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Abstract. The black-box extraction problem over rings has (at least) two important interpretations in
cryptography: An efficient algorithm for this problem implies (i) the equivalence of computing discrete
logarithms and solving the Diffie-Hellman problem and (ii) the in-existence of secure ring-homomorphic
encryption schemes.

In the special case of a finite field, Boneh/Lipton [BL96] and Maurer/Raub [MR07] show that there exist
algorithms solving the black-box extraction problem in subexponential time. It is unknown whether
there exist more efficient algorithms.

In this work we consider the black-box extraction problem over finite rings of characteristic n, where
n has at least two different prime factors. We provide a polynomial-time reduction from factoring n

to the black-box extraction problem for a large class of finite commutative unitary rings. Under the
factoring assumption, this implies the in-existence of certain efficient generic reductions from computing
discrete logarithms to the Diffie-Hellman problem on the one side, and might be an indicator that secure
ring-homomorphic encryption schemes exist on the other side.

1 Introduction

Informally speaking, the black-box extraction problem over an algebraic structure A (like a group,
ring, or a field) can be described as follows: Given an explicit representation of A (e.g., the cyclic
group (Zn, +) with the canonical binary representation of elements) as well as access to a black-box
resembling the structure of A and hiding an element x ∈ A, the challenge is to recover x in the
given explicit representation. Algorithms that work on the black-box representation of an algebraic
structure, and thus on any concrete representation, are called generic or black-box algorithms.

The black-box extraction problem has been studied in various variants and contexts, e.g., see
[Nec94,Sho97,Mau05,BL96,MR07]. The case where the algebraic structure is a cyclic group (with
given representation (Zn, +)), and the extraction problem is better known as the discrete logarithm
problem, was considered by Nechaev [Nec94] and Shoup [Sho97]. They showed that the expected
running time of any generic algorithm for this problem is Ω(

√
p), where p is the largest prime

factor of the group order n. Here, the integer n as well as its factorization is assumed to be publicly
known.

Boneh and Lipton [BL96] considered the black-box extraction problem over prime fields Fp.
Based on a result due to Maurer [Mau94] they developed an algorithm solving the problem in
subexponential time (in log p). Maurer and Raub [MR07] augmented this result to finite extension
fields Fpk by providing an efficient reduction from the black-box extraction problem over Fpk to the
black-box extraction problem over Fp. Currently it is unknown whether there exist more efficient
algorithms for black-box extraction over fields.

In this paper, we address the case where the underlying algebraic structure is a finite commu-
tative ring with unity. The characteristic n of the considered rings is the product of at least two
different primes, thereby excluding the special case of a finite field. We provide an efficient reduction
from computing a non-trivial factor of n to the black-box extraction problem for virtually any such

⋆ This is an extended version of the paper with the same title that appeared in the proceedings of ICALP 2008.



ring where computations (i.e., applying the ring operations + and ·, equality tests and random
sampling of elements) can be done efficiently.

The black-box extraction problem over fields/rings has at least two important applications in
cryptography. For (Zn, +, ·) it can be interpreted as the problem of solving the discrete logarithm
problem given access to an oracle for the Diffie-Hellman problem: (Zn, +) forms a cyclic additive
group. The black-box provides access to the common operations on this group as well as to the
additional operation “·”. This extra operation can be interpreted as an oracle solving the Diffie-
Hellman problem in the group (Zn, +). Hence, an efficient algorithm for the black-box extraction
problem over (Zn, +, ·) would correspond to an efficient generic reduction from computing discrete
logarithms to solving the Diffie-Hellman problem over cyclic groups of order n. Such reductions
are known for groups where the group order is prime and meets certain properties [dB88], or if
certain side information, depending on the respective group, is given [Mau94]. It is also known that
no efficient generic reduction exists for groups with orders containing a large multiple prime fac-
tor [MW98]. Bach [Bac84] provided a reduction from factoring n to computing discrete logarithms
modulo n, i.e., in the multiplicative group Z

∗
n of order φ(n), where φ(·) denotes Euler’s totient

function.
Furthermore, the analysis of the black-box extraction problem sheds light on the existence of

secure ring/field-homomorphic encryption schemes. Consider an encryption function enc : K×P →
C, where K, P and C denotes the key, plaintext and ciphertext space, respectively. Moreover, assume
that P and C exhibit an algebraic structure with respect to certain operations. If for any k ∈ K the
function enck := enc(k, ·) is a homomorphism from P to C, the corresponding encryption scheme is
said to be homomorphic. For instance, unpadded RSA is group-homomorphic, since the functions
ence : Zn → Zn, ence(a) := ae satisfy

ence(a · b) = (a · b)e = ae · be = ence(a) · ence(b),

where “·” denotes the multiplication modulo the RSA modulus n. Further well-known examples
of group-homomorphic encryption schemes are native ElGamal [ElG85] and the Paillier cryptosys-
tem [Pai99].

A natural question arising in this context is whether there exist secure ring-homomorphic
encryption schemes, that is, schemes where P and C exhibit a ring structure, and enck is a ring-
homomorphism. An efficient algorithm for the black-box extraction problem over the ring P would
imply the inexistence of secure ring-homomorphic encryption schemes over P : The black-box can
be considered as an idealization of the encryption functions enck and the problem of recovering
the explicit representation of x as the problem of inverting enck. Note that since the black-box
representation enables equality checking, also the class of considered encryption schemes allows for
checking the equality of encrypted plaintexts. The results by Boneh and Lipton [BL96] and Maurer
and Raub [MR07] imply that for the special case of a finite field any such scheme can be broken in
subexponential time.

1.1 Our Contribution

In this work we consider the black-box extraction problem over finite commutative rings with
unity whose characteristic n is the product of at least two different primes. To the best of our
knowledge, this case has not been treated in the literature yet. We present an efficient reduction
from finding a non-trivial factor of n to the black-box extraction problem over virtually any ring R
where computation is efficient. To this end, we extend a technique due to Leander and Rupp [LR06]
which was originally used to prove the equivalence of breaking RSA and factoring regarding generic
ring algorithms.
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We first provide a reduction for the case R = Zn. This case is especially interesting since Boneh
and Lipton pointed out that their subexponential time black-box extraction algorithm for finite
fields can be extended to finite rings Zn if n is square-free, requiring that the factorization of n is
known. Our result implies that there are no better algorithms than those that factorize n. Moreover,
under the assumption that factoring n is hard, this implies the in-existence of efficient generic
reductions from computing discrete logarithms to solving the Diffie-Hellman problem in cyclic
groups of order n. Note that in contrast to Bach [Bac84] presenting a reduction from factoring n to
computing discrete logarithms in the group Z

∗
n of hidden order φ(n), we consider generic reductions

in groups of known order n.
We extend our reduction to more general rings R which are either given by a polynomial repre-

sentation or a basis representation. More precisely, in the first case we consider rings of the form

R = Zn[X1, . . . , Xt]/J,

where t ≥ 0 and J is an ideal in Zn[X1, . . . , Xt] for which a Gröbner basis is known. In the second
case, the ring R is given by a tuple

(n1, . . . , nt, (ci,j,k)1≤i,j,k≤t)

where n1, . . . , nt are the element orders of an additive basis of (R, +) and the ci,j,k are integers
describing the multiplicative relations of these basis elements. Finally, the reduction naturally
extends to product rings

R = R1 × . . .×Rℓ

where at least one component Ri complies to one of the above forms.
We conclude that our results cover virtually any ring of cryptographic interest since choosing

one of the above representations (currently) seems to be the only way that allows efficient com-
putation in a finite commutative unitary ring without immediately revealing a factor of the ring
characteristic.

Regarding secure homomorphic encryption our result has another interesting consequence:
Boneh/Lipton [BL96] and Maurer/Raub [MR07] show that any field-homomorphic encryption
scheme can be broken in subexponential time. It is an open question whether there exist more
efficient generic algorithms. For a large class of rings we can negate this question, assuming that
factoring the ring characteristic cannot be done better than in subexponential time. This might be
seen as an indicator for the existence of secure ring-homomorphic encryption schemes.

