
A Framework for the Sound Specification of Cryptographic Tasks

Juan A. Garay
AT&T Labs – Research

garay@research.att.com

Aggelos Kiayias
University of Connecticut

aggelos@cse.uconn.edu

Hong-Sheng Zhou
University of Connecticut

hszhou@cse.uconn.edu

March 12, 2010

Abstract

Nowadays it is widely accepted to formulate the security of a protocol carrying out a given task via the
“trusted-party paradigm,” where the protocol execution is compared with an ideal process where the outputs
are computed by a trusted party that sees all the inputs. A protocol is said to securely carry out a given task if
running the protocol with a realistic adversary amounts to “emulating” the ideal process with the appropriate
trusted party. In the Universal Composability (UC) framework the program run by the trusted party is called
an ideal functionality. While this simulation-based security formulation provides strong security guarantees, its
usefulness is contingent on the properties and correct specification of the ideal functionality, which, as demon-
strated in recent years by the coexistence of complex, multiple functionalities for the same task as well as by
their “unstable” nature, does not seem to be an easy task.

In this paper we address this problem, by introducing a general methodology for the sound specification of
ideal functionalities. First, we introduce the class of canonical ideal functionalities for a cryptographic task,
which unifies the syntactic specification of a large class of cryptographic tasks under the same basic template
functionality. Furthermore, this representation enables the isolation of the individual properties of a crypto-
graphic task as separate members of the corresponding class. By endowing the class of canonical functionalities
with an algebraic structure we are able to combine basic functionalities to a single final canonical functionality
for a given task. Effectively, this puts forth a bottom-up approach for the specification of ideal functionalities:
first one defines a set of basic constituent functionalities for the task at hand, and then combines them into a
single ideal functionality taking advantage of the algebraic structure.

In our framework, the constituent functionalities of a task can be derived either directly or, following a
translation strategy we introduce, from existing game-based definitions; such definitions have in many cases
captured desired individual properties of cryptographic tasks, albeit in less adversarial settings. Our translation
methodology entails a sequence of steps that systematically derive a corresponding canonical functionality given
a game-based definition, effectively “lifting” the game-based definition to its composition-safe version.

We showcase our methodology by applying it to a variety of basic cryptographic tasks, including com-
mitments, digital signatures, zero-knowledge proofs, and oblivious transfer. While in some cases our derived
canonical functionalities are equivalent to existing formulations, thus attesting to the validity of our approach, in
others they differ, enabling us to “debug” previous definitions and pinpoint their shortcomings.

Key words: Cryptographic protocols, security definitions, universal composability, lattices and partial orders.

1

Contents

1 Introduction 3

2 Preliminaries 5

3 Canonical Ideal Functionalities 6
3.1 The communication language of ideal functionalities . 6
3.2 The canonical functionality of a cryptographic task . 7
3.3 The algebraic structure of canonical functionality classes . 8

4 Deriving Canonical Ideal Functionalities 11
4.1 The general approach . 11
4.2 Ideal functionalities from game-based security definitions . 11

4.2.1 Ideal functionalities from consistency games . 12
4.2.2 Ideal functionalities from hiding games . 13

5 Applying the Methodology 14
5.1 Digital signatures . 14

5.1.1 Unforgeability . 14
5.1.2 Completeness . 15
5.1.3 Consistency . 16
5.1.4 The canonical ideal signature functionality . 18
5.1.5 Comparison to previous signature functionalities . 18

5.2 Oblivious transfer . 19
5.2.1 Correctness . 19
5.2.2 Sender and receiver privacy . 19
5.2.3 The canonical ideal oblivious transfer functionality . 20
5.2.4 Comparison to previous OT functionalities . 20

5.3 Commitments . 21
5.3.1 Correctness . 21
5.3.2 Binding . 21
5.3.3 Hiding . 22
5.3.4 The canonical ideal commitment functionality . 22

5.4 Zero-knowledge proofs . 23
5.4.1 Completeness . 23
5.4.2 Soundness . 24
5.4.3 Zero-knowledge . 24
5.4.4 The canonical ideal ZK functionality . 24

A Digital Signatures (cont’d) 26

B Proofs 27

2

1 Introduction

The Universal Composability (UC) framework proposed by Canetti [Can05], culminating a long sequence of
simulation-based security definitions (cf. [GMW87, GL90, MR91, Bea91, Can00]; see also [PW01, BPW04, PS04,
Küs06, CDPW07, LPV09] for alternative/extended frameworks), allows for arguing the security of cryptographic
protocols in arbitrary settings where executions can be concurrent and adversarially interleaved. The framework is
particularly attractive for the design of secure systems as it supports modularity, provides non-malleability across
sessions [DDN00], and preserves security under composition.

