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Abstract. Unattended wireless sensor networks (UWSNs) operating in hostile environ-
ments face the risk of compromise. Unable to off-load collected data to a sink or some
other trusted external entity, sensors must protect themselves by attempting to mitigate
potential compromise and safeguarding their data.
In this paper, we focus on techniques that allow unattended sensors to recover from intru-
sions by soliciting help from peer sensors. We define a realistic adversarial model and show
how certain simple defense methods can result in sensors re-gaining secrecy and authentic-
ity of collected data, despite adversary’s efforts to the contrary. We present an extensive
analysis and a set of simulation results that support our observations and demonstrate the
effectiveness of proposed techniques.

1 Introduction

Sensors and sensor networks are deployed and utilized for various applications in both civilian
and military settings. One of the most attractive properties of sensors is their alleged ease of
deployment. Because of the low cost of individual sensors and commensurately meager resources,
security in sensor networks presents a number of formidable and unique challenges. A large body
of research has been accumulated in recent years, dealing with various aspects of sensor network
security, such as key management, data authentication/privacy, secure aggregation, secure routing
as well as attack detection and mitigation.

Recently, unattended sensors and unattended sensor networks (UWSN) have become subject
of attention in the security research community [1, 2]. In the unattended setting, a sensor is
unable to communicate to a sink at will or in real time. Instead, it collects data and waits for an
explicit signal (or for some pre-determined time) to upload accumulated data to a sink. In other
words, there is no real-time reporting of sensed data. The inability to off-load it in real time
exposes the potentially sensitive data accumulated on unattended sensors to certain risks. This
is quite different from prior sensor security research where there is an assumption of an on-line
sink collecting data in a more-or-less real-time fashion.

Unattended sensors deployed in a hostile environment represent an attractive attack target.
Without external connectivity, sensors can be compromised with impunity and collected data can
be altered, erased or substituted. Sensor compromise is a realistic threat since sensors are often
mass-produced commodity devices with no secure hardware or tamper-resistance components.
Prior security work typically assumed that some number of sensors can be compromised during
the entire operation of the network and the main goal is to detect such compromise. This is a
reasonable goal, since given a constantly present sink, attacks can be detected and isolated. The
sink can then immediately take appropriate actions to prevent compromise of more sensors.

In our case, in contrast, the adversary can compromise a number of sensors within a particular
interval. This interval can be much shorter than the time between successive visits of the sink.
Thus, given enough intervals, the adversary can subvert the entire network as it moves between
sets of compromised sensors, gradually undermining security. Generally speaking, this type of
adversary is well-known in the cryptographic literature as the mobile adversary [3].1

1 The mobile adversary model is used to justify proactive cryptographic primitives, such as signatures
and decryption [4, 5].



Consequently, the main security challenge in the UWSN scenario is: How can a disconnected
sensor network protect itself from a mobile adversary? Here, “protect”, means: “maintain secrecy
of collected information”, i.e., can a sensor keep the adversary from learning sensed data even
though the adversary might eventually break into that sensor and learn all of its secrets. We view
this as an important problem because there are many scenarios where sensors are used to collect
critical or high-value data.

Once a sensor is compromised and the adversary learns its secrets, collected data – even if
encrypted – becomes exposed. This holds regardless of where encrypted data is stored: on the
sensor that produced it or elsewhere. Some recent work [2] has analyzed and confirmed the futility
of hiding data by moving it around the network.

We now zoom in further onto the problem of data secrecy. Considering that compromise of
a given sensor has a certain duration, data collected by the said sensor can be partitioned into
three categories, based on the time of compromise: (1) before compromise, (2) during compromise,
and (3) after compromise. Obviously, nothing can be done about secrecy of data that falls into
category (2) since the adversary is fully in control. The challenge thus becomes two-fold:

• Forward Secrecy: the term forward means that, category (1) data remains secret as time
goes forward.

• Backward Secrecy: the term backward means that, category (3) data remains secret even
though a compromise occurred before it was collected.

We are interested in the confidentiality of data collected when sensors are not under direct
control of the adversary. In the cryptographic literature, notions of intrusion-resilience [6] and key
insulation [7]2 refer to techniques of providing both forward and backward security to mitigate
the effect of exposure of decryption keys. However, these techniques are unsuitable for solving
the problem at hand, as discussed in Section 3.2.

