability, all the honest
parties Pi that are in SH are also present in REC. If we prove this then the
lemma follows immediately; we set D’s committed secrets s∗ to be the constant
term of the polynomial, which is defined by the interpolation of the shares of the
honest parties in SH (note that s∗ may be NULL). As we require that shares
of all the parties in REC define a polynomial of degree t, then either the value
s∗ or NULL will be reconstructed.

In order for an honest Pi to be in SH and not in REC it must be the case
that at least 2t + 1 parties should have accepted Pi in the sharing phase but at
most t of them re-accepted it in the reconstruction phase. This means that there
is at least one honest Pj who accepted Pi but did not re-accept it. This implies
that the data (evaluation points and values) that Pj exposed in the sharing phase
satisfies the polynomial gi(x) that Pi broadcasted during the sharing phase, but
on the other hand, out of the remaining evaluation points that are used by Pj in
the reconstruction phase, none satisfy the polynomial fi(x) produced by Pi. That



is, for the selected k
2 indices `1, ..., ` k

2
, it holds that ai,j,` + cibi,j,` = gi(αj,`) for

all ` in the set of indices {`1, ..., ` k
2
} and fi(αj,`) 6= ai,j,` for all ` in the remaining

set of indices. Notice that Pi chooses ci independently of the values given by D.
Also, Pj chooses the k

2 indices randomly out of k indices. So the probability that
the above event happens is 1

( k
k/2)

≈ 2−Ω(k), which is negligible. This shows that

with high probability all honest parties from SH will be included in REC, thus
proving our lemma. 2

Lemma 3. Protocol WSS satisfies perfect secrecy.

Proof: The secrecy has to be argued when D is honest. For simplicity, assume
that first t parties are corrupted. So in Round 1 of the Sharing Phase, the ad-
versary will know the polynomials f1(x), . . . , ft(x), r1(x), . . . , rt(x) and kt points
on fi(x) and ri(x) for t + 1 ≤ i ≤ n. In Round 2 of the Sharing Phase, the
adversary learns k

2 (2t+1) additional points on fi(x) and ri(x) for t+1 ≤ i ≤ n.
So in total the adversary will know kt+ k

2 (2t+1) points on each of fi(x) and ri(x)
for t+1 ≤ i ≤ n which is less than the degree of the polynomials (nk+1). Thus,
the constant term of the polynomials fi(x) for t + 1 ≤ i ≤ n are information
theoretically secure in the Sharing Phase, which further implies information
theoretic security for s. 2

Theorem 1. There exists an efficient 2-round share, 2-round reconstruct (3t +
1, t) statistical-WSS protocol.

Proof: Protocol WSS presented here achieves 1−ε-correctness, 1−ε-weak com-
mitment and perfect secrecy. This follows from Lemma 1, 2 and 3. 2

Important Note: There is another interesting way to interpret the compu-
tation done in the Protocol WSS. We may view this as D sharing a t degree
polynomial g(y) using protocol WSS. For this, D selects the bivariate polyno-
mial F (x, y) as in protocol WSS, such that F (0, y) = g(y). The polynomial g(y)
is the polynomial that D used to share the secret g(0) = F (0, 0) = s. The poly-
nomial g(y) is not random but only preserves the secrecy of the constant term.
Yet, this distribution of polynomials is sufficient to provide the secrecy require-
ments needed by our protocols.

Statistical WSS with One Round of Reconstruction: It is interesting to
note that if we restrict the adversary to a non-rushing adversary then the two
rounds of the reconstruction phase can be collapsed into a single round. The two
rounds are needed in order to force the adversary to commit to the polynomials
fi(x) of the faulty parties prior to seeing the evaluation points, as this knowl-
edge can enable the adversary to publish a polynomial that is re-accepted by the
honest parties, which would violate the correctness of the protocol. However, if
the adversary is non-rushing then this property is achieved via the synchronicity
of the step. We state this in the following theorem:

Theorem 2. If the adversary is non-rushing then there exists an efficient 2-
round share 1-round reconstruct (3t + 1, t) statistical-WSS protocol.



Statistical WSS with One Round of Broadcast: We now show how the
protocol in Fig. 1 can be modified, so that it uses only one round of broad-
cast. Specifically, we modify the Reconstruction Phase, so that it requires no
broadcast.

Reconstruction Phase, 2-rounds:

Round 1: Each Pi in SH privately sends fi(x), deg(fi(x)) = nk + 1 to every
other party.

