
Redundant τ -adic Expansions I:

Non-Adjacent Digit Sets and their Applications

to Scalar Multiplication

Roberto Maria Avanzi, Clemens Heuberger and Helmut Prodinger

Abstract. This paper investigates some properties of τ -adic expansions of scalars. Such expan-
sions are widely used in the design of scalar multiplication algorithms on Koblitz Curves, but
at the same time they are much less understood than their binary counterparts.

Solinas introduced the width-w τ -adic non-adjacent form for use with Koblitz curves.
This is an expansion of integers z =

Pℓ
i=0 ziτ

i, where τ is a quadratic integer depending on
the curve, such that zi 6= 0 implies zw+i−1 = . . . = zi+1 = 0, like the sliding window binary
recodings of integers. It uses a redundant digit set, i.e., an expansion of an integer using this
digit set need not be uniquely determined if the syntactical constraints are not enforced.

We show that the digit sets described by Solinas, formed by elements of minimal norm
in their residue classes, are uniquely determined.

Apart from this digit set of minimal norm representatives, other digit sets can be chosen
such that all integers can be represented by a width-w non-adjacent form using those digits.
We describe an algorithm recognizing admissible digit sets. Results by Solinas and by Blake,
Murty, and Xu are generalized.

In particular, we introduce two new useful families of digit sets.
The first set is syntactically defined. As a consequence of its adoption we can also present

improved and streamlined algorithms to perform the precomputations in τ -adic scalar multi-
plication methods. The latter use an improvement of the computation of sums and differences
of points on elliptic curves with mixed affine and López-Dahab coordinates.

The second set is suitable for low-memory applications, generalizing an approach started
by Avanzi, Ciet, and Sica. It permits to devise a scalar multiplication algorithm that dispenses
with the initial precomputation stage and its associated memory space. A suitable choice of
the parameters of the method leads to a scalar multiplication algorithm on Koblitz Curves
that achieves sublinear complexity in the number of expensive curve operations.

Keywords. Koblitz curves; Frobenius endomorphism; Scalar Multiplication; tau-adic expan-
sions; Non-Adjacent-Forms; Digit Sets; Point halving; Efficient Implementation.

1. Introduction

Elliptic curves (EC) [23, 28] are now a well established and standardised [19, 31] cryptographic
primitive. The performance of an EC cryptosystem depends on the efficiency of the fundamental

This paper was in part written while R. Avanzi and C. Heuberger were visiting the Department of Mathematical

Sciences, Stellenbosch University, and during a visit of R. Avanzi at TU Graz supported by the Austrian Science

Foundation FWF, project S9606. R. Avanzi’s research described in this paper has been partly supported by the

European Commission through the IST Programme under Contract IST-2002-507932 ECRYPT.

C. Heuberger is supported by the Austrian Science Foundation FWF, project S9606, that is part of the

Austrian National Research Network “Analytic Combinatorics and Probabilistic Number Theory.”

H. Prodinger is supported by the NRF grant 2053748 of the South African National Research Foundation

and by the Center of Experimental Mathematics of the University of Stellenbosch.

2 Roberto Maria Avanzi, Clemens Heuberger and Helmut Prodinger

operation, the scalar multiplication, i.e., the computation of the multiple sP of a point P by an
integer s. Among all EC, Koblitz curves [24], defined by the equation

Ea : y2 + xy = x3 + ax2 + 1 with a ∈ {0, 1} (1)

over the finite field F2n , permit particularly efficient implementation of scalar multiplication. Key
to their good performance is the Frobenius endomorphism τ , i.e., the map induced on Ea(F2n)
by the Frobenius automorphism of the field extension F2n/F2, that maps field elements to their
squares.

Set µ = (−1)1−a. It is known [37, Section 4.1] that τ permutes the points P ∈ Ea(F2n), and
(τ2 + 2)P = µτ(P). Hence, if the curve contains a subgroup G of large prime order with smaller
cofactor the map acts on the points of G like multiplication by a complex constant s. We identify
τ with a root of

τ2 − µτ + 2 = 0 . (2)

If we write an integer z as
∑ℓ

i=0 ziτ
i, where the digits zi belong to a suitably defined digit set D,

then we can compute zP as
∑ℓ

i=0 ziτ
i(P) via a Horner scheme. The resulting method [24, 36, 37]

is called a “τ -and-add” method since it replaces the doubling with a Frobenius operation in the
classic double-and-add scalar multiplication algorithm. Since a Frobenius operation is much faster
than a group doubling, scalar multiplication on Koblitz curves is a very fast operation.

The elements dP for all d ∈ D must be computed before the main loop of the Horner scheme

begins. Larger digit sets usually correspond to representations
∑ℓ

i=0 ziτ
i with fewer non-zero coef-

ficients, which in turn translates to fewer group additions. The recipe for optimal performance is a
balance between digit set size and number of non-zero coefficients. This is studied in Section 3.2.2.

Solinas [36, 37] considers the residue classes in Z[τ] modulo τw which are coprime to τ ,
and forms a digit set comprising the zero and an element of minimal norm from each residue class
coprime to τ . We prove (Theorem 2) that such elements are unique, hence this digit set is uniquely
determined. Since the resulting digit set is quite large, an additional condition has to be imposed
to guarantee uniqueness of the representation. Solinas’ condition is the width-w non-adjacency
property

zi 6= 0 implies zi+w−1 = . . . = zi+1 = 0 . (3)

This also forces the number of non-zero digits in a representation to be quite low.
We call a digit set that allows us to write each integer as a recoding satisfying property (3)

a (width-w) non-adjacent digit set, or w-NADS for short. Theorem 1 is a criterion for establishing
whether a given digit set is a w-NADS, which is very different in substance from the criterion of
Blake, Murty, and Xu [13]. The characterisation of digit sets which allow recoding with a non-
adjacency condition is a line of research started in the binary case by Muir and Stinson in [29, 30],
see also Heuberger and Prodinger [18] and Avoine, Monnerat, and Peyrin [12].

We then turn our attention to families of digit sets (such as Solinas’ “representatives of
minimal norm” digit set). In Section 2.3 we introduce digit sets whose digits are syntactically
defined in terms of their width-2 non-adjacent form. The result is almost always a w-NADS, the
exceptions are explicitly listed in Theorem 3. Precise estimates of the length of the recoding are
given in Theorem 4.

In Section 2.4 we study another family of digit sets corresponding, in a suitable sense, to
“repeated point halvings” (cf. Theorem 5). It is used to design a width-w scalar multiplication
algorithm without precomputations. These digit sets are not always a w-NADS (Theorem 6), but
this difficulty can be overcome by stepping down the window size for the most significant digits
(§ 3.2.1).

In Section 3 we discuss the relevance of our results for cryptographic applications and perfor-
mance. § 3.1 is devoted to the syntactically defined digit set. We present streamlined techniques for
the precomputations for a τ -adic scalar multiplication on Koblitz Curves – in fact, these are the
first such techniques that work for all values of the parameter w. § 3.2 deals with the point halving
digit sets. This results in a precomputationless scalar multiplication algorithm with a sublinear
number of expensive curve operations (§ 3.2.2). The performance of these scalar multiplication
methods is compared to the state of the art in § 3.3.

The questions of optimality of Solinas’ digit set as well as of ours are discussed in [17].

Redundant τ -adic Expansions 3

Disclaimer: The information in this document reflects only the authors’ views, is provided as is and no

guarantee or warranty is given that the information is fit for any particular purpose. The user thereof uses

the information at its sole risk and liability.

This paper is an extended version of [8], with proofs and additional results.

2. Digit Sets

Let µ ∈ {±1}, τ be a root of equation (2) and τ̄ the complex conjugate of τ . Note that 2/τ = τ̄ =
µ − τ = −µ(1 + τ2). We consider expansions to the base of τ of integers in Z[τ]. It is well known
that Z[τ], which is the ring of algebraic integers of Q(

√
−7), is a Euclidean domain and therefore

a factorial ring. We write the norm of an element z = a + bτ ∈ Z[τ] with a, b ∈ Z as

N(z) = zz̄ = (a + bτ)(a + bτ̄) = a2 + ab(τ + τ̄) + b2τ τ̄ = a2 + µab + 2 b2.

It is the square of the absolute value of z.

Definition 2.1. Let D be a (finite) subset of Z[τ] containing 0 and w ≥ 1 be an integer. A D-
expansion of z ∈ Z[τ] is a sequence ε = (εj)j≥0 ∈ DN0 such that

1. Only a finite number of the digits εj is nonzero.
2. value(ε) :=

∑

j≥0 εjτ
j = z, i.e., ε is indeed an expansion of z.

The Hamming weight of ε is the number of nonzero digits εj . The length of ε is defined as

length(ε) := 1 + max{j : εj 6= 0} .

A D-expansion of z is called a D-w-Non-Adjacent-Form (D-w-NAF) of z, if it satisfies the
following width-w non-adjacency property:

3. Each block (εj+w−1, . . . , εj) of w consecutive digits contains at most one nonzero digit εk,
j ≤ k ≤ j + w − 1.

A {0,±1}-2-NAF is also called a τ-NAF.
The set D is called a w-Non-Adjacent-Digit-Set (w-NADS), if each z ∈ Z[τ] has a D-w-NAF.
The set D is called symmetric, if d ∈ D implies −d ∈ D. In this case we can partition D as

D = {0} ∪D+ ∪ (−D+) with D+ ∩ (−D+) = ∅. The set D+ is called set of positive digits and the
digits in −D+ are the negative digits.

Typically, we choose D to be a set of cardinality 1 + 2w−1, but we do not require this in the
definition. One of our aims is to investigate which D are w-NADS, and we shall usually restrict
ourselves to digit sets formed by adjoining 0 to a reduced residue system modulo τw, which is
defined as usual:

Definition 2.2. Let w ≥ 1 be an integer. A reduced residue system D′ for the number ring Z[τ]
modulo τw is a set of representatives of the prime congruence classes of Z[τ] modulo τw, i.e., the
congruence classes that are coprime to τ .

For a digit set D formed by 0 together with a reduced residue system modulo τw , Algorithm 1
either recodes an integer z ∈ Z[τ] to the base of τ , or enters in a infinite loop for some inputs
when D is not a NADS (the fact that the algorithm actually enters a loop if it does not terminate
is shown in Proposition 2.6).

Example 2.3. Just using a digit set which consists of 0 and a reduced residue system does not imply
that Algorithm 1 terminates. This has been observed in the binary case for NAF-like expansions
of rational integers to the base of 2 by Muir and Stinson [29]. If we take w = 1 and the digit set
{0, 1− τ} (here the corresponding reduced residue set modulo τ = τ1 comprises the single element
1 − τ) we see that the element 1 has an expansion

(1 − τ) + (1 − τ)τ + (1 − τ)τ2 + (1 − τ)τ3 + · · · .

Algorithm 1 does not terminate in this case.

For later use, we note the following:

Remark 2.4. A number a + τb ∈ Z[τ] with a, b ∈ Z is relatively prime to τ if and only if a is odd.
This follows from the fact that τ is a prime element in Z[τ] and that τ divides a rational integer
if and only if this rational integer is even.

4 Roberto Maria Avanzi, Clemens Heuberger and Helmut Prodinger

Algorithm 1. General windowed integer recoding

INPUT: An element z from Z[τ], a natural number w ≥ 1 and a reduced residue system D′ for the number
ring R modulo τw.

OUTPUT: A representation z =
Pℓ−1

j=0 εjτ
j of length ℓ of the integer z satisfying the width-w non-adjacency

property (3). If no such representation exists, the algorithm does not terminate.

