
Unbalanced digit sets and the closest choice strategy for

minimal weight integer representations

Clemens Heuberger∗

Institut für Mathematik B
Technische Universität Graz, Graz, Austria
http://www.opt.math.tugraz.at/~cheub/

James A. Muir†

Department of Mathematics and Computing Science
Saint Mary’s University, Halifax, Canada

http://cs.smu.ca/~jamuir/

25 March 2008

Abstract

An online algorithm is presented that produces an optimal radix-2 representation of an
input integer n using digits from the set D`,u = {a ∈ Z : ` ≤ a ≤ u}, where ` ≤ 0 and
u ≥ 1. The algorithm works by scanning the digits of the binary representation of n from left-
to-right (i.e., from most-significant to least-significant). The output representation is optimal
in the sense that, of all radix-2 representations of n with digits from D`,u, it has as few nonzero
digits as possible (i.e., it has minimal weight). Such representations are useful in the efficient
implementation of elliptic curve cryptography. The strategy the algorithm utilizes is to choose
an integer of the form d2i, where d ∈ D`,u, that is closest to n with respect to a particular
distance function. It is possible to choose values of ` and u so that the set D`,u is unbalanced
in the sense that it contains more negative digits than positive digits, or more positive digits
than negative digits. Our distance function takes the possible unbalanced nature of D`,u into
account.

1 Introduction

In grade school, students are taught a radix -10 (or base-10) number system wherein positive integers
are represented using strings of digits from the set D = {0, 1, 2, . . . , 9}. For example, the integer
thirty-one thousand four hundred fifteen is represented as “31415”. This manner of representing
numbers can be generalized, as in the following definition.

Definition 1.1. Let D ⊂ Z be a finite set with 0 ∈ D and let r ≥ 2 be an integer. A radix-r
representation of an integer n with digit set D is a finite string as−1 . . . a1a0 with each ai ∈ D such
that

(as−1 . . . a1a0)r :=
s−1∑
i=0

air
i = n.

The sum operation defines a function from the set D∗ of all finite length digit-strings to Z. ♦
∗C. Heuberger is supported by the Austrian Science Foundation FWF, project S9606, that is part of the Austrian

National Research Network “Analytic Combinatorics and Probabilistic Number Theory.”
†This work was initiated during J. Muir’s visit to TU Graz which was funded by the FWF-project S9606.

1

http://www.opt.math.tugraz.at/~cheub/
http://cs.smu.ca/~jamuir/

Example 1.2. Consider the set D = {0,±1,±2,±3} and the following three strings from D∗:

111101010110111, 1000010101001001, 1000003003001001.

Note that, for typographic reasons, we denote the digits −1,−2,−3 by 1, 2, 3. Each string is a
radix-2 representation of 31415. ♦

Our interest is mainly in radix-2 representations which use a digit set D containing 0, 1 and other
integers. To convert a radix-2 representation as−1 . . . a1a0 into a number, we simply need to evaluate
the sum (as−1 . . . a1a0)2. One way to do this is based on Horner’s rule for evaluating polynomials,
as in Algorithm 1. Notice there that the number of times the addition operation on line 5 is carried
out is equal to one less than the number of nonzero digits in as−1 . . . a1a0, assuming that as−1 6= 0.

Algorithm 1 Horner’s Rule
Input: a radix-2 representation as−1 . . . a1a0.
Output: the integer n = (as−1 . . . a1a0)2.

1: n← as−1

2: for i = s− 2 downto 0 do
3: n← 2n
4: if ai 6= 0 then
5: n← n+ ai
6: return n

If Algorithm 1 is modified slightly, it can be used to compute

nP = P + P + · · ·+ P︸ ︷︷ ︸
n

where P is an element of a group and “+” denotes the group operation. This computation is
commonly required in elliptic curve cryptography, which utilizes the abelian group formed by points
on an elliptic curve defined over a finite field. There are well known formulae for doubling a point
(i.e., computing 2P) and adding two unequal points. Thus, if we have a radix-2 representation
as−1 . . . a1a0 of n, then we can use it to compute nP , as in Algorithm 2.

Algorithm 2 Scalar Multiplication via Horner’s Rule
Input: a radix-2 representation as−1 . . . a1a0, an elliptic curve point P .
Output: the point nP = (as−1 . . . a1a0)2P .

1: Q← as−1P
2: for i = s− 2 downto 0 do
3: Q← 2Q
4: if ai 6= 0 then
5: Q← Q+ aiP
6: return Q

Note that some of the computations required in Algorithm 2 can be done in advance if we happen
to know which digit set D the radix-2 representation is built from. If D is known, then for each
d ∈ D the point dP can be precomputed and stored; this permits Q+ aiP (line 5) to be evaluated
at a cost of one table look-up (to retrieve aiP) and one elliptic curve addition. Precomputation is
advantageous if nP must be evaluated for several different values of n. If we do not count the cost
of precomputation, the number of elliptic curve additions required to compute nP is equal to one
less than the number of nonzero digits in as−1 . . . a1a0, assuming that as−1 6= 0. Since elliptic curve
additions are computationally expensive, it is desirable to do only as few of them as necessary.

2

Example 1.3. Consider again the digit set D = {0,±1,±2,±3}. Here are three strings from D∗:

1010010111101001001001, 1010011000011001001001, 300300200003000200201.

Each of these is a radix-2 representation of 2718281, and each can be used in Algorithm 2 to compute
2718281P . The first string contains 11 nonzero digits, the second contains 9, and the third contains
7. Thus, the number of times the elliptic curve addition operation on line 5 is performed is 10, 8
and 6, respectively. We will see later that the second and third representations can be computed
from the binary representation of 2718281. Thus, if 2718281 is initially encoded in binary, before
Algorithm 2 is executed it may be beneficial to construct one of these alternate representations. ♦

The preceding example suggests the following minimization problem: given a set of digits D and
an integer n, of all strings α ∈ D∗ such that n = (α)2, find one that has as few nonzero digits as
possible. This problem is only interesting when n has a number of different radix-2 representations
in D∗. Note that if {0,±1} ⊂ D then it is easily seen that each nonzero integer has an infinite
number of radix-2 representations in D∗.

Several authors have presented right-to-left constructions for minimal weight representations
which work for particular families of digit sets; a brief survey is given by Muir and Heuberger [5].
The earliest of these goes back to Reitwiesner [14] and uses the digit set {0,±1}. By “right-to-left”
we mean that the the digits of α are determined in turn from least- to most-significant. Phillips and
Burgess [13] generalize all previously known right-to-left constructions by presenting a construction
which produces minimal weight1 representations using the digit set D`,u, which is defined as follows:

D`,u := {a ∈ Z : ` ≤ a ≤ u}, where ` ≤ 0, u ≥ 1.

This digit set is unusual when compared to the digit sets of other constructions since it may contain
more positive digits than negative, or more negative digits than positive.

Suppose that we fix numbers ` and u, and precompute dP for each d ∈ D`,u. To compute nP
using Algorithm 2 where n is encoded in binary, we can first compute a minimal weight radix-2
representation of n with digits in D`,u using the right-to-left method of Phillips and Burgess [13].
However, this approach presents a slight annoyance to implementors: Algorithm 2 processes the
digits of α = as−1 . . . a1a0 from left to right. This means that all the digits of α must be computed
and stored before the computations in Algorithm 2 can proceed. This problem of opposing directions
has been remarked by both Müller [11, pp. 224–225] and Solinas [16, p. 200]. If the digits of α could
instead be determined left-to-right, then, as each digit is computed, one iteration of the “for” loop
could proceed. In this way, it is not necessary to store the digits of α — they are just determined
on the fly as needed.

Our Contributions. We present an algorithm which, for any ` ≤ 0 and u ≥ 1, produces a minimal
weight radix-2 representation of a positive integer n using the digit set D`,u. The algorithm works
by scanning the digits of the binary representation of n from left to right. The algorithm is online
in the sense that it is able to compute a digit of its output after scanning only a finite number of
the most-significant bits of n.

The main strategy our algorithm employs is to determine an element from the set

W1 := {d2i : i ∈ Z, i ≥ 0, d ∈ D`,u and d 6= 0} (1)

that is closest to n. The function we use to quantify closeness differs from the standard metric
d(a, b) = |a− b|. Our distance function incorporates the parameters ` and u and takes the possible
unbalanced nature of D`,u into account. Interestingly, we find that for certain values of ` and u there

1In fact, Phillips and Burgess consider the construction of minimal weight representations using an arbitrary radix
r ≥ 2. However, with the exception of r = 2, their minimality proof imposes a number of restrictions on the parameters
` and u [13, p. 671].