Round 2: Each Pj ∈ P privately sends all the evaluation points αj,` which
were not broadcasted in the sharing phase and ai,j,` for those indices, to all
other parties.

Local Computation: For all parties it is the same as in the Protocol WSS.

This modified version of WSS preserves the (1−ε)-correctness and perfect secrecy
properties. It will also satisfy (1−ε)-weak commitment, but without agreement.
That is, some honest party(ies) may output the committed secret s∗ while some
other may output NULL.

4 Statistical-VSS, 2-Round Sharing, n = 3t + 1

We now design a 2-round share, 2-round reconstruct (3t + 1, t) statistical-VSS
protocol. We follow the general idea of [1, 11, 10, 14] of sharing the secret s with a
symmetric bivariate polynomial F (x, y) where each party Pi gets the univariate
polynomial fi(y) = F (i, y) and his share is fi(0). The next step is for every pair
of parties to verify that they have received the correct values from the dealer.
However, as we have only one more round available we cannot depend on D to
resolve conflicts in a third round. Thus, instead of doing the verification point
wise we carry out the verification on polynomials. More specifically, party Pi

initiates an execution of the WSS protoocol in the first round, to share a random
polynomial gi(y). In the second round, Pi broadcasts the masked polynomial
hi(y) = fi(y) + gi(y), while every other party broadcasts the corresponding
point on hi(y). In fact, this verification can be viewed as an extension of the
round reducing technique of pad sharing for a single value given in [11], to the
sharing of polynomial, which is used as a pad for the verification of a polynomial.
The VSS protocol appears in Figure 2.
Lemma 4. Protocol VSS satisfies (1−ε)-correctness property.

Proof: A simple examination of the Protocol VSS and the properties of Protocol
WSS reveal that all honest parties will be in VSS-SH and thus an honest D is
not disqualified during the sharing phase. To prove this lemma we need to show
that when D is honest, then very with high probability, for all faulty parties Pj in
VSS-SH the following holds: if at the end of WSSPj , the fixed (weak committed)
value is not NULL and the shared polynomial is gj(y), then hj(y)−gj(y) is in fact
polynomial fj(y), received by Pj from D. If we prove this, then the lemma follows



Protocol VSS

Sharing Phase

Round 1:
– D selects a random symmetric bivariate polynomial F (x, y) over F of de-

gree t in each variable such that F (0, 0) = s and sends the polynomial
fi(y) = F (i, y) to Pi.

– Party Pi initiates Round 1 of the WSS protocol to share a random t degree
polynomial gi(y). Denote this execution by WSSPi .

Round 2:
– Party Pi broadcasts the polynomial hi(y) = fi(y) + gi(y), deg(hi(y)) = t,

and values aji = fi(j) + gj(i) = fj(i) + gj(i), for 1 ≤ j ≤ n.
– Execute Round 2 of the sharing phase of each WSSPi . Let SHi denote the

set SH from this execution.
Local Computation: For all parties

1. Party Pi is accepted by party Pj if hi(j) = aij .
2. Let Accepti denote the set of parties that accepted Pi.
3. Create the set VSS-SH. Place Pi in VSS-SH if |Accepti| ≥ 2t + 1.
4. Remove Pi from VSS-SH if |VSS-SH∩Accepti∩SHi| ≤ 2t. Repeat, until

no more parties can be removed.
5. If |VSS-SH| ≤ 2t then disqualify D.

Reconstruction Phase, 2-rounds:

For all Pi in VSS-SH, execute the 2-round reconstruction phase of WSSPi . If
the output of the execution is not NULL then let gi(y) be the output from this
execution.

Local Computation (for each party)

1. Initialize REC = VSS-SH.
2. Remove Pi from REC if the output of WSSPi is NULL.
3. For each Pi ∈ REC, define its share as fi(0) = hi(0)− gi(0).
4. If the shares of the parties in REC define a unique polynomial f(x) of degree

t then output f(0), otherwise output NULL.

Fig. 2. (2-Round Share, 2-Round Reconstruct) Statistical VSS, n = 3t + 1



immediately because, a faulty Pj in VSS-SH whose reconstruction of WSSPj fails
is removed from REC. Furthermore, with high probability, a sufficient number
of shares belonging to the parties in REC will be reconstructed successfully (due
to the properties of WSS) and thus the correct secret of D will be reconstructed.

What this implies is that we cannot guarantee that all parties in VSS-SH
are honest. But we can ensure that if they eventually remain in REC then they
have shared the proper values. And this is sufficient to guarantee the correctness
of the protocol. We now proceed to prove this claim.