2 The Black-Box Ring Extraction Problem

Informally speaking, black-box ring algorithms are the class of algorithms that operate on the
structure of an algebraic ring without exploiting specific properties of the representation of ring
elements. We adopt Shoup’s generic group model [Sho97] to formalize the notion of black-box ring
algorithms:

Let (R, +, ·) be a finite commutative unitary ring and S ⊂ {0, 1}⌈log2(|R|)⌉ be a set of bit strings
of cardinality |R|. Let

σ : R→ S

be a bijective encoding function which assigns ring elements to bit strings, chosen at random among
all possible bijections. A black-box ring algorithm is an algorithm that takes as input an encoding
list (σ(r1), . . . , σ(rk)), where ri ∈ R. Note that depending on the particular problem the algorithm
might take some additional data as input, such as the characteristic of R, for example. In order to
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be able to perform the ring operations on randomly encoded elements, the algorithm may query
a black-box ring oracle O. The oracle takes two indices i, j into the encoding list and a symbol
◦ ∈ {+,−, ·} as input, computes σ(ri ◦rj) and appends this bit string to the encoding list (to which
the algorithm always has access).

We capture the notion of a black-box ring representation by the following definition:

Definition 1 (Black-Box Ring Representation). Let (R, +, ·) be a finite ring. We call the
tuple (σ,O) consisting of a randomly chosen encoding function σ : R → S, and a corresponding
black-box ring oracle O a black-box ring representation for R and denote it by Rσ.

For short, we sometimes call Rσ a black box ring (meaning that we consider a ring exhibiting the
structure of R but whose elements are encoded by random bit strings). As an abuse of notation we
occasionally write σ(x) ∈ Rσ meaning that the unique encoding σ(x) of an element x ∈ R is given.
Moreover, when we say in the following that an algorithm A performs operations on the black-box
ring Rσ, we mean that A interacts with the black-box ring oracle as described above.

Having formalized the notion of a black-box ring, we can define the black-box ring extraction
(BBRE) problem:

Definition 2 (BBRE Problem). Let R be an explicitly given finite commutative ring with unity
1 and known characteristic n. Furthermore, let B := {r1, . . . , rt} be an (explicitly given) generating
set of R. The black-box ring extraction (BBRE) problem for R is the task of computing x ∈ R,
where x is chosen uniformly random from R, given σ(x), σ(1), σ(r1), . . . , σ(rt) ∈ Rσ.

In the following we consider the BBRE problem over different rings R and relate the hardness of
this problem to the hardness of integer factorization (IF) problem, more precisely, to problem of
finding a factor of n.

3 The Relation between BBRE and IF for Zn

In this section we consider the BBRE problem for the ring Zn, where n has at least two different
prime factors. We provide a reduction from factoring n to the BBRE problem in the following
sense: If there exists an efficient algorithm solving the BBRE problem for Zn with non-negligible
success probability, then there exists an efficient algorithm finding a factor of n with non-negligible
probability.

Theorem 1. Let R := Zn for some integer n having at least two different prime factors. Let A
be an algorithm for the BBRE problem that performs at most m ≤ n operations on Rσ. Assume
that A solves the BBRE problem with probability ǫ. Then there is an algorithm B having white-box
access to A that finds a factor of n with probability at least

ǫ− 1
n

m2 + 3m + 2

by running A once and performing an additional amount of O
(

m2
)

random choices and O
(

m3
)

operations on R as well as O
(

m2
)

gcd computations on log2(n)-bit numbers.

Remark 1. Assume we have a BBRE algorithm A that works for all rings R = Zn where n consists
of at least two different prime factors. Then algorithm B can be used to factor a given integer
n completely. This is done by first running B on n, i.e., B runs A on an instance of the BBRE
problem over Zn and performs some additional operations, resulting in a factor d of n with a certain
probability. If n/d is not a prime power, which can easily be determined, we can run B on n/d and
so on. If A is efficient and solves the BBRE problem with non-negligible probability, then the same
holds for the resulting factoring algorithm.
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Proof Outline. In a nutshell, our proof works as follows: We replace the original black-box ring
oracle O with an oracle Osim that simulates O without using the knowledge of the secret x. We
call this setting the simulation game. Then we show that the behavior of Osim is perfectly indis-
tinguishable from O unless a certain simulation failure F occurs. Denoting the success event of A
when interacting with O and Osim by S and Ssim, respectively, it immediately follows that ǫ = Pr[S]
is upper bound by Pr[Ssim] + Pr[F]. In other words, the probability Pr[F] of a failure is at least
ǫ−Pr[Ssim]. Showing that Pr[F] (multiplied by a certain prefactor) is in turn a lower bound on the
the probability of revealing a divisor of n completes our proof.

3.1 Detailed Proof of Theorem 1

Before introducing the actual simulation oracle, as announced in the proof outline, let us first define
a slightly modified but equivalent version of the original black-box ring oracle O: Instead of using
the ring R = Zn for the internal representation of ring elements, these elements are represented
by polynomials in the variable X over R which are evaluated with x each time the encoding of a
newly computed element must be determined.

Definition 3 (An Equivalent Oracle). The oracle O′ has an input and an output port as well
as a random tape and performs computations as follows.
Input. As input O′ receives the modulus n and an element x ∈U R.
Internal State. As internal state O′ maintains two lists L ⊂ R[X] and E ⊂ Sn. For an index i
let Li and Ei denote the i-th element of L and E, respectively.
Encoding of Elements. Each time a polynomial P should be appended to the list L the following
computation is triggered to determine the encoding of P (x): O′ checks if there exists any index
1 ≤ i ≤ |L| such that

(P − Li)(x) ≡ 0 mod n .

If this equation holds for some i, then the respective encoding Ei is appended to E again. Otherwise
the oracle chooses a new encoding s ∈U S\E and appends it to E.
The computation of O′ starts with an initialization phase, which is run once, followed by the exe-
cution of the query-handling phase:
Initialization. The list L is initialized with the polynomials 1, X and the list E is initialized with
corresponding encodings.
Query-handling. Upon receiving a query (◦, i1, i2) on its input tape, where ◦ ∈ {+,−, ·} identifies
an operation and i1, i2 are indices identifying the list elements the operation should be applied to,
O′ appends the polynomial P := Li1 ◦ Li2 to L and the corresponding encoding to E.

We say that an algorithm is successful in this game iff it outputs x and denote this event by S.

A Simulation Game. Now we replace O′ by a simulation oracle Osim. The simulation oracle is
defined exactly like O′ except that it determines the encodings of elements in a different way in
order to be independent of the secret x.

Each time a polynomial P is appended to the end of list L (during initialization or query-
handling), Osim does the following: Let Lj = P denote the last entry of the updated list. Then for
each 1 ≤ i < j the simulation oracle chooses a new element xi,j ∈ R uniformly at random and
checks whether the equation

(Li − Lj)(xi,j) ≡ 0 mod n

holds. If it is not satisfied for any i, the oracle chooses a new encoding s ∈U S\E and appends it
to E. Otherwise, for the first i the equation is satisfied, the corresponding encoding Ei is appended
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to E again (i.e., Ej = Ei). The algorithm is successful in the simulation game if it outputs the
element x (given as input to Osim). We denote this event by Ssim.

Note that due to the modification of the element encoding procedure, it is now possible that
both an element Li(x) is assigned to two or more different encodings and that different elements
are assigned to the same encoding. In these cases the behavior of Osim differs from that of O′, what
may allow to distinguish between the oracles. In the case of a differing behavior the following failure
event F occurred: There exist i, j ∈ {1, . . . , |L|} satisfying the equation

(Li − Lj)(x) ≡ 0 mod n and (Li − Lj)(xi,j) 6≡ 0 mod n, (1)

or the equation
(Li − Lj)(x) 6≡ 0 mod n and (Li − Lj)(xi,j) ≡ 0 mod n. (2)

Remark 2. There is a technical subtlety. If there is i < j such that (Li − Lj)(x) ≡ 0 mod n but
(Li − Lj)(xi,j) 6≡ 0 mod n then Osim does not necessarily determine different encodings for Lj(x).
There may be some i < i′ < j such that (Li′ − Lj)(x) ≡ 0 mod n and (Li′ − Lj)(xi′,j) ≡ 0 mod n
and Ei = Ei′ . So the simulation failure event as defined by us is just a necessary but not a sufficient
condition for discriminative behavior of O′ and Osim.