In the UC framework, security is argued by providing a proof that a protocol realizes an ideal functionality F
for the cryptographic task. While this simulation-based formulation provides compelling security guarantees, its
usefulness is contingent on the properties of the realized ideal functionality. In particular, any ideal functionality
is required to interact with an ideal-world adversary to whom it reveals aspects of its internal state. Thus, such
a program can be quite far from an idealization of a given cryptographic task. To make things worse, the appli-
cation of the framework to the analysis of many cryptographic schemes has shown that relatively complex ideal
functionalities are the norm. This has frequently led to successive revisions of ideal functionality programs, the
simultaneous coexistence of multiple different ideal functionalities for the same task, and the discovery of errors
in their specification, which in turn would lead to flawed security guarantees for the protocols realizing them. A
quick inspection of recent papers providing UC formulations of cryptographic tasks should suffice to support the
claim about their complexity; see the initial treatment of digital signatures [Can01, BH04, Can04] for an example
of need-to-revise and error-prone formulations of ideal functionalities.

In this paper we address this problem by introducing a general methodology for the sound specification of ideal
functionalities. Following our methodology each task gives rise to a class of ideal functionalities that are consistent
with the cryptographic task in terms of its actions. This representation unifies the syntactic specification of a large
class of cryptographic tasks under the same basic template functionality, and, furthermore, it enables the isolation of
the individual properties of a cryptographic task as separate members of the corresponding functionality class. This
facilitates a fine-grain specification of the basic constituent properties of the ideal version of a task. At the same
time, our methodology provides a way to combine constituent functionalities of a task to a single “supremum” ideal
functionality that encompasses all constituent properties. This amounts to a bottom-up approach for achieving the
original goal of expressing all required properties of a cryptographic task with a single functionality. This approach
can be contrasted with the common “top-down” approach that specifies an ideal functionality capturing all essential
properties at once, and then possibly relaxing it to bring it closer to realizability.

In addition, our methodology makes it easy to lift existing formulations of cryptographic properties for a task
in case those have already been investigated in the form of game-based definitions to their corresponding UC coun-
terparts. While such definitions are frequently easier to specify and understand as the appropriate formulations of
the natural properties of the underlying cryptographic task, they typically provide a less satisfying level of security
guarantees (as they may exclude composition, adaptive corruptions, non-malleability and other properties offered
by the UC framework). Examples include the existential unforgeability notion for digital signatures [GMR88],
IND-CPA security for public-key encryption, the hiding property of commitment schemes, and others.

Our results. We summarize our results in more detail:
1. We introduce the notion of the class of canonical functionalities for a cryptographic task T . Each member

of this class has a simple, concise syntax built around two pass-through communication flows: one from the
environment to the ideal-world adversary and another in the opposite direction. Every cryptographic task is
associated to its corresponding canonical functionality class. Next, we define an operation over this class
and show that the class has the algebraic structure of a semilattice which enables the joining of canonical
functionalities. This algebraic structure is a unique feature that characterizes our bottom-up functionality
specification approach. It imposes a natural ordering which enables the grading of canonical functionalities
according to the level of security they offer, as well as the combination of more basic functionalities into a sin-
gle final functionality for a task. Furthermore, the syntactic conciseness of our canonical functionalities gives
rise to a well-defined communication (formal) language between the functionality and the other entities in an

3

ideal-world simulation which is instrumental in our methodology. These results are presented in Section 3.
We remark that the canonical functionality template abstracts all the common elements that are shared

among ideal functionalities for many cryptographic tasks in the UC framework1. Once we have this formalism
in place, this enables us to give very simple and concise formal definitions of the ideal functionalities for vari-
ous different cryptographic tasks. When compared to the approach of defining functionalities of cryptographic
tasks individually, our approach “contains” the complexity of such definitions in the template canonical func-
tionality specification. This minimizes the effort of defining tasks in the UC framework without sacrificing
rigor.

We further remark that while our canonical template and the algebraic structure helps understand the
requirements for realizing a given functionality, it is not intended to be a tool for deciding the realizability of
cryptographic tasks. Specifically, we prove that it is possible to draw a realizability horizon at some level of the
semilattice of canonical functionalities that separates realizable functionalities from those that are impossible
to realize (in the plain model). We note that setup assumptions (such as the existence of a CRS) can be viewed
as modifiers to the level of the realizability horizon; specifically, as ways to increase the number of properties
that can be achieved by a certain cryptographic task.

2. We propose a new methodology for the sound writing of functionality programs. We follow a bottom-up
approach: we first define basic constituent functionalities for a cryptographic task and then we combine them
taking advantage of the algebraic structure of the canonical functionality class. Next, we turn to the derivation
of such constituent functionalities. These basic functionalities can be derived either directly or, following a
translation strategy we introduce, from existing game-based definitions. Our game-to-functionality translation
operates as follows. We divide games into two general types: consistency games and hiding games. The
former capture properties such as correctness, unforgeability and binding, while the latter capture properties
such as IND-CPA security and commitment hiding. Depending on the type of game, we present a sequence of
steps that transform a game-based definition (whenever it exists or it is easily defined) into its corresponding
canonical functionality. We demonstrate the soundness of this translation by showing that any scheme that
realizes the resulting ideal functionality also possesses the properties offered by the game-based definition
(Section 4).