Since Pj is present in VSS-SH, we know that |Acceptj ∩SHj | ≥ 2t+1. This
means that there are t + 1 honest parties in this set. By the properties of WSS,
this set of honest parties define the polynomial gj(y) which Pj is committed
to, at the end of the sharing phase of WSSPj . We now examine the polynomial
hj(y)− gj(y) and show that it is equal to fj(y). The set of (t+1) honest parties
in (Acceptj ∩ SHj) verified that the sum of the share fi(j) = fj(i) (which
they received from D) and gj(i) (which they received from Pj), in fact lie on
the polynomial hj(y). Moreover, the set of t + 1 shares, corresponding to these
honest parties define the polynomial fj(y). Thus, hj(y)− gj(y) = fj(y). 2

Lemma 5. Protocol VSS satisfies (1−ε)-strong commitment property.

Proof: If D is corrupted and does not get disqualified during the sharing phase,
then VSS-SH is fixed at the end of sharing phase. Since VSS-SH ≥ 2t + 1, it
contains a set H of honest parties of size at least t+1. If fj(y)’s corresponding to
the parties H define a unique symmetric bivariate polynomial F ∗(x, y) of degree
t in x and y, then D’s committed secret is s∗ = F ∗(0, 0). Otherwise, s∗ = NULL.
We show that in the reconstruction phase s∗. will be reconstructed.

It is easy to see that due to the WSS reconstruction properties, with high
probability, all the honest parties in H ⊆ VSS-SH will also be present in REC.
We now divide our proof into two cases: (a) s∗ 6= NULL: the proof for this case
follows from the proof of Lemma 4 as this case is indistinguishable from the
case when D is honest. (b) s∗ = NULL: As H ⊆ REC, during Step 4 of the
reconstruction phase all parties will output NULL which is equal to s∗. 2

Lemma 6. Protocol VSS satisfies perfect secrecy.

Proof: This proof is similar to the entropy based argument, used to prove the
secrecy of 3 round perfect VSS protocol of [10]. 2

Theorem 3. There exists an efficient 2-round share, 2-round reconstruct (3t +
1, t) statistical-VSS protocol.

As the reconstruction phase of the VSS protocol is simply the reconstruction
phase of the WSS, we claim here as well, that the reconstruction phase can be
collapsed into one round against a non-rushing adversary.

Theorem 4. If the adversary is non-rushing then there exists an efficient 2-
round share 1-round reconstruct (3t + 1, t) statistical-VSS protocol.



We stress that in Protocol VSS, D can commit NULL at the end of the sharing
phase. This makes Protocol VSS unsuitable for Multiparty Computation. It is
an interesting problem to see whether there exists an efficient 2-round share,
(3t + 1, t) statistical VSS protocol, which satisfies the stronger definition of VSS
[13, 11], given in Section 2. In fact, if such a sharing exists then it would also
imply that there is a one round reconstruction, as error correction can be used
to interpolate the secret.

Statistical VSS with One Round of Broadcast: We now explain how Pro-
tocol VSS can be modified, so that the broadcast channel is used in only one
round throughout the protocol, namely in the second round of the sharing phase.
The reconstruction phase of the VSS protocol is simply the reconstruction phase
of the WSS protocol. Moreover, in the previous section, we have seen how Pro-
tocol WSS can be modified, so as to have only one round of broadcast. Thus, if
we can argue that the modified WSS is sufficient for the reconstruction of VSS,
then we have a VSS protocol that does not use broadcast in the reconstruction
phase. Examining the proof of the VSS protocol, we see that it is not mandatory
that the set of shares, which the honest parties use in reconstruction is identical,
but rather that it has a large enough intersection. As the shares of the honest
parties provide this guarantee, it is irrelevant which shares of the faulty parties
are included in the computation. Thus, by using the modified statistical WSS,
we get a statistical VSS, with only one round of broadcast.

5 Lower Bounds

5.1 Lower Bound for 2-round statistical-VSS, n ≤ 3t

We now prove the optimality of our 2-round share (3t + 1, t) statistical VSS
protocol, with respect to the resiliency.

Theorem 5. There is no 2-round share (n, t)-statistical-VSS protocol with n ≤
3t, irrespective of the number of rounds in the reconstruction phase.

In fact we prove the following stronger result from which the above theorem
follows immediately.

Theorem 6. There is no 2-round share (n, t)-statistical-WSS protocol with n ≤
3t, irrespective of the number of rounds in the reconstruction phase.

