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Abstract

The lower bound on the number of n-variable balanced
symmetric functions over finite fields GF(p) presented in [1]
is improved in this paper.

1. Introduction

Symmetric Boolean functions is an interesting subclass
of Boolean functions whose output depend only on the
weight of the input vector. These functions can be repre-
sented in a very compact way both for their algebraic nor-
mal forms and for their value vectors. As symmetric func-
tions are the only functions having a known implementa-
tion with a number of gates which is linear in the number
of input variables, they might be good candidates in term of
implementation complexity[2].

In binary case, that isp = 2, a lot of work have been
done. Br̈uer [3], Mitchell [4]and later Y.X.Yang and B.Guo
[5] studied the balanced symmetric functions and correla-
tion immune symmetric functions. S.Maitra and P.Sarkar
[6]studied the maximum nonlinearity of symmetric Boolean
function on odd number of variables. A.Canteaut and M.
Videau [2] established the link between the periodicity of
simplified value vector of an symmetric Boolean functions
and its degree. Especially, Algebraic immunity is a re-
cently proposed cryptographic criteria which is used to eval-
uated the ability of an Boolean functions to resist algebraic
attack[7]. Symmetric Boolean function had been proved to
have good algebraic immunity[8, 9].

Boolean function is natural to be generalized to other fi-
nite fields of odd prime characteristicp. For example, Y.Hu
and G.Xiao [10] studied the resilient functions onGF (p).
In [11], Li and Cusick introduced the strict avalanche cri-
terion overGF (p). In [12], they determined all the linear

structures of symmetric functions overGF (p). Recently,
they give a lower bound for the number of balanced sym-
metric functions overGF (p) and show the existence of non-
linear balanced symmetric functions[1].

The correspondence is organized as follows: Section 2
includes the basic background and notations. Section 3 set-
tles some new notations and describes the result presented
in [1] firstly. Based on Cusick etc’s method, new classes
of balanced symmetric functions overGF (p) are then con-
structed. Also the lower bound in [1] is improved. In the
last section, an equivalent problem is described.

2 Preliminaries

Let p be a prime number andGF (p)n as the set of all
n-tuples of elements in the finite fieldsGF (p). If f(x) :
GF (p)n → GF (p), thenf can be uniquely represented as

f(x1, x2, · · · , xn) =
p−1∑

k1,k2,···,kn=0

ak1,k2,···,kn
xk1

1 xk2
2 · · ·xkn

n

where each coefficientak1,k2,···,kn is a constant inGF (p).
It is also called thealgebraic normal form(ANF) of f .

Denote byFn the set of all functions ofn variables. Let
Sn be thesymmetric groupon n element, that is, the col-
lection of all bijections on{1, 2, · · · , n}. For f ∈ Fn, f is
calledsymmetricif for any permutationπ ∈ Sn, we have
f(xπ(1), xπ(2), · · · , xπ(n)) = f(x1, x2, · · · , xn). For any
X = (x1, x2, · · · , xn) ∈ GF (p)n, it is convenient to denote
π(X) = (xπ(1), xπ(2), · · · , xπ(n)) by abuse of notation.

Define an equivalent relation onGF (p)n: for any
X, Y ∈ GF (p)n, write X ∼ Y if and only if there exists a
permutationπ ∈ Sn such thatY = π(X).

For f ∈ Fn, f is calledbalanced if the probability
prob(f(X) = k) = 1

p for any k = 0, 1, · · · , p − 1. It



is easy to see thatf is balanced if and only if|{X ∈
GF (p)n|f(X) = k}| = pn−1 for anyk ∈ GF (p).

3 New classes of balanced symmetric func-
tions

By the definition of symmetric function, we get thatf
is symmetric if and only iff take the same value for any
n-tuple in the same equivalent class. So in order to get
the number of symmetric functions, it is necessary to com-
pute the number of different equivalent class. This number
is exactly the solutions of the linear diophantine equation
i0 + i1 + · · ·+ ip−1 = n. From the viewpoint of combina-
torial enumeration[13], the number of the solution of above
equation can also be interpreted as the number of different
ways to putn nondistinctive balls intop distinct boxes.

