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Abstract. Certificateless cryptography achieves the best of the two
worlds: it inherits from identity-based techniques a solution to the cer-
tificate management problem in public-key encryption, whilst removing
the secret key escrow functionality inherent to the identity-based set-
ting. Signcryption schemes achieve confidentiality and authentication si-
multaneously by combining public-key encryption and digital signatures,
offering better overall performance and security. In this paper, we intro-
duce the notion of certificateless signcryption and present an efficient
construction which guarantees security under insider attacks, and there-
fore provides forward secrecy and non-repudiation. The scheme is shown
to be secure using random oracles under a variant of the bilinear Diffie-
Hellman assumption.

Keywords. Certificateless Cryptogrpahy, Signcryption, Insider Security,
Non-Repudiation, Forward Secrecy, Randomness Reuse.

1 Introduction

Certificateless cryptography achieves the best of two worlds. It inherits from
identity-based techniques a solution to the certificate management problem in
public-key encryption, yet it eliminates the need for a trusted authority with key
escrow capabilities.

In identity-based cryptography [18] an arbitrary bit-string representing a
user’s identity can be used as the encryption or verification public key. This
means that public key certificates are not required. This feature, however, comes
at the cost of introducing an all-powerful secret key issuing authority, which au-
thenticates users and provides secret keys through a secure channel. The problem
is that, not only must this authority be trusted to authenticate the users, but
also not to take advantage of possessing the user’s secret keys. This is known as
the key escrow property of identity-based cryptosystems and it can be presented
as a feature or a security problem, depending on the application scenario.

In certificateless cryptography key escrow is seen as an undesirable property,
and user encryption and verification keys contain both a user identity and an



unauthenticated public key. Similarly, user secret keys are constructed from two
partial secrets: one coming from an identity-based trusted authority called the
Key Generation Centre (KGC) and another one generated by the user. Certifi-
cateless security models capture scenarios where the attacker can be a system
user or the KGC itself. To account for the fact that user public keys are not
authenticated, attackers are allowed to replace users’ public keys to attempt
impersonation.

Since certificateless cryptography was introduced by Al-Ryiami and Pater-
son [1], numerous certificateless encryption and signature schemes, and variants
thereof, have been proposed. However, the equivalent of public-key signcryption
has not been considered in the certificateless setting.

Signcryption is a cryptographic primitive that captures a common practical
scenario where one simultaneously requires confidentiality and non-repudiation
of transmitted data. Ideally, this should allow for improvements in the overall
security and efficiency of the resulting cryptosystems. The security goals as-
sociated with signcryption are stronger than those provided by authenticated
encryption, where data authenticity suffices. For this reason the security model
for signcryption should capture insider attacks where a dishonest receiver, should
not be able to forge a valid signcryption originating from another user. In less
common scenarios one may also require forward secrecy, where a message sent
by a legitimate user, cannot be decrypted even by an adversary which later is
able to get hold of the sender’s secret key. This primitive has been extensively
studied in the public-key and identity-based settings where many efficient and
secure schemes have been proposed.

Our Contribution: In this paper we introduce the notion of certificateless
signcryption, define appropriate security models, and propose an efficient scheme
which is provably secure against insider attacks in the random oracle model
[4]. The scheme presents stronger security properties than one might expect
from its internal building blocks: by sharing randomness between encryption
and signature modules not only we gain extra savings on computational and
bandwidth load, but also we obtain strong insider security guarantees. As an
additional contribution, we identify a problem in using Coron’s technique for
tighter security reductions in public key signature proofs which is specific to the
certificateless setting and propose a technique to overcome it.

Paper Organisation: Section 2 describes related work available in the litera-
ture. In Section 3 we revise some background on bilinear groups, pairings and
associated hard problems. Then, in Section 4 we introduce certificateless sign-
cryption and define suitable security models for this primitive. In Section 5 we
propose an efficient scheme and provide a security argument for it. Finally, in
Section 6 we discuss the relevance and implications of our results.
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2 Related Work

Signcryption in the public-key setting was introduced by Zheng in [20]. A sys-
tematic study of the properties of the signcryption schemes resulting from the
black-box composition of encryption and signature schemes was later presented
by An et al. [2]. Our certificateless signcryption scheme is based on the Encrypt-
then-Sign paradigm discussed in [2]. More efficient generic constructions of sign-
cryption schemes based on Tag-KEMs were introduced by Bjørstad et al. [5].

Malone-Lee in [17] formulated signcryption in the identity-based setting. This
work was extended by Boyen [6] who proposed a more structured primitive
definition and comprehensive security notions which captured different security
guarantees that could be achieved by an identity-based signcryption scheme.
Other efficient constructions were subsequently proposed by Libert et al. in [14]
and Chen et al. in [7].

Together with the introduction of certificateless cryptography in [1], Al-
Ryiami and Paterson proposed an encryption scheme and briefly outlined a
signature scheme and extensions of other public-key primitives to the certifi-
cateless scenario. The encryption scheme was proven secure under a non-realistic
security model where an adversary may replace users’ public keys and demand
decryptions without providing the corresponding secret key. In [15], Libert et al.
generalised the encryption scheme in [1] by proposing a generic construction of
certificateless encryption schemes from identity-based and public-key encryption
in the random oracle model. Recently, Dent et al. [11] have proposed certifi-
cateless encryption schemes which provide the same security guarantees in the
standard model. A good survey of certificateless public-key encryption schemes
and security models can be found in [10].

The certificateless signature scheme proposed in [1], which lacked a security
proof, was later found to be vulnerable to key replacement attacks [13]. Other
certificateless signature schemes have been proposed in recent years. We refer to
the work of Zhang et al. [19], which proposes a certificateless signature scheme
closely based on the identity-based signature scheme of Libert et al. in [16].
We base our certificateless signcryption construction on this signature scheme,
but it is worthwhile to mention that the proof of security presented in [19]
for this scheme is flawed. Despite this, the scheme is secure, but in a slightly
weaker security model later proposed informally in [12] together with a generic
construction for certificateless signatures. We will discuss this issue further in
Section 6.

To the best of our knowledge, the concept of certificateless signcryption has
not been previously addressed in literature. However, a closely related construc-
tion, which offers authenticated certificateless encryption functionality was pro-
posed in [8]3. The difference between authenticated encryption and signcryption
is a subtle but significant one: insider attacks are not considered in the unforge-

3 Another paper titled “Authenticated Certificateless Public Key Encryption” by Lee
and Lee has appeared on IACR ePrint archive in 2004. However, the security models
in this scheme do not capture the certificateless setting.
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ability game, which means that non-repudiation is not guaranteed. The security
models adopted in [8] are significantly weaker than the ones considered in this
paper, as they do not consider decryption on replaced public keys and impose
unreasonable restrictions on the adversary’s adaptive behaviour. In particular
the forward-secrecy argument presented for the scheme in [8] considers only
chosen-plaintext attacks. We base our signcryption scheme on this certificateless
encryption scheme, but our Encrypt-then-Sign construction with randomness
reuse permits obtaining improved security properties.

3 Bilinear Groups

Our scheme relies on bilinear groups and we briefly recall their definition below.
We restrict our attention to the symmetric case where G1

∼= G2 and we may
consider a common generator P for them.