It is important to observe that the original game and the simulation game proceed identically
unless F occurs: To this end consider the algorithmA as deterministic Turing machine with identical
input and random tape in both games. Also, consider the oracles O′ and Osim as deterministic
Turing machines receiving the same inputs and random tapes.1 Assuming that F does not occur,
the algorithm receives the same sequence of encodings and thus issues the same sequence of queries
in both games. Furthermore, it outputs the same element in the end of both games and thus wins
the simulation game if and only if it wins the original game. Hence, we have the following relation
between the considered events

S ∧ ¬F ⇐⇒ Ssim ∧ ¬F.

We can obtain an upper bound on Pr[S] by deriving upper bounds on Pr[Ssim] and Pr[F] and
applying the Difference Lemma (Lemma 1).

Lemma 1 (Difference Lemma [Sho04]). Let E1,E2, and E3 be events over the same probability
space. If E1 ∧ ¬E3 ⇐⇒ E2 ∧ ¬E3, then it holds that

|Pr[E1]− Pr[E2]| ≤ Pr[E3].

Bounding the Probability of Success in the Simulation Game. Since all computations are
independent of the uniformly random element x ∈ R, the algorithm A can only guess x:

Pr[Ssim] ≤ 1

|R| =
1

n
.

Bounding the Probability of a Simulation Failure. Let D = {Li − Lj |1 ≤ i < j ≤ |L|}
denote the set of all non-trivial differences of polynomials in L after a run of A. In the following
we show how the probability that a polynomial ∆ ∈ D causes a simulation failure is related to
the probability of revealing a factor of n by simply evaluating ∆ with a uniformly random element
from R.

1 To be precise here, we actually should have defined O′ to perform exactly the same random choices as Osim (i.e.,
letting O′ also choose the elements xi,j but without using them).
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For fixed ∆ ∈ D let F∆ denote the event that ∆ causes a simulation failure as defined by
Equations (1) and (2). Furthermore, let D∆ denote the event that gcd(n, ∆(a)) /∈ {1, n} when
choosing an element a uniformly at random from R.

Now, we are going to express the probabilities of both events using the same terms. Let n =
∏k

i=1 pei

i be the prime factor decomposition of n. Hence, R is isomorphic to Zp
e1
1
× . . . × Zp

ek
k

by

the Chinese Remainder Theorem. Then we can write

Pr
a∈UR

[∆(a) ≡ 0 mod n] = Pr
a∈UR

[(∆(a) ≡ 0 mod pe1
1 ) ∧ . . . ∧ (∆(a) ≡ 0 mod pek

k )]

=
k
∏

i=1

Pr
a∈UR

[∆(a) ≡ 0 mod pei

i ]

=
k
∏

i=1

νi ,

(3)

where νi :=
|{a∈R | ∆(a)≡0 mod p

ei
i }|

|R| . Note that the second line of the above equation follows from

the fact that the events defined by the predicates ∆(a) ≡ 0 mod pei

i are mutually independent.
Using Equation (3) we can express the probability of F∆ by

Pr[F∆] = Pr
a∈UR

[∆(a) ≡ 0 mod n]

(

1− Pr
a∈UR

[∆(a) ≡ 0 mod n]

)

+ Pr
a∈UR

[∆(a) ≡ 0 mod n]

(

1− Pr
a∈UR

[∆(a) ≡ 0 mod n]

)

= 2

(

1−
k
∏

i=1

νi

)(

k
∏

i=1

νi

)

.

(4)

Similarly, we can write the probability of D∆ as

Pr[D∆] = 1− Pr
a∈UR

[∆(a) ≡ 0 mod n]− Pr
a∈UR

[(∆(a) 6≡ 0 mod pe1
1 ) ∧ . . . ∧ (∆(a) 6≡ 0 mod pek

k )]

= 1− Pr
a∈UR

[∆(a) ≡ 0 mod n]−
k
∏

i=1

Pr
a∈UR

[∆(a) 6≡ 0 mod pei

i ]

= 1−
k
∏

i=1

νi −
k
∏

i=1

(1− νi)

(5)

Now, the key observation is that we have the following relation between the probabilities of the
events F∆ and D∆:

Lemma 2. ∀∆ ∈ D : 2 Pr[D∆] ≥ Pr[F∆]

Proof. We have

2 Pr[D∆]− Pr[F∆] = 2

(

1− 2
k
∏

i=1

νi −
k
∏

i=1

(1− νi) +
k
∏

i=1

ν2
i

)

≥ 0

⇐⇒
(

1−
k
∏

i=1

νi

)2

≥
k
∏

i=1

(1− νi)
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It is easy to prove by induction over k that the inequality

(

1−
k
∏

i=1

νi

)k

≥
k
∏

i=1

(1− νi)

holds for all k ≥ 1. From this our claim follows immediately since

(

1−
k
∏

i=1

νi

)2

≥
(

1−
k
∏

i=1

νi

)k

holds for all k ≥ 2. ⊓⊔

The Factoring Algorithm. Based on the relation given by Lemma 2, we construct an efficient
factoring algorithm. Consider an algorithm B that runs the BBRE algorithm A on an arbitrary
instance of the BBRE problem over Zn. During this run it records the sequence of queries that A
issues, i.e., it records the same list L of polynomials as the black-box ring oracle. Then for each
∆ ∈ D the algorithm B chooses a new random element a ∈ Zn (like the oracle is doing), and
computes gcd(n, ∆(a)). There are at most (m + 2)(m + 1)/2 such polynomials and each of them
can be evaluated using at most m + 1 ring operations (since it is given as a straight-line program
of length at most m). Thus, B chooses O

(

m2
)

random elements and performs O
(

m3
)

operations
on R as well as O

(

m2
)

gcd computations on log2(n)-bit numbers. Let the event that at least one
of these gcd computations yields a non-trivial factor of n be denoted by D. Then clearly we have

Pr[D] ≥ max
∆∈D

(Pr[D∆]).

From this we can derive the following lower bound on the the success probability of B in terms of
the failure probability:

Pr[F] ≤
∑

∆∈D

Pr[F∆] ≤ 2
∑

∆∈D

Pr[D∆] ≤ (m + 2)(m + 1)Pr[D] (6)

To Summarize. Remember that ǫ = Pr[S] denotes the success probability of the BBRE algorithm
A. From Lemma 1 follows that

Pr[F] ≥ Pr[S]− Pr[Ssim] ≥ ǫ− 1

n
.

Deploying the above lower bound on Pr[F] in Equation (6) finally yields

Pr[D] ≥ Pr[F]

(m + 2)(m + 1)
≥ ǫ− 1

n

(m + 2)(m + 1)
.

4 Extending our Reduction to Multivariate Polynomial Rings

In this section we are going to lift our reduction from the special case R = Zn to the case

R = Zn[X1, . . . , Xt]/J,

where Zn[X1, . . . , Xt] denotes the ring of polynomials over Zn in indeterminates X1, . . . , Xt (t ≥ 0)
and J is an ideal in this polynomial ring such that R is finite. Note that any finite commutative
ring with unity can be represented in this way:
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Lemma 3 (Polynomial Representation). Let R be a finite commutative unitary ring of char-
acteristic n. Then there is a number t ≤ log2 |R| and a finitely generated ideal J of Zn[X1, . . . , Xt]
such that R ∼= Zn[X1, . . . , Xt]/J.

Proof. Let M = {m1, . . .mt} ⊂ R be a generating subset of R, i.e., R = 〈M〉. Consider the
mapping φ : Zn[X1, . . . , Xt]→ R such that 1 7→ 1 and Xi 7→ mi for 1 ≤ i ≤ t. Certainly, φ is a ring
homomorphism implying that J := ker(φ) is an ideal of Zn[X1, . . . , Xt]. Applying the fundamental
theorem on homomorphisms (e.g., see [Lan02, p.89]) yields that Zn[X1, . . . , Xt]/J ∼= R.

Since Zn trivially is a Noetherian ring it follows by Hilbert’s basis theorem (e.g, see [Gri99,
p.181]) that also the polynomial ring Zn[X1, . . . , Xt] is Noetherian. Thus, every ideal of Zn[X1, . . . , Xt],
especially J , is finitely generated.

By the fundamental theorem of finitely generated abelian groups (e.g., see [Gri99, p.48]) the
additive group of a finite ring decomposes uniquely (up to order) into a direct product of cyclic
groups. Observe that a group of cardinality |R| decomposes into a product of at most log2 |R|
groups. Hence, setting M to be the set of generators of these subgroups of (R, +), we see that a
number of t ≤ log2 |R| elements is sufficient to generate the entire ring. ⊓⊔

We start by considering a useful decomposition of such rings similar to the CRT-decomposition
for Zn. Next, we give some facts about Gröbner bases over these rings and their component rings.
Finally, we use these results in a reduction proof which is similar to the one for Zn.

