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Abstract

Recently, non-black-box techniques have enjoyed great success in cryptography. In particular, they
have led to the construction of constant round protocols for two basic cryptographic tasks (in the plain
model): non-malleable zero-knowledge (nmzk) arguments for np, and non-malleable commitments. Ear-
lier protocols, whose security proofs relied only on black-box techniques, required non-constant (e.g.,
O(log n)) number of rounds. Given the inefficiency (and complexity) of existing non-black-box techniques,
it is natural to ask whether they are necessary for achieving constant-round non-malleable cryptographic
protocols.

In this paper, we answer this question in the negative. Assuming the validity of a recently intro-
duced assumption, namely the Gap Discrete Logarithm (gap-dl) assumption [MMY06], we construct a
constant round simulation-extractable argument system for np, which implies nmzk. The gap-dl assump-
tion also leads to a very simple and natural construction of non-interactive non-malleable commitments.
In addition, plugging our simulation-extractable argument in the construction of Katz, Ostrovsky, and
Smith [KOS03] yields the first O(1)-round secure multiparty computation with a dishonest majority using
only black-box techniques.

Although the gap-dl assumption is relatively new and non-standard, in addition to answering some
long standing open questions, it brings a new approach to non-malleability which is simpler and very
natural. We also demonstrate that gap-dl holds unconditionally against generic adversaries.

1 Introduction

Most security proofs in cryptographic literature can be seen as having one of the following two flavors: black-
box and non-black-box. Black-box proofs of security are those which use/access the adversary A (if at all)
only as an oracle. Non-black-box proofs of security, however, use the adversary in more ways than just as
an oracle. For example, such security proofs may use the actual code of the adversary. Such security proofs
are also referred as non-black-box methods/techniques. Non-black-box techniques can sometimes achieve
goals that cannot be achieved using black-box techniques [Bar01, BGGL01, BL04, MP06]. An important
research direction in theoretical cryptography is to understand where a non-black-box proof of security is
necessary. The importance of this question stems from the fact that black-box techniques are typically the
“natural” way of thinking about security proofs. In addition, they also seem to give rise to more efficient
protocols.

Non-black-box techniques have recently enjoyed great success, especially in the area of zero knowledge
[GMR85, GMW87]. Barak [Bar01] demonstrated how to use the code of a cheating verifier V ∗ to construct a
public coin, negligible soundness error, constant round zero knowledge argument system for all languages in
np. Further, Barak’s protocol admits strict polynomial time simulation, and remains zero-knowledge even
when composed concurrently for a bounded polynomial number of executions [FS90, DNS98]. It is known
that a protocol with such properties cannot be proven secure using black-box techniques [Gol01, CKPR03,
Bar01, BL04]. The use of non-black-box techniques is thus essential here.
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Non-malleable Protocols. Non-black-box techniques, later, proved to be immensely useful in reducing
the round complexity of the so called non-malleable cryptographic protocols [DDN00]. Consider a man-in-
the-middle, A, who interacts with the prover P of a zero-knowledge protocol π and receives the proof of a
theorem, x. A simultaneously participates in another interaction of π with some other entity who acts as a
verifier V , to prove the validity of some, possibly related, theorem x̃. Informally, the notion of non-malleable
zero-knowledge (nmzk) says that for convincing V , A does not benefit from interacting with P . That is,
the probability of A successfully convincing V of the validity of x̃ when A interacts with P , is essentially
the same when it interacts with a simulator S who does not have a witness for x (see section 2 for formal
definitions). Such proof systems were constructed by [DDN00] using only black-box techniques, albeit in a
non-constant (O(log n)) number of rounds.1

Not much progress was made on reducing the round complexity of nmzk until Barak [Bar02], who
constructed a constant round nmzk protocol for all of np using non-black techniques and assuming super-
polynomial hardness assumptions. Pass [Pas04], and Pass and Rosen [PR05] improved upon this by achieving
the same result under (standard) polynomial hardness assumptions. All of these works, however, still rely
on non-black-box techniques.

Unlike (bounded) concurrent zero-knowledge, where non-black-box techniques are necessary to reduce the
round complexity below Ω

(
log n

log log n

)
[CKPR03] (see also [MY08]), no such impossibility result exists for

nmzk. It is thus natural to ask, whether non-black-box techniques are necessary for constructing constant
round nmzk protocols for np? That is,

Do constant round nmzk protocols (for np), with a black-box proof of security exist?

The notion of non-malleability prevails in other cryptographic primitives too, such as commitment
schemes. Briefly and very informally, a commitment scheme is said to be non-malleable if a man-in-
the-middle A receiving a commitment to a value v, cannot commit to a related value ṽ. That is, ṽ is
computationally independent from v. An O(log n)-round commitment scheme with a black-box proof of
security [DDN00], and an O(1)-round scheme with a non-black-box proof of security [PR05]2 are known to
exist for this task. The following intriguing question has, however, remained (completely) unanswered,

Do non-interactive and non-malleable (ninm) commitments exist in the plain model?

These two questions (of constructing constant-round black-box nmzk arguments, and ninm commit-
ments) are among a few long standing open problems in cryptography. In this paper, we answer both of
these questions in the affirmative.

• We construct a constant round simulation-extractable argument system for np, which admits a black-
box proof of security. Simulation-extractability [Sah99, DDO+01] (see also [PR05]), is a stronger (and
more useful) property which implies nmzk. (For a formal statement of this result, see theorem 7 in
section 4).

• We construct (bit and string) commitment schemes that are non-interactive and non-malleable with
respect to commitment (ninm). These constructions are simple and natural. (For formal statements,
see theorem 12 and theorem 13 in section 5).

Katz, Ostrovsky, and Smith [KOS03] constructed an O(1)-round protocol for securely computing any
functionality even when n− 1 out of n participants in the protocol are malicious (assuming standard point-
to-point perfect (authenticated, secret, unjammable) and synchronous channels with broadcast). They use

1In this paper, we always work in the plain model which makes no set-up assumptions.
2In [PR05] a simulation based definition of non-malleability is used; the simulation in their case is black-box, but the analysis

relies on non-black-box techniques.
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a slightly modified version of Barak’s protocol [Bar02], which results in a non-black-box proof of security.
By plugging-in our simulation-extractable protocol in their construction, we are able to achieve the same
result, using only black-box techniques.

Our results are based on a relatively non-standard assumption, namely the Gap Discrete Logarithm (gap-
dl) assumption. This assumption was first introduced by Malkin, Moriarty, and Yakovenko [MMY06].3

However, assumptions of similar sort have previously existed. They were first conceived by Okamoto and
Pointcheval [OP01a, OP01b]; and have regularly been used thereafter, for obtaining security proofs of
various cryptographic (e.g., signatures, encryption, authentication, etc.) schemes [JJ02, BSZ07, KP05,
SWP04, ABR01]. In fact, sometimes they are essential, see [SBZ02]. A similiar assumption about collision
resistant hash functions was recently used by Prabhakarn and Sahai [PS04] to obtain uc-secure [Can01]
multiparty computation under “super polynomial” time simulation [Pas03].

Informally, the assumption states that given a sufficiently large safe prime p, taking discrete logarithms
is hard in (prime order) subgroup of Z∗p for every efficient adversary A∗ even when it is given access to
an oracle, Op, which computes discrete logarithms in prime order subgroup Z∗q such that q is a safe prime
different from p, i.e., q 6= p. Although this assumption is relatively new and less well studied, assuming its
validity we are able to resolve two long standing open questions in cryptography.

We gain more confidence in the gap-dl assumption by measuring its strength against generic algorithms.
We prove that the gap-dl assumption holds unconditionally in the “generic” group model of Shoup [Sho97].
A generic algorithm is one that does not make use of the specific encoding of group elements. Group elements
appear to the algorithm to be encoded as arbitrary unique strings, so that no property other than equality
can be tested directly (see section 7 and theorem 15). This result, however, has no bearing with respect to
non-generic algorithms, such as the index-calculus method.

Finally we would like to remark that the level of complexity in current constructions of secure non-malleable
protocols is a (growing) concern. The security proofs in this area typically turn out to be quite complex
and subtle. The gap-dl assumption offers a new approach to non-malleability, which is simpler and more
natural.

Techniques. In our work, we look at the construction of the constant-round simulation-extractable argu-
ment as a building block, rather than an end goal. Further, we focus on simulation-extractability and not just
on non-malleability. This leads to a construction that is independent from the construction of ninm com-
mitments. The construction uses a new type of 2-slot simulation and 2-slot extraction. In addition, it seems
to us that due to the presence of an oracle, the proof of simulation-extractability of our protocol is slightly
different from the usual proofs. These techniques might be of independent interest.

Remark. We remark that our work considers standard (i.e., expected polynomial time) simulation and
extraction, in the plain model. The oracle for solving discrete logarithms is never available during sim-
ulation/extraction. A confusion should be avoided with“quasi-polynomial” time simulation/extraction,
where the simulator/extractor is allowed to run in time that is slightly more than a polynomial (quasi-
polynomial) [Pas03]. In earlier works (e.g., [PS04]) the oracle enters simulation/extraction, which leads to
super-polynomial running time. A main novelty of this work is in acheiving standard simulation/extraction.

Related Work. In addition to the works discussed above, several works have previously considered con-
structing nmzk arguments and ninm commitments in settings where a trusted setup is available. Perhaps
most popular among these is the crs-model [BSMP91] where a common-reference-string (crs) is generated
by a trusted third party according to a prespecified distribution during the system setup. The crs is then

3Our actual assumption is, in fact, weaker than the assumption of [MMY06], see section 3. Also, [MMY06], call this assump-
tion as relativizing dla (rdla). We prefer to call it gap-dl to remain consistent with previously existing literature [OP01a].

3



made available to all the participants. In this model, nmzk proofs can be achieved in one-round (i.e., non-
interactively) [Sah99] (see also [DDO+01]). In the context of commitment schemes, ninm commitments in
the crs-model were first constructed by [DIO98] (see also [FF00, DKOS01]).

2 Definitions

We present definitions relevant to our work. We assume that the reader is familiar with the following:
perfectly hiding and perfectly binding notions of commitment schemes, interactive proofs/arguments, and
statistical/perfeft witness indistinguishability (see [Gol01]). In the following, κ denotes the security para-
meter, and L is an np-language with witness relation RL. A statement x is in L iff there exists a w of length
poly(|x|) such that RL(x,w) = 1.