3

are inputs n where it is not possible to determine a value c ∈ W1 closest to n without reading all
the bits of n. Nevertheless, we find that we can obtain an online algorithm by relaxing our choice
of c ∈W1. We show that to build a minimal weight representation of n, it suffices to choose c ∈W1

which is “almost” closest to n.

Related Work. In the cryptographic literature, the first left-to-right algorithm for minimal weight
radix-2 representations using the digits {0,±1} was proposed by Joye and Yen [6]. Several authors
later proposed left-to-right constructions using the digits {0,±1,±3, . . . ,±(2w−1 − 1)} [1] [12] [10].
Following these, Möller [8] gave a left-to-right construction using the digits {0,±1,±3, . . . ,±m}
where m is any odd positive integer; the same construction can be found in work by Khabbazian,
Gulliver and Bhargava [7]. Grabner, Heuberger, Prodinger and Thuswaldner [3] and Heuberger,
Katti, Prodinger and Ruan [4] also propose left-to-right algorithms using the so-called alternating
greedy expansion. They give constructions for minimal weight representations, both in the case
of the digits {0,±1,±3, . . . ,±(2w−1 − 1)} as well as in the case of joint representations of several
integers with digits {0,±1}.

Of the left-to-right constructions mentioned above, only the method proposed by Muir and
Stinson [10] explicitly uses the strategy of computing integers of the form d2i that are closest to n,
with respect to the standard Euclidean distance. This construction is most similar to the one in the
current work except that here we must use a different distance function and our digit set is more
general.

In the special case where only the digits {0,±1} are allowed, the strategy of choosing 2i closest to
n to construct a radix-2 representation is a very natural one. It is essentially just a greedy strategy,
and it is not surprising to find this construction proposed elsewhere in the computer science literature.
For example, Ganesan and Manku [2] present such representations in their study of optimal routing
in a circular network. Also, in an unpublished manuscript, Shallit [15, p. 3] presents an algorithm
based on this construction and claims that it outputs minimal weight representations.

Outline. We begin with some preliminary definitions, notations and results in §2. Then, in §3, we
explain the basic strategy underlying our algorithm along with our main results (i.e., the algorithm
itself and the results we use to prove its correctness and optimality). Proofs of these main results
follow in §4. We end by giving an online implementation of our algorithm in §5.

2 Preliminaries

Here we present some preliminary definitions and notations. When we speak about a digit set, we
mean a finite set of integers which contains 0.

Definition 2.1. Let D be a digit set and let α = as−1 . . . a1a0 be a string of digits from D (i.e.,
α ∈ D∗). The weight of α is the number of nonzero digits it contains; it is denoted by wt(α). ♦

Definition 2.2. Let D be a digit set and let n ∈ Z. If n has some representation α ∈ D∗, then the
minimal weight of n with respect to D, denoted by wt∗(n), is the number

wt∗(n) := min{wt(α) : α ∈ D∗ and (α)2 = n}.

In the case where n has no representation in D∗, then wt∗(n) is undefined. ♦

We say that α ∈ D∗ is a minimal weight representation if wt(α) = wt∗(n) where n = (α)2.
Let ` ≤ 0 and u ≥ 1 be integers. We consider the left-to-right construction of minimal weight

representations using the digit set

D = D`,u := {a ∈ Z : ` ≤ a ≤ u}.

4

This family of digit sets has been studied previously by Phillips and Burgess [13] and Heuberger
and Muir [5]. Both works contain algorithms which construct minimal weight representations from
right to left. Thus, for any n ∈ Z and digit set D`,u, we already have a way of computing wt∗(n).2

Example 2.3. Consider again the three representations of 31415 listed in Example 1.2. These
three representations were constructed using the right to left algorithm from [5], but with different
values of ` and u. Thus, each representation is in fact a minimal weight representation. When
` = 0, u = 1, we get the digit set D0,1 = {0, 1}; of course, there is only one representation of 31415
using these digits, and it contains exactly 11 nonzero digits. When ` = −1, u = 1, we get the digit set
D−1,1 = {0,±1}. From the output of the algorithm, we see that any minimal weight representation
of 31415 with digits from D−1,1 contains exactly 6 nonzero digits.3 When ` = −3, u = 3, we get
the digit set D−3,3 = {0,±1,±2,±3}. As before, from the output of the algorithm, we see that any
minimal weight representation of 31415 with digits from D−3,3 contains exactly 5 nonzero digits. ♦

Because of the bounds on ` and u, it is always true that {0, 1} ⊆ D`,u. Thus, every nonnegative
integer n has a representation with digits in D`,u. This also implies that wt∗(n) is always defined
for n ≥ 0. A negative integer has a representation with digits in D`,u if and only if ` ≤ −1. Thus,
in the case where ` = 0, wt∗(n) is defined only for n ≥ 0.

2.1 Subadditivity of wt∗

As a first result on minimal weight representations, we prove that wt∗ is a subadditive function.
Apart from being an interesting fact on its own, it will be a valuable tool in several proofs because
it enables us not to worry about carries when manipulating representations.

Proposition 2.4. Let m and n be integers. Then

wt∗(m+ n) ≤ wt∗(m) + wt∗(n).

Proof. It is sufficient to prove

wt∗(m+ n) ≤ wt∗(m) + 1 for all m,n ∈ Z with wt∗(n) = 1, (2)

since the result for arbitrary integers n follows by repeated application of (2).
We prove (2) by induction on wt∗(m). For wt∗(m) = 0, there is nothing to show.
Take a minimal weight representation ar . . . a0 of m. We write n = d · 2j for some d ∈ D`,u and

some nonnegative integer j. By increasing j if necessary, we can assume that d is odd. Next, we
only have to consider the case that j = 0, because otherwise, we can write m = m12j + m0 with
m1 = (ar . . . aj)2 and m0 = (aj−1 . . . a0)2 and we can consider the addition of m1 and d instead.

If a0 = 0, then ar . . . a1d is a representation of m+ n of weight wt∗(m) + 1 and we are done.
If a0 is even and nonzero, we use (2) on (m− a0)/2 and a0/2 to see that wt∗(m/2) ≤ wt∗(m)−

1 + 1 = wt∗(m). This lower bound on wt∗(m) implies that there is a minimal weight representation
of m which arises by appending a 0 to a minimal weight representation of m/2. We may assume
that our representation ar . . . a0 has this property, i.e., a0 = 0 or a0 is odd.

Finally, we consider the case of an odd a0. In this case, (a0 + d)/2 ∈ D`,u. We use (2) on
(m − a0)/2 and (a0 + d)/2 to see that wt∗((m + d)/2) ≤ wt∗(m) − 1 + 1 = wt∗(m). Again, we
get a representation of m+ d of weight at most wt∗(m) by appending a zero to a representation of
(m+ d)/2.

2Note that both [13] and [5] provide statistical analyses of wt∗(n); cf. [13, Equation (13)] and [5, Theorem 6.7].
Of course, these results also apply to the weight of the representations proposed in this work.

3Readers may recognize the given representation as one of Reitwiesner’s so-called nonadjacent forms [14].

5

2.2 The parity of ` and u

The digit set D`,u−1 contains one less positive digit than the digit set D`,u. If we decrease the
cardinality of our digit set in this way, then for a given integer n, wt∗(n) will either increase or stay
the same. However, in the case where u is even, we can be more precise: if u is even, then changing
u to u− 1 will never increase wt∗(n). An analogous result holds for the parameter `: if ` is even and
nonzero, then changing ` to `+ 1 will never increase wt∗(n). These two facts can be deduced from
[5, Lemma 4.6], but, for completeness, we establish them here.

Proposition 2.5. Let u ≥ 1 and ` ≤ 0 be integers and set

u′ :=

{
u, if u is odd,
u− 1, if u is even,

`′ :=

{
`, if ` is odd or ` = 0,
`+ 1, if ` is even and nonzero.

Suppose n ∈ Z has a minimal weight representation with digits in D`,u. Then n also has a minimal
weight representation with digits in D`′,u′ , and these two representations have equal weight.