3. We showcase our methodology by applying it to a variety of basic cryptographic tasks. We obtain ideal func-
tionalities for digital signatures, oblivious transfer, commitments and zero-knowledge proofs of knowledge. In
some cases (commitment, zero-knowledge) our derived canonical functionalities are equivalent to previously
proposed functionalities in the literature, something that attests to the soundness of the bottom up approach;
in others (signatures and oblivious transfer), our derived canonical functionalities differ from some previ-
ous definitions, allowing us to pinpoint their shortcomings. Specifically, in the case of signatures, we find that
although the digital signature functionality presented in [Can04] in fact corresponds to the systematic transfor-
mation (using our methodology) of the game-based formulation of the Goldwasser et al. notion [GMR88], the
attacker considered in [Can04] for the consistency game is more restricted than the one implied in [GMR88],
which would result in a more relaxed functionality than the one actually presented there. In the case of oblivi-
ous transfer, the “debugging” goes beyond the specification of particular tasks, as in this case our methodology
discovers a (fixable) structural inadequacy in the UC notion of “delayed output” in the ideal process. These
results are presented in Section 5.

Related work. The work of Datta et al. [DDM+06] also relates individual properties of cryptographic tasks to
sets of ideal functionalities. In their work each game-based property of a cryptographic task is mapped to a syntactic
expression in process calculus that the ideal functionality program needs to satisfy. Based on this, they were able
to generalize impossibility results on the realizability of specific cryptographic tasks such as bit commitment and
group signatures. In contrast, while the current work also abstracts the basic properties of a cryptographic task in
a syntactic fashion, it further provides a methodology to explicitly (and easily) write ideal functionality programs

1In this version we concentrate on deterministic ideal functionalities, which can formalize many cryptographic tasks such as digital
signatures, public-key encryption, oblivious transfer, zero-knowledge and others.

4

within the UC framework that provably satisfy such properties.
Although in a different context, the work of Backes et al. [BPW04] also considers the transformation of an

arbitrary consistency (called integrity in [BPW04]) property into a (low-level) ideal functionality that enjoys that
property. As a general methodology, distinguishing features of our approach include applicability to arbitrary se-
curity properties (i.e., also hiding, not just consistency properties), being able to obtain algorithm-independent
functionalities, and the ability to treat individual security properties separately, together with a mechanism to com-
bine the derived functionalities into one end result.

Differences with the previous version of this report [GKZ09]. As mentioned above, our specification approach
is based on a well-defined communication language between ideal functionalities and the other ideal-world entities,
with tasks’ consistency properties essentially being mapped to classes of strings in that language. In turn, these
strings (in fact, “bad” strings, which correspond to properties not being satisfied) are to be recognizable within com-
plex executions where symbols may be interleaved with other symbols. Our previous approach was not complete
in the sense of capturing all possible interleaving scenarios, something that we address here (See Section 4.2.1).

The semilattice structure of our canonical functionalities allows us to draw a “realizability horizon,” separating
functionalities that can be realized (in the plain model) from those that cannot. We illustrate such a semilattice
with the case of the commitment task, known to be unrealizable. The current version sheds additional light on this
issue, by containing protocols realizing the functionalities resulting from the pair-wise combination of the task’s
properties (hiding, binding, and correctness). (See Figure 3 and Section 5.3.)

Comparisons of our derived functionalities, in particular for signatures and oblivious transfer, with correspond-
ing previous functionalities has been expanded, as well as comparisons with additional related work, and proofs
have been added. Finally, the change of title emphasizes our intent of presenting and promoting this work as a
methodology for the (sound) specification of cryptographic tasks.

2 Preliminaries

We will lay out our results following the Universal Composability framework of Canetti [Can05]. Recall that in the
UC framework, the environment is creating processes which are entities maintaining state across actions. Further,
a cryptographic task T is associated with an ideal functionality which is a stateful entity. The functionality FT is a
“packaging” of the actions of the task T together with data fields that are persistent across action invocations. For
example, an ideal functionality for the commitment task offers two actions, commit and open, and has a persistent
data field that is generated by the commit action and used by the corresponding open action (the decommitment
information). Similarly, an ideal functionality for the digital signature task offers three actions, key-generation,
signature-generation, and signature-verification, and has a persistent data field that is updated by the signing action
and used by the verification action (this is the list of messages that have been signed).

Given that the environment is generating all actions for the ideal functionality of a task, not all sequences of
actions are sensible, as the environment is assumed adversarial. Actions that are deemed inconsistent with the
current state are ignored by the ideal functionality. This implicitly determines a notion of “well-formedness” of
action sequences that we will formalize in the next section. Furthermore, the ideal functionality may generate
output to a party depending on its internal state and the influence of the adversary; to formalize the interaction
between the functionality and the adversary with respect to output generation we will define in the next section two
functions that we call the “public output” and “secret output” of the functionality.