To prove the above theorem, we use standard player partitioning arguments and
prove the following:

Lemma 7. There is no 2-round share (3, 1)-statistical-WSS protocol, irrespec-
tive of the number of rounds in the reconstruction phase.

Before proceeding to prove the above lemma, we recall the following result:

Lemma 8 ([11]). Let ψ be any r-round protocol, where r ≥ 2. Then there exists
an r-round protocol ψ̄ with the same number of parties and same properties (as
ψ), such that all messages in rounds 2, . . . , r of ψ̄ are broadcast messages.



We now prove Lemma 7 by contradiction. Let Π be a 2-round share (3, 1) sta-
tistical WSS protocol, having r ≥ 1 rounds in the reconstruction phase. Let
the three parties in Π be P1, P2 and P3, where P1 is the dealer (D). We prove
the lemma by constructing a sequence of executions of Π which allows to show
that Π violates the (1−ε)-weak commitment property. From Lemma 8, we can
assume that in protocol Π, the private communication is done only in the first
round, while in the remaining rounds, parties use only broadcast. The broadcasts
done by P2 and P3 during first round of sharing phase will be independent of
the messages received from D and hence can be ignored. Similarly, due to the
secrecy property, the broadcast done by D during first round of sharing will be
independent of the secret and can be ignored. Moreover, during first round of
sharing phase, the private communication done between P2, P3 will be indepen-
dent of the secret. Also the private communication from P2 to P1 and from P3

to P1 will be independent of the secret.
We first consider the following two executions of Π, where D is honest:

1. In execution Es, D shares the secret s. In the first round of the sharing phase,
D defines the shares s1, s2, s3 and sends them to P1, P2 and P3 respectively.
In the second round of sharing, the parties broadcast B1, B2 and B3 re-
spectively. During the reconstruction phase, the parties broadcast messages
C1,1, C2,1 and C3,1 respectively in the first round. For i = 2, . . . , r, in round
i of the reconstruction phase, the parties broadcast the messages C1,i, C2,i

and C3,i respectively. As D is honest, due to correctness property of Π, the
honest parties need to output s at the end of the reconstruction phase.

2. In execution Es∗ , D shares the secret s∗ and defines the shares s̄1, s2 and
s̄3 respectively and gives them to P1, P2 and P3 respectively. Note that due
to the secrecy property of Π, such a sharing always exists. Given different
randomness, we can have the broadcast messages in round two of the shar-
ing phase be identical to B1, B2 and B3 respectively. 8 The broadcasts in
the reconstruction phase are as follows: note that P2’s view is identical to
its view in Es up to this step and thus the first round messages of P2 in
the reconstruction phase are the same as in Es (i.e., C2,1). The broadcast
messages in the first round of reconstruction are C̄1,1, C2,1 and C̄3,1 respec-
tively. For i = 2, . . . , r, in round i of the reconstruction phase, the parties
broadcast the messages C̄1,i, C̄2,i and C̄3,i respectively. As D is honest, due
to correctness property of Π, the honest parties need to output s∗ at the
end of the reconstruction phase.

Next we consider another execution of Π, namely E∗
s .

3. In E∗
s , D is honest and P3 is faulty. Here D’s communication during the

first round of sharing is the same as in Es and the second round broadcast
messages of the sharing phase are same as in Es. However, during the re-
construction phase, P3 gets corrupted. In the first round of reconstruction,

8 If this is not so, then it implies that B1, B2 and B3 could be generated only for the
shares s1, s2 and s3 and a specific randomness, which violates the secrecy condition
of protocol Π.



P3 broadcasts the message C̄3,1 (as if he is in execution Es∗), while P1 and
P2 broadcasts C1,1 and C2,1 respectively, as in Es. For i = 2, . . . , r, in round
i of the reconstruction phase, the parties broadcast the messages C ′1,i, C

′
2,i

and C ′3,i respectively. As D is honest, due to correctness property of Π, the
honest parties need to output s at the end of the reconstruction phase.

Finally, we consider another execution E of Π, where D (= P1) is corrupted.