Definition 1. A bilinear group description Γ is a tuple (p,G1, G2, GT , e,P1,P2)
where:

– G1, G2 and GT are groups of order p with efficiently computable group laws.
– e : G1 ×G2 → GT is an efficiently computable non-degenerate bilinear map.
– P1 and P2 are generators of G1 and G2 respectively.

In practice G1 and G2 will be related to the (additive) group of points on an
elliptic curve and GT will be a subgroup of the (multiplicative) group of a finite
field. Hence, we use additive notation for G1 and G2 and multiplicative notation
for GT .

Not only do we wish the discrete logarithm problem in the three groups to
be intractable, but we also require the following problem to be hard too.

Definition 2. Given a bilinear group description Γ , we say the gap bilinear
Diffie-Hellman (GBDH) assumption holds if the advantage of any probabilistic
polynomial time adversary as defined below is negligible.

AdvGBDH
Γ (A, qDBDH) := Pr[T = e(P, P )abc|a, b, c← Zp;T ← AOΓ (Γ, aP, bP, cP )].

Here OΓ denotes a decision bilinear Diffie-Hellman oracle which on input a four-
tuple (aP, bP, cP, T ) outputs 1 if T = e(P, P )abc and 0 otherwise. By qDBDH we
denote the maximum number of queries that A asks its decision oracle.

The following weaker assumption is implied by the above.

Definition 3. Given a bilinear group description Γ , we say the computational
Diffie-Hellman assumption in the presence of a decision bilinear Diffie-Hellman
oracle (GDH′) holds in G1 if the advantage of any PPT adversary as defined
below is negligible.

AdvGDH′

Γ (A, qDBDH) := Pr[Q = abP |a, b← Zp;Q← AOΓ (Γ, aP, bP )].

Here OΓ and qDBDH are as in the above definition.
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This assumption in turn implies:

Definition 4. Given a bilinear group description Γ , we say the computational
Diffie-Hellman (CDH) assumption holds in G1 if the advantage of any PPT
adversary as defined below is negligible.

AdvCDH
Γ (A) := Pr[Q = abP |a, b← Zp;Q← A(Γ, aP, bP )].

4 Certificateless Signcryption

A certificateless signcryption scheme is defined by a six-tuple of probabilistic
polynomial-time algorithms. Four of these algorithms, the ones corresponding
to key management operations, are identical to those defined for certificateless
encryption:

1. Setup(1κ). This is a global set-up algorithm, which takes as input the secu-
rity parameter 1κ and returns the KGC’s secret key Msk and global param-
eters params including a master public key Mpk and descriptions of message
space MCLSC(params), ciphertext space CCLSC(params) and randomness space
RCLSC(params). This algorithm is executed by the KGC, which publishes
params.

2. Extract-Partial-Private-Key(ID, Msk, params). An algorithm which takes
as input Msk, params and an identifier string ID ∈ {0, 1}∗ representing a
user’s identity, and returns a partial secret key D. This algorithm is run by
the KGC, after verifying the user’s identity.

3. Generate-User-Keys(ID, params) An algorithm which takes an identity and
the public parameters and outputs a secret value x and a public key PK.
This algorithm is run by a user to obtain a public key and a secret value
which can be used to construct a full private key. The public key is published
without certification.

4. Set-Private-Key(D,x, params). A deterministic algorithm which takes as
input a partial secret key D and a secret value x and returns the full private
key S. Again, this algorithm is run by a user to construct the full private
key.

The signcryption and de-signcryption algorithms are as follows:

5. Sc(m, SS , IDS , PKS , IDR, PKR, params; r). This is the signcryption algorithm.
On input of a message m ∈ MCLSC(params), sender’s full private key SS ,
identity IDS and public key PKS , the receiver’s identity IDR and public
key PKR, the global parameters params and possibly some randomness r ∈
RCLSC(params), this algorithm outputs a ciphertext c ∈ CCLSC(params) or an
error symbol ⊥.

6. Dsc(c, SR, IDR, PKR, IDS , PKS , params). The deterministic de-signcryption al-
gorithm. On input of a ciphertext c, receiver’s full private key RS , identity
IDR and public key PKR, the sender’s identity IDS and public key PKS and the
global parameters params, this algorithm outputs a plaintext m or a failure
symbol ⊥.
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Note that, as for identity-based signcryption, and unlike standard public-key
signcryption, certificateless signcryption is intrinsically multi-user: there is no
distinction between the simpler one-to-one scenario and a full-fledged multi-user
scenario, as user’s identities are explicitly associated with ciphertexts.

In defining the security of certificateless signcryption we follow the common
approach in literature [7, 6] where one does not consider attacks targeting sign-
cryptions where the sender and receiver identities are the same. In particular we
disallow such queries to relevant oracles and do not accept this type of signcryp-
tion as a valid forgery. We discuss this issue further in Section 6.

The security game that captures the confidentiality requirement is based on
the concept of ciphertext indistinguishability, and is defined as follows:

IND-atk-x
1. (Msk, params)← Setup(1κ)
2. (m0, m1, ID∗S , ID

∗
R, st)← AO1

1 (params, aux)
3. b← {0, 1}
4. c∗ ← Sc(mb, S∗S , ID

∗
S , PK

∗
S , ID

∗
R, PK

∗
R, params)

5. b′ ← AO2
2 (c∗, st)

AdvIND−atk−x
CLSC (A) := |2 Pr[b′ = b]− 1|.

Here m0 and m1 should be of equal length and ID∗S and ID∗R should be distinct.
Parameter aux is the empty string when x = I and it is the KGC’s secret key
Msk when x = II. Note it is possible that the challenger is not aware of the secret
value corresponding to ID∗S , if the associated public key has been replaced. In
this case, we require the adversary to provide this value4. Here, implicitly, the
challenger continues to use Msk which could be unknown to the adversary.

The adversary has access to six oracles:

– Request Public Key: On input of an identity ID, this oracle returns the
corresponding public key. If such a key does not yet exist, it is constructed
using the Generate-User-Keys algorithm.

– Replace Public Key: On input an identity ID and a valid PK, this oracle
replaces the public key associated with ID with PK.

– Extract Partial Secret Key: On input of an identity ID, this oracle re-
turns a partial secret key DID for that identity, generated using the Extract-
Partial-Private-Key algorithm.

– Extract Private Key: On input of an identity ID, this oracle returns the
(full) private key for that identity SID. If such a key does not yet exist, it is
constructed using the appropriate algorithms. The adversary is not allowed
to query this oracle on any identity for which the corresponding public key
has been replaced. This restriction is imposed due to the fact that it is
unreasonable to expect that the challenger is able to provide a full secret
key for a user for which it does not know the secret value. Additionally, the
adversary is never allowed to call this oracle on the challenge identities ID∗S
and ID∗R. To capture insider security, this restriction applies only to ID∗R.

4 A non-polynomial-time challenge oracle could be formulated as in [1].
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– De-signcrypt: On input of a ciphertext, a sender’s identity and a receiver’s
identity, this oracle returns the result of running the Dsc algorithm on the
ciphertext, the sender’s public parameters, and the receiver’s full private
key. Note that, it is possible that the challenger is not aware of the receiver’s
secret value, if the associated public key has been replaced. In this case, we
require the adversary to provide it 5. Of course, the adversary is not allowed
to query this oracle in the second stage of the game on c∗ under ID∗S and
ID∗R, unless the public key PK∗S of the sender or that of the receiver PK∗R used
to signcrypt mb has been replaced after the challenge was issued. We also
disallow queries where IDR = IDS .