Our definitions of well-formedness and public/secret output for a functionality will also require basic string
operations. Given a sequence w consisting of elements from an alphabet Σ = {a1, . . . , ak}, we let wi denote the
i-th element in w. We can obtain a subsequence of w, call it w′, by erasing some of the elements in w without
disturbing the relative positions of the remaining elements. We denote this by w′ 4 w and we remark that ε 4 w
for any string w (here ε is the empty string). For a given set of strings S we define S4 = {w′ | ∃w ∈ S : w′ 4 w}.
For any w ∈ Σ∗ we write w′ � w when w′ is derived from w after substituting at least one symbol of w with the
special symbol “−”.

5

A monoid (A,+) is a semigroup with an identity element. Any monoid possesses a preorder relation denoted
by . such that a . b iff ∃c : a+ c = b.

3 Canonical Ideal Functionalities

In this section we provide an explicit syntax for a class of functionalities that idealize the cryptographic task T
— this is the class of canonical functionalities for the cryptographic task T . In this first formulation of canonical
functionalities we focus on a wide class of cryptographic tasks whose action outputs are not required to follow an
ideal probability distribution, i.e., the ideal functionality can be deterministic. Such tasks include digital signatures,
commitment, public-key encryption, secure message transmission, zero-knowledge proofs, secure deterministic
function evaluation, etc.

3.1 The communication language of ideal functionalities

We start by specifying the language of the communication between the ideal functionality FT of a task T and the
environment. The alphabet over which the environment communicates with the ideal functionality is parameterized
by the security parameter λ ∈ N and is a finite set of symbols of the form (ACTION,P, x); note that we will usually
omit reference to λ for simplicity. Here ACTION is a label that determines the action the environment instructs the
functionality to do (e.g., COMMIT, SIGN, etc.). P is a tuple that designates the identifiers of the entities and their
roles in the particular action, in particular which parties provided the input to the action and which parties should
receive output. To differentiate multiple invocations of the functionality by the same group of entities, P may
also include a session identifier sid . Finally, the value x is an encoding of the input to the action whose length is
polynomial in λ; note that whenever x = ε, we will drop x from the symbol notation for ease of reading.

In response to a symbol (ACTION,P, x), the ideal functionality may return a symbol (ACTIONRETURN,
P, y) to some party (see below in what circumstances). The set of all symbols of the form (ACTION,P, x) and
(ACTIONRETURN,P, y), constitutes the finite I/O alphabet of the ideal functionality, i.e., the communication al-
phabet between the functionality and the environment, and is denoted by ΣT .

As mentioned in Section 2, the actions of a cryptographic scheme make sense only in certain order; for this
reason not all strings over ΣT are valid as action sequences. To formalize this, we associate with the ideal function-
ality the predicate WFT called the well-formedness predicate. For any string w ∈ (ΣT)∗ and symbol a ∈ ΣT , the
well-formedness predicate WFT (w, a) decides whether the string wa is sensible with respect to FT .

We also mentioned before that the ideal functionality may produce output based on its internal state and the
current action symbol following the influence of the adversary. In order to enable an informed influence the adver-
sary needs to know some information about the internal state of the functionality. This will be formally captured
by a polynomial-time string mapping POT called the public output mapping, that given a string w ∈ (ΣT)∗ and
a symbol a ∈ ΣT that satisfies WFT (w, a), may return a value that is a part of the suggested output of the ideal
functionality on action symbol a given the history w. For example, in the case of a zero-knowledge task T = ZK,
upon receiving (PROVE, 〈P, V, sid〉, 〈x,m〉), POZK will output the pair 〈x, φ〉 where φ = 1 if and only if 〈x,m〉
belongs to the relation that parameterizes the zero-knowledge functionality. Depending on the task, the adversary
may not need to know the correct output to influence the functionality. To capture this, another string mapping SOT
called the secret output mapping is defined. For example, for the task T = OT of oblivious transfer, upon receiving
symbols (TRANSFER, 〈S,R, sid〉, 〈m0,m1〉) and (TRANSFER, 〈S,R, sid〉, i), the mapping SOOT will return mi

and the adversary will not need to know this value to influence the functionality to return it. On the other hand,
in some cases, the ideal functionality will not suggest any output, i.e., the SOT ,POT mappings will be empty, and
then the adversary will be entirely responsible for the choice of output to the parties. For example, in the digital sig-
nature task T = SIG, on action symbol (KEYGEN, 〈S, sid〉) the mappings POSIG and SOSIG will output the empty
string as there is no need for the functionality to suggest any distribution on the public key pk that is returned in the
symbol (KEYGENRETURN, 〈S, sid〉, pk) and is selected by the adversary.