1. j ← 0, u← z

2. while u 6= 0 do

3. if τ | u then

4. εj ← 0 [Output 0]

5. else

6. Let εj ∈ D
′ s.t. εj ≡ z (mod τw) [Output εj]

7. u← u− εj

8. u← u/τ

9. j ← j + 1

10. ℓ← j

11. return ({εj}
ℓ−1
j=0, ℓ)

2.1. Algorithmic Characterization

As already mentioned, one aim of this paper is to investigate which digit sets D are in fact w-NADS.
For concrete D and w, this question can be decided algorithmically using ideas of Matula [26]:

Theorem 1. Let D be a finite subset of Z[τ] containing 0 and w ≥ 1 be an integer.
Let

M :=

⌊

max{N(d) : d ∈ D}
(2w/2 − 1)

2

⌋

,

where N(z) denotes the norm of z.
Consider the directed graph G = (V, A) defined by its set of vertices

V := {0} ∪ {z ∈ Z[τ] : N(z) ≤ M , τ ∤ z}
and set of arcs

A := {(y, z) ∈ V 2 : There exist d ∈ D \ {0} and an integer v ≥ w s.t. z = τvy + d} .

Then D is a w-NADS if and only if the following conditions are both satisfied.

1. The set D contains a reduced residue system modulo τw.
2. In G = (V, A), each vertex z ∈ V is reachable from 0.

If D is a w-NADS and D \ {0} is a reduced residue system modulo τw, then each z ∈ Z[τ]
has a unique D-w-NAF.

The following lemma will be used in the proof of the theorem.

Lemma 2.5. Let z ∈ V and d ∈ D with d ≡ z (mod τw). Then there exists an integer v ≥ w such
that (z − d)/τv is either 0 or not divisible by τ . Furthermore, (z − d)/τv ∈ V .

Proof. By construction, (z−d)/τw is an element of Z[τ], and a power τv of τ possibly higher than
τw divides z − d. Our v is the maximal exponent of such a power. We have

√

N

(

z − d

τv

)

=
|z − d|
2v/2

≤ |z| + |d|
2v/2

≤ |z| + |d|
2w/2

≤
max{|d|:d∈D}

(2w/2−1)
+ |d|

2w/2
≤ max{|d| : d ∈ D}

(2w/2 − 1)
·

Since N((z − d)/τv) is an integer, we conclude that N((z − d)/τv) ≤ M . �

Redundant τ -adic Expansions 5

Proof of Theorem 1. We first assume that D is a w-NADS. Let z = a + bτ be relatively prime
to τ and let ε be its D-w-NADS. Obviously, we have 1 ≡ a ≡ z ≡ ε0 (mod τ). Thus, ε0 6= 0
and therefore ε1 = · · · = εw−1 = 0, whence z ≡ ε0 (mod τw). Thus D contains a reduced residue
system modulo τw.

Assume that 0 6= z ∈ V . Let ε be the D-w-NADS of z. We have ε0 6= 0, we set y = (z−ε0)/τv,
where v is the highest exponent for which τv divides z − ε0. By Lemma 2.5 we have v ≥ w, y ∈ V
and (y, z) ∈ G. A D-w-NAF of y can be obtained by omitting the last digits of ε. Repeating this
finitely often, we arrive at 0. Using the arcs in reverse order we see that z is reachable from 0.

Conversely, we assume that the two conditions are fulfilled. We first show that every z ∈ V
has a D-w-NAF by induction on the distance from 0 to z in G. Let 0 6= z ∈ V . Then there is a
y ∈ V with has a smaller distance from 0 than z and is a predecessor of z in G. By induction,
y has a D-w-NAF. Since z = τvy + d for some nonzero d ∈ D and an integer v ≥ w, we get a
D-w-NAF of z by appending (0, 0, . . . , 0, d) (with v − 1 zeros) to the D-w-NAF of y.

Next, we prove that all z ∈ Z[τ] have a D-w-NAF by induction on N(z). Let z ∈ Z[τ] \ {0}.
If N(z) ≤ M and τ | z then let τv be the highest power of τ dividing z. Put y = z/τv. Now
N(y) = N(z)/2v < N(z) ≤ M and y is not divisible by τ , hence y is in V and we know it has a
D-w-NAF. The D-w-NAF of z will be obtained by appending v zeros to the D-w-NAF of z/τv.

We may now assume that N(z) > M and therefore

|z|(2w/2 − 1) > max{|d| : d ∈ D} .

If τ divides z, we set y = z/τ with N(y) = N(z)/2. If τ does not divide z, we have gcd(z, τ) = 1.
Thus there are d ∈ D and an integer v ≥ w and y ∈ Z[τ] with z = τvy + d such that y = 0 or y is
not divisible by τ . We have

√

N(y) =
|z − d|
2v/2

≤ |z − d|
2w/2

<
|z|+ |z|(2w/2 − 1)

2w/2
=
√

N(z) .

Thus we may take a D-w-NAF of y and append 0 or (0, 0, . . . , 0, d) (with v − 1 zeros) respectively
to obtain a D-w-NAF of z.

Finally we assume that D \ {0} is a reduced residue system modulo τw and D is a w-NADS.
Assume that some z has two D-w-NAFs ε and η. If z ≡ 0 (mod τ), we must have ε0 = η0 = 0 and
we continue with z/τ . If z 6≡ 0 (mod τ), then we must have ε0 6= 0 and η0 6= 0, and the w-NAF
property implies that εj = ηj = 0 for 1 ≤ j < w. Therefore, we have ε0 ≡ η0 (mod τw), whence
ε0 = η0. Thus we continue with (z − ε0)/τw. By induction, we see that ε = η. �

We now investigate the case of sets which are not w-NADS:

Proposition 2.6. Let w ≥ 1 be an integer, D be a finite subset of Z[τ] consisting of 0 and a reduced
residue system modulo τw. Then the following conditions are equivalent:

1. The set D is not a w-NADS.
2. There is a z ∈ Z[τ] such that Algorithm 1 enters an infinite loop.
3. There is a z ∈ Z[τ], a positive integer ℓ and a D-w-NAF ε, such that

z(1 − τ ℓ) = value(ε) and ℓ ≥ length(ε) + w − 1. (4)

Proof. If D is not a w-NADS, then there is a vertex z′ ∈ V which is not reachable from 0 by
Theorem 1. By Lemma 2.5, every vertex except 0 has indegree 1. Since V is finite, this implies
that there is a cycle in G. For any vertex z contained in such a cycle, Algorithm 1 visits the vertices
of this cycle in reverse order, thus it enters an infinite loop.

On the other hand, if Algorithm 1 enters an infinite loop, then D is not a w-NADS by
definition.

Algorithm 1 enters an infinite loop containing some z ∈ Z[τ] if and only if it produces an
expansion of the form

z =

ℓ−1
∑

j=0

εjτ
j + zτ ℓ

for some integer ℓ and some sequence (εj)0≤j<ℓ satisfying the width-w non-adjacency property.
This is equivalent to (4). �

6 Roberto Maria Avanzi, Clemens Heuberger and Helmut Prodinger

0 1 τ + 1

−τ − 1

−1 1 − τ

τ − 1

(1, 1)

(2
,1

)

(1, 1) (1, 1)

(3
,1

)

(1, 1)

Figure 1. Directed Graph G for µ = −1, w = 1, D = {0, 1}. The arcs are labeled

with (v, d) as in the definition of the graph, i.e., y
(v,d)−→ z means that z = τvy + d.

0 1

τ + 1

τ − 1

−τ − 1

−1 1 − τ
(1, 1)

(1
,1

)

(2, 1)

(3, 1)

(1, 1) (1, 1)

Figure 2. Directed Graph G for µ = 1, w = 1, D = {0, 1}. The arcs are labeled
as in Figure 1.

We now discuss two well-known examples.

Example 2.7. Let w = 1 and D = {0, 1}. By Remark 2.4, there is only one residue class prime to
τ . In this case M = 5, so V = {0,±1,±1 ± τ}. The corresponding directed graphs are shown in
Figures 1 and 2 for µ = −1 and µ = 1, respectively. We see that in both cases, all 7 states are
reachable from 0. Thus, {0, 1} is a 1-NADS. This is equivalent to saying that τ is the base of a
canonical number system in Z[τ] in the sense of Kátai and Szabó [21]. This result is contained in
the general characterisation of canonical number systems in imaginary quadratic number fields by
Kátai and Kovács [20] and Gilbert [16].

It is also easy to see that the expected density of a τ -adic espansion of an element of Z[τ]
using this digit set is 1/2. Also the expansion of integers given in [27] has density 1/2, but this
is not the same representation. In fact, in [27] the digit set {0,±1} is used, but the algorithm
generating the expansion is not optimal.

Remark 2.8. Example 2.7 immediately shows that there are exactly 2w residue classes modulo τw;
a complete residue system is given by

∑w−1
j=0 εjτ

j with εj ∈ {0, 1} for 0 ≤ j < w. There are 2w−1

residue classes coprime to τw, a reduced residue system is given by 1+
∑w−1

j=1 εjτ
j with εj ∈ {0, 1}

for 1 ≤ j < w.

Example 2.9. Let w = 2 and D = {0,±1}. Using Remark 2.8, it is easily seen that {±1} is a
reduced residue system modulo τ2. In this case, M = 1, the graph G consists of the three states
V = {0,±1} only, and those are obviously reachable from 0. Thus {0,±1} is a 2-NADS. This has
been proved by Solinas [36, 37].

Example 2.10. One might consider the digit set D = {0} ∪ {±1,±3,. . .,±(2w−1 − 1)}. The odd
digits form a reduced residue system modulo τw, since τw divides a rational integer if and only if
2w divides it (note that τ and τ̄ are coprime primes in Z[τ]).

However, this digit set is not a w-NADS for all w. For instance, for w = 6, the number 1−µτ
has no D-6-NAF, since

(1 − µτ)(1 − τ24) = −9τ18 − 27τ12 + 9τ6 + 27

and therefore by Proposition 2.6 Algorithm 1 enters an infinite loop.

Using Theorem 1, we can verify that for w ∈ {2, 3, 4, 5, 7, 8, 9, 10}, this set D is a w-NADS.

Redundant τ -adic Expansions 7

2.2. Representatives of Minimal Norm

In this section, we revisit the digit set proposed by Solinas [36, 37]. He proposed to take an element
of minimal norm from each prime residue class modulo τw . At first sight, it is not clear whether
this choice is unique. But it can be proved to be the case:

Theorem 2. Let τ , w ≥ 2 be as above, and MNR(w) a digit set consisting of 0 together with one
element of minimal norm from each prime residue class modulo τw.

The digit set MNR(w) is uniquely determined. In other words, in each prime residue class
modulo τw there exists a unique element of minimal norm.

Proof. Let α, β be distinct elements of minimal norm in the same prime residue class modulo τw.
Then, β = α + γτw with γ ∈ Z[τ] \ {0}.

By [27, Lemma 2] (see also [37, Corollary 59 and Equation 64]) we have N(α), N(β) ≤
4
7N(τw), hence

√

N(γ)N(τw) =
√

N(α − β) ≤
√

N(α) +
√

N(β) ≤ 4√
7

√

N(τw) .

This implies N(γ) ≤ 16
7 and therefore N(γ) ≤ 2. Being γ 6= 0, it can only be N(γ) = 1 or 2.

Now we make use of the fact that τ is prime and does not divide α nor τ̄ . Writing down the
relation N(α + γτw) = N(α) explicitly we obtain αγ̄τ̄w + ᾱγτw + γγ̄τw τ̄w = 0. This implies that
τw divides αγ̄τ̄w and thus γ̄. Therefore 2w = N(τw) divides N(γ̄) = N(γ) which we know to be
either 1 or 2, implying in turn w ≤ 1. This is a contradiction. �

Remark 2.11. The result does not really depend on Meier and Staffelbach’s result [27, Lemma
2]: Since Z[τ] is known to be an Euclidean domain with respect to the norm function, Euclidean
division by τw shows that every residue class modulo τw has a representative of norm less than
2w. This yields N(γ) < 4 in the above proof, which is still sufficient.