Non-malleable Zero-Knowledge. The man-in-the-middle setting proceeds as follows. First, the input of
the honest prover P , i.e., statement x ∈ L∩{0, 1}n is chosen. P is then given a witness w (s.t.RL(x,w) = 1),
with a uniformly chosen random tape. The man-in-the-middle, A may now start interacting with P while
playing the role of a verifier of the protocol π (in consideration). This is called the “left” interaction. At
any point, A, may adaptively output a new statement x̃ ∈ L ∩ {0, 1}n. At this point, an honest verifier
V , is created with input x̃ and uniformly chosen randomness. A can now interact with V simultaneously,
attempting to prove the validity of x̃ by playing the role of the prover. Interaction of A with V is called the
“right” interactions. The adversary A is a non-uniform ppt machine with some auxiliary information.

Following [PR05], we work with a somewhat stronger notion called simulation-extractability, which im-
plies non-malleable zero-knowledge argument (proof) of knowledge property. The formulations that we
present here are taken from [BPS06].

Definition 1 A protocol π
def
= 〈P, V 〉 is said to be simulation-extractable for membership in an np language

L with witness relation RL, if it is an interactive argument system between a prover and verifier (both ppt)
such that the following conditions hold.

Completeness For every x,w such that RL(x,w) = 1, P (x,w) makes V accept with probability 1.

Simulation-Extractability For every (non-uniform) pptadversary A (with auxiliary information aux)
launching a man-in-the-middle attack as above (i.e., A interacts with a P on “left” and a V on right
as defined above), there exists an expected polynomial time simulator-extractor SE = (S, K) outputting
(ν, w̃) on input (x, aux) such that,

• ν is the simulated (joint) view of A and V , such that ν is computationally indistinguishable from
the view of A in a real execution.

• Let trans, trans′ denote the transcripts of left and right executions respectively. If the right in-
teraction is accepting, with statement x̃, and trans 6= trans′, RL(x̃, w̃) = 1 except with negligible
probability.

The probability is taken over the random coins of SE. Further, the protocol is black-box simulation-
extractable, if SE is a universal machine that uses A only as an oracle, i.e., SE = SEM .

The condition trans 6= trans′ in the definition says that if the right session is not an exact copy of the left
session, then SE should output a valid witness for the statement of the right session, whenever this session
is accepting.
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Non-malleable Commitments. In case of commitments, the man-in-the-middle scenario is exactly the
same except that the prover P is replaced by a committer C, and the verifier V is replaced by a receiver R.
There are no theorems x, x̃. Instead, A receives a commitment to either v ∈ {0, 1}l (of its choice) or 0l from
C, and commits to a value ṽ to R such that ṽ, v are related (according to some polynomial time computable
relation). As we are dealing with non-interactive commitments, A receives a single message from C.

Definition 2 A perfectly binding non-interactive commitment scheme 〈C,R〉 is said to be non-malleable
with respect to commitment if for every (non-uniform) ppt adversary A with auxiliary information aux,
the outputs of the following two experiments are computationally indistinguishable.

Experiment 1. A first outputs a string v ∈ {0, 1}l. A commitment c to the value v is generated honestly
according to the algorithm C. A receives c, and outputs a string c̃. If c̃ = c or if algorithm R rejects c̃, the
output of the experiment is ⊥. Otherwise, (i.e., R accepts c̃), c̃ defines a unique commitment string ṽ; the
output of the experiment is ṽ.

Experiment 2. A first outputs a string v ∈ {0, 1}l. A commitment c to the value 0l is generated honestly
according to the algorithm C. A receives c, and outputs a string c̃. If c̃ = c or if algorithm R rejects c̃, the
output of the experiment is ⊥. Otherwise, (i.e., R accepts c̃), c̃ defines a unique commitment string ṽ; the
output of the experiment is ṽ.

This definition is slightly more convenient to work with, and implies simulation style definitions [PR05].

Hard-core Bits. We assume that the reader is familiar with the notion of hard-core bits. The hard-core
bit of a one-way function f , corresponding to an input x from its domain will be denoted by hcbf (x).

Blum’s Hamiltonicity Protocol. Blum’s Hamiltonicity (bh) protocol, is a 3-round honest verifier zero-
knowledge protocol for proving that a graph G = (V,E) contains a hamiltonian cycle C. Further, the
protocol is special-sound, which means that given two accepting transcripts (a, b, c) and (a′, b′, c′) such that
a = a′, b 6= b′, the cycle C can be computed in polynomial time. We will use the parallel version of the
protocol, which is a witness indistinguishable argument of knowledge with negligible soundness error. If the
protocol uses a perfectly hiding commitment scheme, the protocol is witness independent.

Strong Signatures. A signature scheme (K, sign,verify) is said to be strongly unforgeable if no efficient
adversary, with access to a signing oracle with respect to verification key vk, can output a pair (m,σ) with
non-negligible probability, such that: verify(m,σ,vk) = 1 and the pair (m,σ) does not correspond to the
input-output pair of a performed oracle query. A strong signature scheme is a signature scheme that is
strongly unforgeable.

Invertible Reductions. Let H = {G : G is hamiltonian} be the np-complete language of graph hamil-
tonicity, i.e., it contains graphs G such that G has a hamiltonian cycle. Let RH ⊆ {0, 1}∗ × {0, 1}∗ be the
following relation for H: (G, C) ∈ RH if and only if C is a hamiltonian cycle in the graph G. We write
RH(G, C) = 1 iff (G, C) ∈ RH , and C ∈ RH(G) iff RH(G, C) = 1. Relation RH is an np-complete relation
which comes with two polynomial time computable and non-shrinking functions f : {0, 1}∗ → {0, 1}∗ and
g : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ such that for every np-relation R′ it holds that: x /∈ LR′ ⇒ f(x) /∈ H and
(x,w) ∈ R′ ⇒ (f(x), g(x,w)) ∈ RH . Here LR′ = {x : ∃ws.t.(x,w) ∈ R′}. Further, f, g are polynomial time
invertible functions with inverses f−1, g−1 respectively, and we say that RH is np-complete via invertible
reductions.
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Notation. Throughout the paper, neg : N→ R denotes a negligible function in κ (the security parameter).
If a message u appears in the “left” session, then its counterpart in the “right” session will be denoted by ũ.
We will frequently use a perfectly hiding commitment scheme denoted by (comph,dcomph). Such schemes
can be constructed from a variety of assumptions, such as the Decisional-Diffie-Hellman assumption, in only
two rounds (see, for example [Ped91]).

3 The Gap Discrete Logarithm Assumption

For convenience, we work with safe-primes. Let p, q be two primes such that p = 2q + 1. The order q
subgroup of the safe prime p will be denoted by Gq. Let |p| = κ, where κ is a (sufficiently large) security
parameter, and let g be random generator of Gq.

The Discrete Logarithm Assumption (DLA). Let y = ga mod p, for a uniformly chosen 1 ≤ a ≤ q−1.
We say that dla holds in Gq if for all non-uniform expected polynomial time adversaries A (with random
coins ω) and sufficiently large κ, it holds that

Pr
p,g,a,ω

[A(p, g, y;ω) = a] ≤ neg(κ)

For this paper, triplet (p, g, y) is called a dl-instance, iff p = 2q + 1 such that q is a prime, g generates Gq,
and y ∈ Gq. The gap-dl assumption is the same as dla except that adversary A is also given access to
a oracle, Op,`(κ). Oracle Op,`(κ) solves dl-instances (p′, g′, y′) for the adversary A, as long as p′ 6= p. We
actually work with a slightly weaker version by enforcing a stronger requirement than p′ 6= p, namely that
p′ should be at least `(κ) “far” from p. By “far” we mean that the sizes of p and p′ differ at least by `(κ).
The formal description of the oracle follows.

Oracle Op,`(κ). For security parameter κ ∈ N, function ` : N→ N, and a safe prime p = 2q + 1 such that
`(κ) ≤ |p| ≤ (2κ+1) · `(κ), define the oracle Op,`(κ) which acts as follows. On input a query Qi = (p′i, gi, yi),
if the following two conditions hold,

1. The query Qi is a dl-instance. That is, p′i = 2q′i + 1 is a safe prime, gi generates Gq′
i
, and yi ∈ Gq′

i
.

2. `(κ) ≤ |p′i| ≤ |p| − `(κ) or |p|+ `(κ) ≤ |p′i| ≤ (2κ + 1) · `(κ).

then, output ai such that gi
ai = yi mod p′i. Output ⊥ otherwise.

The Gap Discrete Logarithm Assumption (Gap-DL). We say that gap-dl holds Gq with respect
to function `(·), if for all non-uniform expected polynomial time adversaries A (with random coins ω) and
sufficiently large κ, it holds that

Pr
p,g,a,ω

[
AOp,`(κ)(p, g, y;ω) = a

]
≤ neg(κ)

Notation. Let Ldl be the language containing dl-instances. Note that Ldl is actually easy to decide.
We will be interested in the discrete-log relation Rdl for this language, which is defined as follows. For a
dl-instance dli = (pi, gi, yi) and integer a, Rdl(dli, a) = 1 iff yi = ga

i mod pi and 1 ≤ a ≤ pi−3
2 . Also,

define the language Ldl which contains κ-dimensional vectors of dl-instances, dl = (dl1, . . . ,dlκ). Define
the corresponding relation Rdl for this language analogously: Rdl(dl, a) = 1 iff for all 1 ≤ i ≤ κ it holds
that Rdl(dli, ai) = 1 and dl, a are κ-dimensional.
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4 A Simulation-Extractable Argument

In our protocol, the prover P uses a verification-key vk of a strong signature scheme in a crucial manner,
to achieve simulation-extractability. In more detail, it generates various prime numbers based on the string
vk, according to the algorithm, primes described next (assume w.l.o.g. |vk| = κ).

Algorithm primes(vk): For i = 1, . . . , |vk|, do the following: define ti = i ◦ vki (thus, |ti| = 1 + dlog κe);
randomly select a safe prime pi = 2qi + 1 such that |pi| = (ti + 1) · `(κ). Output the list ~p = (p1, . . . , pκ).

Claim 3 Let (p1, . . . , pκ)← primes(vk), and (p̃1, . . . , p̃κ)← primes(ṽk). If vk 6= ṽk, there exists i ∈ [κ]
such that for all j ∈ [κ], it holds that

∣∣|p̃i| − |pj |
∣∣ ≥ `(κ).