This completes the description of the I/O language used in the communication between the environment and
the ideal functionality. FT also communicates with an ideal world entity, called the ideal world adversary S .

6

This interaction defines another communication language that is not bound by the alphabet of the real world.
We next define this language formally. For each input action symbol (ACTION,P, x), the ideal functionality
may want to notify the ideal world adversary. We capture this by introducing a set of “leaking-action” symbols
(LEAKACTION,P, x′) where x′ will have a functional dependency on x according to the program of the ideal
functionality. The public output of the ideal functionality (as defined by the POT mapping) will also be sent out
with the LEAKACTION symbol to the adversary.

Conversely, the ideal world adversary may also communicate with the ideal functionality; to capture this in-
teraction we introduce the “influence-action” symbols denoted by (INFLACTION,P, ·). Such symbols are used
by S to influence the output of a particular action that is currently under-way. Moreover, the adversary may in-
form the functionality that a certain party is corrupted; for this purpose symbols of the form (CORRUPT, ·) will be
used. Finally, the adversary can control the way the ideal functionality handles corrupted parties through the use of
(PATCH, ·) symbols which enable the adversary to specify the inputs of corrupted parties as well as their state with
respect to all currently ongoing actions. The exact syntax of (CORRUPT, ·), (PATCH, ·) symbols is explained below.
The extended communication alphabet of the ideal functionality is denoted by Σext

T and includes all I/O symbols of
ΣT as well as the corresponding INFLACTION, LEAKACTION,CORRUPT and PATCH symbols.

So far we introduced a syntax for the communication language between the ideal functionality and the other
entities of the ideal world. Next, we will describe a well-defined class of structured ideal functionalities for a
cryptographic task. We call this the class of canonical functionalities for the task.

3.2 The canonical functionality of a cryptographic task

The functionalities that we consider in this paper adhere to the following design choices: (i) the adversary is notified
of all input actions (by means of LEAKACTION symbols), (ii) the ideal functionality produces output only after
being instructed by the adversary through an INFLACTION symbol (this captures the “delayed output” property of
[Can05]), (iii) the ideal functionality is a deterministic TM, and (iv) outputs are always given sequentially2.

A canonical functionality is essentially defined by two functions: suppress() and validate(). As stated in (i)
above, given an action symbol (ACTION,P, x) a canonical ideal functionality will always notify the adversary
about this input. The function suppress() will determine what information about x the ideal world adversary will
learn. The output of suppress() will be passed into the LEAKACTION symbol. Specifically, the suppress() function
is defined over (ACTION,P, x) symbols and will output some x′ � x. We require that the suppress() function will
always substitute with “−” the same locations of x, independently of x.

Together with a LEAKACTION symbol the adversary will also be given the public output of the ideal functional-
ity. Furthermore, the canonical functionality will return output to some party whenever it receives an INFLACTION
symbol. In particular given (INFLACTION,P, y′) it will return (ACTIONRETURN,P, y) to the party in P that is
supposed to receive output, where y consists of y′ (which may be empty) concatenated with the secret output of the
functionality (which may also be empty).

Given that not all output influences are consistent with the intended security properties of the cryptographic task,
the validate() predicate is defined over strings of Σ∗ and determines when the canonical functionality will halt. We
note that suppress() is history independent while validate() is not. The intuition is that the suppress() function
abstracts what the adversary learns about the possibly private inputs of parties (i.e., it captures the hiding aspects
of the functionality) whereas the validate() predicate makes sure that the outputs produced by the functionality are
consistent with its history according to the intended consistency properties of the task.

In order to perform the validate() check a canonical functionality needs to be stateful. The state of the func-
tionality, denoted by history, is the sequence of all I/O symbols ordered chronologically as received from and sent
to the environment. We use historyPj

to denote all symbols associated to party Pj in history, i.e., the ACTION
symbols that were provided by Pj and ACTIONRETURN symbols that were returned to Pj .

2 These design choices exclude certain aspects of functionalities from the present formulation, such as fairness, guaranteed output
delivery and “object-oriented insulation” (i.e., the aspect of a functionality that prevents the adversary from knowing that an honest party
makes a certain action, and the ability of the functionality to sample random outputs from given distributions; see, e.g., the treatment of
digital signatures in [Can05, Pat05]). We stress that it is possible to integrate these aspects into our framework, which we defer to future
work.

7

The CORRUPT and PATCH symbols are used to handle the behavior of corrupted parties. When a party Pj
is corrupted, we allow the adversary to learn historyPj

3. Moreover, to handle adaptive corruptions, we allow the
adversary to rewrite the history of corrupted parties using the PATCH symbols in the following manner: a certain
symbol that was provided by a corrupted party can be modified provided this symbol has not contributed to the
view of any honest party. To facilitate this checking the canonical functionality will use an array called binding[·]
that for each symbol in history, records the set of honest parties whose view could have been affected by that
symbol. In particular each time an honest party Pj receives output from the ideal functionality all previous symbols
in history are marked with Pj in the binding[·] table (binding all symbols is suitable as an instance of our canonical
functionality that is supposed to capture a single session only).