2.3. Syntactic Sufficient Conditions

The aim of this section is to prove sufficient conditions for families of sets D to be a w-NADS at
the level of digits of the τ -NAF. In contrast to Theorem 1, where a decision can be made for any
concrete set D, we will now focus on families of such sets. Blake, Murty, and Xu [13] gave such
sufficient conditions based on the norm of the numbers involved.

Proposition 2.12. Let w ≥ 1 and ε, ε′ two τ-NAFs. Then value(ε) ≡ value(ε′) (mod τw) if and
only if

εj = ε′j for 0 ≤ j ≤ w − 2 and |εw−1| = |ε′w−1| . (5)

Proof. Assume first that (5) holds. If εw−1 = ε′w−1, then it is clear that value(ε) ≡ value(ε′)
(mod τw). W.l.o.g., we may now assume that εw−1 = 1 and ε′w−1 = −1. In this case we have

value(ε) − value(ε′) ≡ 2τw−1 ≡ 0 (mod τw) by (2).

To prove the converse direction, we proceed by induction on w. For w = 1, we note that
ε0 ≡ value(ε) ≡ value(ε′) ≡ ε′0 (mod τ) implies |ε0| = |ε′0| since both least significant digits are
elements of {0,±1}. We now consider the case of general w. Assume that value(ε) ≡ value(ε′)
(mod τw). By induction hypothesis, we have εj = ε′j for 0 ≤ j ≤ w − 3 and |εw−2| = |ε′w−2|.

We first consider the case that εw−2 = ε′w−2. In that case we conclude that value(ε) −
value(ε′) ≡ (εw−1−ε′w−1)τ

w−1 (mod τw), which implies that εw−1 ≡ ε′w−1 (mod τ) and therefore
|εw−1| = |ε′w−1|. Thus (5) is proved in this case.

Finally, we consider the case that εw−2 6= ε′w−2. W.l.o.g., we may assume that εw−2 = 1 and
ε′w−2 = −1. Since ε and ε′ are both τ -NAFs, the subsequent digits εw−1 and ε′w−1 must both
vanish. But this implies that value(ε) − value(ε′) ≡ 2τw−2 ≡ µτw−1 (mod τw), a contradiction.
Thus this case cannot occur. �

8 Roberto Maria Avanzi, Clemens Heuberger and Helmut Prodinger

w µ D Remark

3 −1 {1,−1,−τ2 + 1,−τ2 − 1} (−τ − 1)
(

1 − τ3
)

= −τ2 + 1
3 −1 {1,−1,−τ2 + 1, τ2 − 1} (−τ − 1)

(

1 − τ3
)

= −τ2 + 1
3 −1 {1,−1, τ2 + 1, τ2 − 1} (τ + 1)

(

1 − τ3
)

= τ2 − 1
3 1 {1,−1,−τ2 + 1, τ2 − 1} (−τ + 1)

(

1 − τ6
)

=
(

−τ2 + 1
)

τ3 + τ2 − 1

Table 1. List of sets of short τ -NAF representatives which are not a w-NADS.
The “Remark” column contains an example of an element which cannot be rep-
resented.

Definition 2.13. Let w be a positive integer and D be a subset of

{ 0 } ∪ { value(ε) : ε is a τ -NAF of length at most w with ε0 6= 0 }
consisting of 0 and a reduced residue system modulo τw. Then D is called a set of short τ-NAF
representatives for τw .

By Proposition 2.12, an example for a set of short τ -NAF representatives is

SNR(w) = { 0 } ∪
{

value(ε) : ε is a τ -NAF of length at most w

with ε0 6= 0 and εw−1 ∈ {0, ε0}
}

.
(6)

All other sets of short τ -NAF representatives are obtained by changing the signs of εw−1

without changing ε0 in some of the ε. Note that for w ≥ 3, the digits of SNR(w) given in (6) can
be seen as the values of the words of length w of the language given by the regular expression

0∗ + (0 + 01 + 01̄)∗(01 + 01̄) + 1(0 + 01 + 01̄)∗01 + 1̄(0 + 01 + 01̄)∗01̄ .

From this regular expression, it is easy to check that the cardinality of SNR(w) is indeed 1+2w−1.
However, this is also a consequence of Example 2.7 and Proposition 2.12.

The main result of this section is the following theorem, which states that in almost all cases,
a set of short τ -NAF representatives is a w-NADS:

Theorem 3. Let w be a positive integer and D a set of short τ-NAF representatives. Then D is a
w-NADS if and only if it is not listed in Table 1.

In particular, if w ≥ 4, then D is always a w-NADS. Moreover, SNR(w) as defined in (6) is
a w-NADS for all w ≥ 2.

Proof. For w ∈ {1, 2}, all choices of D are those studied in Examples 2.7 and 2.9. These turned
out to be w-NADS. For w = 3, there are only the possibilities D = {0, 1,−1,±τ2 + 1,±τ2 − 1}
for independent signs in front of τ2. Using Theorem 1, these have been checked and Table 1 has
been established based on the results.

So the only remaining case is that of w ≥ 4. Let z ∈ Z[τ] be relatively prime to τ , choose
d = value(ε) ∈ D such that d ≡ z (mod τw) and set y = (z − d)/τw . Denote the τ -NAF of z by
η. We set y′ :=

∑

j≥0 ηj+wτ j , i.e., the number created by truncating the least significant w digits
of the τ -NAF of z.

We claim that either y = y′ or y′ is a multiple of τ and y = y′ ± τ̄ . If ηw−1 = 0 then the
number formed by the w least significant digits of η, which is (0 ηw−2 . . . η1 η0)τ , is in D, hence
it is d and y = y′. Otherwise ηw = 0 and y′ is divisible by τ , and from Proposition 2.12 together
with the fact that τ̄ = 2 · τ−1 we see that y ∈ {y′, y′ ± τ̄}.

Next, we want to show that the length of the τ -NAF of y′ ± τ̄ is at most the length of the
τ -NAF of y′ increased by 3. If we can prove this, since the length of the τ -NAF of y′ equals the
length of the τ -NAF of z decreased by w, we conclude that the length of the τ -NAF of y is smaller
than the length of the τ -NAF of z. From this it follows that repeatedly choosing d ≡ z (mod τw)
in D and replacing z with (z − d)/τw will eventually terminate with 0 and yield a D-w-NAF of z.

To prove our claim about the length of the τ -NAF of y′ ± τ̄ we study the behaviour of even
τ -adic NAFs upon addition or subtraction of τ̄ . We therefore consider transducer automata which
compute the τ -NAF of y′ ± τ̄ from the τ -NAF of y′.

Redundant τ -adic Expansions 9

101

1̄01̄

10.1

1̄0.1̄

1

0

1̄

.1

0

.1̄

10

1̄

.1̄

.1

1

1̄0

0|ε

0|ε

1̄|0
1̄

0|0
1

1|01̄1|01

1̄|01

0|0
1̄

1|0

1̄|0

0|ε

0|0

1̄|0

1|0

0|ε

0|0
1

1̄|01̄

1|0
1̄

0|0

1̄|ε
1|ε

0|0̄1 1̄|0
1

1|01

0|0

0|ε

0|0
1̄

0|0
1

0|ε

0|0

Figure 3. Transducer for the addition of ±τ̄ for µ = −1. Addition of τ̄ and −τ̄
corresponds to starting at states 101 and 1̄01̄, respectively.

These are shown in Figures 3 and 4 for µ = −1 and µ = 1, respectively. Similar transducers
have already been shown in [7, Figures 14 and 15] for the addition of ±1 to a τ -NAF. Apart from
the new initial states the last simplification step has been omitted in Figures 3 and 4 in order to
make the labels of the states more consistent: they have now been chosen to represent the carry,
and the “τ -point” corresponds to the look-ahead.

From these transducers, it is easily seen that the length of the τ -NAF of y′ ± τ̄ is at most
the length of the τ -NAF of y′ increased by 3. This concludes the proof of the theorem. �

The following result is concerned with the lengths of recodings that make use of the set of
short τ -NAF representatives.

Theorem 4. Let w ≥ 2 be a positive integer, D a set of short τ-NAF representatives, and ε a
D-w-NAF of some z ∈ Z[τ].

Then the length of ε can be bounded by

2 log2 |z| − w − 0.18829 < length(ε) < 2 log2 |z| + 7.08685 , if w ≥ 4 , (7)

2 log2 |z| − 2.61267 < length(ε) < 2 log2 |z| + 5.01498 , if w = 3 , (8)

2 log2 |z| − 0.54627 < length(ε) < 2 log2 |z| + 3.51559 , if w = 2 . (9)

Note that (9) is Solinas’ [37] Equation (53).

Proof. We first consider the case w ≥ 4. By definition of D, every nonzero digit of D has a τ -NAF
of length at most w. Replacing each block (0, . . . , 0, d) of ε by the τ -NAF of d ∈ D yields a {0,±1}-
expansion η of z. By construction, this expansion η has the following property: if |ηj | = |ηj+1|
holds for some j, then the block (ηj+w , . . . , ηj+1) satisfies the 2-NAF condition, i.e., ηk+1 · ηk = 0
for j + 1 ≤ k ≤ j + w − 1. Furthermore, we have

length(ε) ≤ length(η) ≤ length(ε) + w − 1 . (10)

10 Roberto Maria Avanzi, Clemens Heuberger and Helmut Prodinger

1̄01̄

101

1̄0.1̄

10.1

1̄

0

1

.1̄

0

.1

10

1

.1̄

.1

1̄

1̄0

0|ε

0|ε

1̄|01 0|0
1̄

1|01

1|01̄

1̄|01̄

0|0
1

1̄|0

1|0

0|ε

0|0

1|0

1̄|0

0|ε

0|01̄

1̄|0
1

1|01

0|0

1̄|ε
1|ε

0|0
1

1̄|0
1̄

1|01̄
0|0

0|ε

0|0
1̄

0|0
1

0|ε

0|0

Figure 4. Transducer for the addition of ±τ̄ for µ = +1. Addition of τ̄ and −τ̄
corresponds to starting at states 1̄01̄ and 101, respectively.

We now derive a bound for length(η) which is independent of w. To that aim, we relax the
above syntactical condition. More precisely, we only use that

η ∈ L :=
{

θ ∈ {0,±1}N0 : There is no j ∈ N0 such that

|θj | = |θj+1| = |θj+2| = 1 or such that

|θj | = |θj+1| = |θj+3| = |θj+4| = 1
}

.

We denote the maximum and the minimum of the norm of words of L of length d by

NL
max(d) := max{N(value(θ)) : θ ∈ L and length(θ) = d} ,

NL
min(d) := min{N(value(θ)) : θ ∈ L and length(θ) = d} .

Solinas’ [37] estimates (from Lemma 35 to Corollary 51) in the case of the τ -NAF remain
valid for our quantities NL

max(d) and NL
min(d). Thus in our case, Solinas’ Theorem 2 reads

(

√

NL
min(d) −

√

NL
max(d)

2d/2 − 1

)2

· 2length(η)−d < N(z) <
NL

max(d)

(2d/2 − 1)2
· 2length(η)

for length(η) > 2d. We calculate that

NL
min(13) = 86 , NL

max(13) = 18288 ,

NL
min(15) = 289 , NL

max(15) = 73850 .

This yields

2 log2 |z| − 1.18830 < length(η) < 2 log2 |z|+ 7.08685 (11)

for length(η) > 30. This bound is present also in Solinas [37, Eq. (53) and Section 9], but it is an
unnecessary restriction: If length(η) ≤ 30, we consider τkz for a sufficiently large integer k and

Redundant τ -adic Expansions 11

the expansion η′ ∈ L defined by

η′
j =

{

0, if j < k,

ηj−k, if j ≥ k,

i.e., η′ is η shifted left by k digits. Since (11) holds for τkz and η′, it also holds for z and η.
Together with (10), we obtain (7) for w ≥ 4.
To obtain the bound for w = 3, we consider all 3-NADS (by Theorem 3, there are 4 of them).