Next we describe the additional oracle restrictions in each attack scenario6:

Type I Adversary (IND-oCCA-I) This scenario models an attacker which
is a common user of the system and is not in possession of the KGC’s secret key.
This type of adversary is not allowed to extract the partial secret key for ID∗R
or ID∗S if the public key of this identity has been replaced before the challenge
ciphertext was issued. To capture insider security (iCCA), this restriction is
lifted from ID∗S .

In our security analysis we use a weaker formulation of insider Type I adver-
saries which we refer to as insider Type I′. Here the adversary is not allowed to
extract the partial private key of ID∗R at all.

Type II Adversary (IND-oCCA-II) This scenario models an honest-but-
curious KGC, against which we want to preserve confidentiality. For this type
of adversary, the partial secret key extraction oracle is not necessary, as the
adversary can simply generate these keys itself using Msk. Additionally, this
type of adversary is not allowed to replace the public key for ID∗R or ID∗S before
the challenge is issued. To capture insider security (iCCA), this restriction is
lifted from ID∗S .

In Appendix A we prove the following lemma which justifies our definition of
Type I′ attackers.

Lemma 1. If a certificateless signcryption scheme is IND-iCCA secure against
Type II and Type I′ attackers then it is also IND-iCCA secure against Type I
attackers:

AdvIND−iCCA−I
CLSC (A) ≤ 2AdvIND−iCCA−I′

CLSC (B0) + 2AdvIND−iCCA−II
CLSC (B1).

The intuition behind the proof is that we guess if the adversary is going to
replace the public key for the challenge identity or extract the partial private

5 Note that, implicitly, the oracle answers continue to use Msk, which could be un-
known to the adversary. A non-polynomial-time de-signcryption oracle could also be
formulated as in [1].

6 In all of the following scenarios, if the adversary does not make any decryption
queries it is said to be an IND-oCPA/iCPA-x adversary.
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key for it and, accordingly, we use the adversary to win a Type I′ or a Type II
security game.

The authenticity property required for certificateless signcryption schemes is
captured by the following (strong) existential unforgeability security model.

sUF-atk-x
1. (Msk, params)← Setup(1κ)
2. (c∗, ID∗S , ID

∗
R)← AO(params, aux)

where aux is the empty string when x = I and it is the master secret key Msk
when x = II. For the unforgeability game, we define the adversary’s advantage
as

AdvsUF−atk−x
CLSC (A) := Pr[m∗ 6=⊥ ∧(m∗, ID∗S , PK

∗
S , ID

∗
R, PK

∗
R, c

∗) 6∈ L],

where m∗ := Dsc(c∗, S∗R, ID
∗
R, PK

∗
R, ID

∗
S , PK

∗
S , params) and ID∗S and ID∗R should be

distinct. We denote by L the list of inputs and the corresponding outputs in
queries to the signcryption oracle which is described below. The entries of this
list are of the form (m, IDS , PKS , IDR, PKR, c) where PKS and PKR are the public
keys corresponding to the queried identities at the time the query is placed. A
weaker form of unforgeability can be defined by imposing that the signcryption
oracle has not been used to obtain a different ciphertext on the same parameters
associated with c∗, namely m∗, ID∗S , ID∗R and the associated public keys at the
time of A’s termination.

The adversary has access to the same oracles as in the confidentiality game
as well as an additional signcryption oracle. We describe the differences to the
previous security game:

– Extract Private Key: Same as in the previous game, but an insider ad-
versary is allowed to query this oracle only on ID∗S , rather than on ID∗R.

– De-signcrypt: We still disallow queries where IDR = IDS . Apart from this,
there are no restrictions on calls to this oracle, although the adversary should
provide the secret value for the receiver, in case the corresponding public key
has been replaced.

– Signcrypt: On input of a message, a sender’s identity and a receiver’s iden-
tity, this oracle returns the result of running the signcryption algorithm
on the message, the sender’s full private key, and the receiver’s public pa-
rameters. Note that, it is possible that the challenger is not aware of the
sender’s secret value, if the associated public key has been replaced. In this
case, we require the adversary to provide it. We also disallow queries where
IDR = IDS .

Various attack scenarios are as follows7:

Type I Adversary (sUF-oCMA-I) This type of adversary is not allowed to
extract the partial secret keys for ID∗S or ID∗R if the public keys for these identities

7 In all of the following scenarios, if the adversary does not make any signcryption
queries it is said to be an UF-oNMA/iNMA-x (no message attack) adversary.
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have been replaced. To capture insider security (iCMA), this restriction is lifted
from ID∗R.

In our security analysis we use a weaker formulation of insider Type I adver-
saries which we refer to as insider Type I′. Here the adversary is not allowed to
extract the partial private key of ID∗S at all.

Type II Adversary (sUF-oCMA-II) This type of adversary is not allowed
to replace the encrypt/verify key for ID∗S or ID∗R. To capture insider security
(iCMA), this restriction is lifted from ID∗R.

The following result, which relates the different authenticity adversarial mod-
els, is analogous to that presented for confidentially in Lemma 1.

Lemma 2. If a certificateless signcryption scheme is sUF-iCMA secure against
Type II and Type I′ attackers then it is also sUF-iCMA secure against Type I
attackers:

AdvsUF−iCMA−I
CLSC (A) ≤ 2AdvsUF−iCMA−I′

CLSC (B0) + 2AdvsUF−iCMA−II
CLSC (B1).

5 An Efficient Certificateless Signcryption Scheme

We now present our certificateless signcryption scheme which can be seen as an
Encrypt-then-Sign construction where randomness is shared between signature
and encryption schemes. Our scheme, which relies on a symmetric bilinear group
description Γ , is as follows. We choose four cryptographic hash functions:

H1 : {0, 1}∗ → G1, H2 : {0, 1}∗ → {0, 1}κ,
H3 : {0, 1}∗ → G1, H4 : {0, 1}∗ → G1.

We then select Msk uniformly at random from Zp, set Mpk := Msk · P and
let params := (Γ, Mpk). The partial secret key extraction algorithm on input
(ID, Msk) returns D := Msk ·H1(ID). The user key generation algorithm returns
a random element x from Zp as the secret value, and PK := x·P as the public key.
The full private key is then set to be S := (x,D). Message, ciphertext and ran-
domness spaces are {0, 1}κ, G1×{0, 1}κ×G1 and Zp respectively. Signcryption
and de-signcryption algorithms are given below.

Sc(m, SS , IDS , PKS , IDR, PKR, Mpk)
1. r ← Zp; U ← rP ; T ← e(Mpk, QR)r

2. h← H2(U, T, rPKR, IDR, PKR)
3. V ← m⊕ h
4. H ← H3(U, V, IDS , PKS)
5. H ′ ← H4(U, V, IDS , PKS)
6. (xS , DS)← SS
7. W ← DS + rH + xSH

′

8. c← (U, V,W )
9. Return c

Dsc(c, SR, IDR, PKR, IDS , PKS , Mpk)
1. (U, V,W )← c
2. H ← H3(U, V, IDS , PKS)
3. H ′ ← H4(U, V, IDS , PKS)
4. If e(Mpk, QS)e(U,H)e(PKS , H ′) 6=
e(P,W ) return ⊥

5. (xR, DR)← SR; T ← e(DR, U)
6. h← H2(U, T, xRU, IDR, PKR)
7. m← V ⊕ h
8. Return m

We now turn to the security analysis of this scheme.
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Theorem 1. The certificateless signcryption scheme above is IND-iCCA-I/II
secure, in the random oracle model, under the assumption that the gap bilinear
Diffie-Hellman problem is intractable in the underlying bilinear group.