We now have all the elements to present the exact formulation of the class of canonical functionalities FT .
Each member of the class is specified by a pair of functions suppress(), validate() as defined above. Specifi-
cally, the functionality responds to msg = (ACTION,P, x) symbols by issuing (LEAKACTION,P, x′) symbols
to the adversary where x′ = suppress(msg) and to msg = (INFLACTION,P, y) from the adversary by issuing
(ACTIONRETURN,P, y) symbols to the parties specified in P as long as validate(history||msg) = 1. Additionally
it responds to CORRUPT, PATCH symbols as one would expect: given a CORRUPT(Pj) symbol, it returns to the
adversary the history of party Pj and given a PATCH(history′) it modifies its internal state with respect to corrupted
parties following history′. A pictorial representation can be found in Figure 1, and a detailed description is given
in Figure 2.

Figure 1: The canonical functionality: communication flows with the environment and adversary.

A canonical functionality defines a language over the symbols that are used by the functionality to communicate
with the environment. We formalize this language as follows:

Definition 3.1. Given a canonical functionality FT , an environment Z and an adversary S, we define LFT ,Z,S =

{w|w ∈ (ΣT)∗ such that w is equal to history of FT in an execution with Z and S }.

Essentially the above language contains all possible execution histories. SinceZ,S are PPT there may be a different
execution history for each choice of the random tapes of these machines. We may quantify the language over all
possible environments Z and ideal world adversaries S in which case we will omit referencing them. Moreover,
we may consider only those strings in history of FT for which the environment Z returns 1; we will denote this
(“bad”) language as BFT ,Z,S .

3.3 The algebraic structure of canonical functionality classes

The suppress(), validate() parameterization effectively gives a range of canonical functionalities with security and
correctness properties of different strength for the same cryptographic task. We next endow this class with an

3We also defer the treatment of forward security for now.

8

Canonical Functionality F suppress,validate
T

Initially, history := ε and binding := ε.

Upon receiving msg = (ACTIONi,P, x) from some party Pj , if Pj is corrupted set x′ ← x else compute
x′ ← suppress(msg), set msg ′ ← (LEAKACTIONi,P, x

′). If WFT (historyPj
,msg) = 1 then do the

following:
Send 〈msg ′,POT (history,msg)〉 to the adversary S;
record msg in history and also if Pj is uncorrupted, set binding[|history|] = {Pj}.

Otherwise (WFT (historyPj
,msg) = 0) ignore msg .

Upon receiving msg = (INFLACTIONi,P, y
′) from the adversary S, infer Pj from P, and set msg ′ ←

(ACTIONRETURNi,P, y), where y ← y′||SOT (history,msg). If WFT (historyPj
,msg ′) = 1 do the follow-

ing:
If validate(history||msg ′) = 1, then append msg ′ to history and send msg ′ to party Pj ;
if Pj is honest, set binding[k]← binding[k] ∪ {Pj}, 1 ≤ k ≤ |history|.
Otherwise (validate(history||msg ′) = 0), if Pj is honest send an error symbol to Pj and halt.

Otherwise (WFT (historyPj
,msg ′) = 0 or Pj is corrupted) ignore msg .

Upon receiving msg = (CORRUPT, Pj) from the adversary S, mark Pj as corrupted, return historyPj
to S,

and set binding[k]← binding[k] \ {Pj}, 1 ≤ k ≤ |history|.
Upon receiving msg = (PATCH, history′) from the adversary S where history′ ∈ (ΣT)|history| do the follow-
ing: if binding[k] = ∅ set history[k]← history′[k], 1 ≤ k ≤ |history|.

Figure 2: Definition of the class of canonical functionalities FT for a task T quantifying over all admissible pairs
suppress(), validate().

algebraic structure that will be helpful in classifying and combining the various canonical functionalities for the
same cryptographic task.

We define a conjunction operation denoted by ∧ on the class of canonical functionalities for a task T . This
operation will enable us to combine canonical functionalities for a task T , while providing a concise way of
representing members of the class in terms of “simpler” members. Observe that for any two members of the
canonical functionality class that are parameterized by the functions suppress1 and suppress2, respectively, for any
symbol a = (ACTIONi,P, x), it holds that suppress1((ACTIONi,P, suppress2(a))) = suppress2((ACTIONi,P,
suppress1(a))). This fact will be handy in the definition below.

Definition 3.2 (Conjuncting Functionalities). Given F1 = F suppress1,validate1

T ,F2 = F suppress2,validate2

T ∈ FT

we define the conjunction F1 ∧ F2 of the two functionalities as the functionality F suppress,validate
T ∈ FT , where

(1) for any a = (ACTION,P, x) ∈ Σ, suppress(a) = suppress1(ACTIONi,P, suppress2(a)), and (2) validate() =
validate1() ∧ validate2(), i.e., the logical conjunction of the two validate predicates of F1,F2.