Proof. We have that t̃i = i ◦ ṽki and tj = j ◦ vkj for all i, j ∈ [κ]. By this construction, it follows that
∃i : ∀j t̃i 6= tj . We call this index i, the target index, and the associate prime p̃i the target prime. Further,
for all j it holds that |t̃i − tj | ≥ 1. Hence, we conclude that

∣∣|p̃i| − |pj |
∣∣ ≥ `(κ).

Overview of Our Protocol. From strong-unforgeability of the signature scheme, it can be derived that
if the man-in-the-middle A copies vk, it copies the entire left execution to its right execution (and hence
essentially aborts). From claim 3, it is immediate that if A does not copy vk, i.e., the key ṽk on right
is different from vk, then there exists a target prime. Consider what happens if we require the verifier of
the protocol to set up dl-instances in all primes decided according to primes(vk) so that V “knows” a
solution to all these dl-instances. Because vk cannot be copied exactly, there would exist a target prime, for
which A will be forced to “know” a solution, irrespective of the “help” it may get by mauling V ’s messages.
That A, V “know” solutions to all dl-instances they generate, can be achieved by using an argument of
knowledge. Later on, in the protocol, the prover P will execute an fls-style argument of knowledge that
“either it knows a witness to x or it knows a solution to all the dl-instances” [FLS99].

Above sketch runs into a slight problem if we try to prove its simulation-extractability. When we try
to extract a witness for theorem x̃, we would like to argue that if extraction outputs a false witness (i.e.,
outputs a solution to dl-instances), then we can contradict gap-dl assumption. For this, it would be crucial
that we do not query the oracle on the challenge (or target) prime, while proving the security. But because
extraction is black-box, it will have to rewind A. As a result, the left key vk may change in various threads,
resulting in a change in the target prime, which may force illegal queries to the oracle, resulting in a failure
in extraction.

To overcome this problem, we rewind A in a specific manner. First, we create two slots by requiring
the prover to execute the fls-style protocol twice. Depending on the scheduling of the messages, we now
rewind A in one of these slots, such that the left key vk will not change during various rewindings. For the
same reason, a similar approach is required when V proves the knowledge of solutions to all dl-instances:
we use a Zero-Knowledge argument of knowledge which has a 2-slot simulator, just like above. For some
more technical reasons, we also need statistical security from these protocols.

The Actual Construction. A formal description of our constant round simulation-extractable argument
system πse : 〈P, V 〉 for np appears in figure 1. Both parties P and V are ppt Turing Machines. The common
input is a statement x ∈ Ln, for language L ∈ np with witness relation RL, and Ln = L∩ {0, 1}n. P proves
to V the knowledge of w such that RL(x,w) = 1. The length parameter function of the protocol is denoted
by ` : N→ N. As discussed above, the protocol uses two 2 -slot protocols: πsza and πswa.

Protocol πsza. This is a statistical zero-knowledge argument of knowledge (sza) for np, see figure 2. The
common input to P and V is a statement x ∈ L, for some language L associated with an np-relation RL.
P proves to V the knowledge of w such that RL(x,w) = 1. The protocol uses np-reductions to graph-
hamiltonicity by using invertible functions (f, g). The special property of πsza is that its simulator has a
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choice of slots in simulation. The 2 -slot simulator (Ssza) and (normal) extractor (Ksza) of this protocol is
deferred until needed.

Protocol πswa. This fls-style protocol is a statistical witness-indistinguishable argument of knowledge
(swa) for np, with 2 -slots for extraction (see figure 3). The common input to P and V is a graph G = (V,E).
P proves to V the knowledge of a Hamiltonian cycle C in G. The corresponding relation is denoted by RH

and RH(G, C) = 1 if and only if C is a hamiltonian cycle in G. The protocol is just a sequential repetition
of the classical bh-protocol (with negligible soundness error) twice.

In all steps above, whenever a message is not according to the protocol specifications, an honest party
aborts the protocol.

P → V : P Let (vk, sk)← K(1κ), Send vk to V . Assume, w.l.o.g, that |vk| = κ.

V → P : Let (p1, . . . , pκ) ← primes(vk) so that pi = 2qi + 1. For i = 1, . . . , |vk|, randomly select dl-
instances dli = (pi, gi, yi), in subgroup Gqi

of Z∗
pi

. Let ai ∈ Zqi
be s.t. yi = gi

ai mod pi,
dl = (dl1, . . . ,dlκ), y = (y1, . . . , yκ), and a = (a1, . . . , aκ). V sends dl to P .

V ⇔ P : V and P execute the protocol πsza on common input dl, in which V proves to P the knowledge of
a such that Rdl(dl, a) = 1.

P ⇔ V : P proves to V the knowledge of w for statement z such that R(z, w) = 1. Here, z = (x,dl) and
for w = (w1, w2) we define the witness relation R as following,

R(z, w) = (RL(x, w1)) ∨ (Rdl(dl, w2))

This is done by P and V executing the protocol πswa on common input f(z). P (the prover of
πswa) uses the witness g(z, w) as its private input. (V sends the first message of a perfectly hiding
commitment scheme before πswa begins, which is used by P .)

P → V : Let trans be the transcript of communication so far. P sends σ ← sign(trans, sk,vk) to V .

Figure 1: Our O(1)-round Simulation-Extractable Argument System πse : 〈P, V 〉

4.1 Proving Simulation-Extractability

We demonstrate that the protocol πse is a simulation-extractable argument. This is done by providing a
simulator-extractor. Our simulator-extractor, SE, is a black-box machine running in (expected) polynomial
time. Further, SE works in the plain model (in particular, without access to any oracle). For convenience,
in the rest of the paper, let κ and n (input length) be polynomially related.

Let A′ be a man-in-the-middle adversary who interacts with an honest prover, P , on the left while
simultaneously interacting with an honest verifier, V , on right. Using a standard argument, it can be shown
that if A′ copies the verification key (also called the tag or the identity) from left to right, then with high
probability (unless it aborts on right), it will also copy the entire left hand side conversation to the right
hand side. Thus, we consider a modified man-in-the-middle adversary, A, which acts identically to A′ except
that whenever A′ sets ṽk = vk, our new adversary A aborts the right hand side execution. It is easy to see
that our claims regarding the machine SE with respect to the adversary A, also hold with respect to the
adversary A′.

Machine SE = (S, K), consists of two machines – the simulator S and the extractor K. Simulator S will
be used to simulate the joint view of A and V . If x̃ is the theorem in the right hand side interaction, then
extractor K will be used to extract a witness for x̃ whenever V ’s view is accepting. We assume, without
loss of generality, that A is deterministic. We now define some random variables.
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V → P : For b ∈ {0, 1}, j ∈ {1, 2}, and i = 1, . . . , κ V selects 4κ strings, each of length κ, uniformly at
random: σb

j,i ← {0, 1}κ. Using a non-interactive perfectly binding commitment scheme V computes
cb
j,i = compb(σb

j,i;ω
b
j,i), where ωb

j,i is the randomness (for the commitment). Define σj,i = σ0
j,i+σ1

j,i,
and cj,i = (c0

j,i, c
1
j,i). V sends to P the vectors c1 = (c1,1, . . . , c1,κ) and c2 = (c2,1, . . . , c2,κ).

(Slot 1)

P → V : Send r1 ← {0, 1}κ to V .

V → P : For all i = 1, . . . , κ, if r1[i] = b then V decommit to cb
1,i by sending (σb

1,i, ω
b
1,i).

(Slot 2)

P → V : Send r2 ← {0, 1}κ to V .

V → P : For all i = 1, . . . , κ, if r2[i] = b then V decommit to cb
2,i, by sending (σb

2,i, ω
b
2,i).

(Body)

V → P : Send the first message of a 2-round perfectly hiding commitment scheme. This defines the instances
of functions (comph,dcomph), to be used in the next round.

P ⇔ V : P proves to V the knowledge of witness w for statement z such that R′(z, w) = 1. Here, z =
(x, c1, c2), and for w = (w1, σ, ω, j, i) – such that j ∈ {1, 2}, i ∈ [κ] – the relation R′(z, w) = 1 if
and only if one of following two holds,

(a) RL(x,w1) = 1

(b) cj,i = compb(σ;ω), where cj,i ∈ c1 ∪ c2.

This is done by P and V executing the 3-round statistical witness indistinguishable (swi) argument
of knowledge obtained by κ parallel repetitions of the Blum-Hamiltonicity (bh) protocol. P uses
(comph,dcomph), the common input is f(z), and P ’s private input is g(z, w).

Figure 2: Protocol πsza : 〈P, V 〉.

Let ν be a random variable denoting the joint view of A and V in a real execution of πse. Similarly, ν(i)

will be the random variable denoting the output of hybrid simulator Hi, i = 0, 1, 2. Our final simulator, S,
will be the last hybrid simulator, H2, in the series.

Simulator H0. This simulator is provided with prover’s auxiliary input w (a witness for the common input
x). The simulator starts interacting with A(x, z), where z is A’s auxiliary input. On left, H0 acts as the
honest prover P using input w (and uniform random tape). On right, H0 acts as the honest verifier V (with
uniform random tape). When A halts, H0 outputs the (joint) view of A and V , denoted ν(0), and halts.
The simulation is perfect, and we have that,

ν ≡ ν(0)

Simulator H1. This simulator is identical to H0 except that it also extracts the witness a (using Ksza)4.
If extraction fails, the simulator aborts. Formally, H1 proceeds exactly as H0 up until the point where πsza

finishes on left. Let st denote the state of H1 at this point. Further, let µ denote the view of the verifier (of
πsza) in state st. Let P ∗

sza be the machine which is identical to H0 (up to the point where πsza finishes on
left) except that during the execution of πsza it interacts with an external verifier Vsza instead of emulating
it internally. P ∗

sza halts as soon as πsza finishes on left. If µ is accepting, the simulator H1 proceeds just
like Ksza, with input view µ and oracle access to the machine P ∗

sza, to extract a value a. If Ksza aborts, H1

4Ksza is a standard type of extractor, discussed at the end of this section.
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(Slot 1)

P ⇔ V : P proves to V the knowledge of C such that RH(G, C) = 1, using
the 3-round (negligible soundness error) bh-protocol.

(Slot 2)

P ⇔ V : P proves to V the knowledge of C such that RH(G, C) = 1, using
the 3-round (negligible soundness error) bh-protocol.

Figure 3: Protocol πswa : 〈P, V 〉.

aborts the simulation. Otherwise, H1 stores the extracted value a, and continues the simulation from state
st exactly as H0.