In these concrete cases, the above calculations can be performed with the concrete language
instead of a relaxation L. This yields the given bound. The case w = 2 is contained in Solinas [37,
Equation (53)]. �

2.4. Point Halving

For any given point P , point halving [22, 35, 34] consists in computing a point Q such that
2Q = P . This inverse operation to point doubling applies to all elliptic curves over binary fields.
Its evaluation is (at least two times) faster than that of a doubling and a halve-and-add scalar
multiplication algorithm based on halving instead of doubling can be devised. This method is not
useful for Koblitz curves because halving is slower than a Frobenius operation.

In [3] it is proposed to insert a halving in the “τ -and-add” method to speed up Koblitz
curve scalar multiplication. This approach brings a non-negligible speedup and was further refined
in [6, 7], where the insertion of a halving was implicitly interpreted as a digit set extension. This
interpretation is the following: Inserting a halving in the scalar multiplication is equivalent to
adding ±τ̄ to the digit set {0,±1}. Note that, by Theorem 3, D = {0,±1,±τ̄} = SNR(3) is the
only symmetric 3-NADS of short τ -NAF representatives. In particular D′ = {±1,±τ̄} is a reduced
residue system modulo τ3.

As the following theorems state, adjoining more powers of τ̄ to D′ one still gets reduced
residue systems, and in some cases these give rise to w-NADS.

Theorem 5. Let w ≥ 2. Then D′ := {±τ̄k : 0 ≤ k < 2w−2} is a reduced residue system modulo τw.

Proof. The assertion has already been proved for w = 2 in Example 2.9, so we assume that w ≥ 3
in the sequel. We first claim that for w ≥ 3, we have

vτ (τ̄2w−2 − 1) = w , (12a)

vτ (τ̄2w−2

+ 1) = 1 , (12b)

where for z ∈ Z[τ], vτ (z) denotes the maximal integer k such that τk divides z.
Now, (12b) is an immediate consequence of (12a) and the fact that vτ (2) = 1. For w = 3,

we have τ̄2 = µτ3 + 1, which proves (12a) in this case. For w ≥ 4, we note that vτ (τ̄2w−2 − 1) =

vτ (τ̄2w−3 − 1) + vτ (τ̄2w−3

+ 1) = (w − 1) + 1 = w, thus (12a) is proved by induction.
Since the unit group of Z[τ]/τwZ[τ] has order 2w−1 by Remark 2.8, the order of τ̄ modulo

τw is a power of 2. By (12a), we have τ̄2k ≡ 1 (mod τw) if and only if k ≥ w − 2, thus

τ̄ has order 2w−2 modulo τw . (13)

Assume that τ̄ ℓ ≡ −τ̄k (mod τw) for some 0 ≤ k < ℓ < 2w−2. We get τ̄ ℓ−k ≡ −1 (mod τw).
By (13), squaring this congruence shows that 2w−2 divides 2(ℓ−k) < 2w−1, thus (ℓ−k) ∈ {0, 2w−3}.
Taking into account (12b), we see that both cases lead to a contradiction.

Since all elements of D′ are relatively prime to τw, they are pairwise incongruent modulo τw

and the cardinality of D′ equals 2w−1, the proof is completed. �

We consider the digit set

Pτ̄(w) := {0} ∪ {±τ̄k : 0 ≤ k < 2w−2} (14)

and call it the digit set of “Powers of τ̄ .” For those w which are relevant in practice, we determine
whether this set is indeed a w-NADS.

Theorem 6. Let Pτ̄ (w) be defined as in (14). If w ∈ {2, 3, 4, 5, 6} then Pτ̄ (w) is a w-NADS. If
w ∈ {7, 8, 9, 10, 11, 12} then Pτ̄(w) is not a w-NADS.

12 Roberto Maria Avanzi, Clemens Heuberger and Helmut Prodinger

w MNR(w) = Pτ̄ (w) MNR(w) = SNR(w)
Max length of τ -NAF of a digit
MNR(w) Pτ̄ (w)

2 True True 1 1
3 True True 3 3
4 True True iff µ = 1 4 4
5 False False 6 8
6 False False 8 17

Table 2. Comparison between some digit sets.

Proof. For every pair (w, µ) with w ≤ 6 the conditions of Theorem 1 have been verified by heavy
symbolic computations.

For 7 ≤ w ≤ 12 and both values of µ the graph G contains loops that are not reachable from
0. In other words, there are elements in Z[τ] that have periodic expansions, cf. Proposition 2.6.
If w = 7 we have (−9 + 34µτ)(1 − τ16) = µ(−τ̄6τ7 + τ̄27) and for 8 ≤ w ≤ 12 we have (371 −
20µτ)(1 − τ24) = µ(−τ̄5τ12 + τ̄41). �

Interesting phenomena happen when computing expansions of the same integer for different
values of w. Let us consider expansions of 3. For w ≤ 7 the expansions are well-behaved. For
example, for w = 3 the integer 3 is represented as −µτ3 + µτ̄ and for w = 7 the expansion of 3 is
µτ̄τ26 − µτ̄15τ14 − µτ7 + µτ̄27

But, for w = 8 we get 3 = −τ538− τ̄8τ528−µτ̄14τ519 + τ̄9τ509 + τ̄28τ500 + τ̄46τ490−µτ̄8τ481−
µτ̄48τ473− τ̄ τ465− τ̄35τ455 + τ̄48τ444−µτ̄35τ436 + τ̄22τ426−µτ̄25τ418 + τ̄58τ408− τ̄48τ400 +µτ̄τ392−
τ̄42τ382 + µτ̄21τ374 − µτ̄27τ366 − τ̄22τ358 + τ̄40τ350 − µτ̄47τ342 + τ̄39τ333 + µτ̄16τ325 + τ̄46τ314 +
τ̄20τ306+µτ̄39τ298+ τ̄10τ286−µτ̄61τ278+ τ̄35τ269− τ̄62τ260−µτ̄51τ252− τ̄53τ243− τ̄7τ235+ τ̄43τ227+
τ̄62τ216+µτ̄54τ207−µτ̄58τ197+µτ̄60τ185−τ̄ τ177−µτ̄54τ167+τ̄37τ159−τ̄16τ150−τ̄22τ142+µτ̄5τ134+
τ̄15τ125−µτ̄41τ110+ τ̄57τ99 +µτ̄59τ90 +µτ̄33τ78−µτ̄59τ70−µτ̄58τ61 + τ̄28τ52+µτ̄17τ44−µτ̄39τ36−
µτ̄27τ28 − µτ̄τ20 − µτ̄42τ11 + µτ̄59.

2.5. Comparing the Digit Sets

So far, three digit sets have been studied: the minimal norm representatives MNR(w), short NAF
representatives SNR(w), and the powers of τ̄ digit set Pτ̄ (w). It is a natural question to ask what
are the relations between these sets when they are w-NADS.

As Table 2 shows, MNR(w) and Pτ̄ (w) are equal for w ≤ 4. For the same range of w, all
digits in these digit sets have a τ -NAF of length at most w, which implies that they are also digit
sets of short NAF representatives.

If symmetry is required, there is only one w-NADS of short NAF representatives for w ≤ 3
by Theorem 3, namely SNR(3): it coincides with MNR(3) and Pτ̄ (3).

For w = 4, there are two symmetric w-NADS of short NAF representatives, namely SNR(4)
and another one. For µ = 1, SNR(4) coincides with MNR(4) and Pτ̄ (4), for µ = −1 the other set
coincides with MNR(4) and Pτ̄ (4).

For w ≥ 5, the three concepts are different: the lengths of the τ -NAFs of the digits in Pτ̄ (w)
grow exponentially in w, and the lengths of the digits in MNR(w) exceed w slightly at most by 2
for the values of w that we have considered (it is a consequence of (9) and of [27, Lemma 2] that
length(ε) ≤ w + 3 for all ε ∈ MNR(w) for all w).

Table 2 summarizes the above considerations and provides further information. The last two
columns show the maximum length of the τ -NAFs of the digits in MNR(w) and Pτ̄ (w).

In Figure 5, a comparison between shortest NAF representatives and representatives of mini-
mal norm is shown: For a given triple (η−1, η−2, η−3) ∈ {±(1, 0, 1), ±(1, 0,−1), (0,±1, 0), (0, 0,±1),
(0, 0, 0)}) an approximation of the set
{

∑

j≥1

ε−jτ
−j : (ε−1, ε−2, ε−3) = (η−1, η−2, η−3), ε−j ∈ {0,±1} and ε−jε−j−1 = 0 for all j ≥ 1

}

Redundant τ -adic Expansions 13

−0.8 −0.4 0. 0.4 0.8

−0.8

−0.4

0.

0.4

0.8

−0.8 −0.4 0. 0.4 0.8

−0.8

−0.4

0.

0.4

0.8

1̄01̄ 1̄00 1̄01 01̄0 001̄ 000 001 010 101̄ 100 101

Figure 5. Comparison between shortest NAF representatives and representa-
tives of minimal norm.

is shown and hatched according to the triple (η−1, η−2, η−3). The approximation consists of trun-
cating summands with j > 15. Thus the possible digits of shortest τ -NAF representatives are
the lattice points in the set obtained by multiplying the “fractal” set in Figure 5 by τw. The
corresponding set for the representatives of minimal norm is the shaded hexagon already shown
in Solinas’ papers [36, 37]. It is the Voronŏı region of 0 with respect to the lattice Z[τ].

3. Applications to Koblitz Curves

All digit sets seen so far can be used in a τ -and-add scalar multiplication, where we first precompute
dP for all d ∈ D \ {0} and then we evaluate the scheme

∑

ziτ
i(P); in fact, only a half of the

precomputations usually suffice since the digits sets MNR(w), SNR(w) and Pτ̄ (w) are all symmetric,
i.e., the non-zero digits come in pairs of opposite sign.

The digit set SNR(w) from Section 2.3 simplifies the precomputation phase. The digit set
Pτ̄ (w) from Section 2.4 allows us to perform precomputations very quickly or to get rid of them
completely. In the next two subsections we shall consider these facts in detail. In Section 3.2.1 we
explain how to use digit sets which are not w-NADS when they contain a subset that is a k-NADS
for smaller k.

3.1. Using the Short-NAF Digit Set

Let us consider here the digit set SNR(w) defined in (6). With respect to Solinas’ set it has the
advantage of being syntactically defined. If a computer has to work with different curves, different
scalar sizes and thus with different optimal choices for the window size, the representatives in
Solinas’ set must be recomputed – or they must be retrieved from a set of tables. In some cases,
the time to compute representatives of minimal norm may have to be subsumed in the total scalar
multiplication time. This is not the case with our set. This flexibility is also particularly important
for computer algebra systems.

14 Roberto Maria Avanzi, Clemens Heuberger and Helmut Prodinger

3.1.1. Computation of the expansion. When using Solinas’ digit set MNR(w), one technical prob-
lem is the computation of the w-NAF expansion. Any element of Z[τ] is either divisible by τ –
in which case the least significant digit of its expansion is 0 – or congruent to exactly one el-
ement of the digit set – which is then chosen as the least significant element of the expansion.
The full expansion is constructed recursively. This implies that we must be able to associate an
element of Z[τ] to its residue class modulo the chosen power of τ , and this requires some arithmetic
operations involving multiplication of the (truncated) inputs by elements computed from Lucas
sequences (cf. [37, § 7.3]). In particular, these elements are dependent on the chosen window width
and must be precomputed and stored.