We next show that the canonical functionality class for a task T has a monoid structure with identity element a
canonical functionality that we call the dummy functionality for T defined as follows:

Definition 3.3 (Dummy Functionality). We call the canonical functionality Fdum
T ∈ FT dummy if (1) for all x

and any ACTION, suppress((ACTION,P, x)) = x, and (2) validate() = 1 always.

Observe that the dummy functionality does not capture any of the intended correctness or security properties of
the cryptographic task T . This means that any protocol π UC-realizing Fdum

T will merely syntactically match the
purpose of T but will lack any useful property.

Proposition 3.4. (FT ,∧) is a commutative monoid with the dummy functionality Fdum
T as the identity element.

Any commutative monoid has an associated preordering relation denoted by .; in the case of (FT ,∧) we say
that F1 . F2 if and only if there exists F3 such that F2 = F1 ∧F3. The intuitive interpretation of F1 . F2 is that
F2 is at least as strict as F1 from a security point of view.

9

FT together with ∧ forms a bounded (join-)semilattice, i.e., every set of elements in FT has a least upper
bound. Note that (1) we use ∧ in place of the standard ∨ in lattice theory as it is more consistent as an operator
in our setting where lattice elements would capture security properties (and going higher in the lattice means that
security increases), and (2) given that (FT ,∧) as a commutative monoid lacks the antisymmetric property, the
semilattice would be in fact over the quotient FT / � where � is the equivalence relation defined as F1 � F2 iff
F1 . F2 and F2 . F1.

We next define the top canonical functionality F top
T which is the supremum of all canonical functionalities in

FT representing the most stringent idealization of a cryptographic task. The top functionality suppresses all inputs
(but allows the adversary to see the length of them), while it restricts all output influences of the adversary.

Definition 3.5 (Top Functionality). We call the canonical functionality F top
T ∈ FT top if for any ACTION, (1) for

all x, suppress((ACTION,P, x)) = (−)|x|, and (2) for all w, a, validate(wa) = 0.

While the top functionality offers security it does so at the expense of providing no response to the parties that
employ it, i.e., it never produces any output. Thus it is the dual from a security point of view to the dummy
functionality and due to its unresponsiveness it is equally meaningless as an idealization of a cryptographic task.
Useful functionalities will lie somewhere in between these two extremes.

This completes the description of the algebraic structure of the class of canonical functionalities. The lattice of
canonical functionalities for a task can be represented by a directed graph where the F top

T is placed at the top level
and Fdum

T at the bottom. An example of such a lattice for the commitment task is given in Figure 3.

Figure 3: The lattice of canonical functionalities for commitment showing relations between the constituent func-
tionalities. Functionalities below the “realizability horizon” can be realized in the plain model (Remark 5.28).

Given the lattice of canonical functionalities we will show that we can identify a level of the lattice as the
“realizability horizon.” As in [CLOS02, page 15] our notion of realizability refers only to non-trivial protocols, i.e.,
protocols that always generate output in the absense of adversarial interference (since a trivial protocol can realize
any functionality including the F top

T for any T). We will show that all canonical functionalities at and below this
level are realizable (in the plain model) whereas all canonical functionalities above the level are unrealizable. As
seen in Figure 2 we employ an error symbol for the ideal functionality to signal an inconsistency to the environment;
non-trivial protocols never output this reserved error symbol (but may use other symbols for error-reporting).

Theorem 3.6. For every task T , there is a (non-trivial) protocol π that UC-realizes the dummy functionality Fdum
T .

The top functionality F top
T can only be UC-realized by a trivial protocol.

Next, we show that UC-realizing any point F of FT would imply that any lattice point dominated by F is also
UC-realizable.

Theorem 3.7. If π UC-realizes F , then π UC-realizes any F ′ . F .

10

As it will become apparent, the usefulness of the lattice is in the fact that it is natural to identify individual
desired properties of the task, map them to canonical functionalities in the lattice and then use the conjunction
operation to derive the (local) supremum of these lattice points that will yield the final functionality for the task. In
this way, an idealization of a cryptographic task can be solidly “defended” by presenting its constituent canonical
functionalities.

4 Deriving Canonical Ideal Functionalities

4.1 The general approach

In this section we outline a methodology for deriving canonical ideal functionalities. Given a cryptographic task T ,
the first step is to identify a set of consistency (including correctness) and privacy properties:

Consistency properties are expressed in terms of languages over the I/O alphabet ΣT . In particular one needs
to identify sets of strings over ΣT that violate a certain consistency aspect of the underlying task. Provided that
the set of strings identified is polynomial-time decidable a corresponding canonical functionality is derived by
setting the validate() predicate to reject all strings that violate the consistency property.
Privacy properties are expressed in terms of suppression of input values that accompany action symbols. In
particular, if a certain action a = (ACTION,P, x) is supposed to maintain the privacy of a portion x′ of the
input x, we define suppress(a) to be equal to x with all locations corresponding to x′ substituted by “−”.