Data integrity is an equally important issue which is normally considered in tandem with data
secrecy. However, in this paper, we ignore data integrity. This is because we distinguish between
read-only and read-write adversaries. The former is assumed to compromise sensors and leave
no evidence behind: it merely reads all memory and storage. In contrast, a read-write adversary
can delete or modify existing – and/or introduce its own fraudulent – data.3 We consider a
read-only adversary to be more realistic, especially since it aims to remain stealthy. A stealthy
adversary has an incentive (and the ability) to visit the UWSN again and again, while a non-
stealthy one might be unable to do so once an attack is detected and corresponding measurements
are taken.

Contributions: In this paper we propose DISH (Distributed Self-Healing), a scheme where
unattended sensors collectively attempt to recover from compromise and maintain secrecy of
collected data. DISH does not absolutely guarantee data secrecy; instead, it offers probabilistic
tunable degree of secrecy which depends on variables such as: adversarial capability (number
of nodes it can compromise at a given time interval), amount of inter-node communication the
UWSNs can support, and number of data collection intervals between successive sink visits. We
believe that this work represents the first attempt to cope with the powerful mobile adversary in
UWSNs. Consequently, it might open up a new line of research.

Organization The organization of the paper is as follows: Section 2 states our assumptions
about the network and the mobile adversary. We then propose a simple public key-based approach
in Section 3. This approach, though less viable, is used as a security yeard-stick. We then present
the symmetric key-based DISH scheme in Sections 4 and 5. Section 6 shows our analytical and
experiment results. Section 7 discusses drawbacks of DISH as well as possible ways to mitigate
them. Section 9 concludes the paper. Related work is deferred to Appendix 8.
2 Both extend the notion of forward security [8, 9].
3 In the security literature, read-only is often referred to as a passive adversary. We do not use the term

“passive” as it does not fit an adversary who is assumed capable of compromising sensors. Whereas,
read-write is called an active adversary.



2 Assumptions

We now state our network assumptions and present our model of the adversary. Table 1 summa-
rizes the notation used in the rest of the paper. Note that the terms round and interval are used
interchangeably.

v number of rounds between successive sink visits
n number of sensor nodes in the network

i, j sensor indices 0 < i, j ≤ n
r, r′ collection round (interval) indices, 0 < r, r′ ≤ T

si sensor i
dr

i data collected by si at round r
Er

i encrypted version of dr
i

H() one-way, collision-resistant hash (e.g. SHA-2)
Enc(X, Y ) randomized encryption of Y under key X
Dec(X, Y ) decryption of Y under key X

Or set of compromised sensors at round r
Hr set of healthy sensors at round r
Sr set of sick sensors at round r
|U | number of elements in set U

k maximum size of Or; assumed to be constant
Table 1. Notation Summary

2.1 Sensor Network Assumptions

We envisage a homogeneous network consisting of peer sensors uniformly distributed over a cer-
tain region. The network operates as follows:

• Sensors are programmed to collect data periodically. 4 Each sensor obtains a single fixed-size
data unit in each collection interval. v denotes the maximum number of collection intervals
between successive sink visits.

• Sensors are unattended. Each sensor waits for either a signal or for some pre-determined time
to upload accumulated data to the sink.

• The network is connected at all times. Any two sensors can communicate either directly or
indirectly, via other sensors. We make no assumption about the communication media: it
could, in fact, be wired or wireless.

• Sensors are capable of conducting certain cryptographic computations, such as one-way hash-
ing, symmetric encryption and – optionally – public key encryption (but not decryption).
However sensors are not able to run IDS on their own.

• Each sensor is equipped with either a Pseudo-Random Number Generator (PRNG) or a
Physical/True Random Number Generator (TRNG). We elaborate on this later in the paper.

• Regardless of its type, encryption is always randomized [10]. Informally speaking, random-
ized encryption means that, given two encryptions under the same key, it is unfeasible to
determine whether the corresponding plaintexts are the same.

• There is enough storage on a sensor to contain O(v) sensed (encrypted) data items between
successive sink visits.

• Each time a sink visits the network, the security “state” of all sensors is securely re-initialized.
This includes all cryptographic keys as well as initial seeds for PRNGs. All sensors maintain
loosely synchronized clocks.

4 Event-driven sensing is also possible in the unattended setting; however, we do not consider it for the
time being.



• There are no power constraints. Although we try to minimize both computation and commu-
nication costs, we assume that security has a much higher priority than power conservation.

We make no assumptions about the richness of sensed data: the set of possible sensor readings
might be very large or very small. It clearly depends on the specific sensor application. In some
cases, sensed data can vary widely, e.g., for complex chemical sensors. Whereas, a simple light
sensor might only collect 1-bit values (i.e., 0 or 1).