From the description of Ksza it follows that except with negligible probability (in κ), the value recorded
by H1 is a such that Rdl(dl, a) = 1. Extraction takes expected polynomial time. Further, if extraction
does not fail, outputs of H1 and H0 would be identically distributed. As extraction fails only with negligible
probability, we have that,

ν(0) ≡s ν(1)

Simulator H2. This simulator is identical to H1 except that it uses witness a (instead of w) in order to
execute the protocol πswa. That is, in the last but one step, for statement z = (x,dl), H2 uses w′ = (⊥, a)
to obtain a hamiltonian cycle g(z, w′) in graph f(z), which is then used to execute πswa. Other than this,
H2 and H1 are identical. We claim that,

ν(1) ≡s ν(2) (1)

This claim follows from statistical witness-indistinguishability (swi) of πswa. If not, we contradict swi of
πswa as follows. The cheating verifier, V ∗, acts identically to the machine H2 except that instead of inter-
nally emulating the actions of the prover Pswa with witness a, it interacts with an external prover (who uses
either w or a). At the end of protocol execution V ∗ outputs its view and halts. If the external prover uses
w (resp., a), the output of V ∗ is distributed identically to ν(1) (resp., ν(2)). Thus, if ν(1) and ν(2) are not
statistically indistinguishable, it will contradict swi of πswa.

Our final simulator S is H2. Our extractor, K, is described next. As discussed in the overview, even though
a very simple extraction procedure is possible, we choose to describe a slightly different extraction procedure
(the 2 -slot extraction procedure). This would be helpful to us later. We start by presenting some notation.

During simulation, S interacts with A(x, z), simulating interactions on left and right with A controlling
the scheduling of the messages. In a view, νS , output by the simulator S, based on the appearance of
the left hand side tag, vk, we define two events. For this purpose, let the messages of πswa be denoted
by (α1, β1, γ1, α2, β2, γ2) where (αi, βi, γi) are the three messages of the bh-protocol in slot-i, with βi being
V ’s challenges and i ∈ {1, 2}. By our notation, the messages of πswa in the corresponding right hand side
session are denoted by (α̃1, β̃1, γ̃1, α̃2, β̃2, γ̃2). A view νS is said to be of “type-2” if in this view adversary A
schedules the delivery of (left) tag vk before the delivery of β̃2. Similarly, it is said to be of “type-1” if in
this view vk appears after β̃2. Call a view νS “accepting” if V ’s view (i.e., the right hand side interaction)
in νS is accepting.

Intuitively, views of type-2 are those in which slot-2 of πswa is “free” for K to rewind A and perform
extraction. This is because vk appears before β̃2, and hence rewinding A in this slot does not change
vk across various threads of execution. Similarly, in type-1, slot-1 is “sort of free”. This is because
if vk appears in this execution after β̃2, then within “reasonable” amount of trials, K will see another
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accepting such accepting conversation. Thus, it can perform rewinding in slot-1, treating vk as a spoiling
(or ⊥) message. A formal description of K appears in figure 4.

Extractor K. On input a view, νS , if the right execution in νS is aborting, K outputs ⊥.
Otherwise, let the messages of right πswa in νS be (α̃1, β̃1, γ̃1, α̃2, β̃2, γ̃2).

1. If vk appears before β̃2 then,
Define the machine P ∗

2 as follows. P ∗
2 is the simulator S (or H2) initialized with the view νS

up to the point where S is about to send β̃2 to the internal adversary A. Note that message
α̃2 has already been sent and vk has also been delivered. On input a random challenge β̃

′

2

(on behalf of Vswa), P ∗
2 acts as follows. It first forwards β̃

′

2 to the internal adversary A. P ∗
2

then continues to interact with A internally exactly as S would (with fresh randomness for
the rest of the execution). If A outputs a valid response γ̃

′

2 (for slot-2 of πswa) P ∗
2 outputs

γ̃
′

2 and halts. Otherwise, if A aborts, P ∗
2 also aborts the execution and halts. Using P ∗

2 , K
now performs extraction as follows:

(a) Uniformly sample a random β̃
′

2. If β̃
′

2 = β̃2, output ⊥ and halt. Otherwise, feed β̃
′

2

to P ∗
2 . If a valid γ̃

′

2 is received, compute a witness w using (α̃2, β̃2, γ̃2, β̃
′

2, γ̃
′

2) (and
function g−1) and halt. Otherwise, repeat this step with a new random challenge.

2. If vk appears after β̃2 then,
Define the machine P ∗

1 as follows. P ∗
1 is the simulator S (or H2) initialized with the view

νS up to the point where S is about to send β̃1 to the internal adversary A. Note that
message α̃1 has already been sent but vk has not yet appeared in the conversation. On
input a random challenge β̃

′

1 (on behalf of Vswa), P ∗
1 acts as follows. It first forwards β̃

′

1 to
the internal adversary A. P ∗

1 then continues to interact with A internally exactly as S would
(with fresh randomness for the rest of the execution). At some point, P ∗

1 either delivers the
tag vk or outputs a valid response γ̃

′

1 (for slot-1 of πswa). If vk is scheduled, P ∗
1 outputs

⊥ and halts. Otherwise (i.e., A outputs γ̃
′

1), P ∗
1 outputs γ̃

′

1 and halts. Using P ∗
1 , K now

performs extraction as in (1a):

(a) Uniformly sample a random β̃
′

1. If β̃
′

1 = β̃1, output ⊥ and halt. Otherwise, feed β̃
′

1

to P ∗
1 . If a valid γ̃

′

1 is received, compute a witness w using (α̃1, β̃1, γ̃1, β̃
′

1, γ̃
′

1) (and
function g−1) and halt. Otherwise, repeat this step with a new random challenge.

Figure 4: Extractor K

We have the following lemma.

Lemma 4 K runs in expected polynomial time.

Proof. If νS is aborting, K halts, taking poly(κ) steps. Otherwise, it executes either step (1) or (2). We
show that each of these steps runs in expected polynomial time. First, consider step (1). Let p1 denote the
probability that P ∗

2 outputs a valid answer, where the probability is taken over the randomness needed for
both: creating β̃2 and internally interacting with A. Then, because νS is accepting, step (1a) gets executed
with probability at most p1. Further, expected number of steps taken by K in (1a) are poly(κ)/p1. As K
invests at most poly(κ) steps in constructing P ∗

2 , the expected number of steps taken by K in step (1) are
at most poly(κ) + p1 · poly(κ)

p1
= poly(κ).

To compute the steps invested by K in step (2), let p2 denote the probability that P ∗
1 outputs a valid

response, where the probability is taken over the randomness needed for both: creating β̃1 and internally
interacting with A. Expected number of steps taken by K in (2) are poly(κ)/p2. The key observation is that
step (2) gets executed with probability at most p2. Indeed, the probability of executing step (2) is equal
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to the probability that in an (accepting view) νS , tag vk appears after β̃2. This is less than or equal to
the probability that vk appears after the valid (slot-1) response γ̃′1. But this probability is p2, because P ∗

1

outputs ⊥ whenever vk is delivered before γ̃′1. Hence, expected number of steps invested by K in step (2)
are at most poly(κ) + p2 · poly(κ)

p2
= poly(κ). This concludes the proof.

Note that K uses the simulator S while performing extraction. Ability to simulate while extracting
simultaneously, is what allows the extraction to succeed. We will use the phrase “KS outputs w̃” to insist
that K uses the simulator S to extract the witness. This notation will be convenient in future.

Lemma 5 If νS is accepting in the right hand side interaction, let x̃ be the theorem proven by A(x, z) to
V . Then, except with negligible probability in κ, K outputs w̃ such that RL(x̃, w̃) = 1.

Proof. K outputs either ⊥ or a w extracted due to the special-soundness property of the bh-protocol. The
output is ⊥ only when the challenge β̃2 (or β̃1) appearing in view νS is repeated. As |β̃i| = κ (for i ∈ {1, 2}),
challenges are sampled uniformly at random, and K runs in expected polynomial time, we conclude that
this happens with only negligible probability. Hence, K outputs w̃ such that R(z̃, w̃) = 1 where z̃ = (x̃, d̃l).
For notational ease, let d̃l denote d̃l. By definition of R, it follows that w̃ is such that either RL(x̃, w̃) = 1
or Rdl(d̃l, w̃) = 1. Lemma 6 shows that the second case is highly unlikely. Hence the lemma.

Notation. Let BAD denote the event that “KS outputs w̃, such that Rdl(d̃l, w̃) = 1”. Later on, we will
introduce various hybrid simulators Si, i ∈ [3], by slightly modifying S. When K works with simulator Si

to perform extraction, we define event BADi (analogous to BAD) to be the following: “KSi outputs w̃, such
that Rdl(d̃l, w̃) = 1”.

Lemma 6 If gap-dl holds, then Pr[BAD] ≤ neg(κ)

Before proceeding to the proof of this lemma, observe that equation (1) along with lemmata 4 and 5, implies
the theorem of this section:

Theorem 7 Assume that gap-dl holds, and that perfectly hiding commitments exist. Protocol πse : 〈P, V 〉
is then a simulation-extractable argument for all languages in np.

The rest of this section is now devoted to proving lemma 6.