This theorem follows from Lemmas 1, 3 and 4.

Lemma 3. Under the GBDH assumption, no PPT attacker A has non-negligible
advantage in winning the IND-iCCA-I′ game against the scheme proposed above,
when all hash functions are modelled as random oracles. More precisely, there
exists an algorithm B which uses A to solve the GBDH problem such that:

AdvIND−iCCA−I′

CLSC (A) ≤ qTAdvGBDH
Γ (B, q2D + 2qDq2 + q2),

where qT = q1 + qX + qSK + 2qD + 2. Here q1, q2, qX , qSK and qD are the
maximum number of queries that the adversary could place to H1, H2, partial
private key extraction, private key extraction and de-signcryption oracles.

Proof. On receiving the GBDH challenge tuple (Γ, aP, bP, cP ), where the gener-
ator is P , algorithm B sets Mpk := aP and params = (Γ, Mpk) and passes them
on to A. Algorithm B chooses an index ` uniformly at random in {1, . . . , qT },
where qT is as in the statement of the Lemma, and answers various oracle queries
as follows:

H1 Queries: On the i-th non-repeat query ID, if i 6= ` algorithm B chooses
r ∈ Zp uniformly at random and sets QID = rP . It then adds (i, ID, r) to a list
L1 which is initially empty and returns QID. Otherwise, it returns QID` = bP
and adds (`, ID,⊥) to L1. From this point on on we denote the `-th non-repeat
identity queried to this oracle with ID`.

Extract Partial Secret Key Queries: For each new query ID, algorithm B
calls H1 on ID and obtains (i, ID, r). If i = ` then B aborts the simulation.
Otherwise, B returns D = raP .

Request Public Key Queries: For each query ID, algorithm B checks in list
LK , which is initially empty, if there is a tuple (ID, PK, x). If so, then B returns
PK. Otherwise, B generates a new key pair, updates the list LK , and returns the
public key.

Replace Public Key Queries: On input (ID, PK) algorithm B inserts/updates
LK with tuple (ID, PK,⊥).

Extract Private Key Queries: For each new query ID, algorithm B calls H1

on ID and obtains (i, ID, r). If i = ` then B aborts the simulation. Otherwise, B
searches LK for the entry (ID, PK, x), generating a new key pair if this does not
exist, and returns (x, raP ).

H3 Queries: For each new query (U, V, ID, PK), algorithm B generates a random
value t in Zp, updates an initially empty list L3 with the input, t and tP and
returns tP .
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H4 Queries: For each new query (U, V, ID, PK), algorithm B generates a random
value s in Zp, updates an initially empty list L4 with the input, s and sP and
returns sP .

H2 Queries: For each new query (U, T,R, ID, PK), algorithm B proceeds as
follows:

1. It checks if the decision bilinear Diffie-Hellman oracle returns 1 when queried
with the tuple (aP, bP, cP, T ). If this is the case, algorithm B returns T and
stops.

2. Algorithm B goes through the list L2 with entries (U, ?,R, ID, PK, h), for
different values of h, such that the decision bilinear Diffie-Hellman oracle
returns 1 when queried on the tuple (aP, bP, U, T ). Note that in this case
ID = ID`. If such a tuple exists, it returns h (and replaces the symbol ? with
T ).

3. If B reaches this point of execution, it returns a random h and updates the
list L2, which is initially empty, with a tuple containing the input and return
values.

De-signcryption Queries: For each new query (U, V,W, ID, ID′) algorithm B
proceeds as follows:

1. It executes the verification part of the de-signcryption algorithm obtaining
QID and PK by calling the H1 and request public key oracles. It returns ⊥ if
verification does not succeed.

2. It calculatesR := x′U , obtaining x′ (and hence PK′) from either the adversary
or by calling the request public key oracle.

3. If ID′ 6= ID`, it calculates T = e(rU, Mpk), where (j, ID′, r) is obtained by
calling H1 on ID′, and completes de-signcryption in the usual way placing a
query on H2.

4. If ID′ = ID` then the pairing cannot be calculated. In order to return a con-
sistent answer, B goes through L2 and looks for a tuple (U, T,R, ID`, PK′, h),
for different values of T , such that the decision bilinear Diffie-Hellman oracle
returns 1 when queried on (aP, bP, U, T ). If such an entry exists, the correct
pairing value is found and B decrypts using the hash value h.

5. If B reaches this point of execution, it places the entry (U, ?,R, ID`, PK′, h)
for a random h on list L2 and decrypts using this h. The symbol ? denotes
an unknown value of pairing. Note that the identity component of all entries
with a ? is ID`.

Eventually, A outputs two messages (m0, m1) and two identities ID∗S and ID∗R.
Algorithm B places a query on H1 with input ID∗R. If the index of ID∗R is not `,
algorithm B fails. Otherwise it proceeds to construct a challenge as follows. It
obtains from LK the public key PK corresponding to ID∗S . Then it sets U∗ := cP ,
selects a random bit σ and a random hash value h∗ and sets V ∗ := mσ⊕h∗. The
component W ∗ is set to be DS+rH+xSH ′ = DS+tcP+sPK where t is obtained
from L3, s is obtained from L4 and DS is calculated by calling the partial secret
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key extraction oracle on ID∗S . Note that, since ID∗S 6= ID∗R the partial secret key
extraction oracle simulation always give B the correct value of DS .

In the second stage, A’s queries are answered as before. Eventually, A will output
its guess as to which message is signcrypted inside the challenge. Since ` is
independent of adversary’s view, and the list L1 can be easily seen to have at
most qT elements, with probability 1/qT the adversary will output an identity ID`
with index `. If this event occurs, the simulation is perfect unless the adversary
queries H2 on the challenge-related tuple (U∗, T ∗, R∗, ID`, PK∗). Since the hash
function H2 is modelled as a random oracle, the adversary will not have any
advantage if this tuple does not appear on L2. However, if this happens, B will
win the game due to the first step in the simulation of H2. The Lemma follows
from this observation and the fact that the total number of decision bilinear
Diffie-Hellman oracle calls that B makes is at most q2D + 2qDq2 + q2. �

Lemma 4. Under the CDH assumption in G1 no PPT attacker A has non-
negligible advantage in winning the IND-iCCA-II game against the scheme pro-
posed above, when all hash functions are modelled as random oracles. More pre-
cisely, there exists an algorithm B which uses A to solve the CDH problem such
that:

AdvIND−iCCA−II
CLSC (A) ≤ qTAdvCDH

Γ (B),

where qT = qPK +qRPK +qSK +2qD+2. Here qPK and qRPK are the maximum
number of queries that the adversary could place to request public key and replace
public key oracles and qSK and qD are as before.