4. In E, during first round of the sharing phase, D gives to parties P2 and P3

the shares s2 and s̄3 respectively. Due to different randomness, the broad-
cast messages in the second round of the sharing phase are B1, B2 and B3

respectively. During the reconstruction phase, in the first round, P2 broad-
casts C2,1 as its view at this point is identical to that in the execution Es,
and P3 broadcasts C̄3,1 as its view is identical to the one in Es∗ . Now P1 can
behave in one of the two ways:
4.1 P1 behaves as if he is in the reconstruction phase of execution Es∗ and

broadcasts C̄1,i in ith round of the reconstruction phase for i = 1, . . . , r.
Thus the view of P2 and P3 at the end of the first round of reconstruction
is identical to the view in Es∗ . Hence, for i = 2, . . . , r, P2’s and P3’s
broadcasts in the ith round of the reconstruction will be the same as in
Es∗ . Thus at the end of the reconstruction phase, the view of P2 and P3

will be same as in Es∗ and thus they will reconstruct s∗.
4.2 P1 behaves as if he is in the reconstruction phase of execution E∗

s and
broadcasts C1,1 during first round of the reconstruction phase and C ′1,i

during ith round of reconstruction phase for i = 2, . . . , r. Now the views
of P2 and P3 will be the same as in E∗

s at the end of the first round
of reconstruction. Using the same arguments as in 4.1 we have that the
subsequent rounds of the reconstruction phase will also be the same as
in E∗

s , and thus at the end of the reconstruction phase, the parties will
output s.

Thus we have shown that a corrupted D can always force during the recon-
struction phase the output of the protocol to be one of two secrets, thus violating
the weak commitment property. From the above proof, we conclude that there
does not exist a 2-round share (3t, t) statistical WSS and hence such a statistical
VSS protocol, with any number of rounds in the reconstruction phase. 2

5.2 Lower Bound for 1-Round statistical-VSS

We now derive a non-trivial lower bound on the fault tolerance of any 1-round
share statistical VSS (with any number of rounds in reconstruction).

Theorem 7. 1-round share statistical-VSS is possible iff ((t = 1) and (n ≥ 4)),
irrespective of the number of rounds in reconstruction.

Proof: The impossibility of 1-round share (3, 1) statistical VSS with any
number of rounds in reconstruction, follows from Theorem 5. Now we show that



for t ≥ 2 there does not exist any 1-round share (n, t) statistical VSS protocol
with n ≥ 4, irrespective of the number of rounds in the reconstruction phase.
We prove the above the statement assuming t = 2.

To prove the above claim, we use a hybrid argument. More specifically, we
assume that Π is a 1-round share (n, 2) statistical VSS with n ≥ 4, with any
number of rounds in the reconstruction phase. Without loss of generality, let the
n parties in Π be denoted by P1, . . . , Pn with D being any of these n parties,
other than P1. Before proceeding further, we make the following claim:

Claim. In any execution of Π, the messages broadcast by D and other parties
during sharing phase will be independent of the secret. Moreover, private com-
munication between any two honest parties (excluding the ones done from D
to the parties) during the sharing phase, will be independent of the messages
received from D during the sharing phase.

Proof: From the secrecy property of Π, any message broadcasted by D dur-
ing the sharing phase should be independent of the secret. Also, since Π has
only one round in the sharing phase, the messages exchanged between any two
honest parties (excluding the ones given by D to the parties) and the messages
broadcasted by the parties during the sharing phase, will be independent of the
messages that the parties have received from D during the sharing phase. 2

Based on the above claim, we can simply ignore the broadcast done by D and
the parties during the sharing phase. We can also ignore all private communica-
tion between any two parties (excluding the ones done from D to the parties)
during the sharing phase and concentrate only on the messages which are pri-
vately communicated by D to the the parties. Thus, without loss of generality,
any execution of protocol Π will have the following form:

(Sharing Phase): D, on having a secret Sec, generates messages Msg1, . . . , Msgn

and privately communicates Msgi to party Pi. Since Π is a 1-round share
VSS, the sharing phase will take only one round.

(Reconstruction Phase): This may take several rounds. At the end of the re-
construction phase, each party outputs some secret.

Now consider an execution of Π, where an honest D, on input secret s, generates
(α1, . . . , αn) during sharing phase and privately communicates αi to Pi. Now
from the correctness property of Π, this distribution of messages should output
s at the end of the reconstruction phase. We now prove the following claim:

Claim. Any execution of Π, where D (honest or corrupted) generates and dis-
tributes α1, . . . , αn−1, βn (for any βn) during the sharing phase, should output
the secret s at the end of the reconstruction phase.