With the short-NAF digit set SNR(w), we can get away with these computations. The scalar
is first recoded as a τ -NAF, and the elements of SNR(w) are associated to NAFs of length at
most w with non-vanishing least significant digit, and thus to certain odd integers in the interval
[−aw, aw] where aw is the largest odd integer that can be written as a binary NAF of length w. This

integer is (1010 . . .101) for odd w, and (1010 . . .1001) for even w. Explicitly, aw = 2w+1−2(−1)w

3 −1.
These integers can be used to index the elements in the precomputation table. We need only to
precompute the multiples of the base point by “positive” short NAFs (that is with most significant
digit equal to 1) – and the corresponding integers are the odd integers in the interval [0, aw−1]
together with the integers ≡ 1 (mod 4) in [aw−1+2, aw]. The indices in the table are then obtained
by easy compression. The precomputed elements for the scalar multiplication loop can thus be
retrieved upon direct reading the τ -NAF, of which we need only to compute the least w significant
places. If the least and the w-th least significant digits of this segment of the τ -NAF are both non-
zero and have different signs, a carry is generated: Thus, the computation of the τ -NAF should
be interleaved with the parsing for short NAFs. This can be achieved by simple modifications to
the algorithms for the τ -NAF in [36, 37].

3.1.2. Precomputations. In a scalar multiplication algorithm with variable base point P and
designed around a scalar expansion with a large symmetric digit set D, it is necessary to compute
d · P for all the positive digits d ∈ D+.

For MNR(w) the positive part can be defined as the set of minimal norm representatives of
the residue classes a + τwZ[τ] with a odd, positive, not larger than 2w−2. For SNR(w) we can
define SNR(w)+ to be the set of the short-NAF representatives whose most significant digit is 1.

One problem that arises with Solinas’ digit set is that in principle it has an irregular structure
and it is not easy to optimize the computation of the d ·P for all the positive digits d ∈ MNR(w)+.
This is in fact usually done ad hoc for each w.

For w = 5, a = 1 Solinas lists the following elements of MNR(5)+, where αi belongs to the
class i + τ5Z[τ]:

α1 = 1 α3 = τ2 − 1

α5 = τ2 + 1 α7 = −τ3 − 1

α9 = −τ5 − τ3 + 1 = −τ3α5 + 1 α11 = −τ4 − τ2 − 1 = −τ2α5 − 1

α13 = −τ4 − τ2 + 1 = −τ2α5 + 1 α15 = τ4 − 1

The precomputations then are performed as follows P3 = τ2P −P , P5 = τ2P +P , P7 = −τ3P −P ,
P9 = −τ3P + P , P11 = −τP5 + P , P13 = −τ2P5 + P , and P15 = τ4P − P . We observe that in
order to compute them efficiently we need to represent each element in a compact way in terms
of previously computed elements – this after having computed each digit by explicit modular
reduction by a power of τ in the ring Z[τ].

The syntactically defined digit set allows us to solve this problem very easily.

For fixed w, let S[i] be the subset of SNR(w)+ of elements whose τ -NAFs have weight i, and
let S[0] = {0}. The sets S[i] with i ≤

⌊

w
2

⌋

define a partition of SNR(w)+, and S[0] together with

S[i] and −S[i] with i ≤
⌊

w
2

⌋

define a partition of SNR(w).

Furthermore, each element d of S[i + 1] can be obtained as τa · d′ + u for some integer a ≥ 2,
d′ ∈ S[i], and u = ±1.

Redundant τ -adic Expansions 15

Algorithm 2. Smart precomputations for a SNR(w)-based scalar multiplication

INPUT: w and a base point P

OUTPUT: The set {d · P : d ∈ SNR(w)+}

1. precompute P and −P (nothing to do)

2. for i = 2 to ⌊w/2⌋ do

3. Compute d · P for all d ∈ S[i] from the (already computed) set S[i− 1] · P as follows:

4. let d = τa · d′ + u with d′ ∈ S[i− 1], a integer with a ≥ 2, and u = ±1

5. compute d · P as τa · (d′ · P) + u · P by means of Frobenius operations and one addition

6. return ({d · P : d ∈ SNR(w)+})

Algorithm 2 does all required precomputations according to the weight of the τ -NAFs of the
digits, in order of ascending weight.

This algorithm has already the advantage of being streamlined: as the digits are defined to
have a certain τ -NAF, their weight is known by construction. Given d, it is trivial to determine
a, the prefix d′ and u, as they are given by the representation of d.

3.1.2.1. Precomputations using affine coordinates. This algorithm also leads to further optimiza-
tions, in the case we are using affine coordinates. We denote by A the system of affine coordinates.

All the computations of d ·P as τa ·(d′ ·P)+u ·P for fixed i are clearly independent from each
other. Therefore we can first compute and store all the elements τa ·(d′ ·P) and then simultaneously
add all the ±P . Note also that, for all d of length strictly smaller than w, to each τa · (d′ · P)
we have to both add and subtract P . Since P and −P have the same (affine) X-coordinate, in
the addition formulae we have to invert the same element to compute A + P and A − P for an
arbitrary point A. We can perform all inversions (again, for fixed i) simultaneously, using a well
known trick attributed to Peter L. Montgomery: n field inversions can be computed via one field
inversion and 3(n− 1) field multiplications – in other words each saved inversion is replaced by 3
multiplications. As soon as one inversion costs more than three multiplications, this approach is
faster.

We thus have to perform 2w−2−1 point additions in
⌊

w
2

⌋

blocks (hence with
⌊

w
2

⌋

inversions).
Each point addition costs 1 field inversion, 1 field squaring, and 2 field multiplication – but, the
number of inversions to merge must be decreased by the amount of digits different from ±1 and
of length strictly smaller than w in the digit set, divided by two, because these digits all come in

pairs whose expansions differ only in the least significant digit. There are 2w−1+(−1)w

3 − 1 NAFs
with positive leading digit, non vanishing least significant digit, and of length greater than 1 and

at most w − 1. Hence, we save 2w−1+(−1)w

6 − 1
2 inversions.

The (2w−2 − 1)−
(2w−1+(−1)w

6 − 1
2

)

= 2w−1

3 − (−1)w

6 − 1
2 inversions come in

⌊

w
2

⌋

groups, and

are therefore in fact computed by
⌊

w
2

⌋

inversions and 2w−1 − (−1)w

2 − 3
2 − 3

⌊

w
2

⌋

multiplications.

Also the number of Frobenius operations required to compute the pairs of digits is halved,
being the prefix the same. More precisely, we have:

Lemma 3.1. The minimal number of Frobenius operations Φw required to do all the precomputations
with window width w is given by

Φw = 2w−2 − 1

2
− (−1)w

2

for w ≥ 2.

Proof. We calculate the number of Frobenius operations needed by Algorithm 2. Since we are
computing d = τa(d′ · P) + 1 · P and d = τa(d′ · P) − 1 · P at the same time, all NAFs with
least significant digit −1 do not necessitate a Frobenius operation. If a > 2, then τa−1(d′ · P)
has already been computed in the previous step, so only one Frobenius operation is needed. This
corresponds to NAFs described by the regular expression

0∗1(0 + 01̄ + 01)∗001. (15)

16 Roberto Maria Avanzi, Clemens Heuberger and Helmut Prodinger

On the other hand, if a = 2, we need two Frobenius operations. This corresponds to NAFs
described the regular expression

0∗1(0 + 01̄ + 01)∗(01 + 01̄)01 (16)

or

0∗101. (17)

We denote the number of Frobenius operations for computing {d · P : d ∈ SNR(w)+} by Φw and
consider the generating function G(z) =

∑

w≥0 Φwzw. The three regular expressions (15), (16),

and (17) correspond to the generating functions

G1(z) =
1

1 − z
· z · 1

1 − (z + 2z2)
· z3 ,

G2(z) =
1

1 − z
· z · 1

1 − (z + 2z2)
· 2z2 · z2 ,

G3(z) =
1

1 − z
· z3 ,

respectively. Thus G(z) is given by the appropriate linear combination of G1(z), G2(z), and G3(z)
as

G(z) = 1 · G1(z) + 2 · G2(z) + 2 · G3(z)

=
(2 − z)z3

(1 − z)(1 + z)(1 − 2z)
=

3

4
− z

2
− 1

2(1 − z)
− 1

2(1 + z)
+

1

4(1 − 2z)
.

Extracting the coefficient of zw yields

Φw = 2w−2 − 1 + (−1)w

2
+

3

4
[w = 0] − 1

2
[w = 1] ,

where Iverson’s notation [] for conditional expressions is used. �

Finally, we can now quantify the total cost of the precomputation:

Proposition 3.2. Computing {d · P : d ∈ SNR(w)} using affine coordinates takes
(

2w − 3
⌊w

2

⌋

− 7

2
− (−1)

w

2

)

M +

(

3

4
2w − 2 − (−1)w

)

S +
⌊w

2

⌋

I

where M, S and I denote field multiplication, squaring, and inversion, respectively.

3.1.2.2. Precomputations using López-Dahab coordinates. We now consider the cost of the pre-
computation using López-Dahab coordinates [25], denoted by LD. These are set of coordinates
for elliptic curves in which the curve is given by the equation

Y 2 + XY Z = X3Z + a2X
2Z2 + a6Z

4 .

The triple (X1 : Y1 : Z1) represents the affine point (X1/Z1, Y1/Z
2
1) when Z1 6= 0 and the neutral

point is (1 : 0 : 0). The opposite of (X1 : Y1 : Z1) is (X1 : X1Z1 + Y1 : Z1). These coordinates
provide the fastest mixed-coordinate addition formula on binary elliptic curves [1], taking a point
in LD and a point in A and returning theit sum in LD.

The idea it to keep the base point in A, perform all the additions in mixed coordinates and the
Frobenius operations on the points in LD (each Frobenius operation costs now 3 squarings), and
finally convert all the precomputations to A at once using Montgomery’s trick – in order to speed
up the additions in the main loop by using again mixed coordinate systems. We need to invert all
the Z-coordinates, and for each point (X : Y : Z) there are two additional multiplications, one by
Z−1 and one by (Z−1)2.

Furthermore, also in this case we can save operations exploiting the fact that we are often
adding and subtracting the same point.

Redundant τ -adic Expansions 17

According to [1] (see also [4]), to add a LD-point (X1 : Y1 : Z1) to a A-point (X2, Y2), we
perform the following operations:

A = Y1 + Y2Z
2
1 , B = X1 + X2Z1 , C = BZ1 ,

Z3 = C2 , D = X2Z3 ,
X3 = A2 + C(A + B2 + a2C) ,
Y3 = (D + X3)(AC + Z3) + (Y2 + X2)Z

2
3 .

(18)

If a2 ∈ {0, 1} the multiplication by a2, denoted by M2, can be saved. The cost of this mixed addition
is 8 M + M2 + 5 S.

Suppose now that we want to add and subtract the affine point P2 = (X2, Y2) to the point
P1 = (X1 : Y1 : Z1) in LD. Note that −(X2, Y2) = (X2, X2 + Y2).

Let (X3 : Y3 : Z3) = (X1 : Y1 : Z1)+ (X2, Y2) and (X ′
3 : Y ′

3 : Z ′
3) = (X1 : Y1 : Z1)+ (X2, X2 +

Y2). To compute both points we need perform the following sequence of operations

Steps to compute P1 + P2 Steps to compute P1 − P2 Operations
1 A = Y1 + Y2Z

2
1 A′ = Y1 + (X2 + Y2)Z

2
1 2 M+ 1 S

2 B = X1 + X2Z1 B′ = X1 + X2Z1 = B 1 M
3 C = BZ1 C′ = B′Z1 = BZ1 = C 1 M
4 Z3 = C2 Z ′

3 = C′2 = C2 = Z3 1 S
5 D = X2Z3 D′ = X2Z

′
3 = X2Z3 = D 1 M

6
X3 = A2 + C(A + B2 + a2C)

= A2 + AC + C(B2 + a2C)

X ′
3 = A′2 + C′(A′ + B′2 + a2C

′)

= A′2 + A′C + C(B2 + a2C)
3 M+ 1 M2 + 3 S

7 Y3 = (D + X3)(AC + Z3) + (Y2 + X2)Z
2
3

Y ′
3 = (D′ + X ′

3)(A
′C′ + Z ′

3) + Y2Z
′2
3

= (D + X ′
3)(A

′C + Z3) + Y2Z
2
3

4 M+ 1 S

Total operation count: 12 M+ 1 M2 + 6 S

We observe that the intermediate results B, C, D as well as the Z-coordinates of the results
are the same, and therefore are computed once. It is possible to compute, by associativity of the
multiplication, X3 and X ′

3 with only 2 multiplications instead of 3, but then AC and A′C must
be computed explicitly again for Y3 and Y ′

3 , bringing the multiplication count in Step 7 to 6. As
before, if a2 = 0 or 1 the multiplication by a2 need not be counted.

