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Abstract— Multiple-point multiplication on elliptic curves is Generally, elliptic curve point multiplication consumegth
the highest computational complex operation in the elliptt curve  computational power in elliptic curve cryptography. Numbe
cyptographic based digital signature schemes. We descriliaree 4t tachniques have been introduced to overcome this problem

algorithms for multiple-point multiplication on elliptic curves o . L .
over prime and binary fields, based on the representations [3], [15], [19]. In addition to that, in elliptic curve digl

of two Sca|ars’ as sums of mixed powers of 2 and 3. Our Signature Veriﬁcation, the multlple pOint multiplica’[i(m)n-
approaches include sliding window mechanism and some pre- sumes huge amount of computational power. Shamir method
computed values of points on the curve. A proof for formulae &  simultaneous multiple point multiplication[13], fast $hia
calculate the number of double-based elements, doublingsnd method, non-adjacent form (NAF)[25], joint sparse fornj[24

triplings below 2" is listed. Affine coordinates and Jacobian . . . - .
coordinates are considered in both prime fields and binary fies, and interleaving with NAF and sliding window methods|15]

We have achieved upto 24% of improvements in new algorithms have been used for improving the efficiency of the multiple

for multiple-point multiplication. point multiplication. In this paper, we propose doubleéas
number system techniques to improve the efficiency of verify
|. INTRODUCTION ing the digital signature in both prime and binary fields. The

coordinate systems that we considered, are Affine coomlnat

The public key cryptography which was proposed by Diffiand Jacobian projective coordinates over both fields.
and Hellman in [5] in 1976, changed directions, in the field The double-base number system (DBNS) was introduced
of cryptography. Thereafter, the RSA[23] algorithm donéh in [9] for cryptographic applications and later extended fo
the commercial world for public key cryptography. In 1985¢lliptic curve cryptography in [7] and [8]. We apply double-
Koblitz[18] and Miller[21] proposed the elliptic curve quog- base number system for multiple point multiplication beszau
raphy (ECC) which is basedlliptic curve discrete logarithm it inherits sparsity and redundancy in the DBNS number
problem(ECDLP). The main advantage of the elliptic curv@epresentation. We propose three new algorithms for nieltip
cryptography is the relatively small key-size. For an exi&mnp point multiplication derived from double-base number syst
a 160-bit elliptic curve key provides the same security ashoreover, combination of doublings and triplings with pioin
1024-bit RSA key[15]. additions improves performance in prime and binary fields.

The concept ofDigital signature which is derived from  The sequel of the paper is organized as follows: In the
public key cryptography, is equivalent to that of handwentt Section Il, we review theory of ECC and DBNS. The existing
signature in paper-based communications. RSA signatBire[2multiple point multiplication algorithms are briefly revied
Elgamal signature[13], and Digital Signature AlgorithmSB) in the Section Ill. We propose all three new algorithms for
[1][2] are widely used in today’s commercial applicationsmultiple point multiplication based on DBNS in Section IV
Elliptic curve digital signature algorithm (ECDSA)[2] andand presents and analyze the experimental results in 8ectio
elliptic curve Korean certificate-based digital signataigo- V. Finally, we discuss the significant improvements usirnig th
rithm (EC-KCDSA)[16] are the most common two ellipticnew algorithms and conclude the paper in Section VI with a
curve cryptographic digital signature algorithms. discussion in implementation and future work.



Il. BACKGROUND line to the pointP; intersection of this tangent line and the
mglliptic curve is the negation of the double of the point;etak

Theory of elliptic curve cryptography and double-base nu k ¢ ) ;
the reflection abouk-axis to get the resultant point. Given

ber system are briefly reviewed in this section.

A. Elliptic Curve Cryptography

Elliptic curves have been introduced to public key
cryptography by Koblitz and Miller independently in 1985.

1) Elliptic Curve Cryptography:-

Definition 1 (elliptic curve): An elliptic curve E over a field
K is defined by the Weierstrass equation, given by

E:y? +aizy + asy = 2° + asx® + aux + ag D

where, {a1, as,as,a4,a6} € K and A # 0, where A is the
discriminant of E and is defined as follows:

A = —dy?dg — 8dy> — 27dg? + 9dodydg

2
d2 = a1” + 4as Fig. 1. Elliptic Curve Addition
dy = 2a4 + ara3 2)

de = a3® + dag

a pointP € E(K) andk € N, the operation of computing
) 9 9 the new pointk x P is called point multiplication or scalar
ds = a1”ae + 4a2a6 — a1azaq + aza3” — aq multiplication. This operation is computationally domitan
E is defined overK, and coefficientsai, as, as, a4, ag are ECC.
elements oK. The conditionA # 0 ensures that elliptic curve  Digital signature algorithms need multiple point multgali
is smooth which means that there are no points at which tH#n for the verification process. In this process, much ef th
curve has two or more distinct tangent lines. computational power is spent on multiple point multiplioat
The fieldK can be either prime, binary, ternary or optimalf both pointsP, Q are on the elliptic curve and both integers
extension field. All of these fields are used for cryptographi k. | are less than the order of the elliptic curve over the field,
purposes. Properties of the elliptic curve depends on tie fighe operation of computing the new pok® + IQ is called
and the characteristics of the Egn. 1. the multiple point multiplication.
If K is a prime field ), E transforms into the curve which

. . TABLE |
is represented in Eqn. 3.
OPERATION COUNTS FOR POINT ADDITIONDOUBLING & TRIPLING OVER
yQ —a2® a2 4+b 3) PRIME FIELD USINGAFFINE COORDINATES& JACOBIAN PROJECTIVE

. . . COORDINATES[8], [12], [15].
where,a,b € K and the discriminant of this curve & =

—16(4a®+27b%). The Weierstrass equatioli,can be reduced Curve operation Affine Jacobian
to Egn. 4, ifK is a binary field F2~) anda; # 0. Addition U+2M +2S 12M +4S
. Doubling 1+2M+1S 4M + 6S
2 .3 2
y*tary=2"+az” +b (4) Tripling 2 +3M +3S  10M + 6S

where,a,b € K and A = b. Such a curve is said to bekey: | - inversion, M - multiplication, and S - squaring.
non-supersingular.
Elliptic curve addition, doubling and tripling are involdén
2) Elliptic Curve Arithmetic: - these multiple point multiplication algorithms. When thaint
addition, doubling and tripling are calculated in the fi&ldit
Let E be an elliptic curve defined over the field and requires field inversions, multiplications and squaririgsfer
P, Q be two points inE/K. The third point inE/K which Table 1I-A.2 and II-A.2 for the operational costs for curve
is derived by adding two points i&/K by using the chord- additions, doublings and triplings in terms of feild operas.
and-tangent rule [3], [15]. The set of poinEK forms an It may be advantageous to represent points using projective
abelian group withoo serving as its identity. The sum & coordinates, when the inversion K is significantly more
andQ is defined as follows: draw a line throughandQ; the expensive than multiplication. For an example, one ineersi
intersection of this line and the elliptic curve is the négabf is equal to 40 multiplications in prime fields. Further, imaiy
the resultant point; take the reflection of that point abdet t fields the inversion is equivalent to 3 to 10 multiplicatiovi¢e
x-axis. This point gives the resultant point as depicted @ tkeliminate inversions by using Jacobian projective coa@tiis.
Fig. 1. The double of a poinR is defined: draw the tangentHowever, in our approaches we consider the both Affine



TABLE I
OPERATION COUNTS FOR POINT ADDITIONDOUBLING & TRIPLING OVER
BINARY FIELD USING AFFINE COORDINATES& JACOBIAN PROJECTIVE

Definition 2 (s-integer): An s-integer is a positive integer,
whose largest prime factor does not exceed the s-th prime

COORDINATES[8], [12], [15]. number.
Curve operation Affine Jacobian Definition 3 (double-based number system)The double-
Addition U +2M+1S 6M+3S based number system (DBNS) is a representation scheme in
Doubling 1+2M+1S  5M+5S which every positive integen, is represented as the sum or
Tripling 21+6M+35 15M +7S difference of 2-integers that is, numbers of the fam®.

Key: | - inversion, M - multiplication, and S - squaring. M
. . o ) n= Z 5,203t (5)
coordinates and Jacobian projective coordinates. Table2l| =1
& II-A.2 gives the number of field operations involved in
elliptic curve operations over prime and binary fields in Adi Where s; € {—1,1}, and b;, t; > 0.
coordinates and Jacobian projective coordinates.