Lemma 3.1 [1] The number ofn-variable symmetric func-
tions overGF (p) is pC(n+p−1,n).

HereC(n, k) = n!
k!(n−k)! is thebinomial coefficient.

For each equivalent class̃X, we may choose those el-
ementsX = (x1, x2, · · · , xn), x1 ≤ x2 ≤ · · · ≤ xn

as representative elements, denote it asX. Let X =
(0, ..., 0︸ ︷︷ ︸

xi0

1, ..., 1︸ ︷︷ ︸
xi1

, · · · , p− 1, ..., p− 1︸ ︷︷ ︸
xip−1

) , wherei0+i1+ · · ·+

ip−1 = n, 0 ≤ ij ≤ n, j = 0, 1, · · · , p − 1. Then the
cardinality of the set̃X equals the multinomial coefficient
C(n, i0, i1, · · · , ip−2) = n!

i0!i1!···ip−1!
.

If X = (..., c, d, ..., d︸ ︷︷ ︸
k

, e, ...), c 6= d andd 6= e, we call

thatd, ..., d︸ ︷︷ ︸
k

a run of X and the length of the run isk. For a

fixed n-tupleX, we can write out all the run length, called
the run distribution . For example, letX = (0, 0, 0, 1, 2)
has runs ”000”,”1” and ”2” and the lengths are 3,1 and 1
respectively. Then the run distribution is113.

For a chosenn andp, one can list all the possible run
distribution of different representative elements. Using in-
tegral partition (more concretely, dividingn into at mostp
parts), we can easily get the number of different run distri-
bution. For example, forn = 4, p = 3, there are exactly
4 different run distribution13, 112, 22 and4. For each run
distribution, it always contains several representative ele-
ments (or,equivalently, several equivalent classes). For ex-
ample, representative elements0111, 0222, 1222 have the
same run distribution13. Furthermore, letmi denotes the
number of the runs of lengthi, then the number of dif-
ferent equivalent class having the same run distribution is

p!
m0!m1!···mn! . Cusick etc.[1] observed that under mild con-

dition p!
m0!m1!···mn! is a multiple ofp.

Lemma 3.2 [1] Let n, p be positive integers, withp a prime
number. Ifmi ≤ p for somei (and so for all i), or if
gcd(n, p) = 1, thenp divides p!

m0!m1!···mn! .

To get balanced symmetric polynomials, we need to
participate theC(n + p − 1, n) equivalent classes intop
groups such that each group consisting ofpn−1 elements.
By Lemma3.2, Cusick etc.[1] divide each class having the
same run distribution intop groups. So they constructed a
class of balanced symmetric functions. By enumerating the
functions, they presented the following lower bound on the
number of balanced symmetric functions overGF (p).

Theorem 3.1 [1] Let N be the number ofn-variable bal-
anced symmetric functions over GF(p). Ifmi ≤ p for some
i (or gcd(n, p) = 1 ), then

N ≥
∏

∑n

j=0
mj=p,∑n

j=0
jmj=n

( p!
m0!···mn! )!

(( (p−1)!
m0!···mn! )!)

p
(1)

For fixed n and p such thatgcd(n, p) = 1, assume
the number of different run distributions ist (just as we
have pointed out, this number can be easily obtained by
integral partition, which can be calculated by generating
function[13]). let4i be the collection of equivalent classes
with the same run distribution, 1 ≤ i ≤ t. Denotes the
cardinality of each collection4i as ki. That is, ki =
|4i| = p!

m0!m1!···mn! , heremi is the number of run of
length i. If i0i1 · · · ip−1 be a run distribution, then define
hi = n!