Proof: If βn = αn, then the claim is true. Let βn 6= αn, we prove the claim by
contradiction. More specifically, let the distribution of messages α1, . . . , αn−1, βn

outputs secret s′ 6= s during the reconstruction phase. Now consider another
execution of Π, where D is corrupted and distributes α1, . . . , αn during the
sharing phase. During the reconstruction phase, the adversary corrupts Pn and



asks him to behave as if Pn has received either αn or βn. Accordingly, either s
or s′ will be reconstructed at the end of the reconstruction phase. This violates
the commitment property of Π, which is a contradiction. Hence distribution of
the messages α1, α2, . . . , αn−1, βn (for any βn) during the sharing phase, should
output the secret s at the end of the reconstruction phase. 2

Now using similar arguments as in the above claim, we can prove the following
lemma:

Lemma 9. Any execution of Π, where D (honest or corrupted) generates and
distributes α1, β2, . . . , βn (for any β2, . . . , βn) during the sharing phase, should
output the secret s at the end of the reconstruction phase.

Finally the above lemma clearly shows a violation of the secrecy property of Π
because it states that any execution, where D gives message α1 to P1 will always
output the secret s at the end of the reconstruction phase. So if D is honest and
adversary passively corrupts P1 in such an execution, he will come to know that
the shared secret is s, which is a violation of the secrecy property. Theorem 7
now follows from the above discussion. 2

Note that the above proof does not hold for WSS due to the fact that WSS
requires only weak commitment, this prevents the argument that all sequences
of messages sent to the parties need to be reconstructed to the same secret. In
fact we can design a 1-round share, 2-round reconstruct (3t + 1, t) statistical
WSS protocol (see Appendix A.)

5.3 Tightness of Theorem 7: Statistical VSS, 1-Round Sharing,
n = 4, t = 1

The bound given in Theorem 7 is tight. Specifically, we can design a 1-round
share, 2-round reconstruct (4, 1) statistical VSS protocol. In [11] it is shown that
there exists a 1-round share, 1-round reconstruct (5, 1) perfect VSS. This shows
that probabilistically relaxing the conditions of VSS helps to increase the fault
tolerance. Let the parties be denoted by P1, P2, P3, P4, where P1 is the dealer
and s is the secret. The principle used in the protocol is somewhat similar to the
one used in our 2-round WSS protocol, where we used secret evaluation points,
to check the validity of the polynomials.

Lemma 10. 1-Round VSS satisfies (1− ε)-correctness property.

Proof: If D is honest, then among the remaining three parties at most one
can be corrupted. Let P4 be the corrupted party among P2, P3 and P4. Then P2

and P3 will be confirmed. If P4 broadcasts f ′4(x) 6= f4(x) during reconstruction
phase, then with very high probability, it will not be confirmed. The reason is
that P4 has to broadcast f ′4(x), without knowing α2, α3, v42 and v43. So P4 can be
confirmed only if f ′4(α2) = f4(α2) or f ′4(α3) = f4(α3). For this to happen P4 has
to correctly guess either α2 or α3, which he can do with negligible probability.
The proof now follows from the working of the protocol. 2



Lemma 11. Protocol 1-Round VSS satisfies perfect secrecy.

Proof: We have to consider the case when D is honest. Without loss of gener-
ality, let P4 be corrupted. Then P4 knows f4(x). P4 will also know one distinct
point on each fi(x) for 1 ≤ i ≤ 3. Since degree of each fi(x) is one, adversary
lacks one point on each f1(x), . . . , f3(x) to completely know them and hence
f(0) = s will be information theoretically secure. 2

Protocol 1-Round VSS

Sharing Phase

1. D selects: A random polynomial f(x) over F of degree 1, such that f(0) = s.
2. For i, 2 ≤ i ≤ 4 the dealer chooses and sends to Pi the following:

(a) A random polynomial fi(x) over F, deg(fi) = 1 and fi(0) = f(i).
(b) Random non-zero element from F, denoted by αi.
(c) vji = fj(αi) for 2 ≤ j ≤ 4.

Reconstruction Phase, 2-rounds: D(P1) is not allowed to participate

Round 1: Each Pi broadcasts f ′i(x), for 2 ≤ i ≤ 4.
Round 2: For 2 ≤ i ≤ 4, Pi broadcasts the evaluation point α′i and the values

v′ji, for 2 ≤ j ≤ 4.
Local Computation (by each party except P1):

1. Party Pi ∈ P \ {P1} is confirmed if there exists a Pj ∈ P \ {P1, Pi} for
which f ′i(α

′
j) = v′ij .

2. If the f ′i(0)s corresponding to the set of confirmed parties define a poly-
nomial f(x) of degree one then output f(0) otherwise output NULL.