Proof. On receiving the CDH challenge tuple (Γ, aP, bP ), with generator P ,
algorithm B generates a master key pair (Msk, Mpk) and sets params := (Γ, Mpk)
and passes these on to A. Algorithm B chooses an index ` uniformly at random
in {1, . . . , qT }, with qT as in the statement of the Lemma, and answers various
oracle queries as follows:

H1 Queries: On the non-repeat query ID algorithm B chooses r ∈ Zp uniformly
at random and sets QID = rP . It then adds (ID, r) to a list L1 which is initially
empty and returns QID.

Request Public Key Queries: On the i-th non-repeat query ID, if i 6= `, algo-
rithm B generates a new key pair (x, PK), updates the list LK with (i, ID, x, PK).
If i = ` algorithm B returns aP and adds (`, ID, aP,⊥) to LK . From this point
on on we denote the `-th non-repeat identity queried to this oracle with ID`.

Replace Public Key Queries: On input (ID, PK) on the i-th non-repeat iden-
tity ID algorithm B inserts/updates LK with tuple (i, ID, PK,⊥). If i = ` then
B aborts the simulation.

Extract Private Key Queries: For each new query ID, B calls request public
key on ID obtaining (i, ID, PK, x). If i = `, algorithm B aborts the simulation.
Otherwise, it calls H1 on ID and gets (ID, r). It returns (x, rMskP ).
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H3 Queries: For each new query (U, V, ID, PK), algorithm B generates a random
value t in Zp, updates an initially empty list L3 with the input, t and tP and
returns tP .

H4 Queries: For each new query (U, V, ID, PK), algorithm B generates a random
value s in Zp, updates an initially empty list L4 with the input, s and sP and
returns sP .

H2 Queries: For each new query (U, T,R, ID, PK), algorithm B proceeds as
follows:

1. It checks if e(aP, bP ) = e(P,R). If so, B returns R and stops.
2. Algorithm B goes through the list L2 looking for entries (U, T, ?, ID, PK, h),

such that e(U, bP ) = e(P,R). Note that in this case ID = ID`. If such a tuple
exists, it returns h (and replaces the symbol ? with R).

3. If B reaches this point of execution, it returns a random h and updates the
list L2, which is initially empty, with a tuple containing the input and return
values.

De-signcryption Queries: For each new query (U, V,W, ID, ID′), algorithm B
proceeds as follows:

1. It executes the verification part of the de-signcryption algorithm obtaining
QID and PK by calling H1 and request public key oracles. It returns ⊥ if the
verification does not succeed.

2. It calculates T = e(U, r′Mpk), where (ID′, r′) is obtained from H1

3. If ID′ 6= ID`, it calculates R := x′U , where (j, ID′, PK′, x′) is obtained by
calling the request public key oracle on ID′, and x′ is possibly received from
the adversary. It completes de-signcryption in the usual way by placing a
query on H2.

4. If ID′ = ID`, the correct value of R cannot be computed. To answer the query
consistently, B goes through L2 and looks for a tuple (U, T,R, ID`, PK′, h), for
different values of R, such that e(U, bP ) = e(P,R). If such an entry exists,
the correct value of R is found, and B decrypts using h.

5. If B reaches this point of execution, B places the entry (U, T, ?, ID′, PK′, h)
for a random h on list L2 and decrypts using this h.

Eventually, A outputs two messages (m0, m1) and two identities ID∗S and
ID∗R. Algorithm B queries the request public key oracle on ID∗R and receives
(j, ID∗R, PK

∗, x∗). If j 6= `, it fails. Otherwise it proceeds to construct a challenge
as follows. It obtains the public key PK for ID∗S by calling the request public key
oracle. It sets U∗ = bP , selects a random bit σ and a random hash value h∗

and sets V ∗ = mσ ⊕ h∗. The component W ∗ is set to be DS + rH + xSH
′ =

DS + tcP + sPK, where DS is obtained by calling the extract partial secret key
oracle8, t is obtained from L3 and s is obtained from L4.

In the second stage, A’s queries are answered as before. Eventually, A will
output its guess as to which message is signcrypted inside the challenge. Since ` is
8 Unlike Lemma 3 note that the simulation is possible for ID∗S = ID∗R.
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independent of adversary’s view, with probability 1/qT the adversary will output
an identity ID∗R with index `. If this event occurs, the simulation is perfect unless
the challenge-related tuple (U∗, T ∗, R∗, ID`, PK∗) is queried from H2. However,
since the hash function H2 is modelled as a random oracle, the adversary will
not have any advantage if this entry does not appear on L2 list and, in this case,
B will have won the game due to its simulation of H2. The Lemma follows from
this observation and the fact that the maximum length of the list LK is qT , as
stated in the Lemma. �

Theorem 2. The certificateless signcryption scheme above is sUF-iCMA-I/II
secure, in the random oracle model, under the GDH′ assumption in G1.

This theorem follows from Lemmas 2, 5 and 6.

Lemma 5. Under the GDH′ assumption in G1, no PPT attacker A has non-
negligible advantage in winning the sUF-iCMA-I′ game against the scheme pro-
posed above, when all hash functions are modelled as random oracles. More pre-
cisely, there exists an algorithm B which uses A to solve the GDH′ problem such
that:

AdvsUF−iCMA−I′

CLSC (A) ≤ qTAdvGDH′

Γ (B, q2D+2qDq2)+(qSC(qSC+qD+q3+1)+2)/2κ,

where qT = q1 + qX + qSK + 2qD + 2qSC + 1. Here q3 and qSC is the maximum
number of queries that the adversary could place to the H3 and signcryption
oracles and q1, qX , qSK and qD are as before.

Proof. To prove this Lemma, we construct an algorithm B which uses A to
solve the GDH′ problem over G1. Algorithm B receives a GDH′ problem instance
(Γ, aP, bP ), with generator P , it sets Mpk := aP and provides params := (Γ, Mpk)
to A. Algorithm B then chooses an index ` uniformly at random in {1, . . . , qT },
where qT is as in the statement of the Lemma, and answers various oracle queries
as follows:

H1 Queries: On the i-th non-repeat query ID, if i 6= ` algorithm B chooses
r ∈ Zp uniformly at random and sets QID = rP . It then adds (i, ID, r) to a list
L1 which is initially empty and returns QID. Otherwise, it returns QID` = bP
and adds (`, ID,⊥) to L1. From this point on on we denote the `-th non-repeat
identity queried to this oracle with ID`.

Extract Partial Secret Key Queries: For each new query ID, algorithm B
calls H1 on ID and obtains (i, ID, r). If i = ` then B aborts the simulation.
Otherwise, B returns D = raP .

Request Public Key Queries: For each query ID, algorithm B checks in list
LK , which is initially empty, if there is a tuple (ID, PK, x). If so, then B returns
PK. Otherwise, B generates a new key pair, updates the list LK , and returns the
public key.

Replace Public Key Queries: On input (ID, PK) algorithm B inserts/updates
LK with tuple (ID, PK,⊥).
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Extract Private Key Queries: For each new query ID, algorithm B calls H1

on ID and obtains (i, ID, r). If i = ` then B aborts the simulation. Otherwise, B
searches LK for the entry (ID, PK, x), generating a new key pair if this does not
exist, and returns (x, raP ).

H3 Queries: For each new query (U, V, ID, PK), algorithm B generates a random
value t in Zp, updates an initially empty list L3 with the input, t and tP and
returns tP .

H4 Queries: For each new query (U, V, ID, PK), algorithm B generates a random
value s in Zp, updates an initially empty list L4 with the input, s and sP and
returns sP .