In general we perform 12 M+ 1 M2 + 6 S instead of 16 M+ 2 M2 + 10 S, and in our case the cost
is 12 M+ 6 S instead of 16 M+ 10 S, a saving of 4 M+ 4 S.

The fact that Z3 = Z ′
3 further reduced the number of Z-coordinates to invert (moreover,

these inverses are then squared) by the number of pairs of digits as above.
As with the precomputations in A, we need to compute 2w−2 − 1 points, all by Frobenius

operations followed by addition or subtraction of P .

We have 2w−1+(−1)w

6 − 1
2 pairs of digits that differ only in the least significant digit, other

than the pair {1,−1}. For each of these pairs we save 4 M + 4 S because of the additions, then we
need to invert their Z-coordinates only once, and we therefore save one further squaring per pair
during the conversion from LD to A.

We thus obtain the following result:

Proposition 3.3. The precomputation of {d · P : d ∈ SNR(w)} using López-Dahab coordinates and
converting these points at the end in affine coordinates can be performed in

(

8

3
2w − 25

2
− 7

6
(−1)w

)

M +

(

11

6
2w − 5 − 7

3
(−1)w

)

S + I .

Remark 3.4. Further optimizations are possible when implementing formula (18) using a technique
introduced in [10] and already applied to the optimization of explicit arithmetic of low genus
Jacobians [11]. This technique consists in locally reusing the precomputations associated to one of
the two multiplicands in a binary polynomial product. For example, the two multiplications by C
to obtain X3 and Y3 can be fused, and with a small change of the code also the precomputations
associated to Z1 to obtain B can be reused for C.

In [10] it is reported that 2, 3, 4 multiplications with a common multiplicand can be performed
at roughly the cost of 1.75, 2.35, 3 single multiplications respectively. The resulting savings for

18 Roberto Maria Avanzi, Clemens Heuberger and Helmut Prodinger

the mixed LD/A addition formula are thus about a half the time of multiplication per group
operation.

In the operations sequence to compute P1 ± P2 more savings are possible. For instance, the
products Y2Z

2
1 and (X2 + Y2)Z

2
1 can be fused, as well as the three multiplications by C in the

expressions for X3, Y3, X ′
3 and Y ′

3 and the two multiplications by Z2
3 in the last step. We can

expect a saving of about 1.15 field multiplications per pair of group operations.

3.1.2.3. Comparing the two strategies. It is difficult to determine which approach (the one whose
complexity is given in Proposition 3.2 or the one analyzed in Proposition 3.3) is faster in all
situations, but we can try to estimate the difference by assuming the cost of a squaring to be
negligible and M2 = 0, replacing

⌊

w
2

⌋

with w/2 − (1 − (−1)w)/4. Since there is nothing to do if
w = 2, we shall assume w ≥ 3.

Subtracting the cost of the precomputation strategy from § 3.1.2.2 from the cost of the ap-
proach described in § 3.1.2.1, we obtain

(

w

2
− 5 − (−1)w

4

)

I−
(

5

3
2w +

3

2
w − 39

4
− (−1)w

12

)

M . (19)

For w = 3, expression (19) is always negative, which means that the approach of § 3.1.2.1 is faster.
Otherwise (19) vanishes for

I =
(20 · 2w + 18 w − 117 + (−1)w)

3(2 w − 5 + (−1)w)
M .

If an inversion costs more than this, then the second approach using only López-Dahab coordinates
is faster – if the cost of an inversion is below this threshold, then the first approach is faster.

For w = 4, 5, 6, 7, 8 the threshold is 23, 51, 53, 107 and 143 M respectively. These will increase
a bit if we do not ignore the cost of squaring. For example, if we assume S = 1

10 M, these thresholds
become 24.3, 54.3, 56.25, 113.85 and 152.1 M respectively.

Remark 3.5. For i ≥ 2, a digit d ∈ S[i] can also be written as d = d′ · τa + d′′ with d′ ∈ S
[

⌊ i
2⌋
]

,

d′′ ∈ S
[

⌈ i
2⌉
]

, and an integer a ≥ 2. We can exploit this fact to reduce the number of inversions
in the first precomputation approach to O(log2 w), and we proceed similarly to the above, the
details being more complicated. This is bound to give a perceptible performance advantage only
for large w, and being w = O(log2 n) (for a more precise statement, see § 3.2.2), this means that
the extension degree is large enough to guarantee that better performance will be obtained by
using only López-Dahab coordinates.

3.2. τ -adic Scalar Multiplication with Repeated Halvings

Let w ≥ 2 be an integer and Pτ̄ (w) the digit set defined in Section 2.4. Let P be a point on an
elliptic curve and Qj := τ j(2−jP) for 0 ≤ j < 2w−2 and R := Q2w−2−1. To compute zP , we have

to compute yR for y := τ̄2w−2−1z. Computing a D-w-NAF of y, this can be done by using the
points Qj, 0 ≤ j < 2w−2 as precomputations.

Now, a point halving on an elliptic curve is much faster than a point doubling, and a point
addition is not faster than a doubling – with affine coordinates a doubling and an addition have
similar timings, and with other coordinate systems an addition is much slower than a doubling.
Now, with, say, Solinas’ set or the short τ -NAF representatives the precomputations always involve
one group addition per digit set element (even though something can be saved: see § 3.1.2)

With the digit set Pτ̄ (w) from Section 2.4 we require a halving per digit set element. Hence,
our approach with the points Qj and halvings is already faster than traditional ones.

But we can do even better, especially if normal bases are used to represent the field F2n .

Algorithm 3 computes zP using an expansion y =
∑ℓ

i=0 yiτ
i of the integer y := τ̄2w−2−1z where

the digits yi belong to the digit set Pτ̄ (w).
To explain how it works we introduce some notation. Write yi = εiτ̄

ki with εi ∈ {0,±1} and
0 ≤ k < 2w−2. We also define

y(k) =
∑

i : 0≤i≤ℓ, yi=±τ̄k

εiτ
i .

Redundant τ -adic Expansions 19

Algorithm 3. τ -adic Scalar Multiplication on Koblitz curves with Repeated Halvings, basic variant

INPUT: A Koblitz curve Ea, a point P of odd order on it, and a scalar z.

OUTPUT: zP

1. y ← τ̄ 2w−2
−1z

Write y =
Pℓ

i=0 yiτ
i where yi ∈ Pτ̄ (w)

Write yi = εiτ̄
ki with εi ∈ {0,±1}

2. ℓk ← max
`

{−1} ∪ {i : yi = ±τ̄k for some k}
´

3. Q← 0

4. for k = 0 to 2w−2 − 1 do

5. if k > 0 then Q← τn−ℓkQ, Q← 1
2
Q

6. for i = ℓk to 0 do

7. Q← τQ

8. if yi = ±τ̄k then Q← Q + εiP

9.
h

Q =
Pk

j=0

`

τ
2

´k−j
y(j)P

i

10. return Q

Now y =
∑2w−2−1

k=0 y(k)τ̄k and therefore

zP = τ̄−(2w−2−1)yP =

(

2w−2−1
∑

k=0

y(k)τ̄k

)

τ̄−(2w−2−1)P

=

2w−2−1
∑

k=0

y(k)τ̄k−(2w−2−1)P =

2w−2−1
∑

k=0

(τ

2

)2w−2−1−k

(y(k))P .

The last expression is evaluated by a Horner scheme in τ
2 , i.e., by repeated applications of τ and

a point halving, interleaved with additions of y(0)P , y(1)P , etc. The elements y(k)P are computed
by a τ -and-add loop as usual. To save a memory register, instead of computing y(k)P and then
adding it to a partial evaluation of the Horner scheme, we apply τ to the negative of the length
of y(k) (which is 1 + ℓk) to the intermediate result X and perform the τ -and-add loop to evaluate
y(k)P starting with this X instead of a “clean” zero. In Step 5 there is an optimization already
present in [3]: n is added to the exponent (since n ≈ ℓk and τn acts like the identity on the curve;
recall that we are working in F2n) and the operation is also partially fused to the subsequent τ

2 .
Apart from the input, we only need to store the additional variable X and the recoding of

the scalar. The multiplication of z by τ̄2w−2−1 is an easy operation, and the negative powers of τ
can be easily eliminated by multiplying by a suitable power of τn, which operates trivially on the
points of the curve. Reduction of this scalar by (τn −1)/(τ −1) following [36, 37] is also necessary.

An issue with Algorithm 3 is that the number of Frobenius operations may increase expo-
nentially with w, since the internal loop is repeated up to 2w−2 times. This is not a problem if a
normal basis is used to represent the field, but may induce a performance penalty with a polyno-
mial basis. A similar problem was faced by the authors of [32], and they solved it adapting an idea
from [33]. The idea consists in keeping a copy R of the point P in normal basis representation. In-
stead of computing y(k)P by a Horner scheme in τ , the summands εiτ

iP are just added together.
The power of the Frobenius is applied to R before converting the result back to a polynomial
basis representation and accumulating it. According to [15] a basis conversion takes about the
same time as one polynomial basis multiplication, and the two conversion routines require each a
matrix that occupies O(n2) bits of memory. However, in our implementation we find the cost of
basis conversion to be between 1.5 and 3 field multiplications, depending on the field size – this
is due to the fact that the field multiplication routines which we have employed are particularly
fast [10]. We shall then use these higher ratios when estimating the computational cost of our
methods with respect to other techniques (§ 3.3).

Algorithm 4 is our realisation of this approach. It is suited in the context where a polynomial
basis is used for a field and the cost of an inversion is not prohibitive. The routines normal basis

20 Roberto Maria Avanzi, Clemens Heuberger and Helmut Prodinger

Algorithm 4. Low-memory τ -adic Scalar Multiplication on Koblitz Curves with Repeated Halvings, for Fast
Inversion

INPUT: P ∈ E(F2n), scalar z

OUTPUT: zP

1. y ← τ̄ 2w−2
−1z

Write y =
Pℓ

i=0 yiτ
i where yi ∈ Pτ̄ (w)

Write yi = εiτ̄
ki with εi ∈ {0,±1}

2. R← normal basis(P)

3. Q← 0

4. for k = 0 to 2w−2 − 1

5. if k > 0 then Q← τQ, Q← 1
2
Q

6. for i = 0 to ℓ

7. if yi = ±τ̄k then Q← Q + εipolynomial basis(τ iR)

8.
h

Q =
Pk

j=0

`

τ
2

´k−j
y(j) · P

i

9. return Q

Algorithm 5. Low-memory τ -adic Scalar Multiplication on Koblitz Curves with Repeated Doublings, for Slow
Inversion

INPUT: P ∈ E(F2n), scalar z

OUTPUT: zP

1. Write z =
Pℓ

i=0 ziτ
i where zi ∈ Pτ̄(w)

Write zi = εiτ̄
ki with εi ∈ {0,±1}

2. R← normal basis(P) [Keep in affine coordinates]

3. Q← 0 [Q is in López-Dahab coodinates]

4. for k = 2w−2 − 1 to 0

5. if k > 0 then Q← τ−1Q, Q← 2Q
ˆ

τ−1 is three square roots
˜

6. for i = 0 to ℓ

7. if zi = ±τ̄k then Q← Q + εipolynomial basis(τ iR) [Mixed coord.]