2.2 Adversarial Model

We now describe the anticipated adversary. We refer to it as ADV from here on. Our adversary
model resembles that in [2], albeit with somewhat different operations and goals.

• Compromise power: ADV can compromise at most k < n sensors during any single collection
interval. We thus say that ADV is k-capable. The threshold k may be absolute, i.e., an integer,
or relative, i.e., a fraction of n. When ADV compromises a node, and for as long as it remains
in control of that node, it reads all of memory/storage contents and monitors all incoming
and outgoing communication.

• Network knowledge: ADV knows the composition and topology of the network. It is capable
of compromising any node it chooses.

• Key-centric: ADV is only interested in learning the secrets (keys) of sensors it compromises.
(Since knowledge of keys allows it to decrypt data).

• No interference: ADV does not interfere with any communications of any sensor and does
not modify any data sensed by, or stored on sensors it compromises. In other words, ADV is
read-only, as discussed above.

• Stealthy operation: ADV’s movements are unpredictable and untraceable. Specifically, it is
infeasible to detect when and if the adversary ever compromised (or intends to compromise)
a particular sensor.

• Atomic movement: ADV moves monolithically, i.e., at the end of each interval ADV selects at
most k nodes to compromise in the next interval and migrates to them in a single action.

• Strictly local eavesdropping: ADV is unable to monitor and record all communication. It can
only monitor incoming and outgoing traffic on currently compromised nodes.

ADV’s main goal is to learn data collected by sensors. However, this does not imply that ADV
can not guess that data. Since there might be only a few possible values a sensor could obtain,
ADV might know well advance the entire range of all such possible values as discussed at the end
of Section 3.1. Instead, ADV is interested in knowing exactly which value is being sensed. In the
extreme case, this might correspond to a 1-bit flag.

3 Public Key-based Schemes

Although, for usual performance reasons, we prefer a scheme based on symmetric cryptography,
for the sake of completeness we start with a simple public key-based approach and examine its
advantages and limitations.

3.1 A Simple Public Key Scheme

The main features of the simple public key-based scheme are as follows:

• The sink has a long-term public key, PKsink, known to all sensors.
• •As soon as a sensor collects data dr

i at round r, si encrypts it to produce: Er
i = Enc(PKsink, Rr

i ,
dr

i , r, si, · · · ) where Rr
i refers to a one-time random number included in each randomized en-

cryption operation, as specified in the OAEP+ quasi-standard [10].



• When the sink finally visits the UWSN and gathers encrypted data from all sensors, it can
easily decrypt it with its private key SKsink.

• Note that a sensor has no secret (private) key of its own – it merely uses the sink’s public
key to encrypt data.

Since ADV does not know the sinks’s private key (SKsink), the only way it can determine
cleartext data is by guessing and trying to encrypt it with the sink’s public key, PKsink. In
other words, given a ciphertext Er

i (which conceals data dr
i ), ADV cycles through all possible

data values d′ and compares Enc(PKsink, d′) to Er
i . If they match, ADV learns that d′ is the

encrypted value. However, as discussed in Section 2.1, we use randomized encryption and each
Er

i is computed as: Enc(PKsink, Rr
i , d

r
i , ...) where Rr

i is a one-time random value produced by
the sensor for each encryption operation. Assuming that bit-length of Rr

i is sufficient (e.g., 160
or more), the guessing attack becomes computationally infeasible.

There is, however, a crucial security distinction based on the source of random number Rr
i

used in randomized encryption. If random numbers are obtained from a strong physical source
of randomness, then we can trivially achieve both forward and backward secrecy. To argue this
claim informally, we observe that a true random number generator (TRNG) generates statistically
independent values. That is, given an arbitrarily long sequence of consecutive TRNG-generated
numbers, removing any one number from the sequence makes any guess of the missing number
equally likely. Let us suppose that ADV compromises a sensor si at round r′ and releases it at
round r′′ > r′. Encrypted data from any round r < r′ remains secret, since it has the form:
Enc(PKsink, Rr

i , d
r
i , ...) and all the random numbers that ADV learns while in control of si are

statistically independent from Rr
i . Thus, we have forward secrecy. Similarly, any data encrypted

after round r′′ (after ADV releases si) also remains secret, because all random numbers ADV
learns while in control of si are statistically independent from those generated later. Thus, we
have backward secrecy.