Proof of Lemma 6. Assume that the lemma does not hold. Then, K outputs w̃ – which is a solution to
the instance d̃l – with non-negligible probability, say ε. The probability is taken over the random tape of
the simulator-extractor SE = (S, K). We show how to construct a machine for breaking the gap-dl. We
have that dl = (dl1, . . . ,dlκ), d̃l = (d̃l1, . . . , d̃lκ),dli = (gi, yi, pi), d̃li = (g̃i, ỹi, p̃i). Note that Because A
does not copy the tag, from claim 3 we have that there exists a target prime p̃i which is “far” from all pj .
(Note that the condition |p| 6= |q| for two primes p, q implies that p 6= q, because the two primes lie in two
disjoint intervals of the number line). Let us call the dl-instance d̃li associated with the target prime p̃i,
the target instance. There may be multiple indices i for which claim 3 holds. In such a case, one of them is
chosen arbitrarily to be named as the target index. For notational ease, let p̃

def= p̃i.
To construct a machine for breaking gap-dl we now proceed gradually by introducing some hybrid

machines. First, for convenience, we slightly modify the query structure of Op,`(κ) to accept an additional
string st of length poly(κ). Additionally, instead of serving one query at a time, the oracle can receive
multiple queries at the same time (in the form of a vector), and returns a vector of answers. That is, a
query to Op,`(κ) is of the form (dl, st), where dl = (dl1, . . . ,dlm). The oracle ignores the string st, and
computes an answer ai to each dli as described in section 3. Finally, it returns a = (a1 . . . , am).
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Simulator S
Op̃,`(κ)

1 . For notational ease, let S1
def= S

Op̃,`(κ)

1 . Simulator S1 is identical to S except that
instead of executing the knowledge-extractor Ksza when πsza (on left) finishes, it constructs the witness
a as follows. Let dl = (dl1, . . . ,dlκ) be the common input of πsza. S1 sends a query (dl, st) to oracle
Op̃,`(κ) and receives an answer (a1 . . . , aκ). Witness a is set to be the vector (a1 . . . , aκ). If a is such that
Rdl(dl, a) = 1, S1 continues with the simulation. Otherwise, it aborts. We claim the following,

Claim 8 Pr[BAD1] ≥ ε

Proof. First, observe that because of claim 3, it follows that the query sent by S1 to Op̃,`(κ) respect the
conditions set-forth by gap-dl (in the modified description). That is, each component of dl is a dl-instance
with a prime of proper size. Next, we would like to show that machines S1 and S are identical5. To do this,
we look at the following alternative descriptions of S.

Alternative description of S. Simulator S runs the knowledge-extractor Ksza (guaranteed for πsza) as
a subroutine. Instead of looking at Ksza as a subroutine, we consider Ksza as an oracle which S is given
access to. Formally, S acts as H1 upto the point where πsza finishes on left. Now, S sends query (dl, st)
to oracle Ksza. Here dl is the common input of (left execution of) πsza and st is the state of the simulator
(which includes the state of the internal adversary A) upto the point where (left) πsza finishes. Ksza returns
a (which could also be ⊥). S then proceeds exactly as H2 (using a) from this point onwards.

From the alternative description of S, we deduce that the only difference between S1 and S is that they
have access to different oracles. However, it does not affect the binary representation of the two machines.
Hence, we conclude that S1 is identical to S. This, however, is not enough because computation of w̃ using
K uses the respective oracles of S and S1. Hence, we need to show that whenever KS outputs w̃ (and not ⊥),
computation by KS1 proceeds identically to the computation by KS . Thus whenever, KS outputs w̃, so will
KS1 . Let (q1, q2, . . . , qi, . . .) be the queries made by KS to Ksza, and (a1, a2, . . . , ai, . . .) be the respective
answers received. As KS outputs w̃, it holds that ∀i, ai 6= ⊥. Analogously, let (Q1, Q2, . . . , Qi, . . .) and
(A1, A2, . . . , Ai, . . .) be the queries (to Op̃,`(κ)) and answers (received) during the computation by KS1 . To
prove our claim, we need to show that ∀i: Qi = qi and Ai = ai|ai 6= ⊥. We demonstrate this by induction.
First of all, as S and S1 are identical, we have that Q1 = q1. Note that if answer a1 (returned by Ksza to
the query q1) is not ⊥, it is a solution to the dl-instance in q1. On the other hand, answer A1 (returned by
Op̃,`(κ) to the query Q1) is also a solution to the dl-instance in Q1, if Q1 is a valid query. As shown below,
because of the 2-slot extraction mechanism, all queries made by KS1 to Op̃,`(κ) are valid. Because, Q1 = q1

and each dl-instance has a unique solution, it holds that A1 = a1|a1 6= ⊥. By applying the same argument
it can be concluded that Qi = qi and Ai = ai|ai 6= ⊥ for all i. We finish the proof by showing that each Qi

is a valid query.

Every Qi is a valid query. Let vk, ṽk be the left and right tags respectively, in the view νS output by
S1. If the view is of “type-2”, then both vk, ṽk have already appeared in the partial view used to construct
P ∗

2 (see the description of K). However, the common input dl for the left execution of πsza may not yet
have been decided. But because vk, ṽk are fixed and the same for all execution paths explored by K, every
common input dl to (left) πsza in these execution paths satisfies the conditions setforth by the gap-dl.
That is, for every dli ∈ dl in every execution path explored by K, it holds that dli = (pi, gi, yi) is a
dl-instance and

∣∣|pi| − |p̃|
∣∣ ≥ `(κ) where p̃ is the target prime. Hence, all queries made by KS1 in this case

are valid. In the second case, when νS is of “type-1”, note that P ∗
1 aborts whenever vk appears in the path

5Every Turing machine M can be written down as a binary string, denoted bin(M). Turing machines M1, M2 are said to be
identical if and only if bin(M1) = bin(M2).
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being explored. Hence, in this case, KS1 never makes any queries to Op̃,`(κ). This concludes the argument.

As computations by KS and KS1 proceed identically whenever KS does not abort, we conclude that KS1

outputs w̃ such that Rdl(d̃l, w̃) = 1 with probability at least ε.

Note that KS1 runs in strict polynomial time. In order to keep things simple, we present what seems to
be the simplest (yet formal) description of our next two hybrid simulators. This helps us in keeping things
simple without going into (tedious) formal details. Nevertheless, these formal and rigorous descriptions
of S2 and S3 are necessary for the claims proven about these simulators, and hence they are provided in
appendix A. If one prefers a rigorous formalization, the descriptions given in appendix A should be used.

The final step is to modify S1 so that instead of internally emulating the proof using πsza, it uses the
2 -slot simulator, Ssza, provided later (in figure 5). Instead of directly performing this step, we do it in two
stages. In the first step, we only extract the trapdoor witness (of the fls-style trick) but do not use it (see
simulator S2). In the next and final step, we use this trapdoor witness instead of the actual witness a for
dl.

Simulator S2. This simulator is identical to S1 (with access to Op̃,`(κ)) except for the following difference.
When “slot-2” of πsza on right finishes, S2 executes the (2-slot) extractor procedure, EXTRACT (with vk
acting as the “special” message sp), to extract a witness w2 = (σ, ω, i, j) for the intermediate statement
dl, c̃1, c̃2).6 This is done by constructing a machine V ∗

1 , which is identical to S1 except that it does not
emulate the part of V which executes πsza (on right). Instead, V ∗

1 expects it to be an external party. V ∗
1 halts

as soon as “slot-2” of (right) πsza finishes. Procedure EXTRACT now extracts w2 from V ∗
1 . (The procedure

EXTRACT is a part of the 2-slot simulator for πsza.) If EXTRACT fails (i.e., w2 = ⊥), S2 aborts. Otherwise, S2

continues exactly as S1 (with the actual witness ã for d̃l).

Claim 9 Pr[BAD2] ≥ ε/2

Proof. First, note that when EXTRACT computes w2, it rewinds the internal adversary A in the right exe-
cution. As a result, the left execution is also rewound. If the left execution is rewound past the point where
A outputs the (left) statement dl (for πsza), S2 may later make a new query to Op̃,`(κ) when the execution
reaches the end of left πsza. We need to argue that these new queries are valid, so that the execution will
continue exactly as in S1, and hence EXTRACT will be able to compute w2. As EXTRACT is a 2-slot procedure
(similar to K), using the same arguments as in the proof of claim 8, it can be (easily) deduced that all new
queries are indeed valid. (Details are repetitive and omitted). Next, note that if EXTRACT does not output
⊥, the computation in the “main thread” for both KS1 and KS2 are identical. Hence, KS2 also outputs
w̃ such that Rdl(d̃l, w̃) = 1 (provided, EXTRACT does not abort). As EXTRACT aborts with only negligible
probability, we have that Pr[BAD2] ≥ ε(1 − neg(κ)) ≥ ε/2. Because EXTRACT runs in expected polynomial
time, the running time of KS2 is also expected polynomial.

Note that in the proof above, we have used the term “main thread”. This is not needed if one is using
the rigorous formalization provided in appendix A (because we directly deal with the actual machine and
its binary representation, as done in claim 8).

Simulator S3. This simulator is identical to S2 (with access to Op̃,`(κ)) except for the following difference.
Recall that the swi argument-of-knowledge part of the right πsza (on common input d̃l) is executed on an
intermediate statement (d̃l, c̃1, c̃2). S3 uses witness w2 (obtained using the EXTRACT procedure), instead of
ã, to execute this swi argument-of-knowledge.

6For notational ease, we are using c̃i instead of eci. The scheduling of “special” symbol affects the extraction, see description
of EXTRACT.
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Claim 10 Pr[BAD3] ≥ ε/4

Proof. We prove this claim by constructing an exponential time adversary Aswi for the swi property of
the bh-protocol as follows. Aswi proceeds as follows:

1. It internally proceeds exactly as S2, except that it does not emulate the part of V which acts as the
prover of bh-protocol for the statement (d̃l, c̃1, c̃2). Instead, it expects this proof to be coming from
an outside prover, say Pbh, who is either using ã or w2, and Aswi is acting as the bh-verifier for Pbh.
During the internal simulation, at some point interaction with Pbh also finishes. Aswi then continues
internally to obtain a view, say νS .

2. Simulator S2 needs access to oracle Op̃,`(κ). Aswi internally simulates this oracle by computing answers
to the valid queries of S2 in exponential time. (This is the only reason why Aswi is exponential time)

3. Aswi now runs extractor K on input view νS . Note that K works by constructing P ∗
1 and P ∗

2 , and
exploring various execution paths for right πswa (left executions are internally simulated by P ∗

1 or P ∗
2 ).

External Pbh is thus not required to execute this step. K outputs a value w̃. If Rdl(d̃l, w̃) = 1, Aswi

outputs 1 and 0 otherwise.

If Pbh uses ã, K’s output is distributed like KS2 , and when Pbh uses w̃ it is distributed like KS3 . Hence,
Aswi compromises swi property with advantage

∣∣p2− p3

∣∣ where pi = Pr[BADi], for i ∈ {2, 3}. It thus follows
p3 ≥ p2 − neg(κ) ≥ ε/2− neg(κ) ≥ ε/4.

Finally, we present our adversary Agap-dl for the gap-dl assumption. Adversary Agap-dl acts as follows,

1. It samples an index t ∈ [κ] uniformly at random, as its guess of the target index and a bit b as its
guess of bit ṽkt. Let `′(κ) = (t̃t + 1) · `(κ), where t̃t = t ◦ ṽkt = t ◦ b. Agap-dl sends `′(κ) to the
challenger, who responds with a challenge dl-instance ch = (p̃, g̃, ỹ), such that |p̃| = `′(κ).