8.
h

Q =
P2w−2

−1
j=k τ̄ j−ky(j) · P

i

9. return Q [Convert to affine coordinates]

and polynomial basis perform the conversion of coordinates of the points between polynomial and
normal bases.

Algorithm 5 is the version for fields with a slow inversion (such as large fields). It uses
inversion-free coordinate systems and, since no halving formula is known for such coordinates, a
doubling is used instead of a halving. This is not a problem, since using Projective or López-Dahab
coordinates (see [4, Section 15.1]) a doubling followed by an application of τ−1 (which amounts to
three square root extractions) is about twice as fast as a mixed-coordinate addition preceded by
a basis conversion, hence the situation is as advantageous as the previous one. This also dispenses
us with the need of using an auxiliary scalar y.

Although the digit set Pτ̄ (w) is not a w-NADS for all w, in the next subsection we show how
to save the situation.

3.2.1. Stepping Down Window Size. Suppose we have a digit set Dw, parametrized by an integer
w, which is not a w-NADS for some values of w – but it is a NADS for some smaller values of
w, and Dv−1 ⊂ Dv holds for all v. Then, Algorithm 1 may enter a loop for a few inputs; this can
be caused by the appearance of “large” digits towards the end of the main loop of the recoding
algorithm, so that the norm of the variable u gets too small in comparison to the chosen digit.

In other words |u| ≤
∣

∣

∣

u−zj

τw

∣

∣

∣
≤ |u|+|zj|

2w/2 . But, for other inputs the algorithm delivers the expected

low density. How can we save it? One possible answer is to lower the value of w for the rest of
the computation, so that the corresponding digit set is a NADS. We call this operation stepping

Redundant τ -adic Expansions 21

Algorithm 6. Windowed Integer Recoding With Termination Guarantee

INPUT: An element z from Z[τ], a natural number w ≥ 1 and a set of reduced residue systems D′

k ⊂ D
′

k+1 ⊂

. . . ⊂ D′

w modulo τk, τk+1, . . ., τw respectively (1 ≤ k < w), where D′

k ∪ {0} is a k-NADS.

OUTPUT: A representation z =
Pℓ−1

j=0 zjτ
j of length ℓ.

1. j ← 0, u← z, v ← w

2. while u 6= 0 do

3. if τ | u then

4. zj ← 0

5. else

6. Let zj ∈ D
′

v s.t. zj ≡ u (mod τv)

7. if (|zj | ≥ |u|(2
v/2 − 1) and v > k) then decrease v and retry:

8. v ← v − 1, go to Step 6

9. u← u− zj , u← u/τ , j ← j + 1

10. ℓ← j

11. return ({zj}
ℓ−1
j=0, ℓ)

down. The resulting recoding may have a slightly higher weight, but the algorithm is guaranteed
to terminate. One possible implementation is presented as Algorithm 6.

Solinas is able to prove termination of his τ -adic w-NAF because his digits are minimal
representatives in their classes and have norm bounded by 4

72w. The presence of digits of non-
minimal norm is a necessary condition for non-termination, but this is not sufficient. In fact, we
have seen w-NADS with digits of norm larger than 2w: the digit set from Example 2.10 and Pτ̄ (w)
from Section 2.4.

Remark 3.6. Note that the digit set from Example 2.10, MNR(w) and Pτ̄ (w) all have the property
that each set is contained in the corresponding sets with larger w – hence Algorithm 6 can be
used. However, stepping down is not required for some of these digit sets.

Remark 3.7. Checking an absolute value (or a norm) in Algorithm 6, Step 7 is expensive. Hence
we need an alternative strategy. Let Mw be defined as M in Theorem 1 for the digit set we
are considering, with parameter w. Consider an easy function that is bounded by the norm: for
example, if z = a+ bτ , λ(z) = max{⌈|a+ µ

2 b|⌉2, 2⌈|µ4 a+ b|⌉2}. It is easy to check that λ(z) ≤ N(z)
and that λ(z) = 0 iff z = 0. Therefore, if ⌈log2(Mv)⌉ ≥ ⌊log2(λ(z))⌋ we step down to a new
value of v with ⌈log2(Mv)⌉ < ⌊log2(λ(z))⌋. These checks are quickly computed only by using the
bit lengths of a and b and performing additions, subtractions and bit shifts (but no expensive
multiplication). The values ⌈log2(Mv)⌉ are precomputed in an easy way.

Remark 3.8. In our experiments, the recodings done with the different digit sets have similar
length, the average density is 1/(w + 1) (see also § 3.2.2), and stepping down only marginally
increases the weight. Therefore the new digit sets bring their advantages with de facto no perfor-
mance penalty.

3.2.2. Sublinearity. Algorithms 3, 4 and 5 all perform a scalar multiplication by alternating 2w−2−
1 “faster” operation blocks and (roughly) n/(w + 1) “slower” operation blocks. In Algorithm 3
(with normal bases) these two block types are given by a halving and an addition respectively.
In Algorithm 4, resp. 5 these two block types are given by a Frobenius operation plus a halving
(resp. by an inverse Frobenius plus a doubling), and by a basis conversion followed by an addition
(for both algorithms). In all cases we can see that computing the first block takes α times the time
for computing the second block, where α ≤ 1/2.

We now determine asymptotically optimal values for w in these algorithms in terms of n,
where n is assumed to be large. This will lead to large values w, such that Pτ̄(w) is probably not a
w-NADS. We will therefore have to use Algorithm 6 (or a variant of it). For the sake of simplicity,
we do not decrease v step by step depending on the norm of |zj |, but we use v = w for j < L and
v = 6 for j ≥ L, where the parameter L will be chosen below.

22 Roberto Maria Avanzi, Clemens Heuberger and Helmut Prodinger

Let z be a random integer in Z[τ] with |z| ≤ |τ |n. Here “random” means that for every positive
integer m, every residue class modulo τm is equally likely. More precisely, we use the set of τ -adic

integers equipped with its Haar measure as our probability space. Let y =
∑L−1

j=0 zjτ
j where the

zj are calculated by Algorithm 6. Then y ≡ z (mod τL) and |y| ≤ |τ |2w−2−1+L−1(1 − |τ |−w)−1.

Thus |(z − y)/τL| ≤ |τ |n−L + |τ |2w−2−2(1 − 2−w/2)−1. The choice

L = n − 2w−2 + 2

implies that |(z−y)/τL| ≤ 3|τ |n−L. The expected length of the D6-6-NAF of (z−y)/τL is therefore
n − L + O(1). Here, D6 = {0} ∪ {±τ̄k : 0 ≤ k < 16}. We conclude that the expected Hamming
weight of the expansion constructed by Algorithm 6 is

L

w + 1
+

n − L

7
+ O(1) .

Here, we use the well-known fact that a v-NAF of length m has expected Hamming weight
m/(v + 1) + O(1).

The number of cheap operations (e.g., point halvings performed by, say, Algorithm 3) equals
2w−2 − 1, the number of expensive operations (i.e., additions) is given by the Hamming weight
of the expansion. With α defined as above, the overall costs of the curve operations (measured in
additions) are given by

α2w−2 +
L

w + 1
+

n − L

7
+ O(1) = 2w−2

(

α +
1

7

)

+
n − 2w−2

w + 1
+ O(1) .

Balancing the two main terms gives

ŵ =
1

log 2
W

(

7 · 2
21α+10
7α+1 log 2

7α + 1
n

)

− 7α + 8

7α + 1
,

where W (z) denotes the main branch of Lambert’s W function, cf. Corless et al. [14]. Asymptoti-

cally, this is ŵ = log2 n − log2 log2 n + 2 − log2

(

α + 1
7

)

+ O
(

log log n
log n

)

. Thus we choose

w =

⌊

log2 n − log2 log2 n + 2 − log2

(

α +
1

7

)⌋

and see that the expected number of curve additions asymptotically equals

n

log2 n

(

1 + c + O

(

log log n

log n

))

(20)

with 1
2 < c = 2−{log2 n−log2 log2 n+2−log2(α+ 1

7)} ≤ 1.

For Algorithms 4 and 5, the unit in the cost (20) is given by the cost of a group addition
and a base conversion – the latter being comparable to a field multiplication. We thus have the
following result:

Theorem 7. Algorithms 3, 4 and 5 are sublinear scalar multiplication algorithms on Koblitz Curves
with constant input-dependent memory consumption.

Note that here sublinear refers to the number of group operations, and “constant memory
consumption” refers to the number of registers required for temporary variables – each one taking
of course O(n) bits. Usual windowed methods with precomputations have, of course, similar time
complexity but use storage for 2w−2 − 1 points [36, 37] and thus O(n2w) = O(n2/ logn) bits of
memory. Algorithms 4 and 5 need O(n2) bits of field-dependent (but not point-dependent) data
for base conversion (as in [33, 32]) that depends only on the field and thus can be stored statically
(such as in ROM).

Redundant τ -adic Expansions 23

Classic with MNR(w) Classic with SNR(w) Methods from [2]
bits A LD A LD CMA LMA

Alg. 4 Alg. 5

163 390.77 (5) 392.93 (5) 355.98 (6) 384.07 (4) 305.75 (5) 300.35 (5) 382.27 (6) 390.32 (6)
233 590.93 (6) 513.36 (5) 535.71 (6) 496.25 (5) 427.69 (5) 407.71 (5) 562.88 (7) 493.91 (6)
283 950.84 (6) 594.41 (5) 862.43 (7) 577.91 (5) 605.06 (6) 568.96 (5) 884.20 (7) 598.66 (6)
409 2602.33 (8) 807.30 (5) 2377.83 (8) 791.21 (5) 1266.51 (6) 1144.68 (6) 2247.20 (9) 835.93 (7)
571 6809.33 (9) 1186.02 (6) 6244.88 (9) 1143.57 (6) 2746.00 (6) 2428.36 (6) 5817.70 (10) 1157.03 (7)

Table 3. Comparison of operation counts of different scalar multiplication al-
gorithms for elliptic Koblitz Curves. The numbers between parentheses are the
corresponding optimal window sizes w.

3.3. Cost Comparisons

It is interesting to determine the relative performance of various Koblitz curve scalar multiplication
algorithms in different scenarios.

It is to be expected that, for the same values of w, Algorithms 4 and 5 perform better
than techniques storing precomputations. The precomputation stage in the latter case takes one
addition and some Frobenius operations per precomputation. Using Pτ̄(w) these additions can
be replaced with cheaper operations (halvings or doublings depending on the coordinate system),
whereas in Algorithms 4 and 5 the cost of the basis conversion associated to each addition in the
main loop is relatively small. In all cases, the increase in recoding weight is marginal.

On the other hand, using SNR(w), in § 3.1.2 we show how to save time by merging field
inversions or using faster addition formulas. Finally, in [2] two further algorithms derived from
Yao’s scalar multiplication technique are introduced, that are particularly attractive for small
inputs. Table 3 updates and extends the table from [2]. The operation counts have been recalculated
after the precomputation stage has been improved and taking into account our base conversion
timings.

By A we denote the use of affine coordinates in the main loop of the scalar multiplication,
by LD the use of López-Dahab coordinates throughout. In each case, the fastest precomputation
method has been adopted (cf. [2]). The two columns under MNR(w) represent scalar multiplications
using Solinas’ digit set, under SNR(w) operation counts for scalar multiplication using the short-
NAF representatives are given, with the precomputation strategies described in § 3.1.2. The next
two columns report performance data for the methods from [2] and the last two columns refer to
Algorithms 4 and 5.