Proof. Note that either `′ and u′ are both odd, or `′ = 0 and u′ is odd. In both cases we have
` ≤ `′ and u′ ≤ u. Our strategy will be to take a minimal weight representation of n with digits in
D`,u and modify it, without changing the number of nonzero digits, to obtain a representation of n
with digits in D`′,u′ . The modification essentially involves pushing any even nonzero digits left until
they become odd. This will show that w′ ≤ w where w′ is the minimal weight of n with respect to
D`′,u′ and w is the minimal weight of n with respect to D`,u. Of course, w ≤ w′ since D`′,u′ ⊆ D`,u.
Hence, we get w = w′ which gives us the desired result.

Let bj . . . b1b0 be a minimal weight representation of n with digits in D`,u. If all nonzero digits
of this representation are odd, then each digit is also in D`′,u′ , and we are done. So suppose that
bj . . . b1b0 contains an even nonzero digit. More precisely, assume that bk is an even nonzero digit
such that all nonzero digits to its left are odd.

Modify the representation bj . . . bk . . . b1b0 as follows. Write bk = 2sb where s ≥ 1 and b ∈ D`,u is
odd. Let d = bk+s + b. Now, replace bk with 0 and bk+s with d. This modification clearly results in
a representation of n, although we do not yet know if d ∈ D`,u. Note that d must be nonzero since
otherwise the new representation of n would have too few nonzero digits (recall we started with a
minimal weight representation of n). If it was true that bk+s = 0, then we could say that all digits of
the new representation are in D`,u (since d would then be equal to b), and that there is now one less
nonzero even digit. This is exactly what we want since it implies that we can eliminate all nonzero
even digits in this manner.

That bk+s equals 0 is, in fact, necessarily true. Suppose that bk+s 6= 0. Since bk+s was to
the left of bk, it must be odd. Thus, d is even and nonzero, and d/2 ∈ D`,u. By subadditivity
(Proposition 2.4) we see that wt∗((bj . . . bk+s+1)2 + d/2) ≤ wt∗((bj . . . bk+s+1)2) + 1, which results
in a representation of n of weight ≤ wt∗(n) − 1, since we decreased the Hamming weight twice (in
positions k and k + s) and increased it at most once. This is a contradiction. So, it must be that
bk+s = 0, and the result follows.

Example 2.6. Let n be any integer. We now know that the digits of D−4,6 will not admit a minimal
weight representation of n that has fewer nonzero digits than a minimal weight representation of n
with digits from D−3,5. In fact, the proof of Proposition 2.5 shows that the eleven digits of D−4,6

are no better than the six digits of {−3,−1, 0, 1, 3, 5}. Similarly, the digits of D0,8 do not allow any
minimal weight representations of n with fewer nonzero digits than a minimal weight representation
of n with digits from D0,7. ♦

As a result of Proposition 2.5, in the remainder of the paper we consider only two cases for the
parameters ` and u: 1) ` = 0 and u is odd, 2) both ` and u are odd. A fair question to ask now is:
why bother to use any even nonzero digits from D`,u at all? The answer is convenience, as we will
see in the coming sections.

6

3 Strategy and main results

Fix a digit set D`,u so that either ` = 0 and u is odd, or both ` and u are odd. The set of all integers
c with wt∗(c) = 1 is denoted by

W1 := {c ∈ Z : wt∗(c) = 1}.

Observe that this is the same set as given in (1).
Given an integer n, if we read the digits of a minimal weight representation of n from left to

right, then each nonzero digit we read corresponds to some ci ∈ W1. If wt∗(n) = t, then this
correspondence gives us t elements of W1, call them c1, c2, . . . ct. These numbers can be interpreted
as successive approximations to n:

c1

c1 + c2

...
c1 + c2 + · · ·+ ct = n.

When building a minimal weight representation of n from scratch, we do not know which values
from W1 to choose for c1, . . . , ct. We develop an algorithm which chooses ci so that it is a close
approximation to n− (c1 + c2 + · · ·+ ci−1).

There are two elements in W1 that are closer to n than any others. We define the left and the
right neighbour of n as

N−(n) := max{c ∈W1 : c ≤ n},
N+(n) := min{c ∈W1 : n ≤ c}.

Of course, when n ∈ W1 we have N−(n) = N+(n). It can be shown that n always has a minimal
weight representation with most significant term equal to N−(n) or N+(n); this is essentially the
content of the following result, which will be proved in Section 4.2:

Proposition 3.1. Let n be a nonzero integer. Then

wt∗(n) = wt∗
(
n−N−(n)

)
+ 1 or wt∗(n) = wt∗

(
n−N+(n)

)
+ 1. (3)

If ` = 0, then we have
wt∗(n) = wt∗

(
n−N−(n)

)
+ 1 (4)

for all positive integers n.

Our algorithm will choose c ∈ {N−(n), N+(n)} so that wt∗(n) = wt∗(n− c) + 1, replace n with
n − c, and then repeat these two steps until n equals zero. The sequence wt∗(n) formed by the
variable n decreases by one in each step, thus this algorithm will terminate (n = 0 is the only integer
with wt∗(n) = 0); moreover, if the input integer n has wt∗(n) = t, then the algorithm will terminate
after exactly t steps. The problem we must now consider is how to decide between N−(n) and
N+(n).

Example 3.2. Consider the digit set D−3,5. It is easy to verify that, for all n ∈ {65, 66, . . . , 79},
N−(n) = 4 · 24 = 64 and N+(n) = 5 · 24 = 80 . In the following table, we compute wt∗(n),wt∗(n−

7

N−(n)),wt∗(n−N+(n)) for each n in this range.

n wt∗(n) wt∗(n−N−(n)) wt∗(n−N+(n))
65 2 1 2
66 2 1 2
67 2 1 2
68 2 1 1
69 2 1 2
70 2 1 2
71 3 2 2
72 2 1 1
73 3 2 2
74 2 1 1
75 3 2 2
76 2 1 1
77 2 2 1
78 2 2 1
79 2 2 1

There are seven rows in the table where both c = N−(n) and c = N+(n) satisfy wt∗(n) = wt∗(n−
c) + 1; each of these rows contains two numbers in boldface. In the other eight rows, just one value
of c ∈ {N−(n), N+(n)} satisfies wt∗(n) = wt∗(n − c) + 1. Since we always want to choose c with
wt∗(n) = wt∗(n− c) + 1, it is apparent that whether we choose N−(n) or N+(n) does matter. ♦

When deciding whether we should approximate n by its left or its right neighbour, we calculate
the “distance” from N−(n) and N+(n) to n in a way that takes the possibly unbalanced nature of
D`,u into account. For m ∈ Z, we define the norm of m, denoted ‖m‖, as

‖m‖ :=


0, if m = 0,
m/u, if m > 0,
m/`, if m < 0 and ` < 0,
∞, if m < 0 and ` = 0.

We note that this is not a vector norm in the usual sense since the sign of m matters. Using this
norm, we calculate the distance from n to each of N−(n) and N+(n) as∥∥n−N−(n)

∥∥ and
∥∥n−N+(n)

∥∥ .
Observe that since N−(n) ≤ n ≤ N+(n), we have

∥∥n−N−(n)
∥∥ =

n−N−(n)
u

=
|n−N−(n)|

|u|
,

and provided ` 6= 0, ∥∥n−N+(n)
∥∥ =

n−N+(n)
`

=
|n−N+(n)|

|`|
.

The idea behind this particular choice of norm is the following. If n is approximated by N−(n),
then the difference n−N−(n) is positive and may be in the range 0 ≤ n−N−(n) ≤ (uu . . . u)2 for
an appropriate number of digits u. On the other hand, if n is approximated by N+(n), then the
difference n−N+(n) is negative and may be in the range (`` . . . `)2 ≤ n−N+(n) ≤ 0. To balance
these different ranges, it seems to be appropriate to divide the approximation error by u if it is
positive and by ` if it is negative.

8

Example 3.3. Consider the digit set D−1,5. If n = 29, then it is easily seen that N−(n) = 24
and N+(n) = 32. Since 29 6∈ W1, we have wt∗(29) ≥ 2. However, 29 = (3005)2, thus we see
that wt∗(29) = 2. With respect to Euclidean distance, we would say that n is closer to N+(n)
than N−(n) (distance 3 compared to distance 5). However, for our purposes, 32 is not a good
approximation to 29 as wt∗(29 − 32) = wt∗(−3) = 2 = wt∗(29); i.e., taking c = 32 does not satisfy
wt∗(n− c) = wt∗(n)− 1. Using the norm defined above we have

‖29− 24‖ =
5
5

= 1 and ‖29− 32‖ =
−3
−1

= 3.