On the other hand, if random numbers are obtained from a pseudo-random number generator
(PRNG), the resulting security is much lower. This is because a typical PRNG produces “random”
numbers by starting with a (secret) seed value and repeatedly applying a suitably strong one-way
function H() as: Rr+1

i = H(Rr
i ). Therefore, again assuming that si is compromised at round r′

and released at r′′, data Er
i = Enc(PKsink, Rr

i , d
r
i , ...) for r < r′ remains secret since computing

Rr
i from Rr′

i is computationally infeasible (even if r′ = r + 1) due to the one-way property of
function H(). This implies that forward secrecy is preserved. However, for r > r′′, encrypted
data is easily decrypted by ADV since it is easy to compute Rr

i from Rr′′
i by repeatedly applying

(r − r′′ times) the function H(). Therefore, backward secrecy is lost.

3.2 Key-Insulated and Intrusion-Resilient Schemes

We now consider more complex – and seemingly relevant – cryptographic techniques that provide
both forward and backward secrecy. They include key-insulated [7] and intrusion-resilient [11, 12]
encryption schemes. In both models, time is divided into fixed intervals. The public key remains
fixed throughout the entire system lifetime, whereas, the private key is updated in each interval.
When it is time to update the private key, the user contacts the base, a separate secure entity
typically in the form of a remote trusted server or a local tamper-resistant hardware, for help
in updating its key. This way, without simultaneously compromising both the user and the base,
ADV is unable to learn future keys (thus backward security is achieved). The difference between
a key-insulated encryption scheme and a intrusion-resilient encryption scheme is that when the
user and base are compromised simultaneously all the security including forward security are lost
in the key-insulated encryption scheme while forward security is still guaranteed in the intrusion
resilient encryption scheme.

However, all such schemes are completely useless in our scenario since nodes (sensors) do not
possess any decryption keys. They only use the sink’s public key to encrypt data. Therefore, a



key-insulated or an intrusion-resilient scheme can only help against sink’s private key compromise
– a problem irrelevant in our context.

3.3 Public Key Summary

To summarize our discussion thus far, simple public key encryption can help in achieving both
backward and forward secrecy (our “holy grail” in this paper) only if each sensor is equipped
with a physical source of randomness, i.e., a TRNG. Simple public key encryption with PRNG-
equipped sensors achieves forward secrecy but fails with regard to backward secrecy. More exotic
key-insulated and intrusion-resilient schemes are geared for digital signatures and decryption.
They are unsuitable for the problem at hand.

4 A Simple Symmetric Key Scheme

We now construct a scheme based on symmetric cryptography and discuss its benefits and short-
comings.

We assume that, after each sink visit (at round 1), each si shares an initial and unique secret
key K1

i with the sink. (This is in line with our assumptions in Section 2.1.) Then, at round r ≥ 1,
as it collects data, si produces Er

i = Enc(Kr
i , dr

i , ...). If the encryption key does not change as
rounds go by, all encrypted data can be trivially read by ADV. It only needs to compromise the
sensor once, obtain its key and decrypt any encrypted data, whether generated before or after
the compromise period. Instead, we require that, at the end of each round, each sensor evolve
its key using a one-way hash function H(), thus achieving forward secrecy. Specifically, round r
(for 1 < r ≤ T ) key is computed as: Kr

i = H(Kr−1
i ). If ADV breaks in at round r, it learns Kr

i

but can not obtain Kr−1
i (which was used to encrypt dr−1

i ) due to the one-way property of H().
Unfortunately, backward secrecy is lacking. This is because ADV who breaks in at round r learns

Kr
i . Then, by mimicking the key evolution process, it can obtain any future key Kr′

i (r′ > r) as:5

Kr′
i = Hr′−r(Kr

i ). Armed with Kr′
i , it can decrypt any data (that it might find later) encrypted

with Kr′
i . Hence, there is no backward secrecy. Worse still, after n

k rounds, ADV reaches a steady
state, whereby all data collected and encrypted by all sensors is easily readable.

Based on our discussion in Section 3.1, it might seem that, if all sensors had TRNGs, both
backward and forward secrecy are achievable. This intuition is wrong due to the following paradox:
if si uses each random number Rr

i as a one-time symmetric encryption key to produce Er
i =

Enc(Rr
i , d

r
i ), there is no way for the sink to later decrypt it. This is because Rr

i , as a true random
number, is unpredictable, unique to si and irreproducible by anyone, including the sink. So, there
is no other way for si to communicate Rr

i to the sink.