Fig. 3. (1-Round Share, 2-Round Reconstruct) Statistical VSS, n = 4,t = 1

Lemma 12. 1-Round VSS satisfies the commitment property without any error
probability.

Proof: We have to consider the case when D (P1) is corrupted. Thus P2, P3 and
P4 are honest and behave correctly in the reconstruction (recall that D is not
allowed to participate in the reconstruction). As the values of the honest parties
are fixed, the question of which party will be confirmed is set as well. Thus, D
is committed to NULL if (a) there is zero or one confirmed party or (b) there
are three confirmed parties but their fi(0)’s do not define a polynomial f(x) of
degree one. Otherwise, there are (a) two confirmed parties that define a unique
polynomial f(x) of degree 1 or (b) three confirmed parties that define a unique
polynomial f(x) of degree 1, and thus D is committed to f(0). 2

6 Open Problems

This paper leaves an interesting open problem: What is the lower bound on the
total number of rounds in VSS, i.e. sharing plus reconstruction? This problem is



also closely connected to the question of whether we can design a 2-round sta-
tistical VSS protocol which satisfies the strong VSS definition. Such a protocol
would immediately result in a total of 3-round VSS protocol.
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A 1-Round Statistical WSS

We now design a 1-round share, 2-round reconstruct (3t + 1, t)-statistical WSS
protocol. This shows that bound given in Theorem 7 does not hold for 1-round
statistical WSS. The protocol is given in Figure. 4.

Protocol 1-Round WSS

Sharing Phase

Local computations: D picks:
1. a random polynomial G(x) over F of degree t, such that G(0) = s.
2. n random polynomials g1(x), g2(x), . . . , gn(x) over F, each of degree t, such

that for 1 ≤ i ≤ n, gi(0) = G(i).
3. n random non-zero distinct elements from F, denoted by α1, α2, . . . , αn.

D’s communication: D sends to party Pi:
– the polynomial gi(x),
– the random value αi and the n tuple [v1i v2i . . . vni] where for 1 ≤ j ≤ n,

vji = gj(αi).

Reconstruction Phase, 2-rounds:

Round 1: Each Pi ∈ P broadcasts the polynomial g′i(x).
Round 2: Each Pi ∈ P broadcasts the value α′i and the n tuple [v′1i v′2i . . . v′ni].

1. Party Pi accepts party Pj if v′ji = g′j(α
′
i).

2. Party Pi is called affirmed if it is accepted by at least 2t + 1 parties (possibly
including itself) where as Pi is called semi-affirmed if it is accepted by at least t+1
and by at most 2t parties (possibly including itself).

Local Computation: (For all parties):

1. If the number of affirmed parties is less than 2t + 1 or the number of semi-
affirmed parties is more than zero, then output NULL.

2. Else let CORE be the set of all affirmed parties. Consider g′i(0)’s of all the
parties in CORE and check whether they interpolate a unique t degree poly-
nomial, say G′(x). If yes, then output s′ = G′(0), Else output NULL.

Fig. 4. (1-Round Share, 2-Round Reconstruct) Statistical WSS, n = 3t + 1

Lemma 13. In protocol 1-WSS, if D is honest, then a corrupted Pi producing
g′i(x) 6= gi(x) in Reconstruction Phase will be accepted by an honest Pj with
probability at most 2−Ω(κ).

Proof: The proof follows from the fact that Pi produces g′i(x) 6= gi(x) in Round
1 of Reconstruction Phase without knowing αj , vij , corresponding to each



honest Pj . So Pi will be accepted by an honest Pj only if Pi can correctly guess
αj such that g′i(αj) = gi(αj) = vij , which can happen with probability at most
2−Ω(κ) in our context. 2

Lemma 14. Protocol 1-WSS satisfies (1− ε)-correctness property.

Proof: We have to consider the case when D is honest. Notice that if D is
honest, then all the honest parties (at least 2t+1) will accept each other and each
honest Pi will be affirmed. If some corrupted Pi produces incorrect g′i(x) 6= gi(x),
then from Lemma 13, it can be accepted by an honest Pj with probability at most
2−Ω(κ). So except with error probability of at most 2−Ω(κ), Pi will be accepted
by at most t corrupted parties and hence Pi will be neither semi-affirmed nor
affirmed. So with very high probability, CORE will contain all the parties who
have broadcasted g′i(x) = gi(x). Hence g′i(0)’s corresponding to the parties in
CORE will define a unique t degree polynomial G′(x) which is same a G(x).
Thus s′ = s = G(0) will be recovered as the secret. 2

Lemma 15. If D is corrupted and |CORE| ≥ (2t + 1), then at the end of the
Sharing Phase of 1-WSS, there was a unique secret s∗ ∈ F∪ {NULL} defined
by the honest parties in CORE.