According to this notion of distance, 24 is the better approximation to 29. Indeed, wt∗(29− 24) =
wt∗(5) = 1 = wt∗(29)− 1. ♦

For any nonzero integer n, the set closest(n) ⊆W1 is defined to be

closest(n) = {c ∈W1 : ‖n− c‖ ≤ ‖n− c′‖ for all c′ ∈W1}.

It is clear that closest(n) ⊆ {N−(n), N+(n)}. Depending on the values of ` and u, the set closest(n)
might contain both neighbours of n rather than just one (i.e., sometimes there is more than one
element of W1 that is closest to n). We will see (as a consequence of a more general result) that
for any nonzero integer n, c ∈ closest(n) implies wt∗(n) = wt∗(n − c) + 1. Thus, in each step of
our algorithm, we might try to compute c ∈ closest(n). However, this approach has an interesting
deficiency.

Our ultimate goal is to devise an online algorithm that creates a minimal weight representation
by processing the digits of the binary representation of n from left to right. This means that if we
want to compute c ∈ closest(n), the only information we have to work from is a fixed number of
most significant digits of the binary representation of n. To be clear, when we refer to a binary
representation of an integer, we mean a radix-2 representation with digits from {0, 1}. As the
following example shows, it is not always possible to determine c ∈ closest(n) in this manner.

Example 3.4. Consider the digit set D−1,5. For any integer i ≥ 0, it is easily seen that no integer
strictly between 3 · 2i and 4 · 2i is in W1, cf. Lemma 4.5. Thus, for any n with 3 · 2i < n < 4 · 2i, we
have N−(n) = 3 · 2i and N+(n) = 4 · 2i. Suppose n is an integer in this interval. Suppose further
that there exists a function f which, upon input i and some fixed number k of the most significant
digits of the binary representation of n, correctly computes c ∈ closest(n) ⊆ {3 · 2i, 4 · 2i}. We will
construct two integers which demonstrate that f cannot exist.

By computing
∥∥x− 3 · 2i

∥∥ and
∥∥x− 4 · 2i

∥∥, it can be verified that x = 3·2i+5/6·2i is equidistant
to 3·2i and 4·2i. Thus, all n with 3·2i < n < x have closest(n) = {3·2i}, and all n with x < n < 4·2i
have closest(n) = {4 · 2i}. Observe that

x = 3 · 2i + 5/6 · 2i = (11)2 · 2i + (0.11010101 . . .)2 · 2i = (11.11010101 . . .)2 · 2i

Choose i so that it is greater than k and consider the two integers

n− = (

k︷ ︸︸ ︷
11.110101 . . . 00)2 · 2i and n+ = (

k︷ ︸︸ ︷
11.110101 . . . 11)2 · 2i;

i.e., the k most significant digits of the binary representations of n− and n+ are the same. Observe
that 3 · 2i < n− < x < n+ < 4 · 2i, so closest(n−) = {3 · 2i} and closest(n+) = {4 · 2i}. However,
when f is applied to each of these integers, the return values will be equal since they are generated
by equal inputs (i.e., i and the same k digits). So, the output of f is not correct for one of n− or
n+, contrary to the definition of f . Therefore, f cannot exist. ♦

9

Note that when ` = 0, deciding between N−(n) and N+(n) is easy. For every positive integer n,
we have closest(n) = {N−(n)}, thus there is no decision to be made.

Fortunately, in the case where ` 6= 0, we can determine c ∈W1 with wt∗(n) = wt∗(n− c) + 1 by
taking c to be “almost closest” to n. We fix a positive number δ such that

δ < min
{

1
|`|
,

1
|u|

}
, (5)

and then define

closestδ(n) = {c ∈W1 : ‖n− c‖ ≤ ‖n− c′‖ (1 + δ) for all c′ ∈W1} ∩ {N−(n), N+(n)}. (6)

An element of closestδ(n) is “almost” a closest element to n — its relative error is at most δ (i.e.,
if c ∈ closestδ(n) and c∗ ∈ closest(n), then ‖n−c‖−‖n−c

∗‖
‖n−c∗‖ ≤ δ). Observe that by definition, for any

nonzero integer n, closestδ(n) ⊆ {N−(n), N+(n)}.4
We will see in Section 5 that it is possible to compute c ∈ closestδ(n) by examining only a fixed

number (dependent on the value of δ) of the most significant digits of the binary representation of
n. This is how we will decide between N−(n) and N+(n).

We phrase our main results with respect to Algorithm 3.

Algorithm 3 Compute t = wt∗(n).
Input: n ∈ Z (if ` = 0, then we require n ≥ 0)
Output: A nonnegative integer t and a list c1, c2, . . . ct with ci ∈W1 and

∑
i ci = n.

1: t← 0
2: while n 6= 0 do
3: t← t+ 1
4: Choose ct ∈ closestδ(n)
5: n← n− ct
6: return t, c1, c2, . . . ct

Note that Algorithm 3 is nondeterministic; i.e., for an input n, there can be more than one
output. This is due to the fact that at line 4, there may be more than one choice for ct ∈ closestδ(n).

Theorem 1. For any valid input n ∈ Z, Algorithm 3 terminates, and for the resulting output
t, c1, c2, . . . , ct, we have t = wt∗(n) and

∑t
i=1 ci = n.

Of course, for a given n ∈ Z, rather than a sum c1 + c2 + · · · + ct = n with wt∗(n) = t, what
we really want is a string α ∈ D`,u with (α)2 = n and wt(α) = wt∗(n). It is possible to convert
c1 + c2 + · · ·+ ct = n into a minimal weight representation of n by assigning digits to each ci. Note
that elements of W1 can have several representations d · 2j with d ∈ D`,u and j ≥ 0, and when
we assign digits to each term of c1 + c2 + · · · + ct we need to ensure that the resulting sequence of
exponents is strictly decreasing. However, it turns out that every possible assignment of digits has
this property.

Theorem 2. Let t, c1, c2, . . . , ct be the output of Algorithm 3 for any valid input n. Then every
assignment of digits from D`,u to c1, c2, . . . , ct yields a minimal weight representation of n.

Our online algorithm, presented in Section 5, is essentially an implementation of Algorithm 3; it
builds a minimal weight representation by encoding the list c1, c2, . . . , ct as a string of digits from
D`,u.

4To ensure that closestδ(n) ⊆ {N−(n), N+(n)}, we use an intersection operation in (6). However, when δ < 1/2, it
is easily shown that the intersection operation is unnecessary; i.e., whenever δ < 1/2, then the set {c ∈W1 : ‖n− c‖ ≤
‖n− c′‖ (1 + δ) for all c′ ∈W1} is a subset of {N−(n), N+(n)}.

10

4 Proofs

Here we provide proofs for Proposition 3.1, Theorem 1, and Theorem 2. However, we first need to
establish some facts about the elements of the set W1.

4.1 The set W1

In general, an element c ∈ W1 can be written in different ways, e.g., we have d · 2j = (2d) · 2j−1

if 0 < d ≤ u/2 or `/2 ≤ d < 0. There are at least two natural strategies to enforce a unique
representation: one can require that d is odd or one can require that d is in a certain range (e.g.,
u/2 < d ≤ u or ` ≤ d < `/2). In our proofs, we will frequently adopt the second strategy; the main
results, however, are independent of this choice by Theorem 2.

We define the following digit sets:

L := {d ∈ D`,u : ` ≤ d < `/2} and U := {d ∈ D`,u : u/2 < d ≤ u}.

When ` = 0, the set L is empty; otherwise, both ` and u are odd, and we have

maxL = (`− 1)/2 and minU = (u+ 1)/2,

and thus
` = minL = 1 + 2 maxL and u = maxU = −1 + 2 minU. (7)

The following simple lemma will turn out to be useful.

Lemma 4.1. For d ∈ L ∪ U , we have (d− 1) ∈W1 ∪ {0} and (d+ 1) ∈W1 ∪ {0}.

Proof. Assume that d ∈ U . For d < u, we clearly have (d + 1) ∈ U ⊆ W1. For d = u, we have
d+ 1 = 2 minU by (7), which is an element of W1. As for d− 1, since 0 < d ≤ u, we obviously have
0 ≤ d− 1 ≤ u− 1 and therefore d− 1 ∈ D`,u ⊆W1 ∪ {0}.