Jacobian coordinates are a special class of projectivelhe DBNS representation is highly sparse and redundant.
coordinates, where the poi : Y : Z) corresponds to the If only the positive signs {; = 1) are considered for the
affine point (X/22 . y/Z3), when Z # 0. The point at DBNS representations; 100 has exactly 402 different DBNS
infinity is represented as (1:1:0). The oppositg&f: Y : Z) representations and 1000 has exactly 1,295,579 different
is (X : —Y : Z). For further details on projective coordinatesPBNS representations. The following theorems give an

reader can refer to [8], [12], [15]. important result about DBNS[10].
3) Elliptic Curve Digital Signature Algorithms: Theorem 1: Every positive integer, can be represented as
the sum of at most (log’ign) 2-integers

Digital signatures serve authentication, data integeityd
non-repudiation in the digital space [3], [15], [20], [22}. Theorem 2: There exists an absolute constant, C, such that
signature scheme consists of four segments: namely, dom@igre is always a number of the fore¥3* betweenn and
parameter generation, key generation, signature geoeratd , —
signature verification algorithms [20]. Two standardizigpha-
ture schemes based on elliptic curve cryptography aretillip
Curve Digital Signature Algorithm (ECDSA) and Elliptic Algorithm 1: A greedy algorithm to convert integers to DBNS
Curve Korean Certificate-based Digital Signature Alganth —
(EC-KCDSA) [15]. Input : A positive integem. _

ECDSA is the most widely standardized elliptic curve-basédutPut : the sequence of exponen(s,, t,) leading to one
signature scheme. ANSI X9.62, FIPS 186-2, IEEE 1363-208BNS representation af.
and ISO/IEC 15946-2 standards have included ECDSA. E§-\\hile n > 0 do.
KCDSA appears in the ISO/IEC 15946-2 standard. Both sig- ¢4, — 293b . the largest 2-integer less than or equahto
nature schemes need to perform multiple point multiplavati 5 print (b, t).
in the signature verification process.

Domain parameters define the elliptic curdg, which is

defined over a finite fieldF,. These parameters should b&ome of these representations have the minimal number 2-
chosen in a way that the elliptic curve discrete logarithigteger representation. An integer can be representedeas th
problem (ECDLP) is resistant to all known attacks [15]. Iym of m 2-integers, but cannot be represented as the sum
both signature schemes we have to use domain parametgfs,, — 1) 2-integers. That is called canonic representation
field order @), field representation{R), a seed if the elliptic gng very sparse. The Algorithm 1 gives a nearly canonical
curve is randomly generatedS), two coefficients of the unsigned DBNS representation of a number (in this case,
equation ¢, b € F,), a finite point P = (zp,y,) € Fy), order 1 only).

of finite point (») and the cofactori( = #E(F,)/n). Further 5 the new point multiplication algorithm we need to
details on digital signatures are available in [5], [13P]2nd 5iculate number of DBNS elements below so2fienumber.
elliptic curve digital signature schemes can be found in.[157his helps us to calculate the required number of doublings
B. Double-Base Number System and triplings involved in the algorithms. The total number

The double-base number system (DBNS) has been stud?éoDBNS elements below™ (d,) is given by the following

extensively, due to its applicability in signal processimgd SXPression:
cryptography. We will begin DBNS background study with

following definition from [4], [6], [9], [10], [11]. d, = anﬂogg 91 (6)
=1

—_n
(logn)® "

4. n—n-—z.




The inductive method is used to prove Eqgn. 6 in Proof 1. [1l. M ULTIPLE POINT MULTIPLICATION ALGORITHMS

We have extended Eqn. 6 to calculate number of doublings
and triplings involved in calculating all DBNS elementsth

below 2™.

Proof 1: Number of DBNS Elements less thafi

Consider the expression far= 1

1

dy = Z [log; 2']

i=1
= [log 211
1

d, is the number of elements less thah The only DBNS
element less thaf! is 1.
Assuming the Eqn. 6 is true for — 1, then;

n—1

dp—1 = Z [logs 2¥]
k=1
Find the number of DBNS elements {8"~!,2"):
First element =271
Second element 2772 .3
Third element =274 . 32

Last element =2 - 31985 2"] | In this case) < z < n.
According to the above calculation we hajleg; 2™ number
of elements in[2"~1,27).

Therefore,

dp =dp_1+ |—10g3 2n-|

n
= Zﬂoé’;?, 2k1
k=1

We use tripling algorithm to calculate al§? (i <

In elliptic curve digital signature algorithms, we conside
e resultant,kP + [Q for multiple point multiplication.
Where k and [ are t-bit numbers, bothP? and @) are two
points on the elliptic curve. There are number of multiple
point multiplication algorithms have been proposed, ngmel
simultaneous multiple point multiplication based on Shéami
trick, sliding window and non-adjacent form (NAF), joint
sparse form (JSF) and interleaving with NAF [14], [15], [24]

A. Simultaneous Multiple Point Multiplication (SMPM)

In this method, we represert and [ in w-bit, d =
[t/w] number of blocks and do the pre-computation for
iP 4+ jQ for 0 < i,5 < 2*. Then,k and! are represented
K&K K© and L4=Y|....||LY|| L respectively. Calcu-
lating R < 2¥R + (K'P + L'Q) for d — 1 times, the final
answer can be obtained. See Algorithm 2.