2. Agap-dl now proceeds exactly as simulator S3 except for the following two differences:

(a) As soon as, both vk and ṽk are fixed, the target index i and the bit ṽki are also fixed. If i = t
and ṽki = b, then Agap-dl continues the execution as S3 and aborts otherwise.

(b) While computing the common input d̃l for the right πsza, Agap-dl sets the target dl-instance to
be the challenge instance. That is, d̃li = ch.

3. When simulation finishes, a view – say νS – is obtained. Agap-dl now applies the extractor K with
input νS to the internal simulator S3 to obtain w̃. Note that Agap-dl is given access to the oracle
Op̃,`(κ) which it uses to run the (internal) simulator S3. Agap-dl outputs whatever K outputs.

We claim that Agap-dl solves ch with probability at least ε/4
2κ = ε

8κ . To see this, observe that with
probability at least 1

2κ , Agap-dl correctly guesses both – the target index i and the bit ṽki. Given that these
guesses are correct, the internal simulation is identical to S3 and hence extraction proceeds as in KS3 . Thus,
from claim 10, we obtain a solution to d̃l (which includes a solution to ch) with probability at least ε/4.
Combining these facts, we conclude that Agap-dl solves ch with probability at least ε

8κ . If ε is non-negligible,
it contradicts the gap-dl. This concludes the proof of lemma 6.

The 2 -slot Simulator for πsza. The protocol πsza is used inside the larger protocol πse (which executes
in the presence of one of its executions). To argue security of πse, we need to replace the prover of πsza with
the simulator, Ssza. Thus Ssza is designed by keeping in mind that some of the messages of the (external)
protocol πse may need special care when Ssza rewinds its adversary, V ∗. This is captured by allowing V ∗

to schedule a “special” message, denoted sp. If sp occurs in/before slot-1, Ssza will not rewind V ∗ past sp.
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Further, if sp appears after slot-1 finishes, every “rewind thread” will be immediately stopped if V ∗ outputs
sp in this thread.

Let (r1, a1, r2, a2) denote the four messages of the two slots of πsza. That is ri is prover’s challenge to
which V ∗ responds with ai in slot-i, i ∈ {1, 2}. Let V ∗

ri
denote the (state of) verifier V ∗ where it expects to

receive ri from the prover. Using this notation, the description of Ssza appears in figure 5.

Simulator Ssza. Honestly execute the protocol πsza with V ∗ up to the point where a2 is received
(slot-2 finishes). If V ∗ aborts before reaching this point, output the view and halt. Otherwise, let ν1

denote the (partial) view so far. Run the procedure EXTRACT on input view ν1. If EXTRACT aborts,
abort the simulation. Otherwise let w2 = (σ, ω, i, j) be the witness output by EXTRACT for the
intermediate language (x, c1, c2). Continue the execution of πsza from view ν1 and use the witness
w2 to complete the 3-round bh-protocol.

Procedure EXTRACT. On input a view ν1, the procedure proceeds as follows.

1. If sp appears before r2, rewind V ∗ to the state V ∗
r2

and do the following.
Uniformly sample a random r′2. If r′2 = r2, output ⊥ and halt. Otherwise, feed r′2 to V ∗

r2
.

If V ∗ outputs ⊥, stop this thread of execution, and repeat the step with a new random
challenge. Otherwise, let a′2 be the valid response received. Compute a witness w2 using
(r2, a2, r

′
2, a

′
2), output w2, and halt.

2. If sp appears after r2, rewind V ∗ to the state V ∗
r1

. Let V ∗∗
r1

denote the machine which is
identical to V ∗

r1
except that whenever V ∗

r1
outputs sp, V ∗∗

r1
outputs ⊥. Now proceed as follows.

Uniformly sample a random r′1. If r′1 = r1, output ⊥ and halt. Otherwise, feed r′1 to V ∗∗
r1

.
If V ∗∗

r1
outputs ⊥, stop this thread of execution, and repeat this step with a new random

challenge. Otherwise, let a′1 be the valid response received. Compute a witness w2 using
(r1, a1, r

′
1, a

′
1), output w2, and halt.

Figure 5: Simulator Ssza

Using a standard argument, it can be shown that if EXTRACT outputs a witness w2 for the intermediate
language (x, c1, c2) and bh-protocol is swi, the output of Ssza will be computationally indistinguishable from
the view of a cheating V ∗ in a real execution of πsza. We thus only show that EXTRACT outputs such a w2

with high probability within expected polynomial time. The proof falls along the lines of proof of Lemma 4.
We thus only provide a proof-sketch.

Lemma 11 Procedure EXTRACT outputs a valid witness w2 in expected polynomial time.

Proof. It is straightforward to see that if EXTRACT successfully obtains valid answers to a different challenge
(r′1 or r′2) it obtains a valid opening of one of the 2κ commitments. This constitutes a valid witness. Using
the proof of lemma 4, it can be easily derived that EXTRACT runs in expected polynomial time (details are
repetitive, and omitted). Hence the Lemma.

Extractor Ksza. This extractor works as follows. Let ν be the input/simulated view. If ν is accepting,
it extracts a witness w for statement x w.h.p, given oracle access to P ∗

sza, as follows. Let P ∗
bh denote the

residual prover computed from P ∗
sza and view ν. P ∗

bh is the prover of the bh-protocol for the intermediate
statement (x, c1, c2). Ksza applies the extractor of the bh-protocol to P ∗

bh to compute a witness w for
(x, c1, c2). Using standard arguments, it can be shown that this process takes expected polynomial time;
and if the commitment scheme is semantically secure, w is such that RL(x,w) = 1 with high probability.
Such proofs are standard in the zero-knowledge literature, and hence we choose to omit further details.
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5 Non-interactive and Non-malleable Commitments

Bit Commitment. The commitment scheme is described in figure 6. The committer, C, on input a bit
b, executes Com(b) to compute and send the commitment value, c, to R.

The receiver, R, on receiving the value c = (vk,m, σ), accepts the commitment if and only if all of the
following tests succeed (here m = ~p ◦ ~g ◦ ~y ◦ c′): (1) verify(m,σ,vk) = 1, (2) for all i ∈ [κ], pi = 2qi+ ∈ ~p
is a safe prime of length (ti + 1) · `(κ) where ti = i ◦ vki, gi ∈ ~g generates the subgroup Gqi of Z∗pi

, yi ∈ ~y is
an element of Gqi , and c′ is a bit. Otherwise it outputs ⊥, denoting “failure”.

To decommit, C sends (x1, . . . , xκ) to R, who computes the committed bit as follows. First, it tests
that ∀i, yi = fi(xi). If so, it sets the committed bit b to be c′ ⊕ (⊕κ

i=1hcbfi
(xi)). Otherwise, it outputs ⊥,

denoting failure.

Commitment: Com(b).

Step 1: Initialize functions
Compute (vk, sk)← K(1κ) and (p1, . . . , pκ)← primes(vk).
For all i ∈ [κ], define gi to be a random generator of Gqi

⊂ Z∗
pi

.
Let ~p = (p1, . . . , pκ) and ~g = (g1, . . . , gκ).
Define fi(x) = gi

x mod pi.

Step 2: Create the commitment
Choose x1, . . . , xκ independently at random and set,

c′ = b⊕ (⊕κ
i=1hcbfi

(xi))

Let ~y = (y1, . . . , yκ) where yi = fi(xi).
Let m = ~p ◦ ~g ◦ ~y ◦ c′; compute σ ← sign(m, sk,vk).
The commitment value is, c = (vk,m, σ). Send c to R.

Decommitment: Dcom(c).

Send (x1, . . . , xκ) to R.

Figure 6: Our ninm Bit-commitment Scheme

The following theorem establishes that (Com,Dcom) is a ninm bit commitment scheme.

Theorem 12 If gap-dl holds, the scheme (Com,Dcom) is a non-interactive perfectly binding and com-
putationally hiding bit-commitment scheme that is non-malleable with respect to commitment.

Proof. To prove the theorem, we need to demonstrate the following properties: perfect hiding, computa-
tional binding, and non-malleability with respect to commitment.

Suppose R accepts c as a valid commitment. Every fi defined by pi, gi, is a permutation over Gqi ⊂ Z∗pi
.

Hence every yi defines a unique preimage xi, and hence a unique hard-core bit, hcbfi
(xi). Perfect binding

thus follows.
We now demonstrate that if gap-dl holds, our commitment scheme is non-malleable with respect to

commitment. The man-in-the-middle, A, produces a commitment c̃ on receiving a commitment c. Let b̃0

be a random variable, denoting the bit committed to by A when c is a commitment to 0. Similarly, let
b̃1 be a random variable, denoting the bit committed to by A when c is a commitment to 1. To show
that our commitment scheme is non-malleable with respect to commitment, we only need to argue that
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b̃0 and b̃1 are computationally indistinguishable. To argue this, assume to the contrary that there exists a
ppt distinguisher D such that the following quantity, ε, is non-negligible,

ε =
∣∣∣Pr[D(b̃0) = 1]− Pr[D(b̃1) = 1]

∣∣∣
We construct an adversary, A∗, against the gap-dl assumption using A as a black-box. We first generate
vk and guess the target index, i, at random. The key vk and the targer index i is hardwired into A∗ and
will remain fixed in all of its invocations. A∗ now requests a random dl-instance (p, g, y) such that p has
length (ti + 1) · `(κ), where ti = i ◦ vki. It then proceeds to compute (the solution) x s.t. y = gx mod p as
follows,

• Generate ~p,~g exactly as in Com except that set pi = p and gi = g. For all j 6= i, select xj at random,

and compute yj = fj(xj) where fj
def= gj

xj mod pj . Set yi = y to define ~y = (y1, . . . , yκ). Compute
bj = hcbfj

(xj) for all j 6= i, and choose c′ at random.

• Set c = (vk,m, σ) where m = ~p◦~g ◦~y ◦c′ and σ ← sign(m, sk,vk). By construction, c is an accepting
commitment, and hence it defines a unique bit b = c′ ⊕ (⊕κ

j=1bj); which is not yet known to A∗ as bi

– representing the hard-core bit corresponding to the target dl-instance (pi, gi, yi) – is not yet known
to A∗.

• Input c to A to obtain a commitment c̃. That is, c̃← A(c). Let c̃ = (ṽk, m̃, σ̃), where m̃ = (p̃◦g̃◦ỹ◦c′′).
Further, let p̃ = (p̃1, . . . , p̃κ), g̃ = (g̃1, . . . , g̃κ), ỹ = (ỹ1, . . . , ỹκ).