The proof for d ∈ L is analogous.

Example 4.2. The sets L and U provide us with a convenient way to enumerate the elements of
W1 which are not in D`,u. Consider D−3,5. Then L = {−3,−2} and U = {3, 4, 5}. It is easily shown
that any c ∈W1 with c /∈ D−3,5 appears in some row of the array below.

−6 −4
−12 −8
−24 −16

...
...

−3 · 2j −2 · 2j

6 8 10
12 16 20
24 32 40
...

...
...

3 · 2j 4 · 2j 5 · 2j

Observe that, for the exponent j, we always have j ≥ 1. ♦

Lemma 4.3. Let n be an integer with wt∗(n) > 1 and c ∈ {N−(n), N+(n)}. Then there is some
d ∈ L ∪ U and integer j ≥ 1 such that c = d · 2j.

Proof. Since n /∈W1 and n 6= 0, we have n < `−1 or u+1 < n, and this implies that N−(n), N+(n)
are not in D`,u. We write c = d · 2j for some d ∈ D`,u and integer j which is chosen as small as
possible. This implies that d ∈ L ∪ U , since otherwise, replacing d by 2d and j by j − 1 would be
possible. Since c > u or c < `, we conclude that j ≥ 1.

Next, we are interested in the successor and predecessor functions on W1:

11

Definition 4.4. Let c ∈W1. We define

succ(c) = min{c′ ∈W1 : c < c′},
pred(c) = max{c′ ∈W1 : c′ < c}.

The successor and the predecessor functions can be computed explicitly:

Lemma 4.5. Let c = d · 2j ∈W1 with j ≥ 1 and d ∈ L ∪ U . Then we have

succ(d · 2j) =

{
(d+ 1)2j , if d 6= maxL,
(2d+ 1)2j−1, if d = maxL,

pred(d · 2j) =

{
(d− 1)2j , if d 6= minU,
(2d− 1)2j−1, if d = minU.

Proof. We only prove the lemma under the assumption that d ∈ U , the other case being analogous.
We first show that succ(d ·2j) = (d+1)2j . By Lemma 4.1, we know that d+1 ∈W1 and therefore

(d+ 1)2j ∈W1. Assume that there is an element d′ · 2j′ ∈W1, where d′ ∈ D`,u, with

d · 2j < d′2j
′
< (d+ 1)2j .

There are no multiples of 2j strictly between d · 2j and (d + 1)2j , thus it must be that j′ < j.
Dividing by 2j

′
yields

d · 2j−j
′
< d′ < (d+ 1)2j−j

′
.

However, u+ 1 ≤ d · 2j−j′ < d′, and this contradicts the fact that d′ ∈ D`,u.
The predecessor function can be computed from the knowledge of the successor function: If

d > minU , then we just proved that succ((d−1)2j) = d·2j , which implies that pred(d·2j) = (d−1)2j ,
as required. If d = minU , then we have (2d − 1)2j−1 = u · 2j−1 by (7), and succ(u · 2j−1) =
(u+ 1)2j−1 = minU · 2j = d · 2j and we are done once again.

From Lemma 4.5, we see, for example, that if an integer n has N−(n) = d · 2j with d ∈ U , then
N+(n) = (d+ 1)2j . Similarly, if n has N+(n) = d · 2j with d ∈ L, then N−(n) = (d− 1)2j . Another
consequence of the lemma is that if wt(n) ≥ 2, then N+(n)−N−(n) = 2j for some j ≥ 1.

4.2 Proposition 3.1

Proof of Proposition 3.1. From the subadditivity of wt∗ (Proposition 2.4), it is clear that wt∗(n) ≤
wt∗(n − N−(n)) + 1 and wt∗(n) ≤ wt∗(n − N+(n)) + 1, so it only remains to show that the other
direction holds for at least one of these inequalities.

Let br . . . b1b0 be a minimal weight representation of n with br 6= 0, and define the integer

k∗ := max{k ∈ Z : N−(n) ≤ (br . . . bk)2 · 2k ≤ N+(n)}.

Note that k∗ is well defined since when k = 0 we have (br . . . bk)2 · 2k = n and N−(n) ≤ n ≤ N+(n).
Observe that r ≥ k∗ ≥ 0.

If r = k∗, then br2r ∈ {N−(n), N+(n)}, and we get the desired inequality by observing that
wt∗(n− br2r) ≤ wt∗(n)− 1.

Assume that r > k∗. By the maximality of k∗, it must be that

(br . . . bk∗+10)2 · 2k
∗
< N−(n) or N+(n) < (br . . . bk∗+10)2 · 2k

∗
. (8)

However, N−(n) ≤ (br . . . bk∗)2 · 2k
∗ ≤ N+(n), and so we must have bk∗ 6= 0. Therefore, br . . . bk∗

contains at least two nonzero digits, and hence wt∗(n) > 1.

12

Suppose n is positive. By Lemma 4.3, we can write N−(n) = d · 2j for some d ∈ U and j ≥ 1.
And by Lemma 4.5, we have N+(n) = (d+ 1) · 2j . Now,

d · 2j ≤ (br . . . bk∗)2 · 2k
∗
≤ (d+ 1) · 2j .

Since there are no multiples of 2j strictly between d · 2j and (d + 1) · 2j , we see that either k∗ < j
or (br . . . bk∗)2 · 2k

∗
equals d · 2j or (d + 1) · 2j . However, the latter possibility gives n = d · 2j +

(bk∗−1 . . . b1b0)2 or n = (d+ 1)2j + (bk∗−1 . . . b1b0)2, and each of these sums yields a representation
of n with too few nonzero digits by the subadditivity of wt∗ (Proposition 2.4). Therefore, k∗ < j.

By (8), (br . . . bk∗+10)2 · 2k
∗

is either less than d · 2j or greater than (d + 1) · 2j . In the first
possibility, we have

(br . . . bk∗+10)2 · 2k
∗
< d · 2j < (br . . . bk∗+1bk∗)2 · 2k

∗

=⇒ (br . . . bk∗+10)2 < d · 2j−k
∗
< (br . . . bk∗+10)2 + bk∗ .

From this last inequality, we see that there must exist some a ∈ D`,u with 0 < a < bk∗ such that

d · 2j−k
∗

+ a = (br . . . bk∗+1bk∗)2

=⇒ d · 2j + a · 2k
∗

= (br . . . bk∗+1bk∗)2 · 2k
∗

=⇒ d · 2j + a · 2k
∗

+ (bk∗−1 . . . b0)2 = (br . . . b0)2
=⇒ d · 2j + (abk∗−1 . . . b0)2 = n.

Thus, we have a representation (abk∗−1 . . . b0)2 of n − N−(n) of weight wt∗(n) − 1, which implies
that wt∗(n−N−(n)) ≤ wt∗(n)− 1.

In the second possibility (i.e., (d + 1) · 2j < (br . . . bk∗+10)2 · 2k
∗
), using similar reasoning we

obtain a sum
(d+ 1) · 2j + (abk∗−1 . . . b0)2 = n

where a ∈ D`,u and bk∗ < a < 0. This gives us wt∗(n−N+(n)) ≤ wt∗(n)− 1.
Note that when ` = 0, all the digits of a minimal weight representation br . . . b1b0 of n are

nonnegative. Thus, for all k with r ≥ k ≥ 0, we have (br . . . bk)2 · 2k ≤ n < N+(n). This implies
that for the parameter k∗ we have

(br . . . bk∗+10)2 · 2k
∗
< N−(n),

i.e., we are always in the first case and obtain (4).
The case where n is negative is handled in the same manner. This proves the result.

4.3 The set closestδ(n)

Before we can proceed with the remaining proofs, we require a result on the set closestδ(n). This
result tells us which integers n, between N−(n) and N+(n), have N−(n) ∈ closestδ(n) and which
have N+(n) ∈ closestδ(n).

Lemma 4.6. Let n be a nonzero integer. Then

N−(n) ∈ closestδ(n) ⇐⇒ n ≤ N−(n) +
|u| (1 + δ)

|`|+ |u| (1 + δ)
(N+(n)−N−(n)), (9)

N+(n) ∈ closestδ(n) ⇐⇒ n ≥ N+(n)− |`| (1 + δ)
|u|+ |`| (1 + δ)

(N+(n)−N−(n)). (10)

13

Proof. If n ∈W1, then n = N−(n) = N+(n), and each equivalence reduces to n ∈ {n} ⇐⇒ n ≤ n,
which is clearly true. Thus, we may assume n /∈W1.