Algorithm 2: Simultaneous Multiple Point Multiplication

Input : Window widthw, k,1, P,Q € E(F,)
Output : kP +1Q

1. computeiP + 5@ for all 4,5 € [0,2¥ — 1].
2. write k = K471|....||KY|K° andl = L4~Y|....|| LY L°
where allK*, L' are w-bit long andd = [t/w].
3. R+ .
4. for ifrom d — 1 downto0 do
41 R+ 2"R.
42 R+ R+ (K'P+ L'Q).
5. returnR.

Sliding window method can be used to improve this algorithm
[15]. In Table VI & VII, cost of SMPM and that of sliding

SMPM are compared. Further note that storage required
for the sliding SMPM is less than storage required for

[1, [logs 2" |]) DBNS elements less thaxt. To calculate other gyipm. 9 + 15¢/32 and 2 + ¢ give the number of additions

DBNS elements we use doublings. We can calculate numbgry goublings involved in the elliptic curve additions of
of doublings OB L,) and triplings 'PLy) that we need 10 yyq t-pit numbers, under the Simultaneous Multiple Point

calculate all DBNS elements less thaf in the following
manner:

TPL, = |logs2" ]

DBL, =d,—TPL, —1

n

[logs 2k1 — |logg 2"] — 1

b
Il
—

(7)
[logs 2k1 — [logs 2]

[
3 =
RANgE
—_ =

= [logs 2k1
k=1

Multiplication.

B. Simultaneous Multiple Point Multiplication with NAF
(NAF-SMPM) and Joint Sparse Form (JSF)

For fixed-window, we havét/4 point additions on average
for kP +1Q. When the non-adjacent form (NAF) representa-
tion of bothk and! are considered the average point addition
comes down to5t/9. The joint sparse form (JSF) of two
integers introduced by Solinas in [24] reduces the average
point addition tot/2. Algorithm 3 explains the JSF and it
needs only 4 storage positions for the calculation.

P,Q, P+ Q@ and P — Q is pre-computed and stored in

We have minimized calculation of tripling operations irboth algorithms. Advantage of JSF over NAF method is that

DBNS element calculations, because tripling operatioizes
more cost than doubling operation.

the bit distribution for both numbers in JSF is determined,
after considering the relationship between two numbers.



Algorithm 3: Joint Sparse Form

Input : Positive integers! and k2
Output : JSF (k' k?)

1.1 —0,dy < 0, dy < 0.

2. while (k' +d; >0 or k? + dy > 0)
21 1y —d; + kl,lg — dy + k2.
2.2 forifrom1to2do

if [; is even theru « 0;
else
u «+— I; mods4.
if ; =+3 (mod 8) andls_; =2 (mod 4)
thenu «— —u.
ki — .
2.3 forifrom1to2do
Kt — |Kt/2].
24 | —[+1.
3. returnJSF (k! k).

Under the joint sparse form, the number of additions ar

doublings involved in an elliptic curve addition of tvtewidth
numbers are + t/2 and¢, respectively.

C. Interleaving with w-NAF (I-w-NAF)

The
computation of iP; for i € {1,3,.,2%~'—1} and
1 < j < 2. Therefore, required storage positions arg—2

for the point P;. The other benefit of this method is tha

we can use different windowsy; for different points, P;.

Algorithm 4 describes the steps for interleaving with NAI

for v number of points.

Algorithm 4: Interleaving with w-NAF

Input : v, Positive integer&’, widthsw; and pointsP;, 1 <
J<w
Output : >

1

;}:1 ijj
. computeiP; for i € {1,3,...,271 -1}, 1 < j <w.
2. calculateN AF,,, (k7), 1 < j <wv
3.letl =maz{l;:1<j <o}
4. definek! =0 forl; <i<1,1<j<w
5.Q «— x.
6. fori from [ — 1 downtoO do
6.1 Q« 2Q
6.2 forj from1 to v do
if &/ # 0 then
if k/ >0thenQ «— Q + k! P;;
elseQ — Q — k! P;
7. return@.

When we add twot-bit numbers with interleaving with
w-NAF algorithm, there are + 11¢/30 additions andl + ¢
doublings. This algorithms can easily be extended for a

interleaving with w-NAF method needs pre

other number of point multiplication.