• If c̃ is not accepting, or c̃ = c, or ṽki = vki, abort. (Recall that i is the target-index). Otherwise,
define k dl-instances d̃lj = (p̃j , g̃j , ỹj), and query Opi,`(κ) for each d̃lj (j ∈ [κ]) to obtain the solution
x̃j for d̃lj . From x̃j , compute the hard-core bit b̃j for d̃lj . Define the bit b̃ = c′′ ⊕ (⊕κ

j=1b̃j). Note
that b̃ is the bit to which c̃ is a commitment.

• Let d← D(b̃).7 Compute d′ = d⊕ c′ ⊕ (⊕j 6=ibj). Assuming d′ to be the hard-core bit bi for the target
instance, A∗ computes the solution xi for dli. If xi is a valid solution, output xi. Otherwise output
⊥.

A∗ succeeds. We now show that A∗ indeed solves the dl-instance (p, g, y) using the oracle Op,`(κ), with
noticeable probability. First, observe that all the dl-instances in c and bit c′ are computed uniformly at
random. Hence c is a commitment to a random bit.

It follows from the definition of ε on input c, A outputs an accepting c̃ 6= c, with probability at least ε.
Further, the bit b̃ represented by c̃, is distributed identically to b̃0 (resp., b̃1) when c is a commitment to 0
(resp., 1). As the overall probability of A’s success is ε, using a standard counting argument, it holds that
for (at least) an ε/2 fraction of keys vk, A succeeds with probability at least ε′ = ε/2. Fix such a vk that
is hardwired into A∗.

From the strong unforgeability of the signature scheme, it holds that if c̃ 6= c, then ṽk 6= vk with high
probability. Hence we conclude that A outputs an accepting c̃ such that ṽk 6= vk with probability at least
ε′−neg(κ) ≥ ε′/2. Given that ṽk 6= vk, it holds that ṽki 6= vki with probability at least ε′/2

κ (this is because
i is chosen at random). As A∗ queries Op,`(κ) only when ṽki 6= vki, it holds from claim 3 that all queries
of A∗ to Op,`(κ) are valid. As the oracle always correctly solves the query dl-instance, it follows that d′ is
a correct guess of bi with probability at least ε′/2κ = ε/4κ. Hence, (the non-uniform machine) A∗ guesses
the hardcore bit of (p, g, y) with probability at least ε/4κ, which is non-negligible. By the definition of the
hard-core bit, it follows that the solution x to (p, g, y) can be computed with non-negligible probability.
As this contradicts the gap-dl assumption, we conclude that ε ≤ neg(κ). This implies that our scheme is
non-malleable with respect to commitment.

7For a random variable b̃, D(b̃) denotes executing the algorithm D on an input sampled according to b̃.
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Computational hiding of our scheme is implied by the fact that it is non-malleable with respect to
commitment. Hence we omit the proof. We remark that computational hiding, in fact, follows directly from
(the weaker assumption) dla. The proof goes exactly as above, except that A∗ does not need the oracle
Op,`(κ), and can work directly with a distinguisher D′ who contradicts hiding.

String Commitment. We now extend our ninm bit-commitment scheme to obtain a string commitment
scheme, that is perfectly binding, computationally hiding, and non-malleable with respect to commitment.
Let v = v1 ◦ . . . ◦ vl denote the (l-bit) string to be committed. to commit to a single bit, b, κ shares of b
were The string commitment scheme is the direct extension of previous scheme. To commit to v, we do the
natural thing: we commit to each bit vi, independently as in previous scheme, except that the values ~p,~g
are chosen only once and for all vi. Vector ~y, of course, will be chosen independently for each vi

The commitment scheme is described in figure 7. The committer, C, on input a string v, executes
SCom(v) to compute and send the commitment value, c, to R. The receiver, R, on receiving the value
c = (vk,m, σ), R performs tests for each bit vi of v exactly as in the bit-commitment scheme. If all tests
succeeds, it accepts the commitment. Otherwise it outputs ⊥, denoting “failure”. Remember that each
prime pi = 2qi + 1 is a safe prime.

To decommit, C sends (~x1, . . . , ~xκ) to R, where ~xi = (xi,1, . . . , xi,κ). R computes each bit vi of the
committed string as follows. First, it tests that ∀i, j it holds that yi,j = fi(xi,j) and c′ is an l-bit string. If
so, it sets vi to be c′i ⊕ (⊕κ

j=1hcbfi
(xi,j)). If all bits are computed successfully, v = v1 ◦ . . . ◦ vl. Otherwise,

it outputs ⊥, denoting failure.

Commitment: SCom(v).

Step 1: Initialize functions
Compute (vk, sk)← K(1κ) and (p1, . . . , pκ)← primes(vk).
For all i ∈ [κ], define gi to be a random generator of Gqi ⊂ Z∗

pi
.

Let ~p = (p1, . . . , pκ) and ~g = (g1, . . . , gκ).
Define fi(x) = gi

x mod pi.

Step 2: Create the commitment
Let v = v1 ◦ . . . ◦ vl. For each bit vi, do the following.

Choose xi,1, . . . , xi,κ independently at random so that,

c′i = vi ⊕
(
⊕κ

j=1hcbfi
(xi,j)

)
Let c′ = c′1 ◦ . . . ◦ c′κ, ~yi = (yi,1, . . . , yi,κ) where yi,j = fi(xi,j).

Define ~y = (~y1, . . . , ~yκ) and m = ~p ◦ ~g ◦ ~y ◦ c′.
Compute σ ← sign(m, sk,vk).
The commitment value is, c = (vk,m, σ). Send c to R.

Decommitment: SDcom(c).

Send (~x1, . . . , ~xκ) to R, where ~xi = (xi,1, . . . , xi,κ)

Figure 7: Our ninm String-commitment Scheme

The following theorem establishes that (SCom,SDcom) is a ninm string commitment scheme.

Theorem 13 If gap-dl holds, the scheme (SCom,SDcom) is a non-interactive, perfectly binding, and
computationally hiding string commitment scheme that is non-malleable with respect to commitment.
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Proof. The proof of this theorem is largely similar to the proof of theorem 12. The key-observation is
that because only a single vk is used for all the bits of v, and that each bit is committed individually as
before, any dependence of ṽ on v will need to infer some information about hard-core bits across distributed
all primes. The proof is slightly different from the previous proof.

Perfect binding is straightforward. Computational hiding, as argued previously, will follow from non-
malleability with respect to commitment. Observe that whenever c is an accepting commitment, it represents
a well-defined and unique string v. So we directly turn to show that the scheme is non-malleable with respect
to commitment.

Suppose that a man-in-the-middle A, on input an accepting commitment c, outputs c̃ which is an
accepting commitment. As both c and c̃ are accepting, they correspond to well-defined and unique values,
say v and ṽ respectively. To prove non-malleability with respect to commitment, we only need to show that
(whenever c̃ is accepting as above) the value ṽ is computationally independent of value v. Recall that this
is done via the following game. A produces a value v and receives a commitment c to either v or 0l. It then
produces a commitment c̃. Let ṽ0 be a random variable denoting the value committed to by A when c is a
commitment to 0l. Analogously, define, define ṽ1 to be a random variable denoting the value committed to
by A when c is a commitment to v. We will show that ṽ0, ṽ1 are computationally indistinguishable.

To prove this, we first describe a (string) commitment scheme 〈C ′, R′〉, which is semantically secure
assuming gap-dl. We will then show that if ṽ0, ṽ1 are not computationally indistinguishable, then 〈C ′, R′〉
is not semantically secure. Scheme 〈C ′, R′〉 is the following.

Algorithm C ′, on input a string v, acts as follows. It chooses a safe prime p of size `′(κ) such that
gap-dl holds in Gq ⊂ Z∗p; let g be a random generator of Gq defining the function f

def= gx mod p. For each
bit vi, it selects xi independently at random and sets c′i = vihcbf (xi). Let c′ = c′1 ◦ . . . ◦ c′l, ~y = (y1, . . . , yκ)
where yi = f(xi). The commitment value c′′ is (p, g, ~y, c′). To decommit, C ′ simply sends (x1, . . . , xκ) and
R′ verifies that all yi were computed properly. If yes, it obtains v by computing each bit vi = c′i⊕hcbf (xi).
It is easy to see that 〈C ′, R′〉 is perfectly binding and computationally hiding against adversaries A′ who are
ppt with oracle access to Op,`(κ). The proof assumes that gap-dl holds, and uses a simple hybrid argument.
We omit details.

The rest of the proof for non-malleability is now largely similar to the proof of theorem 12. An adversary
A breaking the non-malleability of (SCom,SDcom) can be converted into an adversary A∗ who will
contradict computational hiding of 〈C ′, R′〉 (and hence the gap-dl assumption). A∗ works by internally
incorporating A, and generating a commitment for A exactly as in SCom except for the following difference.
A∗ guesses the target index i at random, and computes xj,k and yj,k = fk(xj,k), for j ∈ [l], k ∈ [κ], k 6= i
exactly as in SCom. Define bits bj = ⊕j 6=ihcbfj

(xj,k) for j = 1, . . . , l. Define string s = b1 ◦ . . . ◦ bl,
v1 = s ⊕ 0l, and v2 = s ⊕ v. A∗ sends v1, v2 to the external C ′ and obtains a commitment (p, g, ~y, c′) to
either v1 or v2. It sets pi = p, gi = g, ~yi = ~y, c′ = c′ to define its own commitment c completely (according to
SCom). Note that if C ′ commits to v1, c is a commitment to 0l; and if C ′ commits to v1, c is a commitment
to v. A∗ runs A on input c to obtain a commitment c̃ which is a commitment to a value distributed according
to either ṽ0 or ṽ1 (depending on v1 or v2). By proceeding exactly as in theorem 12 (using the oracle Op,`(κ)),
it is easy to see that a ppt distinguisher D for distinguishing ṽ0 from ṽ1 distinguishes commitments to v1

from those to v2 (according to 〈C ′, R′〉). This concludes the proof.