By the definition of closestδ(n) in (6), N−(n) ∈ closestδ(n) is equivalent to∥∥n−N−(n)
∥∥ ≤ ∥∥n−N+(n)

∥∥ (1 + δ)

⇐⇒ |n−N−(n)|
|n−N+(n)|

≤ |u| (1 + δ)
|`|

.

Geometrically, this is equivalent to n ≤ xR, where xR is the point subdividing the interval [N−(n), N+(n)]
with the ratio |u| (1 + δ) : |`|, as illustrated in the following diagram:

N−(n)

-λ |u| (1 + δ)

N+(n)

� λ |`|

xR

Calculating xR explicitly as N−(n) plus a positive constant λ times |u| (1 + δ) yields

xR = N−(n) +
|u| (1 + δ)

|`|+ |u| (1 + δ)
(
N+(n)−N−(n)

)
,

which gives us (9).
Similarly, we have N+(n) ∈ closestδ(n) if and only if

|n−N+(n)|
|n−N−(n)|

≤ |`| (1 + δ)
|u|

,

which is equivalent to xL ≤ n, where xL is the point subdividing the interval [N−(n), N+(n)] with
the ratio |u| : |`| (1+δ). Calculating xL explicitly as N+(n) minus a positive constant times |`| (1+δ)
yields

xL = N+(n)− |`| (1 + δ)
|u|+ |`| (1 + δ)

(
N+(n)−N−(n)

)
,

which gives us (10).

For the numbers xL and xR defined in the previous proof, we justify our choice of notation as
follows. By definition, we have xL < x < xR, where x is the point subdividing the interval with
the ratio |u| : |`|. So, xL is always to the left of x, and xR is always to the right. Note that
N−(n) ∈ closest(n) if and only if n ≤ x and N+(n) ∈ closest(n) if and only if x ≤ n.

Example 4.7. Consider the digit set D−3,5. For all n with 4 ·28 ≤ n ≤ 5 ·28, we have N−(n) = 4 ·28

and N+(n) = 5 · 28. We set δ = 1/8 and use Lemma 4.6 to describe closestδ(n) for n in this range.
Note that δ = 1/8 is a valid choice for δ as 1/8 < min{ 1

|−3| ,
1
|5|}.

According to the lemma, for an integer n with 1024 = 4 · 28 ≤ n ≤ 5 · 28 = 1280, we have

4 · 28 ∈ closestδ(n) ⇐⇒ n ≤
⌊

4 · 28 +
5(1 + 1/8)

3 + 5(1 + 1/8)
28

⌋
= 1190,

5 · 28 ∈ closestδ(n) ⇐⇒ n ≥
⌈

5 · 28 − 3(1 + 1/8)
5 + 3(1 + 1/8)

28

⌉
= 1177.

From this, we conclude that

1024 ≤ n ≤ 1176 =⇒ closestδ(n) = {1024},
1177 ≤ n ≤ 1190 =⇒ closestδ(n) = {1024, 1280},
1191 ≤ n ≤ 1280 =⇒ closestδ(n) = {1280}.

By using a larger value of δ, the number of integers with closestδ(n) = {1024, 1280} can be in-
creased. By using a smaller value of δ, the number of integers with closestδ(n) = {1024, 1280} can
be decreased. ♦

14

4.4 Theorem 1

With the following lemma, the proof of Theorem 1 follows easily.

Lemma 4.8. Let n be a nonzero integer and c ∈ closestδ(n). Then wt∗(n) = wt∗(n− c) + 1.

Proof. For ` = 0, we have closestδ(n) = {N−(n)}. Thus the result follows from Proposition 3.1. So
we restrict ourselves to the case ` < 0.

By subadditivity (Proposition 2.4), we have wt∗(n) ≤ wt∗(n− c) + wt∗(c) = wt∗(n− c) + 1. So,
we only have to prove the other direction. We prove this by induction on wt∗(n). When n ∈ W1,
closestδ(n) = {n} and the result is clearly true. Thus we may assume that wt∗(n) > 1.

We consider the case that c = N+(n) (the other case c = N−(n) follows from analogous ar-
guments or simply by considering −n and the digit set D−u,−`). By Proposition 3.1, we have
wt∗(n) = wt∗(n − N+(n)) + 1 or wt∗(n) = wt∗(n − N−(n)) + 1. In the former case, we are done.
Thus we consider the latter case. By Lemma 4.5, we have

c−N−(n) = N+(n)−N−(n) = 2j

for an appropriate nonnegative integer j.
We set m = n − N−(n). By assumption, we have wt∗(m) = wt∗(n) − 1. Since c = N+(n) ∈

closestδ(n), we have

0 < c− n ≤ |`| (1 + δ)
|u|+ |`| (1 + δ)

2j (11)

by Lemma 4.6.
Let

c1 :=

{
N+(m), if N+(m) ∈ closestδ(m),
N−(m), if N+(m) /∈ closestδ(m),

which ensures that c1 ∈ closestδ(m). If c1 < m, we have N+(m) /∈ closestδ(m), which is equivalent
to

m < N−(m) +
|u|

|u|+ |`| (1 + δ)
(
N+(m)−N−(m)

)
by Lemma 4.6. In every case, we have

m < c1 +
|u|

|u|+ |`| (1 + δ)
(
N+(m)−N−(m)

)
. (12)

By the induction hypothesis, we have wt∗(m−c1) = wt∗(m)−1. We write c1 = d2k for a d ∈ D`,u

and a k ≥ 0. We obtain the estimate N+(m) −N−(m) ≤ 2k. Since 0 ≤ m = n −N−(n) < 2j , we
also have 2k ≤ d · 2k ≤ N+(m) ≤ 2j , which implies k ≤ j.

If d ≥ 2j−k + `, then (d − 2j−k) ∈ D`,u. Using the subadditivity of wt∗ (Proposition 2.4), we
obtain

wt∗(n− c) = wt∗(m− c1 + c1 − 2j) = wt∗((m− c1) + (d− 2j−k)2k)
≤ wt∗(m− c1) + 1 = wt∗(m) = wt∗(n)− 1

and we are done.
For the remainder of the proof, we can therefore assume that

d ≤ 2j−k + `− 1. (13)

From (11), we get

m ≥ |u|
|u|+ |`| (1 + δ)

· 2j . (14)

15

Combining (12) and (14) yields

|u| (2j−k − 1) < d(|u|+ |`| (1 + δ)). (15)

Using the trivial estimate d ≤ u = |u| yields

2j−k − 1 < |u|+ |`| (1 + δ).

Since |`| δ < 1 by (5), this can be sharpened to

2j−k − 1 ≤ |u|+ |`| . (16)

However, equality in (16) would imply that 2j−k equals an odd number ≥ 3, which is clearly a
contradiction. Thus, we can further sharpen (16) to

2j−k − |`| − 1 ≤ |u| − 1. (17)

After converting absolute value signs, inserting (13) in (15) yields

u(2j−k − 1) ≤ (2j−k + `− 1)(u− `(1 + δ)),

which is equivalent to
0 ≤ −u+ (1 + δ)(2j−k + `− 1).

Inserting (17) and δ < 1/u into this last inequality yields

0 ≤ −u+
(

1 +
1
u

)
(u− 1) = − 1

u
,

a contradiction.

Proof of Theorem 1. Any integer n is a valid input to Algorithm 3 when ` 6= 0, but when ` = 0 we
require n ≥ 0.

The theorem follows directly from Lemma 4.8 and the fact that the only integer m for which
wt∗(m) = 0 is m = 0.

Note that by Lemma 4.8 and the fact that c ∈ closest(n) implies c ∈ closestδ(n), we have now
established the result

c ∈ closest(n) =⇒ wt∗(n− c) = wt∗(n)− 1.

4.5 Theorem 2

Proof of Theorem 2. The result is clearly true for all inputs n with wt∗(n) = 1. Thus, we assume
wt∗(n) ≥ 2. Write each ci as di2ji where di ∈ D`,u and ji ≥ 0. We show that j1 > j2 > · · · > jt.
Note that since t − 1, c2, . . . , ct is an output of Algorithm 3 for the input n − c1, to conclude that
j1 > j2 > · · · > jt, we need only prove that j1 > j2.