IV. DBNS BASED ALGORITHMS FORMULTIPLE POINT
MULTIPLICATION

We have proposed three algorithms based on DBNS,
namely, sliding DBNS, sliding DBNS with simultaneous point
multiplications and interleaving with signed DBNS. In dit¢e
approaches, we consider the poifttjs known in advance.

A. Sliding DBNS Algorithm

In sliding DBNS algorithm, we use-bit blocks to represent
k and! numbers as in Egn. 8 and Eqgn. 9. In that case, we
have maximum ofl = [£] number of blocks in a given pair
of ¢-bit numbers. This algorithm is shown in the Fig. 2 and it
represents: = k', | = k2, P = P, and(@Q = P,. Note that
BIN(k) gives the binary representation bf in Fig 2.

w-bit ———p» s-bit sliding

N =| ||| -~ 111 v

P

BIN() =

resultant.(2”s)

Q

Pre-computation
P+Q

2

Lookup CJDBF

PQ

- obhwN |o

3
4
6

CoORWN

resultant + lookup

i

Bits
remaining in
P&Q?

No

resultant = kP + 1Q

Fig. 2. Sliding DBNS Algorithm

k=K. | KK

8
I = LY. LY L ®)

where, ) ) o
K = ]zz”*l"""lfi’i% ©

Li=10 . 00

We have pre-computed all the DBNS elements less #tan
for Q, P+ @Q and P — Q. Then the canonical joint double-
base format (CJDBF) for a pair of numbers is considered. This
enables to get & + @ or P — () representation into the point
multiplication. Our approach has a sliding window mechamnis
to improve the performance further. Sliding is consideredf
left-to-right. Once the adding is done for tlig¢h block, we
take the first non-zero column as the most significant of the
(i—1)-st block. Algorithm 5 illustrates the sliding DBNS, step-
by-step and Table VI & VII gives the cost of point additions
under this algorithm.

ny



Algorithm 5: Sliding DBNS

Input : t-bit positive integersk;, width, w, and pointsF;,
J=2

Output : Y°2_, kP,

1. computei P, i(P + P), i(P1 — P) for
i€{1,2,3,..,2%3},
0<a, <w, 0<b, < |logz2™], 2%=3b < 2w,
2. Q) —
3.p—0
4,50
5. for p from d — 1 downto0 do
5.1 lookup CIDBF of K7) and (K?%)
for r from 0 to y do
lookup = dgpq or dZ(Pl + P2) or dZ(Pl — PQ)
Q — Q + lookup
p—p+1
find the next non-zero column on the right & shift
s bits to right
take leftmost bit as the MSB at?
Q—2°-Q
if no columns then;
break
6. return@.

5.2
53

54
55
5.6

Table Il gives the average number of additions involved in

the multiple point multiplication forw—bit width window

(w € [4,8]). In this calculation we assume that we have

pre-computed all the DBNS elements less théh for Q,

P+ @ and P — Q. The Eqn. 10 gives the average number

TABLE Il
AVERAGE NUMBER OF ADDITIONS INVOLVED IN THE MULTIPLE POINT
MULTIPLICATION FOR w—BIT WIDTH WINDOW.

window width  average additions

8 2.26
7 1.99
6 1.77
5 1.52
4 1.22

Cost involved in pre-computation of terms is excluded,
assuming thaf’ is known in advance.

B. Sliding DBNS Simultaneous Multiple Point Multiplicatio
Algorithm (Sliding DSMPM)

In sliding DBNS simultaneous multiple point multiplicatio
algorithm, thet-bit number is broken intal number ofw-bit
numbers and with the sliding mechanism, it reduces the
number ofw-bit numbers less thaa.

Algorithm 6: Sliding DBNS Simultaneous Multiple Point
Multiplication

Input : t-bit positive integersk;, width, w, and pointsF;,
j=2
Output : Y2

j=1 k? P
1. computeiP; for i € {1,2,3,...,2%3b= },
0<a, <w, 0<b, < [logs2®], 20:3b= < 2w,
2. Q) —
3.p—0
4,50
5. forp from d — 1 downto0 do
5.1 for g from1 to 2 do
lookup DBNS(KE) =d) + -+ dY
for » from 0 to y do
lookup = d;, P,
Q— Q+d,F,
p—p+1
find the next non-zero column on the right & shift
s bits to right
take leftmost bit as the MSB at?
Q—2°-Q
if no columns then;
break
6. returnq@.