H2 Queries: For each new query (U, T,R, ID, PK), algorithm B proceeds as
follows:

1. It checks if e(aP, bP ) = e(P,R). If this is the case, algorithm B returns R
and stops.

2. Algorithm B goes through the list L2 with entries (U, ?,R, ID, PK, h), for
different values of h, such that the decision bilinear Diffie-Hellman oracle
returns 1 when queried on the tuple (aP, bP, U, T ). Note that in this case
ID = ID`. If such a tuple exists, it returns h (and replaces the symbol ? with
T ).

3. It goes through list L2 with entries entry (U, T, ?, ID, PK, h), for different
values of h, such that e(U, PK′) = e(P,R). If such a tuple exists, it returns h
(and replaces the symbol ? with R).

4. If B reaches this point of execution, it returns a random h and updates the
list L2, which is initially empty, with a tuple containing the input and return
values.

De-signcryption Queries: For each new query (U, V,W, ID, ID′) algorithm B
proceeds as follows:

1. It executes the verification part of the de-signcryption algorithm obtaining
QID and PK by calling the H1 and request public key oracles. It returns ⊥ if
verification does not succeed.

2. It checks if ID = ID` and if this is the case then B can solve the GDH′

problem as described below.
3. It calculatesR := x′U , obtaining x′ (and hence PK′) from either the adversary

or by calling the request public key oracle.
4. If ID′ 6= ID`, it calculates T = e(rU, Mpk), where (j, ID′, r) is obtained by

calling H1 on ID′, and completes de-signcryption in the usual way placing a
query on H2.

5. If ID′ = ID` then the pairing cannot be calculated. In order to return a con-
sistent answer, B goes through L2 and looks for a tuple (U, T,R, ID`, PK′, h),
for different values of T , such that the decision bilinear Diffie-Hellman oracle
returns 1 when queried on (aP, bP, U, T ). If such an entry exists, the correct
pairing value is found and B decrypts using the hash value h.
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6. If B reaches this point of execution, it places the entry (U, ?,R, ID`, PK′, h)
for a random h on list L2 and decrypts using this h. The symbol ? denotes
an unknown value of pairing. Note that the identity component of all entries
with a ? is ID`.

Signcryption Queries: For each new query (m, ID, ID′), algorithm B proceeds
as follows:

1. It calls H1 on ID. If ID 6= ID`, algorithm B simply signcrypts the message,
getting the secret value xS from the request public key or the adversary if
necessary.

2. If ID = ID` (and hence ID′ 6= ID`), algorithm B generates two random values
u, v ∈ Zp, sets U = vaP , calculates T = e(U, r′Mpk), obtaining (j, ID′, r′) by
calling H1 on ID′.

3. It goes through list L2 looking for an entry (U, T,R, ID′, PK′, h) for some R
such that e(U, PK′) = e(P,R), where PK′ is obtained by calling the request
public key oracle on ID′. If such an entry exists, it calculates V = m⊕h. Oth-
erwise it uses a random h and updates the list L2 with (U, T, ?, ID′, PK′, h).

4. Then B defines the hash value H3(U, V, ID`, PK) as H = v−1(uP − QID`),
aborting the simulation if a such a hash queries has been responded with
a different value before. This means that B updates list L3 with tuple
(U, V, ID`, PK,⊥, H). Finally, B sets W = uaP + sPK, where s is the value
obtained by querying H4 on (U, V, ID`, PK) and returns (U, V,W ). Note that
this is a valid signcryption.

Eventually, A outputs a signcryption (U∗, V ∗,W ∗) from sender ID∗S to re-
ceiver ID∗R. Algorithm B now calls H1 on ID∗S and checks if ID∗S = ID` and if
this is not the case it aborts execution. Otherwise, it obtains PK∗ by calling the
request public key oracle on ID∗S and retrieves t∗ and s∗ from lists L3 and L4 by
querying H3 and H4 on (U∗, V ∗, ID`, PK∗). Note that if A succeeded, then the
verification condition holds:

e(P,W ∗) = e(Mpk, QID`)e(U
∗, H∗)e(PK∗, H ′∗)

e(P,W ∗) = e(aP, bP )e(U∗, t∗P )e(PK∗, s∗P )
e(P, abP ) = e(P,W ∗ − t∗U∗ − s∗PK∗),

and thus B can recover

abP = W ∗ − t∗U∗ − s∗PK∗.

Let us now analyse the probability that B succeeds in solving the GDH′

problem instance. For this to happen, the simulation must run until the end of
the game, the adversary must pick a specific identity as ID∗S , and it must query
the hash functions H3 and H4 to properly construct the forgery. The probability
that A is able to produce a forgery without querying both hash functions is
upper bounded by 2/2κ.

The probability that B aborts the simulation is related with the following
events:
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– A places a partial key extraction on ID`.
– A places a full secret key extraction on ID`.
– B wants to simulate a signcryption query and this leads to an inconsistency

in the H3 simulation.

Note that if A places either of the first two fatal queries, then it could not
possibly use ID` as the sender identity in the forgery it produces at the end of the
game, so we can pinpoint the probability that B does not abort the simulation
due to these events and A picks the only useful case for solving GDH′ as 1/qT .
Note that the maximum length of the list L1 is qT , as stated in the Lemma.

The latter fatal event occurs if B’s simulation triggers a collision in its sim-
ulation of H3. Since the maximum size of L3 is qSC + qD + q3 + 1, we can upper
bound the probability that this occurs as qSC(qSC + qD + q3 + 1)/2κ. The result
follows by noting that B makes at most q2D+2qDq2 queries to its decision bilinear
Diffie-Hellman oracle. �

Lemma 6. Under the CDH assumption in G1, no PPT attacker A has non-
negligible advantage in winning the sUF-iCMA-II game against the scheme pro-
posed above, when all hash functions are modelled as random oracles. More pre-
cisely, there exists an algorithm B which uses A to solve the CDH problem such
that:

AdvsUF−iCMA−II
CLSC (A) ≤ qTAdvCDH

Γ (B) + (qSC(qSC + qD + q3 + 1) + 2)/2κ,

where qT = qPK + qRPK + qSK + 2qD + 2qSC + 1 and various q’s are as before.

Proof. To prove this Lemma, we construct an algorithm B which uses A to
solve the CDH problem over G1. Algorithm B receives a CDH problem in-
stance (Γ, aP, bP ), with generator P , generates a master key pair (Msk, Mpk),
sets params := (Γ, Mpk) and provides these to A. Algorithm B then chooses an
index ` uniformly at random in {1, . . . , qT }, where qT is as in the statement of
the Lemma, and answers various oracle queries as follows:

H1 Queries: On the non-repeat query ID algorithm B chooses r ∈ Zp uniformly
at random and sets QID = rP . It then adds (ID, r) to a list L1 which is initially
empty and returns QID.

Request Public Key Queries: On the i-th non-repeat query ID, if i 6= `, algo-
rithm B generates a new key pair (x, PK), updates the list LK with (i, ID, x, PK).
If i = ` algorithm B returns aP and adds (`, ID, aP,⊥) to LK . From this point
on on we denote the `-th non-repeat identity queried to this oracle with ID`.

Replace Public Key Queries: On input (ID, PK) on the i-th non-repeat iden-
tity ID algorithm B inserts/updates LK with tuple (i, ID, PK,⊥). If i = ` then
B aborts the simulation.