4.1 A Prime-Power Decomposition for Multivariate Polynomial Rings

It is a well-known fact that any finite commutative ring is uniquely (up to order) decomposable
into a direct product of local rings [McD74, p.95]. However, since this decomposition does not meet
our requirements, we devise another simple way of decomposing R into a direct product of rings
with prime-power characteristic, but not necessarily local rings.

Lemma 4. Let R = Zn[X1, . . . , Xt]/〈F 〉 and n =
∏k

i=1 pei

i be the prime factor decomposition of
the characteristic n of R. Then R is decomposable into a direct product of rings

R ∼= R1 × . . .×Rk,

where Ri := Zp
ei
i

[X1, . . . , Xt]/J .

Proof. Let F be a set of polynomials generating the ideal J in Zn[X1, . . . , Xt]. We denote this by
J = 〈F 〉. Note that the ring R can equivalently be written as Z[X1, . . . , Xt]/〈n, F 〉. For 1 ≤ i ≤ k
let Ji := 〈pei

i , F 〉 which is an ideal in Z[X1, . . . , Xt]. Then for each 1 ≤ i < j ≤ k it holds that

Ji +Jj := {a + b|a ∈ Ji, b ∈ Jj} = Z[X1, . . . , Xt]. Moreover, we have
⋂k

i=1 Ji = 〈n, F 〉. Thus, by the
generalized Chinese Remainder Theorem [Gri99, p.184], we obtain the isomorphism

Zn[X1, . . . , Xt]/〈F 〉 ∼= Z[X1, . . . , Xt]/〈n, F 〉
∼= Z[X1, . . . , Xt]/〈pe1

1 , F 〉 × . . .× Z[X1, . . . , Xt]/〈pek

k , F 〉
∼= Zp

e1
1

[X1, . . . , Xt]/J × . . .× Zp
ek
k

[X1, . . . , Xt]/J.

⊓⊔
We call this way of decomposing R the prime-power decomposition of R. Note that Lemma 4 holds
for any finite commutative unitary ring since any such ring can be represented as polynomial ring:

Corollary 1. Let R be a finite commutative unitary ring of characteristic n =
∏k

i=1 pei

i . Then R
is isomorphic to a product of rings

R1 × · · · ×Rk

where Ri has characteristic pei

i .

9



4.2 Gröbner Bases for Polynomial Ideals over Rings

Roughly speaking, a Gröbner basis G is a generating set of an ideal J in a multivariate polynomial
ring exhibiting the special property that reduction of polynomials from J modulo the set G always
yields the residue zero. This property is not satisfied for arbitrary ideal bases and enables effective
computation in residue class rings modulo polynomial ideals in the first place. Gröbner bases were
originally introduced by Buchberger [Buc65] for ideals J in K[X1, . . . , Xt] where the coefficient
space K is a field. Later this notion was generalized to the case where K is a Noetherian ring such
as Zn (e.g., see [AL94, Chapter 4]).

Let us introduce some notation. A monomial or power product in indeterminates X1, . . . , Xt is
a product of the form X = Xa1

1 · . . . ·Xat
t for some (a1, . . . , at) ∈ N

t
0. In the following let an arbitrary

but admissible order > on monomials be given. For instance, this could be the lexicographic order
>lex defined as: X1 = Xa1

1 · · ·Xat
t >lex X2 = Xb1

1 · · ·Xbt
t iff the leftmost non-zero entry of (a1 −

b1, . . . , at − bt) is positive.
Let f ∈ Zn[X1, . . . , Xt] with f 6= 0. Then we can write f as f = c1X1 + . . . + csXs, where

c1, . . . , cs ∈ Zn\{0} and X1 > . . . > Xs. The leading coefficient lc(f), the leading monomial lp(f),
and the leading term lt(f) of f with respect to > are defined as lc(f) := a1, lp(f) := X1, and
lt(f) := a1X1, respectively.

Now, we are able to define the reduction of a polynomial modulo a set of polynomials. To this
end, we adopt the respective definitions from [AL94, Chapter 4]. In the following we do not mention
the fixed monomial ordering explicitly anymore.

Definition 4 (Polynomial Reduction). Let two polynomials f and h and a set of non-zero
polynomials F = {f1, . . . , fs} in Zn[X1, . . . , Xt] be given.

(a) We say that f can be reduced to h modulo F in one step, denoted by f
F−→ h, if and only

if h = f − (c1X1f1 + . . . + csXsfs) for c1, . . . , cs ∈ R and power products X1, . . . ,Xs where
lp(f) = Xilp(fi) for all i such that ci 6= 0 and lt(f) = c1X1lt(f1) + . . . + csXslt(fs).

(b) We say that f can be reduced to h modulo F , denoted by f
F−→+ h, if and only if there exist

polynomials h1, . . . , hℓ−1 ∈ Zn[X1, . . . , Xt] such that f
F−→ h1

F−→ h2
F−→ . . .

F−→ hℓ−1
F−→ h.

(c) A polynomial h is called minimal with respect to F if h cannot be reduced modulo F .

(d) We call h a (minimal) residue of f modulo F , denoted by h = f mod F , if f
F−→+ h and h is

minimal.

Note that there is an efficient algorithm computing a minimal residue of a polynomial f modulo a
set F (provided that the representation of f and F is efficient) according to the above definition.
For instance, see Algorithm 4.1.1 in [AL94].

Definition 5 (Gröbner Basis). Let J be an ideal in Zn[X1, . . . , Xt] and G = {g1, . . . , gs} be a
set of non-zero polynomials such that 〈G〉 = J . Then G is called a Gröbner basis for J if for any
polynomial f ∈ Zn[X1, . . . , Xt] we have

f ∈ J ⇐⇒ f mod G = 0 .

Fortunately, there always exists an ideal basis with this special property, as stated by Lemma 5.
However, note that given an arbitrary ideal basis, a Gröbner basis for the corresponding ideal is
not always easy to compute, see Section 7. In the following we always assume that Gröbner bases
for the considered ideals are given.

Lemma 5. Let J be a non-zero ideal of Zn[X1, . . . , Xt], then J has a finite Gröbner basis.
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The following lemma is crucial for proving that (similar to the Zn-case) an element f ∈ R ∼=
R1 × . . . × Rk that is congruent to zero over a component Ri but not congruent to zero over
another component Rj (cf. Lemma 4) helps in factoring n. Observe that Lemma 6 requires that
the leading coefficients of all given Gröbner basis elements are units. For our purposes, this is not a
restriction at all but a reasonable assumption since otherwise the given representation of R would
immediately reveal a factor of n. A proof for this lemma based on the notion of syzygies can be
found in Appendix A.

Lemma 6. Let A = Zn[X1, . . . , Xt] and n =
∏k

i=1 pei

i . Furthermore, let G = {g1, . . . , gs} be a
Gröbner basis for the ideal J = 〈g1, . . . , gs〉 in A such that lc(gi) ∈ Z

∗
n for all 1 ≤ i ≤ s. Then for

each 1 ≤ ℓ ≤ s the set Gℓ =
{

peℓ

ℓ , g1, . . . , gs

}

is a Gröbner basis for the ideal Jℓ = 〈peℓ

ℓ , g1, . . . , gs〉
in A.

4.3 The Relation between BBRE and IF for Zn[X1, . . . , Xt]/J

We are going to lift our reduction from the special case R = Zn to the more general case of finite
multivariate polynomials rings R = Zn[X1, . . . , Xt]/J , where J is given by a Gröbner basis. Let
n =

∏k
i=1 pei

i . In the case R = Zn our factoring algorithm was successful if it was able to find an
element a ∈ R such that a ∈ 〈pei

i 〉 and a 6∈ 〈pej

j 〉 for some 1 ≤ i < j ≤ k. The following theorem
shows that a generalization of this fact holds for residue class rings modulo polynomial ideals given
by Gröbner basis.