52
53

5.4
55
5.6

In previous algorithm we had pre-computed all DBNS repre-
sentation point multiplications oP;, P, — P, and P, + Ps.
However in this algorithm, only the DBNS element point
multiplications of P, is pre-computed, to save memaory.

TABLE IV

of elliptic curve additions ADD,,) needed for the multiple AVERAGE NUMBER OF ADDITIONS INVOLVED IN ALL NUMBERS IN w—BIT

point multiplication using the above algorithm witlh—bit

window. The average number of elliptic curve additions for
w—bit window (a,,) can be taken from the Table Ill. Further

the numbers of elliptic curve doubling®®BL,,) and triplings

(T'PL,,) can be obtained by equation 7. Because we have to

pre-calculate), P+Q and P —Q our elliptic curve doublings
and triplings as follows:

1 t
ADDy = (14ay) - (1—— ] - —
(1+as) ( 4w) w

w—1
DBL, =3 x Z [ogs 2] (10)
k=1

TPL, =3 x |logs2"|

WIDTH WINDOW.

window width
10

average additions
1.32
1.16
0.98
0.86
0.75
0.61
0.47

A OO N 0O ©

Further, the representation édbit number is converted to
the canonical DBNS representation which reduces the number
of additions in each step. The step-by-step descriptiomef t



sliding DBNS simultaneous multiple point multiplicatios i reduces the non-zero elements in the representation. fohere
described in Algorithm 6. the sliding mechanism of the DBNS representatiomeflAF

The main advantage of this algorithm is that we need lebas less number of elliptic curve additions. Algorithm 7
memory compared to the previous algorithm, because wemonstrates the Interleaving with double-base number
calculate only all the DBNS representations of paiat Fig. system.
3 illustrates the sliding DBNS simultaneous multiple point

multiplication. Algorithm 7: Interleaving with DBNS
it < bit siding Input . w-bit positive integersk;, width, w, and pointsP;,
""" jel{l2y

BNK=) | - L] v p Output : ijl kJPJ

S O 1 I i ° 1. computeiP; for i € {1,2,3,...,20:3% }, j € {1,2},

0<ay <w, 0<by < |logs2®], 29=3b= < 2w,

2.Q oo
3.p—0
Canonical DBNS Pre-computation 4 S «— 0
Lookup for Two o= 3 5. for p from d — 1 downto0 do
2 5.1 for ¢ from 1 to 2 do
3 lookup DBNS(KE) = dO + -+ + d
6 for » from 0 to y do
' lookup = d; P,
Q— Q+d,F,
Yes Bits 5.2 p—p+1
o 5.3 find the next non-zero column on the right & shift
s bits to right
* No 5.4 take leftmost bit as the MSB dt?
55 Q« 2°-Q
) . ) i ) . ) 5.6 if no columns then;
Fig. 3. Sliding DBNS Simultaneous Multiple Point Multipditon Algorithm break

; " 6, return@.
The Table IV gives the average number of additions that @

needs for the DBNS representations of all the numbers be1:ig_ 4 shows the Interleaving with DBNS algorithm for a
low 2 (w—width window). Eqn. 11 gives the number ofy, _pit sliding window. Note that we have the NAF represen-
elliptic curve additions, doublings and triplings. Comipar tation of the two numbers before coming into sliding window
1 ¢ Table V gives the average number of additions that needs
ADD,, = 2+ ay) - (1 — —) — for the DBNS representations of all the odd numbers beltw
w (w—width window). We have considered only the odd numbers

w—1 . .
B 5 (11) because in thev—NAF representation we need to have only
DB Ly = kz: [logs 2" the odd numbers below — 1)—width.
=1
TPL,, = |logs2" | TABLE V

. . AVERAGE NUMBER OF ADDITIONS INVOLVED IN ALL ODD NUMBERS IN
However, number of doublings and triplings has gone down

w—BIT WIDTH WINDOW.

in this algorithm by a factor of2/3. Further, number of
storage also has gone down by the same factor.

window width  average additions

11 15
10 1.36

C. Interleaving with DBNS (I-DBNS) 9 113
8 1.03

The third algorithm is based on non-adjacent form 7 0.91
(NAF)[17] representation of numbers. When theNAF 6 075
representation is used we need only to calculate odd 5 063

numbers belov2¥~!. For an example, if we consider 5-NAF
representation of a number, there will be odd co-efficientsEqn. 12 gives the number of elliptic curve additions, dou-
from -15 to 15. Thew-NAF representation of a numberblings and triplings. Note that we have to capture only non-



w-bit —— s-bit sliding numbers. We have assumed one point is known as a domain
waro=l 11T - TTTTTT 7% .. P parameter and point multiplications related to that poir& a
pre-calculated. Similarly, Table VII gives the experimant
results of operational counts for computifd® + [Q) over
binary fields. Again this table gives the operational costlie

both affine and Jacobian coordinates. For the final calcuiati

we have assume that squaring is almost free in binary fields.