i0!i1!···ip−1!
. By the definition, each equivalent class

belong the collection4i contains the same number of ele-
mentshi. It is easy to verified that

t∑

i=1

kihi = pn. (2)

Taken = 5, p = 3 as example, we concluded these numbers
in the following table:

4i’s run distribution ki hi

5 3 1
1 4 6 5
2 3 6 10

1 1 3 3 20
1 2 2 3 30

Table 1: Whenn = 5, p = 3,
4i: collection of equivalent classes with certain run

distribution
ki = |4i|

hi : the number of elements in each equivalent class



Using the above notation, the lower bound in Theorem
3.1 can be written as

∏ ∑n

j=0
mj=p,∑n

j=0
jmj=n

( p!
m0!···mn! )!

((
(p−1)!

m0!···mn! )!)
p

=
∏t

i=1 C(ki,
ki

p )C(ki − ki

p , ki

p ) · · ·C(ki

p , ki

p )
=

∏t
i=1

(ki)!

(
ki
p )!p

(3)

In Cusick’s enumeration, each collection of equivalent
classes with the same run distribution is divided evenly into
p group. Whenn = 5, p = 3, we demonstrate a partition as
follows:

0 1 2
41 (1) (1) (1)
42 (5)(5) (5)(5) (5)(5)
43 (10)(10) (10)(10) (10)(10)
44 (20) (20) (20)
45 (30) (30) (30)

Here each(·) denotes an equivalent class of4i and the
number in(·) is hi, the cardinality of each equivalent class.
However many potential balanced symmetric functions may
be left out in this way . For example, by30 = 20 + 10, we
can divide4i as follows:

0 1 2
41 (1) (1) (1)
42 (5)(5) (5)(5) (5)(5)
43 (10)(10)(10) (10) (10)(10)
44 (20)(20) (20)
45 (30)(30) (30)

That is, the equivalent classes in each collection may be
divided unevenly. Noted that the modified function is also a
balanced symmetric function. We will use this idea to look
for more symmetric balanced functions and thus improve
the lower bound greatly.

For fixedn, p, lethi be defined as above. Without loss of
generality, we may assume thath1 ≤ h2 ≤ · · · ≤ ht. con-
sider the following muli-variable equation with restricted
conditions:

t∑

i=1

xihi = 0, xi ∈ Z, |xi| ≤ ki

p
(4)

Obviously,X = (0, 0, · · · , 0) is a trivial solution. Two so-
lutionsX = (x1, x2, · · · , xt) andY = (y1, y2, · · · , yt) are
said to be equivalent ifX = ±Y . In this case, the solu-
tions whose most right nonzero component is positive are
calleduniformed. For equivalent solutions, we choose the
uniformed solution and discard the other one. Denote the
set of nontrivial solutions of equation (4) asSn,p (for equiv-
alent solutions, only uniformed solutions are chosen).

Example1: Let n = 5, p = 3. By table1, we have
equation:

x1 · 1 + x2 · 5 + x3 · 10 + x4 · 20 + x5 · 30 = 0,
such thatx1 ∈ {−1, 0, 1}, x2 ∈ {−2,−1, 0, 1, 2},x3 ∈
{−2,−1, 0, 1, 2}, x4 ∈ {−1, 0, 1}, x5 ∈ {−1, 0, 1}.

ThenS5,3 = {(0,−2, 1, 0, 0), (0,−2,−1, 1, 0), (0, 0,−2,
1, 0), (0,−2, 0,−1, 1), (0, 0,−1,−1, 1), (0,−2,−2, 0, 1)}.
Lemma 3.3 Letn,m andt be positive integers,0 ≤ t ≤ n,
then

C(mn,n−t)C(mn−n+t, n+t)C((m−2)n, n) · · ·C(n, n)

=
(mn)!

(n− t)!(n + t)!(n!)m−2

Proof: It is easily verified that

C(mn,n−t)C(mn−n+t, n+t)C((m−2)n, n) · · ·C(n, n)

=
(mn)!