6 Round Complexity of Black-box Secure Multiparty Computation

The round-complexity of secure multiparty computation (mpc) has been an active area of research.8 Katz,
Ostrovsky, and Smith [KOS03] demonstrated that secure mpc for any functionality can be performed in
O(log n)-rounds using black-box techniques (assuming standard complexity assumptions). They additionally

8Here, and everywhere else, we only deal with the case of mpc with abort and with no fairness. Further, we are working in
the plain model, i.e., with no setup assumptions; and we always deal with the case of dishonest majority where n− 1 out of a
total n parties can be controlled by the adversary, A.
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show that using non-black-box techniques (under super-polynomial hardness assumptions) secure mpc re-
quires only O(1)-rounds. The network model assumes the availability of an (standard) ideal broadcast
channel. This was further improved by Pass [Pas04] who achieved O(1)-round secure mpc under standard
polynomial hardness assumptions.9 Pass’s result also uses non-black box techniques; secure mpc using only
black-box techniques is not known to exist in less than O(log n)-rounds.

Our simulation extractable argument πse, when used with the techniques of [KOS03], directly yields an
O(1)-round protocol for securely computing any functionality. Further, it only uses black-box techniques: to
simulate the view of the adversary according to the ideal/real-paradigm, the simulator S, uses the adversary
A only as a black-box. We briefly mention the approach of [KOS03] and why our protocol πse applies to
their construction directly.

The protocol of [KOS03] works by computing a specific functionality, called “simulatable coin-flipping”,
which (they show) implies secure mpc with a constant factor blow up in the number of rounds (This
basically follows from [BMR90, CLOS02], and makes additional assumptions that trapdoor permutations
and dense public-key cryptosystems exist.) Given a protocol for a slightly different functionality called
NMCF, [KOS03] show how to achieve simulatable coin-flipping. The functionality NMCF is an n-fold parallel
repetition of (slightly modified) Barak’s “non-malleable coin-flipping” functionality [Bar02]: Let A be a
man-in-the-middle, participating in n parallel coin-tossing protocols on “left” and n parallel coin-tossing
protocols on “right”; and let σ1, . . . , σn be the outputs on left, and σ̃1, . . . , σ̃n be the outputs on right.
Then, the functionality requires that (σ1, . . . , σn) should be computationally indistinguishable from a set of n
independently chosen strings; further each σ̃i is either a copy of some σj or computationally indistinguishable
from a randomly and independently chosen string. In [KOS03], the NMCF functionality is a slightly modified
version of Barak’s protocol. But in fact, because our protocol is simulation-extractable even under n-fold
parallel repetition, we can directly employ our protocol in the NMCF construction of [KOS03] to get a
construction that uses only black-box techniques. That is, in Protocol 4 of [KOS03], the first two steps
are ignored, and in the last phase (steps L5.1-5.9,R5.2-R5.10), we use our protocol πse. To see that πse is
simulation-extractable under n-fold parallel repetition, observe that extraction of witnesses on right, can be
performed on a “one-by-one” basis. Further, during simulation, because we are dealing with parallel (not
concurrent) executions, extraction of all trapdoors can also be performed (either at once, or on a one-by-one
basis). We thus obtain the following version of the [KOS03]-theorem (a formal proof is deferred until the
full version of this paper).

Theorem 14 For any polynomial time function f , there exists an O(1)-round protocol for computing f
securely, tolerating (n− 1) (out of a total n) dishonest parties. The proof uses only black-box techniques.

7 Gap-DL Resists Generic Attacks

In this section, we demonstrate that the gap-dl assumption cannot be solved by polynomial time generic
algorithms. A generic algorithm is one that does not make use of the specific encoding of group elements.
Let Z∗p be the multiplicative cyclic group of integers modulo a prime p; and let E be a set of bit strings of
cardinality at least p. An encoding function of Z∗p on E is an injective map ξ from Z∗p into E.

Generic Group Model [Sho97]. In the generic model of groups, elements x ∈ Z∗p are not directly given
to the adversary, A. Instead they appear to A to be encoded as arbitrary unique strings, so that no property
other than equality can be directly tested by A. The encoding may use random-looking strings, or even
sequential integers. The adversary A, also known as a generic algorithm for Z∗p on E, is a probabilistic
algorithm that behaves as follows. The algorithm takes as input an encoding list (ξ(x1), . . . , ξ(xk)) where
each xi ∈ Z∗p and ξ is an encoding function of Z∗p on E. As A executes, it can access an oracle OZ, by
sending it two indices i and j into the encoding list, and a sign bit specifying the operation (multiplication

9Pass’s construction actually achieved the first bounded concurrent secure mpc, which was also constant round.
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or division). The oracle, OZ, computes ξ(xi · xj) or ξ(xi/xj) depending upon the sign bit, and appends the
resulting string to the encoding list, which A can access any time. After A finishes its execution, it outputs
a bit string, denoted by A(p, ξ(x1), . . . , ξ(xk)). We make a slight change to ξ – we think of our encoding
function ξ as a pair (g, ξ′), where g is generator of Z∗p and ξ′ : Z∗p → E is an injective map. Now, for a ∈ Z∗p,
ξ(a) = ξ′(ga mod p).

We extend the model slightly, to take into account the access to the dl-solver oracle Op. Recall that no
dl-queries to Op can be made in the target group Z∗p. As dl-queries to Op are generated by A, it is not
necessary to encode the group elements of any of Z∗q (such that q 6= p) in which A asks a dl-query. Thus,
an element x in Z∗q (such that q 6= p) is represented directly by its binary string representation.

The running time of A is measured by counting both – the number of bit operations and the total
number of oracle queries (to both OZ,Op). The following theorem establishes the unconditional hardness of
(a stronger version of) the gap-dl assumption in the generic model of groups. (By stronger we mean that,
the size restrictions on the primes are dropped, and we are simply working with Z∗p instead of its prime-order
subgroup. The same proof goes through even for prime-order subgroups of Z∗p.

Theorem 15 Let p be a positive prime and E ⊂ {0, 1}∗ be a set of cardinality at least p. Let A be a generic
algorithm for Z∗p on E making at most m queries to Op and OZ, all counted together. If x ∈ Z∗p and the
encoding function ξ are chosen at random, then the probability that A(ξ(1), ξ(x)) = x is O(m2/p). The
probability is taken over the random choices of x, ξ, as well as the randomness of A.

Proof. To prove theorem, we proceed along the lines of Shoup [Sho97]. Instead of giving A access to Op,
consider an algorithm B that plays the following game with A. Let X be an indeterminant. B maintains
two lists F and L. At any step in the game, F contains F1, . . . , Fk such that each Fi is a linear polynomial
in Z∗p[X], and L contains ξ1, ξk of distinct values in E that are given out to the adversary. To start the
game, B sets k = 2, F1 = 1, F2 = X and chooses ξ1, ξ2 at random such that ξ1 6= ξ2. B now provides ξ1, ξ2

to A. A now performs its computation and may make queries to either Op or OZ (which is simulated by
B). Every query of A to Op, is directly answered by Op who computes the discrete logarithm, provided A
respects the query-structure set-forth in section 3. Every query (i, j, b) of A, intended for OZ, is instead
answered by B as follows. B computes Fk+1 as either Fi + Fj or Fi − Fj (according to b). If Fk+1 = Fl

for 1 ≤ l ≤ k, B sets ξk+1 = ξl; otherwise, it sets ξk+1 to a random element in E, distinct from ξ1, . . . , ξk.
String ξk+1 is then given to A.

When A finishes its execution, it outputs a string y ∈ Z∗p. B now does the following. It chooses x′Z∗p at
random and tests whether Fi(x) = Fj(x) for any Fi 6= Fj or if x′ = y. If the test succeeds, we say that A
wins the game and loses otherwise.

Observe that if for some i, j it holds that Fi(x) = Fj(x) and Fi 6= Fj , the simulation of Op by B is flawed
since it provides to A two different representations of the same element. As for any fixed i, j such that
Fi 6= Fj , the polynomial F = Fi−Fj is of degree 1, the probability that F (x′) = 0 is at most 1/p. Similarly,
x′ = y with probability exactly 1/p. Now observe that if the simulation is not flawed, A correctly solves
if and only if it wins the game, which happens with 1/p probability. Further the simulation is flawed with
probability at most m2/p counting over all i, j. Hence, the probability of winning the game is O(m2/p),
which bounds from above the probability that A(p, ξ(1), ξ(x)) = x.
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A On Simulators S2 and S3

A Technical Modification. We discuss one (purely technical) change in the description of both S and
S1. Both the simulators internally emulate the actions of an honest V for the right hand side session. During
the protocol execution, V generates a statement-witness pair (dl, a) for relation Rdl, and later uses a to
prove an intermediate statement (dl, c1, c2) using the 3-round bh-protocol (see description of πsza). To aid
ourselves, instead of viewing this as an internal component of V , we will view this as coming from an oracle,
OV . Formally, the part of V that computes (dl, a), sends a query (st1) to OV , where st1 is the (current)
state of the simulator. The oracle OV computes the dl-instance exactly as V would have, and sends (only)
dl to the simulator (and hence V ) who uses dl to continue the simulation. Later, when V needs a witness a
to complete the proof for (dl, c1, c2), it sends another query (st2) to OV who then responds with a witness a
which V can use. Once again, st2 denotes the current state (or global view) of the simulator (which includes
internal adversary A’s view). Note that this does not affect any of our previous claims. Hence, from now
on, S

def= SKsza,OV and S1
def= S

Op̃,`(κ),OV

1 . Now we present the formal descriptions of S2, S3. The simulator
S2 is identical to S1 except that instead of having access to OV , it has access to a slightly different oracle
O′V . Similarly, S3 and S2 are identical except that S3 has access to a slightly different oracle O′′V , instead of
O′V .

Simulator S
Op̃,`(κ),O′

V
2 . For notational ease, let S2

def= S
Op̃,`(κ),O′

V
2 . Simulator S2 is identical to S1 except

that it has access to O′V instead of OV . Oracle O′V behaves as follows:

1. For the first query st1, it behaves identically to OV and returns dl.

2. For the second query, st2, O′V uses the EXTRACT routine of the 2-slot simulator of πsza using the
state information st2 and the oracle Op̃,`(κ) to compute a witness w2 = (σ, ω, i, j) for the statement
dl, c1, c2). If w2 = ⊥, O′V answers with ⊥. Otherwise, it answers with the original witness a.

Simulator S
Op̃,`(κ),O′′

V
3 . For notational ease, let S3

def= S
Op̃,`(κ),O′

V
3 . Simulator S3 is identical to S2 except

that it has access to O′′V instead of O′V . Oracle O′′V is the same as O′V except that when answering the
second query st2, if the witness w2 6= ⊥, it responds with w2 (and not a).
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