Proof: If D is corrupted and |CORE| ≥ (2t + 1) then it contains at least
t + 1 honest (affirmed) parties. Now consider the g′i(0) values corresponding to
the honest parties in CORE. There are two possible cases: (a) The g′i(0) values
lie on a t degree polynomial: In this case, the unique secret s∗ is the constant
coefficient of G′(x), passing through the g′i(0)’s corresponding to the honest
parties in CORE. (b) The g′i(0) values do not lie on a t degree polynomial: In
this case, the defined secret s∗ is NULL. 2

Lemma 16. Protocol 1-WSS satisfies (1− ε)-weak commitment property.

Proof: We have to consider the case when D is corrupted. We first prove that
if D is corrupted, he can not define two COREs, say CORE1 and CORE2 (each
of size at least 2t + 1), defining two different secrets, say s1 and s2, such that in
the reconstruction phase, depending upon the behavior of the corrupted parties,
he can force reconstruction of either s1 or s2. In other words, we prove that if
some CORE is obtained in Reconstruction Phase, then D must have uniquely
defined (fixed) it during Sharing Phase. The proof goes as follows: Assume that
D had defined two COREs, CORE1 and CORE2, each of size at least 2t + 1.
Thus, each of these two COREs contains at least t + 1 honest parties. Since
n = 3t + 1, CORE1 and CORE2 must have t + 1 parties in common. Let Hcom

denote the set of common honest parties in CORE1 and CORE2. Notice that
|Hcom| < t+1 should hold to ensure that CORE1 and CORE2 define two distinct
secrets. Now assume that during reconstruction phase, the corrupted D, along
with the remaining t − 1 corrupted parties, wants to force the reconstruction
of the secret defined by CORE1. We show that this is impossible and NULL
will be reconstructed. The reason is that in this case, every honest party Pi in
CORE2 \ Hcom will be semi-affirmed, as Pi will be accepted by all the honest



parties (at least t + 1) in CORE2. Similarly, if the corrupted D, along with the
remaining t−1 corrupted parties, wants to force the reconstruction of the secret
defined by CORE2, then again it will lead to the reconstruction of NULL. This
proves our claim that if some CORE is obtained in Reconstruction Phase,
then D must have uniquely defined (fixed) it during Sharing Phase.

Once the uniqueness of CORE is proved, we next proceed to show that either
the secret s∗ ∈ F∪{NULL} defined by honest parties in CORE (see Lemma 15)
or NULL will be reconstructed. If s∗ = NULL, then irrespective of the g′i(0)
corresponding to corrupted Pi ∈ CORE, NULL will be reconstructed. But if
s∗ ∈ F, then depending upon the g′i(0) corresponding to corrupted Pi ∈ CORE,
either s∗ or NULL will be reconstructed. 2

Lemma 17. Protocol 1-WSS satisfies secrecy property.

Proof: We have to consider the case when D is honest. Without loss of gen-
erality, let At controls the first t parties during sharing phase. Then At knows
g1(x), . . . , gt(x) and hence g1(0), . . . , gt(0), which is insufficient to know G(x)
and hence G(0). Adversary will also know t distinct points on each gi(x). The
points on g1(x), . . . , gt(x) are already known to At and can be removed from
his view. Since degree of each gi(x) is t, adversary lacks one point on each
gt+1(x), . . . , gn(x) to completely know them and hence information theoretic
security on G(0) = s holds. 2

Theorem 8. There exists an efficient 1-round share, 2-round reconstruct (3t +
1, t) statistical-WSS protocol.

It is interesting to note that if we restrict the adversary to a non-rushing ad-
versary then the two rounds of the reconstruction phase can be collapsed into a
single round. The two rounds are needed in order to force the adversary to com-
mit to the polynomials gi(x) of the faulty parties prior to seeing the evaluation
points, as this knowledge can enable the adversary to publish an incorrect poly-
nomial that is accepted by the honest parties, which would violate the correctness
of the protocol. However, if the adversary is non-rushing then this property is
achieved via the synchronicity of the step. We state this in the following theorem:

Theorem 9. If the adversary is non-rushing then there exists an efficient 1-
round share 1-round reconstruct (3t + 1, t) statistical-WSS protocol.