((m− 1)n + t)!(n− t)!
((m− 1)n + t)!

((m− 2)n)!(n + t)!

· ((m− 2)n)!
((m− 3)n)!n!

· · · n!
n!

=
(mn)!

(n− t)!(n + t)!(n!)m−2
.

Let X = (x1, x2, · · · , xt) ∈ Sn,p. We now construct
some new classes of balanced symmetric functions. For
those zero componentsxi in X, the corresponding equiv-
alent classes4i must be divided evenly. The number of
partitions is

C(ki,
ki

p
)C(ki − ki

p
,
ki

p
) · · ·C(

ki

p
,
ki

p
) =

(ki)!
(ki

p )!p
.

For those nonzero components inX, chooseki

p − xi equiv-

alent class from4i firstly, ki

p +xi secondly, and the rest are
divided evenly. The number of partitions is

p · (p− 1) · C(ki,
ki

p
− xi)C(ki − ki

p
+ xi,

ki

p
+ xi)

C(ki − 2
ki

p
,
ki

p
) · · ·C(

ki

p
,
ki

p
)

where the first termp · (p − 1) = p!
1!1!(p−2)! is to take into

account the different orderings of thep groups. By Lemma
3.3, this product can be written as

p · (p− 1) · ki!
(ki

p − xi)!(ki

p + xi)!(ki

p !)p−2

In order to get balanced symmetric functions, we require
that for those nonzero components inX, once an order



is specified for a group which is a partition of an equiva-
lent class collection4i, the other groups corresponding to
nonzero components inX also take the same order.

Now we give our main result.

Theorem 3.2 Let n, p be two co-prime integers,t be the
number of different run distribution,ki be the cardinal-
ity of equivalent classes with the same run distribution,hi

be number of the elements contained in equivalent class of
each collection,1 ≤ i ≤ t, Sn,p be the set of the uniformed
nontrivial solution of equation

t∑

i=1

xihi = 0, xi ∈ Z, |xi| ≤ ki

p
, (5)

Then the number ofn-variable balanced symmetric func-
tions over GF(p) has the lower bound

t∏

i=1

(ki)!
(ki

p )!p
+

∑

X=(x1,x2,···,xt)∈Sn,p

p(p− 1)

(
∏

xi=0,

1≤i≤t

(ki)!
(ki

p )!p
∏

xi 6=0,

1≤i≤t

ki!
(ki

p − xi)!(ki

p + xi)!(ki

p !)p−2
). (6)

Proof. It is obvious that all the functions constructed are
symmetric. Just as proved in [1], the functions constructed
by Cusick etc is balanced, which also corresponds to the
case of trivial solution of equation(5). Now we prove the
functions constructed from the nontrivial solutions of (5)
are also balanced and they are different from Cusick etc’s
construction.

In order to prove that a function is balanced, we only
need to prove that the cardinality of the pre-image of each
function value ispn−1. Let X ∈ Sn,p. Then each4i, 1 ≤
i ≤ t, are divided intop groups. According to the value
of xi, the corresponding4i are divided in different ways.
So the pre-image of the each value{0, 1, · · · , p − 1} must
belong to one of the following cases:

1. It is consisted ofki

p equivalent classes of4i, for all
1 ≤ i ≤ t.

2. It is consisted ofki

p + xi equivalent classes of4i for

xi 6= 0 , andki

p equivalent classes of4i for xi = 0.

3. It is consisted ofki

p − xi equivalent classes of4i for

xi 6= 0, andki

p equivalent classes of4i for xi = 0.

It is straightforward to calculate the number of elements in
each cases. In case1, by (2) the number of elements is

t∑

i=1

ki

p
hi =

1
p

t∑

i=1

kihi = pn−1.