Theorem 2. Let A = Zn[X1, . . . , Xt] where n =
∏k

i=1 pei

i and k ≥ 2. Furthermore, let G =
{g1, . . . , gs} be a Gröbner basis for the ideal J = 〈g1, . . . , gs〉 in A such that lc(gi) ∈ Z

∗
n for all

1 ≤ i ≤ s. Assume an element f ∈ A is given, such that f ∈ Ji = 〈pei

i , g1, . . . , gs〉 and f 6∈ Jj =
〈pej

j , g1, . . . , gs〉 for some 1 ≤ i < j ≤ k. Then computing gcd(lc(r), n), where r = f mod G, yields
a non-trivial factor of n.

Proof. First of all, observe that since f 6∈ Jj we have that f 6∈ J and so r = f mod G is not zero
by Definition 5. Since r is a minimal residue and the leading coefficients lc(gi) of all Gröbner basis
elements are units, it follows by Definition 4 that the leading monomial lp(r) of r is not divisible
by any leading monomial lp(gi) of a Gröbner basis element. Otherwise, r would be reducible to

r
G−→ r − lc(gi)

−1lc(r)Xigi, where Xilp(gi) = lp(r), using some gi such that lp(gi) divides lp(r).
Moreover, by Lemma 6, the set Gi = {pei

i , g1, . . . , gs} is a Gröbner basis for the ideal Ji. Thus,
since f ∈ Ji also r ∈ Ji and the reduction of r modulo Gi would yield the minimal residue zero.
As the leading monomial lp(r) is not divisible by any lp(gi), the leading coefficient lc(r) must be
divisible by pei

i . Since r 6= 0 and lc(r) 6≡ 0 mod n (by definition of the leading coefficient) computing
gcd(lc(r), n) yields a non-trivial factor of n. ⊓⊔

The following example illustrates the result captured by the above theorem. Moreover, it shows
that in the case where G is not a Gröbner basis, elements f satisfying the properties from Theorem 2
seem not to reveal a factor of n by considering their residues modulo G.

Example 1. Consider the finite ring R = Z225[X1, X2]/J where 225 = 32 · 52 and J = 〈X1X2 +
1, X2

2 + 224〉. Let us use the lexicographic order where X1 > X2 for polynomial reduction. Note
that F = {X1X2 + 1, X2

2 + 224} is a generating set, but not a Gröbner basis for J with respect
to this order. Furthermore, not that G = {X1 + X2, X

2
2 + 224} is a Gröbner basis for J . Let

f = X4
1X2

2+224X4
1+2X1+7X2

2+38X2+218 = (4X2)(3
2)+(X4

1+7)(X2
2+224)+2(X1+X2) mod 225.

It holds that f ∈ J1 = 〈32, X1+X2, X
2
2 +224〉 but f 6∈ J2 = 〈52, X1+X2, X

2
2 +224〉. The polynomial
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f can be reduced modulo F to the minimal residue f mod F = 2X1 + 7X2
2 + 38X2 + 218 =

f − (X4
1 + 7)(X2

2 + 224) mod 225. It is easy to see that no coefficient of this residue share a non-
trivial factor with 225. Modulo the Gröbner basis G the polynomial f can be reduced to the
minimal residue r = f mod G = 36X2 = f− (X4

1 +7)(X2
2 +224)−2(X1 +X2) mod 225. Computing

gcd(lc(r), 225) = 9 yields a non-trivial factor of 225.

The above fact allows us to formulate and prove a theorem similar to Theorem 1.

Theorem 3. Let R := Zn[X1, . . . , Xt]/J for some integer n having at least two different prime
factors and ideal J in Zn[X1, . . . , Xt]. Assume a Gröbner basis G = {g1, . . . , gs} for J is given. Let
A be an algorithm for the BBRE problem that performs at most m ≤ |R| operations on Rσ. Assume
that A solves the BBRE problem with probability ǫ. Then there is an algorithm B having white-box
access to A that finds a factor of n with probability at least

ǫ− 1
n

(m + t + 2)(m + t + 1)

by running A once and performing an additional amount of O
(

(m + t)2
)

random choices and
O
(

m(m + t)2
)

operations on R as well as O
(

(m + t)2 + s
)

gcd computations on log2(n)-bit inte-
gers.2

Proof. We adapt the proof of Theorem 1. The description of the original and the simulation game
almost carries over completely by setting R := Zn[X1, . . . , Xt]/J . There are only a few slight tech-
nical differences concerning the oracles O and Osim considered in the original game (cf. Definition 3)
and the simulation game:

– The list L maintained by both oracles is initialized with the t+1 generating elements 1, X1, . . . , Xt

of R, and with the variable X. As before, computed ring elements are represented by polynomials
in R[X] = (Zn[X1, . . . , Xt]/J)[X].

– Whenever an element P ∈ R[X] is appended to the list L, say as element Lj = P , O′ checks
whether there exists an element Li ∈ L such that (Li−Lj)(x) ∈ J which is equivalent to checking
whether the residue r = (Li − Lj)(x) mod G is the zero polynomial over Zn. Instead of using
the given secret x in the above evaluation, the simulation oracle Osim performs this check using
a new random element xi,j ∈ R for each difference polynomial Li − Lj (i < j ∈ {1, . . . , |L|}).

The rest of the description of the games applies unchanged. Let the events S, Ssim and F be defined
analogously to the case R = Zn. We are left with deriving bounds for the success probability
Pr[Ssim] in the simulation game and for the probability Pr[F] of a simulation failure. This also
works similarly to the previous case except for some technical differences.

Bounding the Probability of Success in the Simulation Game. All computations in the
simulation game are independent of the uniformly random element x. Thus, the algorithm A can
only guess x, resulting in

Pr[Ssim] ≤ 1

|R| ≤
1

n
.

2 We count the addition/multiplication of two ring elements together with the reduction modulo G as one ring
operation.
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Bounding the Probability of a Simulation Failure. Again let D := {Li−Lj |1 ≤ i < j ≤ |L|}
denote the set of all non-trivial differences of polynomials in L after a run of A, and let ∆ be some
(fixed) element of D. Let n =

∏k
i=1 pei

i be the prime factor decomposition of n, then R has a prime
power decomposition into

R ∼= Z[X1, . . . , Xt]/〈pe1
1 , G〉 × . . .× Z[X1, . . . , Xt]/〈pek

k , G〉

according to Lemma 4. Let

νi :=
|{a ∈ R | ∆(a) ∈ 〈pei

i , G〉}|
|R|

be the probability that ∆(a) ∈ 〈pei

i , G〉 for a uniformly random element a ∈ R. Using this redefini-
tion of νi, the probability Pr[F∆] that ∆ causes a simulation failure is given by Equation 4.

By Theorem 2, ∆ reveals a factor of n if we can find an element a ∈ R such that ∆(a) ∈ 〈pei

i , G〉
and ∆(a) 6∈ 〈pej

j , G〉 for some 1 ≤ i < j ≤ k. In this case computing gcd(lc(∆(a) mod G), n) yields
a non-trivial factor provided that lc(g) ∈ Z

∗
n for all g ∈ G. The probability Pr[D∆] of finding such

an element a at random is given in terms of νi by Equation 5. Clearly, we again obtain the following
relation between Pr[D∆] and Pr[F∆] in this case:

2 Pr[D∆] ≥ Pr[F∆]

The Factoring Algorithm. Consider an algorithm B that first tries to find a factor of n by computing
gcd(lc(g), n) for all g ∈ G. Then it runs the BBRE algorithmA on an arbitrary instance of the BBRE
problem over R and records the sequence of queries that A issues. For each ∆ ∈ D the algorithm
B chooses a new random element a ∈ R, and computes gcd(lc(∆(a) mod G), n). There are at most
(m + t + 2)(m + t + 1)/2 such polynomials and each can be evaluated using at most m + 1 ring
operations. Thus, in total B chooses O

(

(m + t)2
)

random elements and performs O
(

m(m + t)2
)

operations on R as well as O
(

(m + t)2 + s
)

gcd computations on log2(n)-bit integers.
Let D denote the event that B finds a factor of n. The total probability of simulation failure

Pr[F] is upper bounded by

Pr[F] ≤
∑

∆∈D

Pr[F∆] ≤ 2
∑

∆∈D

Pr[D∆] ≤ (m + t + 2)(m + t + 1)Pr[D].

Therefore, the probability of finding a factor of n with this algorithm is at least

Pr[D] ≥ ǫ− 1
n

(m + t + 2)(m + t + 1)
.