Extract Private Key Queries: For each new query ID, B calls request public
key on ID obtaining (i, ID, PK, x). If i = `, algorithm B aborts the simulation.
Otherwise, it calls H1 on ID and gets (ID, r). It returns (x, rMskP ).
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H3 Queries: For each new query (U, V, ID, PK), algorithm B generates a random
value t in Zp, updates an initially empty list L3 with the input, t and tP and
returns tP .

H4 Queries: For each new query (U, V, ID, PK), algorithm B generates a random
value s in Zp, updates an initially empty list L4 with the input, s and sbP and
returns sbP .

H2 Queries: For each new query (U, T,R, ID, PK), algorithm B proceeds as
follows:

1. It checks if e(aP, bP ) = e(P,R). If so, B returns R and stops.
2. Algorithm B goes through the list L2 looking for entries (U, T, ?, ID, PK, h),

such that e(U, PK) = e(P,R). If such a tuple exists, it returns h (and replaces
the symbol ? with R).

3. If B reaches this point of execution, it returns a random h and updates the
list L2, which is initially empty, with a tuple containing the input and return
values.

De-signcryption Queries: For each new query (U, V,W, ID, ID′), algorithm B
proceeds as follows:

1. It executes the verification part of the de-signcryption algorithm obtaining
QID and PK by calling H1 and request public key oracles. It returns ⊥ if the
verification does not succeed.

2. It checks if ID = ID` and if this is the case then B can solve the CDH
problem as described below.

3. It calculates T = e(U, r′Mpk), where (ID′, r′) is obtained from H1

4. If ID′ 6= ID`, it calculates R := x′U , where (j, ID′, PK′, x′) is obtained by
calling the request public key oracle on ID′, and x′ is possibly received from
the adversary. It completes de-signcryption in the usual way by placing a
query on H2.

5. If ID′ = ID`, the correct value of R cannot be computed. To answer the query
consistently, B goes through L2 and looks for a tuple (U, T,R, ID`, PK′, h), for
different values of R, such that e(U, bP ) = e(P,R). If such an entry exists,
the correct value of R is found, and B decrypts using h.

6. If B reaches this point of execution, B places the entry (U, T, ?, ID′, PK′, h)
for a random h on list L2 and decrypts using this h.

Signcryption Queries: For each new query (m, ID, ID′), algorithm B calls the
request public key oracle on ID and proceeds as follows:

1. If ID 6= ID`, algorithm B simply signcrypts the message, getting the secret
value xS from the request public key or the adversary if necessary.

2. If ID = ID` algorithm B generates two random values u, v ∈ Zp, sets U =
vaP and calculates T = e(U, MskQIDj ).
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3. It goes through list L2 looking for an entry (U, T,R, ID′, PK′, h) for some R
such that e(U, PK′) = e(P,R), where PK′ is obtained by calling the request
public key oracle on ID′. If such an entry exists, it calculates V = m⊕h. Oth-
erwise it uses a random h and updates the list L2 with (U, T, ?, ID′, PK′, h).

4. Then B defines the hash value H3(U, V, ID`, PK) as H = v−1(uP − H4),
aborting the simulation if such a hash response has been given before, where
H4 is the output of H4(U, V, ID`, PK). This means that B updates list L3

with tuple (U, V, ID`, PK,⊥, H). Finally, B sets W = DS + uaP and returns
(U, V,W ). Note that this is a valid signcryption.

Eventually, A outputs a valid signcryption (U∗, V ∗,W ∗) from sender ID∗S to
receiver ID∗R. Algorithm B now calls the request public key oracle on ID∗S , obtains
PK∗, and checks if ID∗S = ID`. If this is not the case it aborts the execution.
Otherwise, it retrieves t∗ and s∗ from lists L3 and L4 by querying H3 and H4

on (U∗, V ∗, ID`, PK∗). Note that if A succeeded, then the verification condition
holds:

e(P,W ∗) = e(Mpk, QID`)e(U
∗, H∗)e(PK∗, H ′∗)

e(P,W ∗) = e(Mpk, QID`)e(U
∗, t∗P )e(aP, s∗bP )

e(P, s∗abP ) = e(P,W ∗ −DID` − t∗U∗)

and thus B can recover

abP = (W ∗ −DID` − t∗U∗)/s∗.

Let us now analyse the probability that B succeeds in solving CDH. For this
to happen, the simulation must run until the end of the game, the adversary
must pick a specific identity as ID∗S , and it must query the hash functions H3

and H4 to properly construct the forgery. The probability that A is able to
produce a forgery without querying both hash functions is upper bounded by
2/2κ. The probability that B aborts the simulation is related with the following
events:

– A places a full secret key extraction on ID`.
– B wants to simulate a signcryption query and this leads to an inconsistency

in the H3 simulation.

Note that if A places the first fatal query, then it could not possible use ID`
as the sender identity in the forgery it produces at the end of the game, so we
can pinpoint the probability that B does not abort the simulation due to this
event and A picks the only useful case for solving CDH as 1/qT . Note that the
maximum length of the list LK is qT , as stated in the Lemma.

The latter fatal event occurs if B’s simulation triggers a collision in its sim-
ulation of H3. Since the maximum size of L3 is qSC + qD + q3 + 1, we can upper
bound the probability that this occurs as qSC(qSC + qD + q3 + 1)/2κ. The result
follows. �

19



6 Discussion

The security proof for the certificateless signcryption scheme presented in the
previous section has several interesting aspects which we will now discuss.

Full Domain Hash: For the sake of clarity in the proof presentation, we chose
not to adopt Coron’s technique [9] to obtain tighter security reductions in the
analysis of authenticity. Adaptation of this technique to the certificateless sign-
cryption case can be achieved following the strategy introduced by Libert et al.
in [16] for identity-based signature schemes. However, it is important to empha-
sise an issue specific to the certificateless setting which renders this adaptation
less straightforward.

The adaptive power of a Type I attacker as defined in [1] allows the attacker
to decide whether it replaces the public key for the challenge identity or it
extracts the associated partial secret key. This means that a direct adaptation
of the proof in [16], which embeds the hard problem instance in a fraction of the
partial secret keys which arise in the security game, is meaningless for Type I
adversaries that extract the partial secret key for the challenge identity.

This observation motivated the definition of the Type I′ attack model in
this paper, and the lemmas relating Type I and Type II security with this new
variant. The limited adaptive behaviour of Type I′ attackers permits applying
Coron’s technique directly in the certificateless scenario. As an example of why
this is a relevant contribution, we refer to the certificateless signature proposed
in [19], which is claimed to be secure against Type I attackers. The proof which
is presented for this scheme is flawed, and actually establishes security against
more limited Type I′ adversaries.

Randomness Reuse: The proposed signcryption scheme is structured inter-
nally as an Encrypt-then-Sign construction using algorithms from [8] and [19]
and sharing randomness between the two schemes. The encryption algorithm
can be shown to be IND-CPA secure, whereas the signature algorithm is sUF-
CMA secure. The expected security of our construction, which follows from the
work of An et al. [2], is therefore IND-CCA security against outsider adversaries
and full insider sUF-CMA security. It is interesting to note, however, that our
scheme presents full insider security for confidentiality. This is due to the reuse of
randomness between the encryption and signature components which intuitively
prevents an insider adversary from being able to forge a valid signcryption from
another one for which it does not know the implicit randomness.