In case 2, the number of elements is

∑
xi=0,

1≤i≤t

ki

p
hi +

∑
xi 6=0,

1≤i≤t

(
ki

p
+ xi)hi

=
1
p

t∑

i=1

kihi +
∑

xi 6=0,

1≤i≤t

xihi

ForX ∈ Sn,p, we have
∑

xi 6=0,

1≤i≤t

xihi = 0.

So the number of elements in case 2 is alsopn−1. Case 3
can be proved similarly. In conclusion, each function we
constructed is balanced.

BecauseX is a nontrivial solution of equation(4), at
lease two components ofX are nonzero and then two cor-
responding collections4i will be partitioned unevenly. So
the construction we presented is different from Cusick etc’s
construction. On the other hand, by the definition ofSn,p,
eachX ∈ Sn,p is uniformed solution of equation(4), so
the functions we constructed are different from each other.
Furthermore, as we have described in our construction, for
thosexi 6= 0, given an order of thep groups of an4i, the
other groups which are consisted ofki

p +xi ( andki

p −xi re-
spectively) equivalent classes must lie in the same position.
So these functions are enumerated as follows:

∑

X=(x1,x2,···,xt)∈Sn,p

p(p− 1)

(
∏

xi=0,

1≤i≤t

(ki)!
(ki

p )!p
∏

xi 6=0,

1≤i≤t

ki!
(ki

p − xi)!(ki

p + xi)!(ki

p !)p−2
),

Plusing the number of functions constructed by Cusick etc,
new lower bound(6) is then obtained. Thus the proof is
completed.

Except special cases, equation(5) always has nontriv-
ial solutions. So Theorem3.2 improves the lower bound
in Theorem3.1. To illust our result, taken = 5, p = 3
as example. By Theorem3.1, Cusick etc’s lower bound is
1749600. And by Example 1, equation (5) has 6 nontrivial
solutions. Omitting the detail of the calculations, the num-
ber of the functions constructed by our method is 32659200.
So our result improves Cusick etc’s lower bound greatly.

4 An equivalent characterization

Let p be a prime number andn be an arbitrary positive
integer. In this section, we prove that the enumeration of the
number of balanced symmetricn-variable functions over
GF (p) is equivalent to solve an equation system.



Let t,4i, ki andhi, 1 ≤ i ≤ t, be defined as in section
3. Becausen andp are not required to be co-prime,ki is
not necessarily a multiple ofp. In order to get balanced
symmetric functions,4i, 1 ≤ i ≤ t, must be participated
into p parts properly. In detail, letxij , 1 ≤ i ≤ t, 1 ≤ j ≤
p, be a partition of4i. Thenxij , 1 ≤ i ≤ t, 1 ≤ j ≤ p,
must satisfy that

{ ∑t
i=1 xijhi = pn−1, 1 ≤ j ≤ p∑p
j=1 xij = ki, 1 ≤ i ≤ t. (7)

And there are always several functions correspond to each
solution of(7). Because the structure of the solutions are
not clear, it is different for us to enumerate exactly.

Contrarily, if a balanced symmetric function exits, there
is a set of positive integersxij , 1 ≤ i ≤ t, 1 ≤ j ≤ p,
satisfying equation system (7). Thus, we get the following
result.

Theorem 4.1 Let notations be defined as before. Then the
number ofn-variable balanced symmetric functions over
GF(p) is not less than the number of solutions of equation
systems overZ+:

{ ∑t
i=1 xijhi = pn−1, 1 ≤ j ≤ p∑p
j=1 xij = ki, 1 ≤ i ≤ t.

hereZ+ denotes the set of positive integers.
The equation system (7) can also be regarded as an

strengthened version ofKnapsack problem, which is a so-
called NP-complete problems. Hence, it seems hard to
give an exact number of balanced symmetric functions over
GF (p).

5 Conclusion

Based on the Cusick etc’s construction, new classes of
balanced symmetric functions overGF (p) are constructed
and the lower bound in [1] is improved in this paper. For
general case, an equivalent characterization is also pre-
sented.
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