The value of w, that is always chosen to be optimal with respect to performance, is found
between parentheses. It is important to keep in mind that the methods described in the first
6 columns require storage for 2w−2 points (even somewhat more in the cases of the algorithms
from [2]) with w ≈ log2 n− log2 log2 n, hence their storage requirements grow essentially quadrati-
cally with n. On the other hand, Algorithms 4 and 5 require to store just three intermediate values,
and thus their total storage requirements that depend on the input point grow linearly with the
degree of the extension field. This and the fact that their performance is comparable to the other
best methods, makes Algorithms 4 and 5 especially interesting for their asymptotic behaviour (for
example in computer algebra systems).

The method in [9] is also sublinear, but its applicability still has to be assessed – the authors
warn that the involved constants may be quite large. Another approach is presented in [5].

References

1. E. Al-Daoud, R. Mahmod, M. Rushdan, and A. Kilicman, A new addition formula for elliptic curves

over GF(2n), IEEE Trans. on Computers 51 (2002), no. 8, 972–975.

2. R. Avanzi, Delaying and Merging Operations in Scalar Multiplication: Applications to Curve-Based

Cryptosystems, Selected Areas in Cryptography: 13th International Workshop, SAC 2006, Montreal,
Quebec, Canada, August 17–18, 2006, Revised Selected Papers (Eli Biham and Amr M. Youssef, eds.),
Lecture Notes in Comput. Sci., vol. 4356, Springer, Berlin, 2007, pp. 203–219.

24 Roberto Maria Avanzi, Clemens Heuberger and Helmut Prodinger

3. R. Avanzi, M. Ciet, and F. Sica, Faster scalar multiplication on Koblitz curves combining point halving

with the Frobenius endomorphism, Public Key Cryptography - PKC 2004, 7th International Workshop
on Theory and Practice in Public Key Cryptography, Singapore, March 1-4, 2004 (Feng Bao, Robert H.
Deng, and Jianying Zhou, eds.), Lecture Notes in Comput. Sci., vol. 2947, Springer, 2004, pp. 28–40.

4. R. Avanzi, H. Cohen, C. Doche, G. Frey, T. Lange, and K. Nguyen, Handbook of elliptic and hyper-

elliptic curve cryptography, CRC Press Series on Discrete Mathematics and its Applications, vol. 34,
Chapman & Hall/CRC, Boca Raton, FL, 2005.

5. R. Avanzi, V. Dimitrov, C. Doche, and F. Sica, Extending scalar multiplication using double bases,
Advances in Cryptology - ASIACRYPT 2006, 12th International Conference on the Theory and Ap-
plication of Cryptology and Information Security, Shanghai, China, December 3-7, 2006, Proceedings
(Xuejia Lai and Kefei Chen, eds.), Lecture Notes in Comput. Sci., vol. 4284, Springer, 2006, pp. 130–
144.

6. R. Avanzi, C. Heuberger, and H. Prodinger, Minimality of the Hamming weight of the τ -NAF for

Koblitz curves and improved combination with point halving, Selected Areas in Cryptography: 12th
International Workshop, SAC 2005, Kingston, ON, Canada, August 11–12, 2005, Revised Selected
Papers (Preneel B. and Tavares St., eds.), Lecture Notes in Comput. Sci., vol. 3897, Springer, Berlin,
2006, pp. 332–344.

7. , Scalar multiplication on Koblitz curves. Using the Frobenius endomorphism and its combina-

tion with point halving: Extensions and mathematical analysis, Algorithmica 46 (2006), 249–270.

8. , On Redundant τ -adic Expansions and Non-Adjacent Digit Sets., Selected Areas in Cryp-
tography: 13th International Workshop, SAC 2006, Montreal, Quebec, Canada, August 17–18, 2006,
Revised Selected Papers (Eli Biham and Amr M. Youssef, eds.), Lecture Notes in Comput. Sci., vol.
4356, Springer, Berlin, 2007, pp. 285–301.

9. R. Avanzi and F. Sica, Scalar multiplication on Koblitz curves using double bases, Progress in Cryptol-
ogy - VIETCRYPT 2006, First International Conference on Cryptology in Vietnam, Hanoi, Vietnam,
September 25-28, 2006, Revised Selected Papers (Phong Q. Nguyen, ed.), Lecture Notes in Comput.
Sci., vol. 4341, Springer, 2006, pp. 131–146.

10. R. Avanzi and N. Thériault, Effects of Optimizations for Software Implementations of Small Binary

Field Arithmetic., WAIFI 2007: International Workshop on the Arithmetic of Finite Fields (Claude
Carlet and Berk Sunar, eds.), Lecture Notes in Comput. Sci., vol. 4547, Springer, Berlin, 2007, pp. 69–
84.

11. R. Avanzi, N. Thériault, and Z. Wang, Rethinking Low Genus Hyperelliptic Jacobian Arithmetic over

Binary Fields: Interplay of Field Arithmetic and Explicit Formulæ, Preprint, 2007.

12. G. Avoine, J. Monnerat, and Th. Peyrin, Advances in alternative non-adjacent form representations,
Progress in cryptology—INDOCRYPT 2004, Lecture Notes in Comput. Sci., vol. 3348, Springer,
Berlin, 2004, pp. 260–274.

13. I. F. Blake, V. K. Murty, and G. Xu, A note on window τ -NAF algorithm, Inform. Process. Lett. 95

(2005), 496–502.

14. R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth, On the Lambert W
function, Adv. Comput. Math. 5 (1996), no. 4, 329–359.

15. J.-S. Coron, D. M’Räıhi, and C. Tymen, Fast generation of pairs (k, [k]P) for Koblitz elliptic curves,
Selected Areas in Cryptography, 8th Annual International Workshop, SAC 2001 Toronto, Ontario,
Canada, August 16-17, 2001, Revised Papers (Serge Vaudenay and Amr M. Youssef, eds.), Lecture
Notes in Comput. Sci., vol. 2259, Springer, Berlin, 2001, pp. 151–164.

16. W. J. Gilbert, Radix representations of quadratic fields, J. Math. Anal. Appl. 83 (1981), no. 1, 264–274.

17. C. Heuberger, Redundant τ -adic Expansions II: Non-Optimality and Chaotic Behaviour, Tech. Report
2008-4, Graz University of Technology, 2008, available at: http://www.math.tugraz.at/fosp/pdfs/
tugraz_0093.pdf.

18. C. Heuberger and H. Prodinger, Analysis of alternative digit sets for nonadjacent representations,
Monatsh. Math. 147 (2006), 219–248.

19. IEEE Std 1363-2000, IEEE standard specifications for public-key cryptography, IEEE Computer Soci-
ety, August 29 2000.

20. I. Kátai and B. Kovács, Canonical Number Systems in Imaginary Quadratic Fields, Acta Math. Hun-
gar. 37 (1981), 159–164.

21. I. Kátai and J. Szabó, Canonical Number Systems for Complex Integers, Acta Sci. Math. (Szeged) 37

(1975), 255–260.

Redundant τ -adic Expansions 25

22. E. W. Knudsen, Elliptic Scalar Multiplication Using Point Halving, Advances in Cryptology - ASI-
ACRYPT ’99, International Conference on the Theory and Applications of Cryptology and Information
Security, Singapore, November 14-18, 1999, Proceedings (Kwok-Yan Lam, Eiji Okamoto, and Chaoping
Xing, eds.), Lecture Notes in Comput. Sci., vol. 1716, Springer, Berlin, 1999, pp. 135–149.

23. N. Koblitz, Elliptic curve cryptosystems, Math. Comp. 48 (1987), no. 177, 203–209.

24. N. Koblitz, CM-curves with good cryptographic properties, Advances in Cryptology - CRYPTO ’91,
11th Annual International Cryptology Conference, Santa Barbara, California, USA, August 11-15,
1991, Proceedings (Joan Feigenbaum, ed.), Lecture Notes in Comput. Sci., vol. 576, Springer, Berlin,
1992, pp. 279–287.

25. J. López and R. Dahab, Improved algorithms for elliptic curve arithmetic in GF(2n), Tech. Report
IC-98-39, Relatório Técnico, October 1998.

26. D. W. Matula, Basic digit sets for radix representation, J. Assoc. Comput. Mach. 29 (1982), no. 4,
1131–1143.

27. W. Meier and O. Staffelbach, Efficient multiplication on certain nonsupersingular elliptic curves, Ad-
vances in Cryptology - CRYPTO ’92, 12th Annual International Cryptology Conference, Santa Bar-
bara, California, USA, August 16-20, 1992, Proceedings (Ernest F. Brickell, ed.), Lecture Notes in
Comput. Sci., vol. 740, Springer, Berlin, 1993, pp. 333–344.

28. V. S. Miller, Use of elliptic curves in cryptography, Advances in Cryptology - CRYPTO ’85, Santa
Barbara, California, USA, August 18-22, 1985, Proceedings (Hugh C. Williams, ed.), Lecture Notes
in Comput. Sci., vol. 218, Springer, Berlin, 1986, pp. 417–426.

29. J. A. Muir and D. R. Stinson, Alternative digit sets for nonadjacent representations, Selected Areas in
Cryptography, 10th Annual International Workshop, SAC 2003, Ottawa, Canada, August 14-15, 2003,
Revised Papers (Mitsuru Matsui and Robert J. Zuccherato, eds.), Lecture Notes in Comput. Sci., vol.
3006, Springer, Berlin, 2004, pp. 306–319.

30. , Alternative digit sets for nonadjacent representations, SIAM J. Discrete Math. 19 (2005),
165–191.

31. National Institute of Standards and Technology, Digital signature standard, FIPS Publication, vol.
186-2, February 2000.

32. K. Okeya, T. Takagi, and C. Vuillaume, Short memory scalar multiplication on Koblitz curves, Cryp-
tographic Hardware and Embedded Systems - CHES 2005, 7th International Workshop, Edinburgh,
UK, August 29 - September 1, 2005, Proceedings (J.R. Rao and B. Sunar, eds.), Lecture Notes in
Comput. Sci., vol. 3659, Springer, Berlin, 2005, pp. 91–105.

33. D. J. Park, S. G. Sim, and Pil Joong Lee, Fast scalar multiplication method using change-of-basis

matrix to prevent power analysis attacks on koblitz curves, Information Security Applications 4th
International Workshop, WISA 2003, Jeju Island, Korea, August 25-27, 2003, Revised Papers (Kijoon
Chae and Moti Yung, eds.), Lecture Notes in Comput. Sci., vol. 2908, Springer, 2004, pp. 474–488.

34. R. Schroeppel, Elliptic curve point ambiguity resolution apparatus and method, International Applica-
tion Number PCT/US00/31014, filed 9 November 2000.

35. R. Schroeppel, Point halving wins big, Talk at the ECC 2001 Workshop, October 29–31, 2001, Uni-
versity of Waterloo, Ontario, Canada.

36. J. A. Solinas, An improved algorithm for arithmetic on a family of elliptic curves, Advances in Cryp-
tology — CRYPTO ’97. 17th annual international cryptology conference. Santa Barbara, CA, USA.
August 17–21, 1997. Proceedings (B. S. Kaliski, jun., ed.), Lecture Notes in Comput. Sci., vol. 1294,
Springer, Berlin, 1997, pp. 357–371.

37. , Efficient arithmetic on Koblitz curves, Des. Codes Cryptogr. 19 (2000), 195–249.

Roberto Maria Avanzi
Faculty of Mathematics and Horst Görtz Institute for IT Security
Ruhr-University Bochum
Germany

e-mail: roberto.avanzi AT ruhr-uni-bochum.de

26 Roberto Maria Avanzi, Clemens Heuberger and Helmut Prodinger

Clemens Heuberger
Institut für Mathematik B
Technische Universität Graz
Austria
e-mail: clemens.heuberger AT tugraz.at

Helmut Prodinger
Department of Mathematics
University of Stellenbosch
South Africa
e-mail: hproding AT sun.ac.za