Summary: Having reviewed simple public key and symmetric approaches, we observe that –
except for the public key scheme used in conjunction with all sensors equipped with TRNGs –
neither achieves the desired level of security: forward and backward secrecy of encrypted data. We
believe that the combination of public key encryption and per-sensor TRNG is not realistic for
many current and emerging sensor networks. Public key encryption requires more computation
and consumes higher storage and bandwidth than symmetric encryption. Similarly, node-specific
TRNGs are not always realistic, at least not on the scale in envisaged UWSNs. Therefore, below
we focus on symmetric key techniques which do not assume any strong source of randomness on
individual sensors.

5 The notation Hp() means p repeated applications of H().



5 DISH: Distributed Self-Healing

We now describe DISH: Distributed Self-Healing scheme providing probabilistic key-insulated
data secrecy. DISH is based on symmetric cryptography, i.e., sensors are only required to perform
hashing and symmetric encryption operations. We first describe the general idea and then present
protocol details.

5.1 General Idea

Each sensor si shares an initial unique secret key K1
i with the sink, as in Section 2.1. At the

start, none of these keys are known to ADV. As soon as the sink collects data and leaves the
network unattended, ADV starts compromising sets of nodes, at most k per round.

We observe that, at round 1, when ADV first compromises k sensors in O1, there are still
n − k sensors that have not been compromised. We call such sensors healthy and the currently
compromised sensors – occupied. While ADV moves to the next compromised set O2 in round 2,
nodes in O1 remain sick. The term sick refers to the ADV’s ability to compute their secret keys
for round 2 (and later), even though it no longer occupies them.

Our main idea is very simple: we let healthy sensors cure sick sensors to become healthy. A
healthy sensor is the one that has either never been compromised yet or regained its security
through DISH. Specifically, sick sensors ask for contributions from healthy sensors and the latter
contribute secret values to sick sensors. A healthy sensor generates each contribution share -
a random number - using its PRNG. This random number is secret to ADV since learning it
requires knowledge of the healthy sensor’s current PRNG state. A sick sensor uses contribution
shares from healthy sensors – along with its current key – as input to a one-way function to
generate its next round key. As long as there is at least one contribution from a healthy sensor,
ADV is unable to learn the new key (unless it compromises the same sensor again in the future).
Consequently, a previously sick sensor becomes healthy after a key update. We call a sensor a
sponsor of another sensor if it furnishes the latter with a contribution in the latter’s key update
process. A sick sensor asks a set of t sponsors for their contribution shares at the end of every
round.

Our approach can be characterized by the following axioms:

• Axiom 1: A healthy sensor remains healthy until ADV compromises it.
• Axiom 2: An occupied sensor can not become healthy. (For it to have a chance of becoming

healthy, ADV has to release it).
• Axiom 3: A sick sensor can become healthy in next round if and only if at least one healthy

sensor contributes input to the computation of its (sick sensor’s) key for round r + 1.

To better illustrate the process, refer to Figure 1 which shows the sensor state transition
diagram. The description so far is clearly too simplistic. First, a sensor has no idea whether
it is sick or healthy, since we assume that our ADV is stealthy: it moves unpredictably and
leaves no trail. Thus, each sensor is potentially sick and potentially healthy. For this reason, we
require all sensors (whether occupied, sick or healthy) randomly select a set of t sponsors at the
end of every round and ask each sponsor for input. Because the cure comes from peer sensors,
the network exhibits a self-healing property - something no individual node can provide– which
emerges through collaboration of all nodes.

5.2 DISH Details

Within each round, each sensor runs two separate processes: main and sponsor. The main process
is shown in Algorithm 1 and the sponsor process in Algorithm 2. As in Section 4, at every sink
visit, each si is securely re-initialized with K1

i – a unique secret generated by the sink (details
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Fig. 1. DISH sensor state transition diagram.

of this process are out of scope of the present work). All sensors are thus healthy at the initial
stage.

The main process (loop at line 5) shows how si selects a set of t sponsors and obtains a random
contribution HELP [p] from each. All collected contributions, in addition to the current key, are
then used to derive the next key Kr+1

i . The one-way property of H() ensures that it is infeasible
for ADV to compute this key as long as at least one input out of: {Kr

i , HELP [1], ...,HELP [t]}
is unknown.

As shown in Algorithm 1 and 2, each sensor node uses its local PRNG for both sponsor nodes
selection and contribution share generation (as a sponsor). As mentioned earlier, a PRNG is
often realized as a one-way function (such as our H()). This allows ADV to compromise si at
round r, copy the PRNG state, release si by round r + 1, and still be able to compute the set
of sponsors that si will ask for help and the set of contribution values that si will generate as a
sponsor in round r + 1. Thus, ADV knows the entire set of sponsors of each sick sensor and also
all the contribution values the sick sensor will generate for each sponsoring request. Because the
sink knows all initial secrets and can compute all intermediate states of all sensors; therefore,
it can also re-generate all sensor keys by mimicking the main and sponsoring processes in each
round. That is, the proposed key update process does not affect the sink’s knowledge of sensors’
round keys and ability to eventually decrypt data encrypted with these keys.