We consider the case c2 > 0. The other case is analogous or can even be handled by considering
−n and the digit set D−u,−`. Since c2 > 0 it must be that c1 = N−(n). Note that c2 equals either
N−(n− c1) or N+(n− c1). By Lemma 4.6, we have

n− c1 ≤
|u|(1 + δ)

|`|+ |u|(1 + δ)
(
N+(n)−N−(n)

)
and, assuming that c2 = N+(n− c1),

n− c1 − c2 ≥ −
|`|(1 + δ)

|u|+ |`|(1 + δ)
(
N+(n− c1)−N−(n− c1)

)
.

16

However, when c2 = N−(n−c1), this last inequality is trivially true since its left side is non-negative
and the right side is negative. Combining these two estimates yields

c2 ≤ (1 + δ)
(
|u| (N+(n)−N−(n))
|`|+ |u|(1 + δ)

+
|`| (N+(n− c1)−N−(n− c1))

|u|+ |`|(1 + δ)

)
. (18)

By Lemma 4.3, we have c1 = d12j
′
1 for some d′1 ∈ L ∪ U and j′1 ≥ 1. By construction and

Lemma 4.5, we have
N+(n)−N−(n) ≤ 2j

′
1 and 1 ≤ j′1 ≤ j1. (19)

If c2 < minU , then we set j′2 = 0, otherwise, we may write c2 = d′22j
′
2 for d′2 ∈ U and j′2 ≥ 0. In

both cases, we have
N+(n− c1)−N−(n− c1) ≤ 2j

′
2 and j′2 ≤ j2. (20)

We assume that j2 ≥ j1 and set j = max{j′1, j′2}. From (19) and (20) it is clear that j ≤ j2.
From (18), (19) and (20), we obtain

2j2 ≤ c2 = d22j2 ≤
(
|u|(1 + δ)

|`|+ |u|(1 + δ)
2j
′
1−j +

|`|(1 + δ)
|u|+ |`|(1 + δ)

2j
′
2−j
)

2j22j−j2 . (21)

We claim that

1
2
· |u|(1 + δ)
|`|+ |u|(1 + δ)

+
|`|(1 + δ)

|u|+ |`|(1 + δ)
< 1, (22)

|u|(1 + δ)
|`|+ |u|(1 + δ)

+
1
2
· |`|(1 + δ)
|u|+ |`|(1 + δ)

< 1. (23)

Indeed, (22) is equivalent to
|`|
(
(1 + δ)2 − 2

)
< |u|(1 + δ).

If (1 + δ)2 ≤ 2, this is obviously true. Otherwise, by (5), we have |`| = |u| = 1 and are left with

(1 + δ)2 − 2 < 1 + δ,

which is true for δ < 1. The estimate (23) follows analogously.
If j′1 < j or j′2 < j, (21), (22) and (23) yield

2j2 < 2j22j−j2 ,

a contradiction. Thus we have j′1 = j′2 = j ≥ 1. In this case, we use the estimate

|u|(1 + δ)
|`|+ |u|(1 + δ)

+
|`|(1 + δ)

|u|+ |`|(1 + δ)
≤ |u|(1 + δ)
|u|+ |`|

+
|`|(1 + δ)
|u|+ |`|

= (1 + δ),

and (21) yields
2j2 ≤ d22j2 ≤ (1 + δ)2j22j−j2 ,

which implies j2 = j and therefore also j1 = j and c2 = 2j2 . By definition of d′2, we obtain 1 ∈ U .
This implies that U = {1}.

Since 2 ≤ 2j and c2 = 2j ∈ closestδ(n − c1), we conclude that n − c1 > 0 and therefore n > c1,
which implies that n < succ(c1) ≤ c1+2j . Thus n−c1 < 2j = c2, which implies that c2 = N+(n−c1)
and therefore N−(n− c1) = c2/2 and N+(n− c1)−N−(n− c1) = 2j−1. Plugging this in (18) and
using (23) yields a contradiction.

17

5 Online implementations

As shown in Example 3.4, it is, in general, impossible to decide which of N−(n) and N+(n) is
closest to n without knowing the full binary representation of n. To circumvent this problem, the
sets closestδ have been studied. The purpose of this section is to explicitly demonstrate how this
relaxation can be used to determine an element of closestδ by only reading a bounded number of
digits of the binary representation. This will result in a refinement of Algorithm 3 to an online
algorithm, which could also be implemented by a transducer automaton.

As the cases ` = 0 and ` < 0 differ substantially, we treat them in different subsections. Never-
theless, before forking the discussion, we note how N−(n) can be read from the digits of the binary
representation of n.

Let br . . . b1b0 be the binary representation of an integer n ≥ 0. Then for any i with r ≥ i ≥ 0,
we have

(br . . . bi)2 · 2i ≤ n < (br . . . bi)2 · 2i + 2i.

Suppose that (br . . . bi)2 ∈ U . Then Lemma 4.5 gives us

N−(n) = (br . . . bi)2 · 2i and N+(n) = ((br . . . bi)2 + 1) · 2i. (24)

5.1 ` = 0

The case ` = 0 can be handled quite easily. When ` = 0 we have no need of δ or the set closestδ(n).
The set closest(n) is always equal to {N−(n)}, so we simply compute N−(n) using (24).

Algorithm 4 Compute a minimal weight representation of n for ` = 0.
Input: br . . . b1b0, the binary representation of an integer n.
Output: ar . . . a1a0, a minimal weight representation of n with each ai ∈ D0,u.

1: U ← {a ∈ Z : u/2 < a ≤ u}
2: d← 0
3: for i = r downto 0 do
4: d← 2d+ bi
5: {We have m := n−

∑r
k=i+1 ak2k = d2i +

∑i−1
k=0 bk2k}

6: if d ∈ U then
7: {We have N−(m) = d2i}
8: ai ← d, d← 0
9: else

10: {We have 0 ≤ d ≤ (u− 1)/2}
11: ai ← 0
12: if d 6= 0 then
13: a0 ← d
14: return ar . . . a1a0

The invariants stated as comments in Algorithm 4 are easily verified by an inductive proof. From
these, the correctness of the algorithm follows.

5.2 ` < 0

Fix any δ < min
{

1
|`| ,

1
|u|
}

. Let br . . . b1b0 be the binary representation of an integer n ≥ 0 and
assume that (24) holds. We must now determine c ∈ {N−(n), N+(n)} such that c ∈ closestδ(n) by
reading no more than some finite number of digits to the right of bi (i.e., we must make a correct
decision using only a finite look-ahead).

18

By Lemma 4.6, there are numbers xL, xR with N−(n) < xL < xR < N+(n) such that

N−(n) ∈ closestδ(n) ⇐⇒ n ≤ xR and N+(n) ∈ closestδ(n) ⇐⇒ n ≥ xL.

As N+(n)−N−(n) = 2i, we have

xL = N−(n) + yL · 2i and xR = N−(n) + yR · 2i

where

yL :=
|u|

|u|+ |`| (1 + δ)
and yR :=

|u| (1 + δ)
|`|+ |u| (1 + δ)

.

Since N−(n) < xL < xR < N+(n), we have 0 < yL < yR < 1. We choose a number Y with
yL ≤ Y ≤ yR and use it to decide membership in closestδ(n), as explained below. We will sometimes
write xL(δ), xR(δ), yL(δ), and yR(δ) instead of xL, xR, yL, yR when we need to emphasize the
parameter δ involved.

Note that the parameter δ serves only to define the endpoints yL, yR of a subinterval of [0, 1] from
which we select Y . After Y is selected, δ may be discarded as it is not utilized in our implementation.
In fact, implementors are free to choose whatever Y ∈ [yL, yR] they wish; however, we will suggest
a method that has the advantage that it minimizes the length of the required look-ahead (i.e., no
matter what other values of δ or Y might be considered, they cannot result in a shorter length
look-ahead).

We set δ∗ = min
{

1
|`| ,

1
|u|
}

and

y∗L := yL(δ∗) =
|u|

|u|+ |`|(1 + δ∗)
, y∗R := yR(δ∗) =

|u| (1 + δ∗)
|`|+ |u| (1 + δ∗)

.