⊓⊔

Note that univariate polynomial quotient rings of the form Zn[X1]/J for some ideal J in Zn[X1]
are covered by Theorem 3 as a special case. A Gröbner basis for J can always be easily determined:
If J is given by a single polynomial g we are done. In the case where J is described by a set of poly-
nomials {g1, . . . , gs}, a unique polynomial g generating J can be computed as g = gcd(g1, . . . , gs).
Furthermore, we can use the standard polynomial division algorithm (for univariate polynomials)
to implement reduction modulo g.

Let (n, t, G)← RGen(κ) be a ring instance generator that on input of a security parameter κ (in
unary representation) outputs the description (n, t, G) of a ring R = Zn[X1, . . . , Xt]/〈G〉, where n is
an integer consisting of at least two different primes, t specifies the number of indeterminates, and
G is a Gröbner basis for the ideal 〈G〉. Note that the parameters n, t, as well as the Gröbner basis
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(i.e., |G| and the individual elements of the Göbner basis) may all depend on κ. Let us assume that
addition, subtraction, multiplication, reduction modulo G as well as sampling random elements in
the rings R takes polynomial-time in κ. Furthermore, let there exist a non-constant polynomial q(·)
over N such that for all κ and possible outputs (n, t, G) ← RGen(κ) it holds that log2(n) ≥ q(κ).
Then Theorem 3 provides a polynomial-time (in κ) reduction from finding a factor of n to the
black-box ring extraction problem for the family of rings described by RGen.

5 Extending our Reduction to Rings in Basis Representation

In this section, we show that our reductions also works for rings that are given in basis representa-
tion. A basis representation of a ring R is a tuple

(n1, . . . , nt, (ci,j,k)1≤i,j,k≤t)

where n1, . . . , nt are the additive orders of elements b1, . . . , bt ∈ R generating (R, +) and the
ci,j,k) ∈ Znk

are integers describing the effect of multiplication on the bi via

bibj :=
t
∑

k=1

ci,j,kbk.

Thus, elements of R are represented by tuples

(r1, . . . , rt) ∈ Zn1 × . . .× Znt .

The addition of two elements r = (r1, . . . , rt) and s = (s1, . . . , st) in this representation is defined
by their componentwise addition, i.e.,

r + s = (r1 + s1, . . . , rt + st) .

Multiplication is defined by

r · s =
∑

1≤i,j≤t

(risjci,j,1, . . . , risjci,j,t) .

The two elements are equal, which is denoted by r ≡ s, if and only if ri ≡ si mod ni for all 1 ≤ i ≤ t.
The elements b1 = (1, 0, . . . , 0), b2 = (0, 1, 0, . . . , 0), . . ., bt = (0, . . . , 0, 1) represent an additive basis
of R.

Remark 3. Note that the ring R is not necessarily ring-isomorphic to the product ring Zn1×. . .×Znt

since multiplication is defined differently. However, if the basis representation satisfies

ci,j,k =

{

1, i = j = k

0, else

then such an isomorphism exists. Indeed, the basis representation of R essentially corresponds to
the canonical representation Zn1 × . . .×Znt . As a special case, we obtain R = Zn by setting n1 = n
and t = 1.

The size of this representation is bounded by O
(

(log |R|)3
)

. Thus, choosing this representation
for general finite commutative rings might be of interest for cryptographic purposes. However, the
integers ni — which need to be known — are factors of the characteristic n. Hence, in the following
we only need to consider the case where all ni are equal to the characteristic n, since otherwise
at least one of the ni is a non-trivial factor of n and thus the representation would not hide the
factorization of n. Theorem 4 formulates our reduction for this case.
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Theorem 4. Let R = (n1, . . . , nt, (ci,j,k)1≤i,j,k≤t) be a finite commutative unitary ring of charac-
teristic n in basis representation such that n1 = · · · = nt = n. Let A be an algorithm for the BBRE
problem that performs at most m ≤ |R| operations on Rσ and solves the BBRE problem with prob-
ability ǫ. Then there is an algorithm B having white-box access to A that finds a factor of n with
probability at least

ǫ− 1
n

(m + t + 2)(m + t + 1)

by running A once and performing an additional amount of O
(

(m + t)2
)

random choices and
O
(

m(m + t)2
)

operations on R as well as O
(

(m + t)2
)

gcd computations on log2(n)-bit integers.

Proof. Let n =
∏k

i=1 pei

i be the prime factor decomposition of n. Then according to Corollary 1
R can be decomposed into a direct product R1 × . . .× Rk of rings such that Ri has characteristic
pei

i for 1 ≤ i ≤ k. Let φi : R → Ri be the surjective homomorphisms projecting R to the i-th
component Ri.

Then we can again setup a simulation game that is similar to the one in the proofs of Theorems 1
and 3. In particular, we get the well-known relation

Pr[F∆] = 2 Pr
a∈UR

[∆(a) = 0 ∈ R]

(

1− Pr
a∈UR

[∆(a) = 0 ∈ R]

)

≤ 2 Pr
a∈UR

[∃ i, j : φi(∆(a)) = 0 ∈ Ri and φj(∆(a)) 6= 0 ∈ Rj ]

= 2 Pr[D∆]

(7)

It remains to show that the basis representation of an element ∆(a) projecting to zero in a
component Ri and not to zero in a component Rj indeed reveals a factor of n. Let

r = (r1, . . . , rt),

where ri ∈ Zn, denote the basis representation of ∆(a). Then we have r 6≡ (0, . . . , 0). Furthermore,
let I := {i | φi(∆(a)) 6= 0 ∈ Ri} and ρ :=

∏

i∈I pei

i . The integer ρ is a multiple of the characteristic
of Ri and thus we obtain φi(ρ∆(a)) = 0 ∈ Ri for each i ∈ I. Hence, ρ∆(a) is equal to the zero
element in the ring R which would lead to the basis representation

ρr = (ρr1, . . . , ρrt) ≡ (0, . . . , 0)

From that we can observe that each non-zero component ri must already be a zero divisor in Zn

and so computing gcd(ri, n) yields a factor.
As before, our factoring algorithm B chooses a new random element a ∈ R for each ∆ ∈ D and

computes gcd(ri, n), where ri is a non-zero component in the basis representation of ∆(a). ⊓⊔

6 Extending our Reduction to Product Rings

Our reduction naturally extends to product rings where at least one component ring is given in a
representation already covered by Theorem 3, or 4. Note that in the following theorem the integer
n is not necessarily the characteristic of the product ring R.

Theorem 5. Let R := R1 × . . . × Rℓ be the direct product of finitely many rings where R1 =
Zn[X1, . . . , Xt]/J or R1 = (n1, . . . , nt, (ci,j,k)1≤i,j,k≤t). Let the integer n consist of at least two
different prime factors, let n1 = · · · = nt = n, and let the ideal J be given by a Gröbner basis
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G = {g1, . . . , gs}. Let A be an algorithm for the BBRE problem that performs at most m ≤ |R|
operations on Rσ. Assume that A solves the BBRE problem with probability ǫ. Then there is an
algorithm B having white-box access to A that finds a factor of n with probability at least

ǫ− 1
n

(m + t + 2)(m + t + 1)

by running A once and performing an additional amount of O
(

(m + t)2
)

random choices and
O
(

m(m + t)2
)

operations on R1 as well as O
(

(m + t)2 + s
)

gcd computations on log2(n)-bit inte-
gers (where s = 0 if R1 is not given in polynomial representation).

Proof. Given σ(x) ∈ Rσ where x = (x1, . . . , xℓ) is uniformly chosen from R = R1 × . . . × Rℓ the
algorithm A finds x, i.e., all components x1, . . . , xℓ, with probability ǫ. Thus, given σ(x) it outputs
an element (y1, . . . , yℓ) such that y1 = x1 with probability at least ǫ. Furthermore, observe that
choosing an element x uniformly at random from R is equivalent to choosing each component xi

uniformly at random from Ri. Thus, informally speaking, A solves the BBRE problem over each
component ring separately. Hence, we can simply apply the ideas from the proofs of Theorems 1, 3,
and 4 to this case, namely to the component R1.

More precisely, we can just generalize the description of the original and the simulation game
to product rings (which is a straightforward task) except for one modification: instead of making
the computations in the simulation game independent of x, i.e., all components x1, . . . , xℓ, we
make them only independent of the component x1. That means, when determining encodings, the
simulation oracle Osim still evaluates polynomials over R2, . . . , Rℓ with the given inputs x2, . . . , xℓ

exactly as O′ does and only chooses new random elements for evaluating polynomials over R1. In
this way, only the modification over R1 can lead to a difference in the behavior of Osim and O′ and
so we can define the event of a simulation failure as before.