Communication and Computation Overhead. In DISH, each sensor needs to contact t sponsors
for help and also serve as a sponsor for t other sensors in every key update. This incurs a total of
2t messages traversing the UWSN in the end of each round. Each node needs to conduct 2t + 1
hash operations per round: t for sponsor selection, t for contribution generation and 1 for key
generation.



6 Analysis and Simulations

In this section, we present some adversarial strategies, followed analysis and simulation results
showing how DISH fares against these strategies.

6.1 ADV Migration Strategies

The goal of ADV is to minimize the set of healthy sensors - Hr (or maximize Sr). To achieve this
goal, its best strategy is to always choose k healthy sensors to compromise in the next round.

We distinguish between two varieties of ADV, based on its Or selection strategy: Trivial Ad-
versary (T.ADV for short) and Smart Adversary (S.ADV for short).
T.ADV’s strategy is to select and compromise k sensors from Hr randomly. T.ADV estimates
current sensor states by maintaining a network state map which records IDs of sensors compro-
mised and also the compromise time. Each round, T.ADV either chooses to compromise sensors
that have not yet been compromised - these are absolutely healthy sensors - or those have ever
been compromised a long time ago - there is higher probability that these sensors have regained
their security through DISH.
S.ADV’s strategy is to select k healthy sponsors of some sick sensors, such that the latter remain
sick in the next round. S.ADV learns PRNG states of currently sick sensors; therefore, it can
determine the entire set of sponsors for each sick sensor.

6.2 Analysis

We analyze the performance of DISH against T.ADV in terms of the number of healthy nodes at
any round. Recall that a sick node becomes healthy if at least one of its healthy contributions
is not intercepted by T.ADV. Let p(i) denote the probability that i out of t sponsors for a given
sensor are healthy and pp(i) – the probability that at least one (out of i) replies is not routed
through any occupied nodes. The probability that a sick sensor with t sponsors becomes healthy
after the r-th round key update can be expressed as:

pr(t) =
t∑

i=1

p(i) ∗ pp(i) (1)

where p(i) = (|Hr|
i )∗(n−|Hr|−1

t−i )
(n−1

t ) . Note that pp(i) is influenced by the routing algorithm and UWSN

topology. To make our analysis independent from these parameters, we define p as the probability
of any contribution from a sponsor to a recipient being intercepted (eavesdropped on) by T.ADV.
We then have: pp(i) = 1− pi. Therefore, expected number of healthy sensors at round r + 1 can
be expressed as:

|Hr+1| = |Hr|+ |Sr| ∗ pr(t)− k (2)

¿From this we see that |Hr| depends on k, p and t. More specifically, |Hr| is proportional to t,
and, inversely proportional to k and p. We now plot Equation 2 varying these three parameters.
In this and all other plots in this paper, we fix UWSN size at n = 400.

Figure 2 illustrates the influence of k and p on the number of healthy nodes with t fixed at
6. When T.ADV can intercept 20% of all traffic (e.g. p = 0.2 as shown in Figure 2(a)), for
k ≤ 127, the number of healthy nodes decreases in the first several rounds and then remains
steady afterwards. That is, there are enough healthy nodes for the UWSN to successfully defend
against T.ADV. However, when the compromise power of T.ADV increases above the threshold
value of k = 127, healthy nodes eventually dwindle to none, as T.ADV controls all nodes’ secrets
from that round onwards. If T.ADV can intercept 80% of traffic (as shown in Figure 2(b)), the
threshold k value decreases to 68.
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Fig. 2. T.ADV analysis.

Figure 3 shows the effect of t on the number of healthy nodes when T.ADV compromises k = 80
nodes at each round. We identify two critical t values and denote them as tr and to (to > tr),
respectively. tr determines whether the network can successfully defend against T.ADVİf t < tr,
T.ADV eventually learns all secrets and wins. It is easy to see that a higher t brings better security
with more healthy nodes when the network reaches stable state. However, it also incurs higher
communication overhead. We note that there is a value to such that: when t < to, the number
of healthy nodes (after the network reaches stable state) increases quickly with the increase
in t. If t > to, increasing t brings little extra security. Since DISH is not designed to achieve
guaranteed (deterministic) security, to represents a balance between security and performance. It
also determines the communication overhead. As shown in Figure 3(a), if T.ADV intercepts 20%
of all traffic, tr = 1 and to = 4. Whereas, if T.ADV intercepts 80% of all traffic (Figure 3(b)),
tr = 9 and to = 14.