Randomness reuse also provides the usual efficiency gains. We are able to
save a few exponentiations and one ciphertext element through this technique.
Efficiency benefits also justify our choice of the GBDH problem in the security
reduction. The gap oracle allows us to construct a consistent simulation without
resorting to a generic transformation akin to that in [15] which would add an
extra ciphertext element to the scheme and a costly consistency check in de-
signcryption. As a final note on the efficiency of the scheme, we note that we
could have based our construction on the certificateless encryption scheme in
[1]. This would provide a small computational gain if one considered public key
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validity check could be pre-computed. However, this would imply reducing the
scheme’s security to the less standard variant of the GBDH problem used in [1].

Self-Signcryption: We note that, although our security models disallow attacks
targeting signcryptions where the sender and receiver identities are the same, it
is possible to modify our proof of security to account for this type of attacks.
However, one would need less standard versions of the underlying hard problems
to construct the security reduction. It is arguable whether this sort of security
property is relevant in practice, although specific applications such as protecting
one’s files or previously sent encrypted e-mails may be used to justify it.

Malicious KGCs: Malicious KGC attacks have not been considered in this
paper. However, the proposed scheme withstands the restricted attacks described
in [3], which consist of allowing a malicious KGC to generate the (Msk, params)
pair itself as long as it provides these to the challenger. We believe that a more
realistic and stronger malicious KGC security model would only require that the
adversary outputs the public parameters. We leave it as an open problem to find
a certificateless signcryption scheme which can be proven secure in this stronger
security model.
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Appendix A – Proof of Lemma 1

Proof. Let A be an insider Type I adversary against the CLSC scheme. We
construct an algorithm B which has non-negligible advantage against the insider
Type I′ or the insider Type II security game as follows. Algorithm B receives
the parameters from the Type I′ and Type II security games. It flips a coin c
as to guess if A will be replacing the public key for ID∗R (case c = 0) or extract
the partial private key for it (case c = 1). If c = 0 then B passes the parameters
from the Type I′ game to A and outputs a random bit in the Type II game,
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otherwise it passes the parameters from Type II game and returns a random bit
in Type I′ game. Let us define the following two events:

– R: the event that A chooses to replace the public key of ID∗R in the first
stage.

– E: the event that A chooses to extract the partial private key of ID∗R at some
point.

We now describe how algorithm B answers various queries made by A in each
case.

Case c = 0: Algorithm B answers the request public key, replace public key,
partial private key extraction and decryption oracles using his equivalent oracles.
When A outputs two identities ID∗S and ID∗R and two messages, algorithm B
also returns these to its own challenge oracle. The simulation fails if A decides
to extract the partial private key of ID∗R and not replace its public key (event
¬R∧E). In this case B outputs a random bit and terminates. The second stage
of the game is simulated as in the first case. Note that the simulation in the
second stage fails if A ever decides to ask for the partial private key of ID∗R.
This query is allowed if A did not replace the public key of ID∗R in the first stage
(event ¬R ∧ E). When A outputs a bit b′, algorithm B also outputs this bit as
his own guess.

Case c = 1: Algorithm B answers the request public key, replace public key,
partial private key extraction and decryption oracles using his equivalent oracles.
When A outputs two identities ID∗S and ID∗R and two messages, algorithm B also
returns these to its own challenge oracle. The simulation fails if A decided to
replace the public key of ID∗R and not extract its partial private key (event
R∧¬E). In this case B outputs a random bit and terminates. The second stage
of the game is simulated as in the first case. Note that the simulation in the
second stage is perfect. When A outputs a bit b′, algorithm B also outputs this
bit as his own guess.

We now analyse the probably that algorithm B returns the correct answer in one
of the games it plays. Let bI′ and bII be the hidden bits in the Type I′ and Type
II games respectively. Let also b1 and b2 denote the bits B outputs. Note that if
the simulation does terminate unexpectedly, c remains hidden from adversary’s
view. Note also that A is not allowed to provoke the event R ∧ E. We have:

2 Pr[b1 = bI′ ] = Pr[b1 = bI′ |c = 0] + Pr[b1 = bI′ |c = 1] = Pr[b1 = bI′ |c = 0] +
1
2
.

And similarly:

2 Pr[b2 = bII] = Pr[b2 = bII|c = 1] +
1
2
.

And hence:

AdvIND−iCCA−I′

CLSC (B) = |Pr[b1 = bI′ |c = 0]− 1
2
|,

AdvIND−iCCA−II
CLSC (B) = |Pr[b2 = bII|c = 1]− 1

2
|.
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Now:

Pr[b1 = bI′ |c = 0] = Pr[b1 = bI′ ∧ E1|c = 0] + Pr[b1 = bI′ ∧ E2|c = 0] +
+ Pr[b1 = bI′ ∧ E3|c = 0]
= Pr[b1 = bI′ ∧ E1|c = 0] + 1/2 + Pr[b1 = bI′ ∧ E3|c = 0],

where E1 := R ∧ ¬E, E2 := ¬R ∧ E and E3 := ¬R ∧ ¬E. Similarly:

Pr[b2 = bII|c = 1] = 1/2 + Pr[b2 = bII ∧ E2|c = 1] + Pr[b2 = bII ∧ E3|c = 1].

Now:

Pr[b′ = bI|c = 0] = Pr[b1 = bI′ ∧ E1|c = 0] + Pr[b′ = bI′ ∧ E2|c = 0] +
+ Pr[b1 = bI′ ∧ E3|c = 0].

And similarly:

Pr[b′ = bI|c = 1] = Pr[b′ = bII ∧ E1|c = 1] + Pr[b2 = bII ∧ E2|c = 1] +
+ Pr[b2 = bII ∧ E3|c = 1].

Therefore adding up:

2 Pr[b′ = bI] = Pr[b1 = bI′ |c = 0]− 1
2

+ Pr[b′ = bI′ ∧ E2|c = 0] +

+ Pr[b2 = bII|c = 1]− 1
2

+ Pr[b′ = bII ∧ E1|c = 1].

Subtracting 1 from both sides, taking absolute signs and using the definitions of
advantage we get:

AdvIND−iCCA−I
CLSC (A) ≤ AdvIND−iCCA−I′

CLSC (B) + AdvIND−iCCA−II
CLSC (B) +

+ |Pr[b′ = bI′ ∧ E2|c = 0]− 1
2
|+

+ |Pr[b′ = bII ∧ E1|c = 1]− 1
2
|.

It remains to bound the quantity in absolute signs above. Since c is independent
of A’s view until the event E1 or E2 occurs in each case, we have:

Pr[b′ = bI ∧ E2|c = 0] = Pr[b′ = bII ∧ E2|c = 1] = Pr[b2 = bII ∧ E2|c = 1]
≤ Pr[b2 = bII|c = 1],

Pr[b′ = bI ∧ E1|c = 1] = Pr[b′ = bI′ ∧ E1|c = 0] = Pr[b1 = bI′ ∧ E1|c = 0]
≤ Pr[b1 = bI′ |c = 0].

Therefore:

AdvIND−iCCA−I
CLSC (A) ≤ 2AdvIND−iCCA−I′

CLSC (B) + 2AdvIND−iCCA−II
CLSC (B).

�
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