NaF) =) L L e L e Q

Canonical DBNS

Lookup for Two No.s Pre-computation TABLE VI
Q EXPERIMENTAL RESULTS OFOPERATIONAL COUNTS FORCOMPUTING
2 kP+lQ OVER PRIME FIELDS
:
4
6

operational cost
Affine  Jacobian
160 10326 2608

resultant + lookup

Algorithm bit length

ves remaming in sliding SMPM 230 14634 3682
P&Qr 570 35560 8896
No 160 10423 2654

resultant = kP + 1Q JSF 230 14945 3802

570 36909 9378

Fig. 4. Interleaving with DBNS 160 9603 2362
I-w-NAF 230 13728 3372
570 33765 8276
zero elements in each number. 160 11465 2860
sliding DBNS 230 16050 3965
ADD,, = 2+ ay) - 570 37420 9126
(w+1)
. 160 10323 2470
w— .y
_ i (12) sliding DSMPM 230 14464 3446
DBLy = kz [log 27 570 34077 8112
=1

160 9856 2349

— ,OW
TPLy = [logs2"”] I-DBNS 230 13904 3297
When the additions are calculated, we assume that we 570 33099 7761

havet/ (w + 1) number of elements in each number's NAF
representation. Calculating number of Doublings and s
are same as Sliding DSMPM algorithm.

In Table VI & VII, the window size and the storage required
are different in the new alorithms for different bit lengths

A. Curves defined ovéf, with Affine Coordinates

. . - . . According to the Table VI, it is noticable that sliding
In this section we compare sliding simultaneous mumplBBNS does not give us any improvement compared to any
point multiplication, joint sparse form, interleaving Witu- . . : . .

other algorithms in consideration. However we can notie th

NAF W'th. our new algc_)rlthms which are base(_:l on S“.d'ngliding DBNS window width is increasing with the bit length
DBNS, sliding DBNS simultaneous multiple point multlph-Of the two nUMbers

cation and Interleaving with DBNS, respectively. For the Sliding DBNS simple multiple point multiplication has an

comparison, we consider 2-bit window width for the Simu“eﬁ'mprovement with respect to sliding SMPM and JSF. The
neous multiple point multiplication and sliding simultanes improvement is significant when the bit length is increasing

_multlglde fg?'r;tglzgplr']cauo.;’ ’\\'lvz;:lev\Slébﬁaagd 4(;%” 4Wt;ntd:) gﬁccording to our calculations the improvement for 570-bit i
is us ving wi : ve us i 506 against JSF.

bit window sizes for the sliding DBNS and 5-bit to 10-bit Interleaving DBNS withw-NAF algorithm is giving the

windpv_v Wi.dth fqr sliding DBNS sim_ultgneous f.““'“p'e pOintmost impressive improvements. The most existing algorithm
multiplication. Finally, 5-bit to 12-bit window sizes aresed for multiple point multiplication is interleaving withu-NAF.

for the Interleaving with DBNS algorithm. The new algorithm based ow-NAF and DBNS is 2%

Table VI gives the experimental results of operational munmore efficienct than the interleaving with-NAF. When it
for computingk P + 1 over prime fields. When the operatio s compared with JSF, it is a 10% improvement
cost is calculated, both affine and Jacobian coordinates are ' '

considered. It is assumed that field cost per a squaring ofer Curves defined ovef, with Jacobian Coordinates
a prime field is equal to 0.8 times of a multiplication. Com- The most significant result from the Table VI and VIl is that
parison has been carried out for 160-bit, 230-bit and 570-lthe affine coordinates need more computational power. That