 0

 50

 100

 150

 200

 250

 300

 350

 0  5  10  15  20  25  30

H
ea

lth
y 

N
od

es

Round

t = 1
t = 2
t = 4
t = 6
t = 8

t = 10
t = 12

(a) n = 400 k = 80 p = 0.2

 0

 50

 100

 150

 200

 250

 300

 350

 0  5  10  15  20  25  30

H
ea

lth
y 

N
od

es

Round

t = 2
t = 4
t = 6
t = 8

t = 10
t = 12
t = 14
t = 16
t = 18

(b) n = 400 k = 80 p = 0.8

Fig. 3. Analysis of the effect of t.

In contrast with T.ADV, S.ADV strategically selects k healthy sponsor nodes from a subset of
the sick sensor set Sr, such that sensors in this subset are unable to re-gain security through the
key update process, since their sponsors are now controlled by S.ADV. To maximize its advantage,
S.ADV must also maximize the number of sick sensors. It turns out, that this problem is reducible
to the well-known Subset Cover Problem which is NP. Since we consider a polynomial-time
S.ADV, the size of the covered subset is determined by the specific Or selection algorithm used
byu S.ADV. However, it is safe to say that there should be at least k

t more sick sensors with
S.ADV than with T.ADV, under the same set of parameters. We will validate this hypothesis by
simulation in the next section.



6.3 Simulation Results

To re-confirm the above analysis, we developed a UWSN simulator and run numerous experi-
ments. For each experiment, we defined network parameters (n, t) and ADV parameters (k, p).
We run the simulator until either |Hr| reached a steady state (UWSN won) or |Hr| = 0 (ADV
won). Every node follows the main and helper algorithms described in Section 5.

With t = 6 and p = 0.2, Figure 4(a) shows T.ADV wins when k ≥ 130 but fails when k ≤ 120.
This matches our analytical prediction of the threshold value of k = 127. With t = 6 and p = 0.8,
Figure 4(b) shows T.ADV wins when k ≥ 80 but fails when k ≤ 60. This also matches our
analytical prediction of the threshold value as k = 69.
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Fig. 4. Simulation of T.ADV.

Simulation results with variable t are shown in Figure 5. They confirm that choice of t dramat-
ically affects security and performance.
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Fig. 5. Simulation with different values of t.

Figure 6 compares the performance of DISH under T.ADV and S.ADV. We use a greedy Or

selection algorithm to simulate S.ADVL̇et Hi be the healthy sponsor set of si. The greedy algo-
rithm is shown in Algorithm 3. Figure 6 shows when ADV is able to win the network, S.ADV
achieves the goal faster than T.ADV does. Otherwise, S.ADV learns more sensor secretes than
T.ADV learns.
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Fig. 6. Comparison between T.ADV and S.ADV.

7 Discussion

In this section, we discuss some limitations of the proposed technique and consider ways to
mitigate them.

7.1 Attack Model Limitations

In this paper, we considered a relatively simple single-minded adversary who is only interested in
learning secret keys of compromised sensors by reading all storage and eavesdropping on all traffic
traversing these sensors. The proposed DISH scheme defends against such attacks, as discussed
in Section 6.

However, it is not difficult to image other types of attacks that could be mounted by a more
sophisticated ADV. For example, ADV can remain stealthy if it deletes existing measurements
and replaces them with (the same number of) fraudulent measurements. Fraudulent data may
change overall sensing statistics and affect sink’s actions. Therefore, data integrity might be as
important as data secrecy. We acknowledge that DISH cannot be applied directly to address data
integrity since more issues (such as storage and bandwidth overheads) incurred by authentication
need to be studied further.

Although it is in ADV’s interest to be subtle, subtlety is not always possible. If ADV’s goal
is denial-of-service, by introducing fraudulent data, erasing existing measurements or interfer-
ing with legitimate communication, ADV cannot possibly avoid detection. In addition, nothing
prevents ADV from physically destroying or damaging sensors, especially, since the network is
unattended most of the time.

In summary, ADV can disrupt and attack the network in many other ways that are unaddressed
by DISH. However, at least initially, we focused on the basic read-only type of adversarial be-
havior, since its successful mitigation will allow us to address more advanced (and perhaps more
realistic) adversarial models in the future.