The success probability of A in the simulation game is upper bounded by the probability that
it outputs x1 which is at most 1

n
. The probability of a simulation failure can be bounded exactly

as before.
Similarly, the factoring algorithm B runs A on some instance of the BBRE problem over R

and records the sequence of queries. The corresponding difference polynomials can be seen as
polynomials over R1 and so B does the same steps as the factoring algorithms described in the
previous proofs depending on the representation of R1.

Hence, we conclude that we obtain the same relation between the success probability of A and
B and the same number of additional operations B performs as in the simple cases. ⊓⊔

7 Implications for General Rings

In this section we like to clarify the implications of our result to general finite commutative rings
with unity. Our reduction seems to apply to any representation of such a ring R that does not
immediately reveal a factor of the characteristic of R and allows for efficient computations, as
explained in the following.

There are essentially three ways to represent a finite commutative ring [AS05], namely the table
representation, the basis representation, and the polynomial representation. Using the table repre-
sentation for a ring R means to represent R by an addition and multiplication table which requires
O
(

|R|2
)

space. Hence, considering ring sizes of cryptographic interest this type of representation
can be immediately excluded from the list of possible representations.

We considered the basis representation of a ring in Section 5 and provided a reduction for all
cases where the representation itself does not immediately leak a factor of the ring characteristic.
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A reduction for rings in polynomial representation was given in Section 4. Unfortunately, to
make our reduction work for this representation the ideal J must not be given by an arbitrary
basis but a Gröbner basis. If we are given a basis other than a Gröbner, we theoretically could
compute a Gröbner basis from this input using a variant of Buchberger’s algorithm for Noetherian
rings [AL94] (or corresponding variants of Faugere’s F4 [Fau99] and F5 [Fau02] algorithm). However,
for Gröbner basis algorithms one still does not know an upper bound on their running times (even
in the case when the coefficient space is a field). The work due to Mayr and Meier [MM82] implies

that there are instances where constructing such a basis takes time in the order of 22O(t)
, where t is

the number variables. Thus, we cannot give the factoring algorithm described in our reduction an
arbitrary basis of the ideal J as input and let it first compute a Gröbner basis, since there are cases
where this computation easily exceeds the time needed to factor n directly using the GNFS. So the
reduction would be meaningless. Hence, our result only holds for families of rings in polynomial
representation where a Gröbner basis for J is given or known to be efficiently computable.

This is the “bad” news. The “good” news is that in order to be able to perform equality checks
between ring elements in this representation efficiently — which corresponds to solving instances of
the ideal membership problem — there is currently no other way than providing a Gröbner basis
for the ideal J . However, we note that apparently there are rings where this representation does
not allow for efficient computations (e.g., because J cannot be efficiently represented by a Gröbner
basis).

Acknowledgments. We like to thank Roberto Avanzi, Lothar Gerritzen, and Gregor Leander for
helpful discussions as well as Daniel Brown for pointing out an error in a previous version of the
paper.
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A Detailed Proof of Lemma 6

In this section we provide a proof for Lemma 6. Our proof is based on an alternative but equivalent
definition of Gröbner bases using the notion of syzygies. We partly make use of definitions and
theorems given in Chapters 3.2 and 4.2 of [AL94].

Throughout this section let A = D[X1, . . . , Xt] where D = Zn is a Noetherian ring. Let I =
〈f1, . . . , fs〉 be an ideal of A. Consider the A-module homomorphism

φ : As → I

(h1, . . . , hs) 7→
s
∑

i=1

hifi

Then it holds that I ∼= As/ker(φ). Based on φ a syzygy is defined as follows:

Definition 6 (Syzygy). The kernel of the map φ is called the syzygy module of the 1× s matrix
[f1 . . . fs] and is denoted by Syz(f1 . . . fs). An element (h1, . . . , hs) ∈ Syz(f1 . . . fs) is called a syzygy
of [f1 . . . fs] and satisfies

h1f1 + · · ·+ hsfs = 0 .

Definition 7 (Homogeneous Syzygy). Let power products X1, . . . ,Xs and non-zero elements
c1, . . . , cs ∈ D be given. For a power product X , we call a syzygy h = (h1, . . . , hs) ∈ Syz(c1X1, . . . , csXs)
homogeneous of degree X if lt(hi) = hi, thus hi is a term itself, and Xilp(hi) = X for all i such
that hi 6= 0.
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As A is a Noetherian ring, Syz(c1X1, . . . , csXs) has a finite generating set of homogeneous syzygies.
Moreover, by [AL94] we have the following equivalent characterization of Gröbner bases:

Theorem 6 (Theorem 4.2.3 [AL94]). Let G = {g1, . . . , gs} be a set of non-zero polynomials in
A. Let B be a homogeneous generating set for Syz(lt(g1) . . . , lt(gs)). Then G is a Gröbner basis for
the ideal 〈g1, . . . , gs〉 if and only if for all (h1, . . . , hs) ∈ B we have

s
∑

i=1

higi
G−→+ 0 .

Our proof for Lemma 6 will essentially be based on the above theorem. However, before we can
actually give this proof we need to introduce two of auxiliary lemmas.

Lemma 7. Let {f1, . . . , fs} be a basis for an ideal I of A. For 1 ≤ i ≤ s let the leading term of fi

be denoted by lt(fi) = ciXi. If all leading coefficients ci are units in D then

BSyz(lt(f1),...,lt(fs)) =

{

Sij = Sji =
Xij

ciXi
ei −

Xij

cjXj
ej | 1 ≤ i < j ≤ s

}

,

where e1, . . . , es form the standard basis for As and Xij = lcm(Xi,Xj), is a generating set for
Syz(lt(f1), . . . , lt(fs)) of homogeneous syzygies.

Proof. First of all, if i 6= j then
Xij

ciXi
ei − Xij

cjXj
ej is a syzygy of Syz(lt(f1), . . . , lt(fs)) as

Xij

ciXi
lt(fi)−

Xij

cjXj
lt(fj) = 0. Furthermore, the non-zero polynomials

Xij

ciXi
and

Xij

cjXj
are terms and the sygyzy

Sij = Sji is homogeneous of degree Xij as Xi · Xij

ciXi
= Xij = Xj · Xij

cjXj
.

Therefore we need to prove that BSyz(lt(f1),...,lt(fs)) is a basis of the ideal Syz(lt(f1), . . . , lt(fs)).
Let h = (h1, . . . , hs) ∈ Syz(lt(f1), . . . , lt(fs)) then

s
∑

i=1

hilt(fi) =
s
∑

i=1

ci · Xi · hi =
s
∑

i=1

ci · Xi

(

di
∑

k=1

a
(i)
k X

(i)
k

)

= 0

for hi =
∑di

k=1 a
(i)
k X

(i)
k . Let X be any power product (in the variables X1, . . . , Xt). Then the

coefficient of X in the polynomial
∑s

i=1 ci · Xi · hi must be zero. Let

{Y1, . . . ,Yd} =
s
⋃

i=1

{

X (i)
k | 1 ≤ k ≤ di

}

with Y1 < · · · < Yd. Then

hi =

di
∑

k=1

a
(i)
k X

(i)
k =

d
∑

ℓ=1

b
(i)
ℓ Yℓ with

{

b
(i)
ℓ = a

(i)
k if Yℓ = X (i)

k for some index 1 ≤ k ≤ di

b
(i)
ℓ = 0 else

.
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Moreover, let X be a power product and 1 ≤ mi ≤ d be the index such that Xi · Ymi
= X for

1 ≤ i ≤ s. Then
∑s

i=1 ci · bmi
= 0 and we have

(bm1 · Ym1 , . . . , bms · Yms) = bm1 · Ym1e1 + · · ·+ bms · Ymses

= bm1 · c1 ·
Ym1 · X1

c1 · X1
e1 + · · ·+ bms · cs ·

YmsXs

csXs
es

= bm1 · c1 ·
X
X12

( X12

c1 · X1
e1 −

X12

c2 · X2
e2

)

+ (bm1 · c1 + c2 · bm2) ·
X
X23

( X23

c2 · X2
e2 −

X23

c3 · X3
e3

)

+ · · ·+





s−1
∑

j=1

cj · bmj



 · XXs−1s

( Xs−1s

cs−1 · Xs−1
es−1 −

Xs−1s

cs · Xs
es

)

+





s
∑

j=1

cj · bmj



 · X
csXs

es

=
s−1
∑

i=1





i
∑

j=1

cj · bmj

X
Xii+1



Sii+1

⊓⊔

Definition 8 (Saturation). For power products X1, . . . ,Xs and a subset J ⊆ {1, . . . , s} we set
XJ = lcm(Xj | j ∈ J). We say that J is saturated with respect to X1, . . . ,Xs provided that for all
j ∈ {1, . . . , s} the index j is an element of J if Xj divides XJ . We call the subset J ′ ⊆ {1, . . . , s}
consisting of all j such that Xj divides XJ the saturation of J . We denote with Sat(X1, . . . ,Xs) all
saturated subsets of {1, . . . , s} with respect to X1, . . . ,Xs.