By definition, 0 < y∗L < y∗R < 1. Consider any number Y in the open interval (y∗L, y
∗
R) that has

a finite binary representation Y = (0.h−1h−2 . . . ht)2. There must exist some positive δ < δ∗ with
Y ∈ [yL(δ), yR(δ)]. We now prove the following result based on a look-ahead of |t| digits.

Lemma 5.1. Let n = d2i + (bi−1 . . . b1b0)2 be an integer partly given by its binary representation
and define bk = 0 for all k < 0. Suppose that d2i = N−(n) and (d+ 1)2i = N+(n). Then there is a
δ with 0 < δ < δ∗ such that

1. (bi−1bi−2 . . . bi+t)2 < (h−1h−2 . . . ht)2 implies N−(n) ∈ closestδ(n), and

2. (bi−1bi−2 . . . bi+t)2 ≥ (h−1h−2 . . . ht)2 implies N+(n) ∈ closestδ(n).

Proof. By the definition of Y , there exists some positive δ < δ∗ with Y ∈ [yL(δ), yR(δ)].
Consider the first case. We have

(bi−1bi−2 . . . bi+t)2 < (h−1h−2 . . . ht)2
=⇒ (0.bi−1bi−2 . . . bi+t)2 < (0.h−1h−2 . . . ht)2

=⇒ (0.bi−1bi−2 . . . b0)2 < Y ≤ yR(δ)

=⇒ (bi−1bi−2 . . . b0)2 < yR(δ) · 2i

=⇒ N−(n) + (bi−1bi−2 . . . b0)2 < N−(n) + yR(δ) · 2i.

From this last inequality, we conclude that n < xR(δ), and therefore N−(n) ∈ closestδ(n).
Consider the second case. Using similar reasoning, we see that

(bi−1bi−2 . . . bi+t)2 ≥ (h−1h−2 . . . ht)2
=⇒ N−(n) + (bi−1bi−2 . . . b0)2 ≥ N−(n) + yL(δ) · 2i.

Thus, n ≥ xL(δ), and therefore N+(n) ∈ closestδ(n).

19

To determine a Y with the required properties and minimal |t|, we can use the binary represen-
tations of

y∗L = (0.f−1f−2 . . .)2 and y∗R = (0.g−1g−2 . . .)2, (25)

where in case of non-uniqueness, we choose the representation ending with infinitely many 0 for y∗L
and the representation ending with infinitely many 1 for y∗R. We choose t∗ < 0 maximal such that

fk = gk for all k > t∗ and ft∗ = 0, gt∗ = 1. (26)

This is always possible since y∗L < y∗R. We take Y = (0.g−1g−2 . . . gt∗)2. Note that this choice indeed
yields y∗L < Y < y∗R. With this choice of Y , Lemma 5.1 can be translated to Algorithm 5.

Algorithm 5 Compute a minimal weight representation of n for ` < 0.
Input: br . . . b1b0, the binary representation of an integer n.
Output: ar+1 . . . a1a0, a minimal weight representation of n with each ai ∈ D`,u.

1: determine t∗ and g−1g−2 . . . gt∗ according to (26) and (25)
2: U ← {a ∈ Z : u/2 < a ≤ u}
3: L̂← {a ∈ Z : `− 1 ≤ a ≤ (`− 3)/2}
4: d← 0, ar+1 ← 0, b−1 ← 0, b−2 ← 0, . . . , bt∗ ← 0
5: for i = r downto 0 do
6: d← 2d+ bi
7: {We have m := n−

∑r+1
k=i+1 ak2k = d2i +

∑i−1
k=0 bk2k}

8: if d ∈ L̂ ∪ U then
9: {We have N−(m) = d2i, N+(m) = (d+ 1)2i}

10: if (bi−1 . . . bi+t∗)2 < (g−1g−2 . . . gt∗)2 then
11: {d2i ∈ closestδ(m) for an appropriate δ < δ∗}
12: ai ← d, d← 0
13: else
14: {(d+ 1)2i ∈ closestδ(m) for an appropriate δ < δ∗}
15: ai ← d+ 1, d← −1
16: if ai ∈ {`− 1, u+ 1} then
17: ai+1 ← ai/2, ai ← 0
18: else
19: ai ← 0
20: {We have (`− 1)/2 ≤ d ≤ (u− 1)/2}
21: if d 6= 0 then
22: a0 ← d
23: return ar+1 . . . a1a0

Theorem 3. Algorithm 5 terminates and is correct. In particular, it computes a minimal weight
representation of an integer from its binary representation from left to right with only a finite look-
ahead.

Proof. The invariants stated as comments in the algorithm are easily verified by an inductive proof
and using Lemma 5.1. Note that instead of L, the set L̂ = {` − 1, . . . , (` − 3)/2} has been chosen
so that the successor of d2i can be written without needing an extra case distinction (i.e., if d ∈ L̂,
then succ(d2i) = (d+ 1)2i with d+ 1 ∈ L). The invariants immediately imply the correctness of the
algorithm, its termination being immediate.

20

References

[1] R. Avanzi, A note on the signed sliding window integer recoding and its left-to-right analogue,
in “Selected Areas in Cryptography 2004”. Lecture Notes in Computer Science 3357 (2005),
pp. 130–143.

[2] P. Ganesan and G. Singh Manku, Optimal routing in chord, in “Proceedings of the fifteenth
annual ACM-SIAM symposium on Discrete algorithms”, 2004, pp. 176–185.

[3] P. J. Grabner, C. Heuberger, H. Prodinger, and J. Thuswaldner, Analysis of linear
combination algorithms in cryptography, ACM Transactions on Algorithms 1 (2005), pp. 123–
142.

[4] C. Heuberger, R. Katti, H. Prodinger, and X. Ruan, The alternating greedy expansion
and applications to left-to-right algorithms in cryptography, Theoretical Computer Science 341
(2005), pp. 55–72.

[5] C. Heuberger and J. Muir, Minimal weight and colexicographically minimal integer repre-
sentations. Journal of Mathematical Cryptology 1 (2007), pp. 297–328.

[6] M. Joye and S. Yen, Optimal left-to-right binary signed-digit recoding. IEEE Transactions on
Computers 49 (2000), pp. 740–748.

[7] M. Khabbazian, T. Gulliver and V. Bhargava, A new minimal average weight repre-
sentation for left-to-right point multiplication methods. IEEE Transactions on Computers 54
(2005), pp. 1454–1459.

[8] B. Möller, Fractional windows revisited: improved signed-digit representations for efficient
exponentiation, in “Information Security and Cryptology – ICISC 2004”, Lecture Notes in
Computer Science 3506 (2004), pp. 137–153.

[9] J. Muir, A simple left-to-right algorithm for minimal weight signed radix-r representations.
IEEE Transactions on Information Theory 53 (2007), pp. 1234–1241.

[10] J. Muir and D. Stinson, New minimal weight representations for left-to-right window meth-
ods, in “Cryptographers Track of the RSA Conference – CT-RSA 2005”, Lecture Notes in
Computer Science 3376 (2005), pp. 366–383.

[11] V. Müller, Fast multiplication on elliptic curves over small fields of characteristic two. Journal
of Cryptology 11 (1998), pp. 219–234.

[12] K. Okeya, K. Schmidt-Samoa, C. Spahn and T. Takagi, Signed binary representations
revisited, in “Advances in Cryptology – CRYPTO 2004”. Lecture Notes in Computer Science
3152 (2004) pp. 123–139.

[13] B. Phillips and N. Burgess, Minimal weight digit set conversions. IEEE Transactions on
Computers 53 (2004), pp. 666–677.

[14] G. Reitwiesner, Binary arithmetic, in Advances in Computers, Vol. 1, Academic Press (1960),
pp. 231–308.

[15] J. Shallit, A primer on balanced binary representations, unpublished manuscript, 1993. Avail-
able from http://www.cs.uwaterloo.ca/~shallit/Papers/bbr.pdf.

[16] J. Solinas, Efficient arithmetic on Koblitz curves. Designs, Codes and Cryptography 19 (2000),
pp. 195–249.

21

http://www.cs.uwaterloo.ca/~shallit/Papers/bbr.pdf

	Introduction
	Preliminaries
	Subadditivity of wt*
	The parity of and u

	Strategy and main results
	Proofs
	The set W1
	Proposition 3.1
	The set closest(n)
	Theorem 1
	Theorem 2

	Online implementations
	=0
	< 0