V. COMPARISON



is due to the inversions in the calculations using affine codd. Curves defined ovef,- with Jacobian Coordinates
dinates. When it comes to Jacobian coordinates, we eliinat The jmprovement due to new algorithms is noticable when

inversions and it saves a lot of computational power. they are operated in the binary field with Jacobian coordmat
In prime fields Jacobian coordinates give a some improvgy this combination, we have less cost for the squaring and
ment with sliding DBNS over JSF. This advantage is visiblga|q jnverse. That leads to a significant improvement inghes
when the bit length is high. For an example, 570-bit length kﬁgorithms.
having a clear improvment with the new algorithm. _ Considering 160-bit numbers, sliding DBNS multiple point
Considering the sliding DBNS simultaneous multip poinyjtiplication gives 13% enhancement over JSF. This number
multiplication and JSF, we can notice that 7%, 9% and 148{%3 upto 16% and 19% with the same algorithm when the
improvements for 160-bit, 230-bit and 570-bit numbers eesp p;t |ength is increased to 230-bit and 570-bit numbers.
tively. However, there is no notable improvements, comgare Interleaving DBNS withw-NAF has 4%, 6% and 10%
to the interleaving withw-NAF. improvements over Interleaving with-NAF with 160-bit,
TABLE VI 230-bit and 570-bit numbers, respectively. When the same al
gorithm is compared with JSF, it gives upto 24% improvement
with 570-bit numbers. For other two bit lengths, i.e. 160-bi
and 230-bit, improvement is 18% and 20% over JSF.

EXPERIMENTAL RESULTS OFOPERATIONAL COUNTS FORCOMPUTING
kP + 1Q OVER BINARY FIELDS

. . operational cost VI. CONCLUSIONS
Algorithm bit length - - . . .
Affine  Jacobian In all three new algorithms, the required memory is larger
160 10072 2055 than the other algorithms due to pre-computations. However
sliding SMPM 230 14276 2886 the performance has been improved, specially, in the Inter-
570 34696 6926 leaving with DBNS algorithm upto 24%. In the conclusion,
160 10164 2112 we have draw the attention to the most popular multiple point
JSF 230 14574 3022 multiplication algorithms, JSF and interleaving with NAF.
570 35994 7442 Sliding DBNS algorithm needs to have more memory and
160 9374 1800 it is not giving greater performance improvements in 160-
I-w-NAF 230 13402 2565 bit numbers. However, when the 230-bit and 570-bit numbers
570 32966 6277 are considered it gives much improved performances. ltmeve
160 10958 2216 beats JSF and Interleaving with NAF for 4 and 5-bit widths.
sliding DBNS 230 15429 3052 4-bit width window is giving the optimum performance when
570 36082 6952 the 160-bit numbers are considered. Whereas, 230-bit niambe
N 160 9930 1834 and 570-bit numbers will have optimum performances with the
sliding DSMPM 230 13944 2546 sliding DBNS algorithm, when the window sizes are 6-bit and
570 82931 6007 7-bit, respectively.
160 9502 1736 Sliding DBNS simultaneous multiple point multiplication
I-DBNS 230 13418 2419

gives better performances against JSF, with Jacobian ieoord

nates over binary fields. It has 13%, 16% and 19% improve-

ment in 160-bit, 230-bit and 570-bit numbers, respectiagig
Interleaving DBNS withw-NAF has 6% and 17% improve- Window sizes are 10-bit for all cases.

ment compared to interleaving with-NAF and JSF for 570-  Finally, we have the most successful algorithm which is

bit numbers. Table VI gives the costs for 160-bit and 230-dfterleaving with DBNS is giving 18%, 20% and 24% im-

570 32123 5654

numbers using the same algorithm. provements with the JSF and 4%, 6% and 10% improvements
i i ] ] with Interleaving NAF for 160-bit, 230-bit and 570-bit num-
C. Curves defined ovéf,- with Affine Coordinates bers respectively in each case, with Jacobian coordinatas o

In the binary fields we have the advantage in squarifdmnary fields. According to the comparison, we can conclude
because that can be considered as a no cost operation. Faat Interleaving DBNS withw-NAF algorithm gives the
ther, inversion costs less than ten multiplications in binaoptimal performance with Jacobian coordinates over binary
fields. This reduces overall cost in binary fields with affinéelds.
coordinates. For future work, research will be carried out to im-

Table VII gives the summary of the operational cost foprove the calculation of multiple point multiplication of
all the algorithms. In comparison, we can notice that sidin(kP + (@ + mR) on elliptic curves using double-base number
DBNS has 9% improvement against JSF. While interleavireystem. Further, we will consider the triple-base number
DBNS with w-NAF has gained 3% improvement againssystem for multiple point multiplication. In addition todbke
interleaving withw-NAF. The improvement is 11% when weKoblitz curves will be considered with the double-base rep-
compare the same algorithm with JSF. Further all of abovesentation inr and — 1. This idea will be extended to the
comparisons are valid for 570-bit numbers. hardware implementation.
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