Lemma 8. Let G = {g1, . . . , gs} be a Gröbner basis for an ideal I of A and let n =
∏k

ℓ=1 peℓ

ℓ be
the prime power decomposition of the characteristic n of D. For 1 ≤ i ≤ s let the leading term of
gi be denoted by lt(gi) = ciXi. If all leading coefficients ci are units in D then for each 1 ≤ ℓ ≤ k
the set

BSyz(lt(g1),...,lt(gs),p
eℓ
ℓ

) =
{

(Sij , 0) | Sij ∈ BSyz(lt(g1),...,lt(gs))

}

∪
{

peℓ

ℓ XJ

cjXj
ej −XJes+1 | J ∈ Sat(X1, . . . ,Xs) and some j ∈ J

}

is a homogeneous generating set for Syz
(

lt(g1), . . . , lt(gs), p
eℓ

ℓ

)

.

Proof. Certainly, each element of BSyz(lt(g1),...,lt(gs),p
eℓ
ℓ ) is vector of Syz

(

lt(g1), . . . , lt(gs), p
eℓ

ℓ

)

as

(Sij , 0) · (lt(g1), . . . , lt(gs), p
eℓ

ℓ )t = Sij · (lt(g1), . . . , lt(gs))
t = 0

and
peℓ

ℓ XJ

cjXj
ej −XJes+1 · (lt(g1), . . . , lt(gs), p

eℓ

ℓ )t =
peℓ

ℓ XJ

cjXj
lt(gj)−XJ · peℓ

ℓ = 0

for J ∈ Sat(X1, . . . ,Xs) and some j ∈ J . Furthermore the element (Sij , 0) is homogeneous of degree

Xij and
p

eℓ
ℓ
XJ

cjXj
ej −XJes+1 is a homogeneous syzygy of degree Xj .
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Let h = (h1, . . . , hs+1) ∈ Syz
(

lt(g1), . . . , lt(gs), p
eℓ

ℓ

)

. If hs+1 = 0 then (h1, . . . , hs) is an element
of Syz(lt(g1), . . . , lt(gs)), hence by Lemma 7 (h1, . . . , hs, 0) is finite linear combination of

{

(Sij , 0) | Sij ∈ BSyz(lt(g1),...,lt(gs))

}

.

Otherwise, using the notation from the proof Lemma 7, if hs+1 6= 0 then for a power product X ,
the coefficient of X in the polynomial

h ·
(

lt(g1), . . . , lt(gs), p
eℓ

ℓ

)t
=

s
∑

i=1

lt(gi)hi + peℓ

ℓ hs+1 =
s
∑

i=1

ciXi

(

di
∑

k=1

a
(i)
k X

(i)
k

)

+ peℓ

ℓ





ds+1
∑

k=1

a
(i)
k X

(i)
k





must be zero for hi =
∑di

k=1 a
(i)
k X

(i)
k and 1 ≤ i ≤ s + 1.

Let

{Y1, . . . ,Yd} =
s+1
⋃

i=1

{

X (i)
k | 1 ≤ k ≤ di

}

with Y1 < · · · < Yd. Then

hi =

di
∑

k=1

a
(i)
k X

(i)
k =

d
∑

ℓ=1

b
(i)
ℓ Yℓ with

{

b
(i)
ℓ = a

(i)
k if Yℓ = X (i)

k for some index 1 ≤ k ≤ di

b
(i)
ℓ = 0 else

,

for 1 ≤ i ≤ s + 1.

Furthermore, let X be a power product and 1 ≤ mi ≤ d be the index such that Xi · Ymi
= X for

1 ≤ i ≤ s + 1 with Xs+1 = 1. Then
(

bm1Ym1 , . . . , bms+1Yms+1

)

is a homogeneous syzygy of degree
X . Moreover, we assume that bms+1 6= 0 and consider the index set J ′ = {j | bmj

6= 0}\{s + 1}. Let

J ∈ Sat (X1, . . . ,Xs) such that J ′ ⊆ J . Then we fix an index d ∈ J such that
p

eℓ
ℓ
XJ

cdXd
ed − XJes+1 ∈

BSyz(lt(g1),...,lt(gs),p
eℓ
ℓ ). It follows that

(bm1Ym1 , . . . , bms+1Yms+1)− (−bms+1) ·
(

peℓ

ℓ XJ

cdXd

ed −XJes+1

)

· XXJ

=

(

bm1Ym1 , . . . , bmd
Ymd

+
bms+1 · peℓ

ℓ XJ

cdXd

· XXJ

, bmd+1
Ymd+1

, . . . , bmsYms , bms+1Yms+1 − bms+1XJ ·
X
XJ

)

=

(

bm1Ym1 , . . . ,

(

bmd
+

bms+1 · peℓ

ℓ

cd

)

Ymd
, bmd+1

Ymd+1
, . . . , bmsYms , 0

)

is a homogeneous syzygy with zero in the (s + 1)-th coordinate and a linear combination of the set
{

(Sij , 0) | Sij ∈ BSyz(lt(g1),...,lt(gs))

}

by Lemma 7. ⊓⊔

Now, we are able to actually prove Lemma 6 from Section 4.2.

Proof (Lemma 6). By Theorem 6 the set Gℓ =
{

peℓ

ℓ , g1, . . . , gs

}

is a Gröbner basis for for the
ideal Ji = 〈peℓ

ℓ , g1, . . . , gs〉 if and only if for each element h ∈ BSyz(lt(g1),...,lt(gs),p
eℓ
ℓ

) the relation

h ·
(

g1, . . . , gs, p
el

l

)t Gℓ−→+ 0 holds.

Let h ∈ BSyz(lt(g1),...,lt(gs),p
el
l ), then by Lemma 8 either h is an element of

{

(Sij , 0) | Sij ∈ BSyz(lt(g1),...,lt(gs))

}
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or h is an element of
{

peℓ

ℓ XJ

lt(gj)
ej −XJes+1 | J ∈ Sat(lp(g1), . . . , lp(gs)) and some j ∈ J

}

.

For the first case, we observe that

h · (g1, . . . , gs, p
el

l )t =
s
∑

i=1

higi = (h1, . . . , hs) · (g1, . . . , gs)
t

with (h1, . . . , hs) ∈ BSyz(lt(g1),...,lt(gs)). Since G is a Gröbner basis for the ideal I it follows by

Theorem 6 that h ·
(

g1, . . . , gs, p
eℓ

ℓ

)t G−→+ 0 and thus
(

g1, . . . , gs, p
eℓ

ℓ

)t Gℓ−→+ 0.
In the other case, we have

h =
peℓ

ℓ XJ

lt(gj)
ej −XJes+1

for some J ∈ Sat(lp(g1), . . . , lp(gs)) and some j ∈ J . Furthermore,

h ·
(

g1, . . . , gs, p
eℓ

ℓ

)t
=

peℓ

ℓ XJ

lt(gj)
gj − peℓ

ℓ XJ =
peℓ

ℓ XJ

lt(gj)
(lt(gj) + g′)− peℓ

ℓ XJ =
peℓ

ℓ XJ

lt(gj)
g′ =

g′ · XJ

lt(gj)
peℓ

ℓ

for gj = lt(gj) + g′, thus h ·
(

g1, . . . , gs, p
eℓ

ℓ

)t {peℓ
ℓ }−→+ 0 implying that h ·

(

g1, . . . , gs, p
eℓ

ℓ

)t Gℓ−→+ 0. ⊓⊔
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