7.2 Communication and Sensor Model Limitations

We considered DISH in an idealized network model where no message is lost and no sensor fails.
In this model, the sink can mimic the entire key evolution process for all sensors and re-generate
all secret keys. However, message loss and/or sensor failures complicate this process.

Unreliable Communication & Reliable Sensors: If communication is unreliable but no
sensor failures occur, a sensor might receive < t contributions in a given round. It then considers
the rest to be lost and records the ID-s of sensors whose it did not receive. This incurs additional
storage and communication overhead of O(pl ∗ t) per sensor per round, where pl is message loss
rate.

Unreliable Communication & Sensors: If both communication and sensors themselves are
faulty, the sink cannot (later) mimic the correct key update process and is thus unable to decrypt
all sensor data. It seems that no symmetric key-based approach (such as DISH) can fully address
this problem, i.e., public key techniques are needed. There are two basic approaches to using
public key cryptography in this context. In the first, each node encrypts its data with the sink’s
public key and uses Kr

i as input input to the randomized public key encryption function. In the
second approach, each node encrypts sensed data with Kr

i and then uses the sink’s public key to
encrypt Kr

i . The security of the two approaches is the same. However, the latter is preferable if
the size of sensed data exceeds the public key block size (e.g., 320 bits for Elliptic Curve ElGamal
or 1024 bits for RSA).

7.3 Drawbacks of Reactive Sponsoring

The proposed DISH scheme is reactive in nature: a sensor selects its sponsors based on local
pseudo-randomness and each sponsor generates a contribution to the next-round key. Reactive
sponsoring has two drawbacks: First, it allows ADV to learn the sponsors of a sick sensor, thereby
allowing more powerful S.ADV attacks. Second, it incurs the overhead of two messages for each
contribution. An intuitive alternative is proactive sponsoring, whereby, in each round, every sen-
sor unilaterally selects t sensors to sponsor. This simple change precludes ADV from learning the
sponsor set of a sick sensor; thus, S.ADV attacks become ineffective. Also, without explicit spon-
sorship request messages, bandwidth overhead is reduced by half. We are currently conducting
a detailed analysis and comparison of the two (proactive and reactive) approaches and hope to
report on our findings in the near future.

8 Related Work

Data secrecy is a fundamental security issue in sensor networks and encryption is the standard way
to achieve it [13, 14]. Much research effort has been invested in clever techniques for establishing
pairwise keys used to secure sensor-to-sensor and sink-to-sensor communication, e.g., [15–18].

Sensor compromise is viable since sensors are built using low-cost commodity hardware com-
ponents. Local keys are updated periodically to mitigate the effect of sensor compromise. Mauw,
et al. [19] proposed some techniques to provide forward-secure data authentication and confiden-
tiality for node-to-sink communication. Forward secure authentication has also been considered
recently in the context of minimizing storage and bandwidth overhead due to data authentica-
tion in the presence of a powerful adversary [1]. The most related work to ours is Whisper [20],
a protocol which provides both forward and backward security for communication between a
pair of sensors. However, the scheme’s security relies on a somewhat unrealistic assumption that
the adversary is unable to compromise both sensors simultaneously. Also, every sensor must be
equipped with a TRNG.

Recently, unattended sensors and sensor networks have become subject of attention in the
security research community and various aspects of security have been explored [21, 1, 22, 2].



Parno, et al. proposed two distributed algorithms where sensors (without interference of sink)
work collectively to detect node replication attack [21]. Security and privacy in data-centric sensor
networks - typically running in unattended mode - have been recently studied in [22]. Di Pietro,
et al. [2] have considered data survivability in UWSNs in the presence of a mobile adversary
and proposed several simple network defense strategies. UWSNs have also been considered in
the context of minimizing storage and bandwidth overhead due to data authentication [1]. The
proposed forward-secure aggregate authentication techniques provide efficient forward security.
Although this paper focuses on data secrecy, our results naturally extend to data authentication
and to other peer group settings (e.g., P2P systems) where a set of nodes can be compromised
by a powerful mobile adversary.

9 Conclusion

In this paper, we explored techniques for intrusion-resilient data secrecy in UWSNs. We pro-
posed DISH, a symmetric key-based self-healing scheme that achieves both forward and (proba-
bilistically) backward secrecy. DISH successfully mitigates the effect of sensor compromise. Our
simulation results clearly demonstrate the efficacy of DISH against a stealthy mobile adversary.
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