Now, using the above guidelines one can define a set of canonical functionalities each one corresponding to different
security or consistency aspects of a cryptographic task. Then, given the canonical functionalities F1, . . . ,Fk so
defined, one can derive the canonical ideal functionality of the cryptographic task by combining the functionalities
as F = F1 ∧ . . . ∧ Fk. In such case we call F1, . . . ,Fk the constituent canonical functionalities of F (note that
typically there will be a unique set of natural constituent functionalities although the functionality may have many
different sets of possible constituents). It follows that Fi . F and, based on Theorem 3.7, we have that any
protocol that realizes F also realizes Fi for all i = 1, . . . , k, thus the canonical ideal functionality F preserves all
consistency and privacy properties identified individually in F1, . . . ,Fk.

As an example of applying this general approach for deriving the ideal functionality of a cryptographic task the
reader is referred to Section 5.2 where we apply this strategy to the case of oblivious transfer.

Depending on the cryptographic task, it may not always be easy to properly identify the required set of con-
sistency and privacy properties that will yield the constituent canonical functionalities of the task. Fortunately, for
many of them substantial effort has been spent in identifying individual security properties formalized in terms of
“security games.” Examples include the unforgeability game of digital signatures [GMR88] and IND-CPA game
of public key encryption [GM84].

Next we show how one can leverage on existing game-based definitions of a cryptographic task to derive
constituent canonical ideal functionalities in a systematic way. Importantly, our formal transformation approach
from games to functionalities provably maintains the underlying game-based security notions. This translation
methodology can be applied whenever game-based definitions have been identified. In fact, it is even possible to
specify games for desired security properties “on demand” and apply the translation methodology to them as well.

4.2 Ideal functionalities from game-based security definitions

Individual correctness and privacy definitions are frequently specified by a game between the attacker and a “chal-
lenger” who controls different aspects of the cryptographic task. The attacker either tries to produce an undesired
sequence of actions or attempts to deduce a hidden bit selected by the challenger. In the former case we call
the interaction a consistency game while in the latter we call the interaction a hiding game. Examples of proper-
ties modeled with consistency games include completeness properties, the unforgeability of digital signatures, the
binding property of commitments, the soundness property of zero-knowledge protocols etc., while hiding games
are used to model the IND-CPA property of public-key encryption and the hiding property of commitment schemes
among others. In order to detail our transformation we first provide a formal description of game based definitions.

11

A game-based definition G for a cryptographic task T involves two PPT interactive Turing machines, the
challenger C and the attacker A. The challenger uses the actions of the cryptographic task as oracles. When the
interaction terminates, a Turing machine called the judge4 J reads the transcript of the interaction as well as the
internal state of the challenger and decides which party won the game. We denote the success probability of the
attacker when playing the game G by SuccGA ; it equals the probability of the event that the judge decides that the
attacker wins the game.

Consistency games are restricted to be deterministic programs (note that the task actions invoked by the game
may be probabilistic). We say that a cryptographic scheme that implements a task T satisfies the property defined
by a game G if for all PPT attackers A it holds that SuccGA is a negligible function in the security parameter λ.

In a hiding game, the attacker focuses on a particular action of the cryptographic task. At some point of the
interaction with the challenger, the attacker provides two input strings x0, x1 for a certain action where x0 =
〈xL0 , xR0 〉, x1 = 〈xL1 , xR1 〉 such that either the left or the right parts of the strings are required to be different while
the other parts are required to be equal (for example in the witness hiding game for zero-knowledge, xL0 = xL1
will be the statement while xR0 , x

R
1 will be two distinct witnesses). In response, the challenger flips a coin b and

executes the action that is attacked on input xb. The interaction provides the output of the action to the attacker
who is supposed to provide a guess b∗ for b. The judge decides that the attacker wins whenever b = b∗. We say that
a cryptographic scheme that implements a task T satisfies the property defined by the hiding game G if for all PPT
attackers A it holds that the function |SuccGA − 1

2 | is a negligible function in λ.

4.2.1 Ideal functionalities from consistency games

Suppose that G is a consistency game for a cryptographic task T that involves a challenger C, an attacker A and
a judge J. Let Σ be any cryptographic scheme that implements the task T . Recall that our goal is to obtain a
canonical functionality FG ∈ FT such that if a protocol πΣ UC-realizes any F & FG then the cryptographic
scheme Σ satisfies the property defined by the game G. Our methodology proceeds in three steps: we first define
an environment (and also the corresponding ideal world) based on the game G. Second, based on this environment,
we define a language that corresponds to the event where the attacker wins the game. Third, provided that the
language is decidable, we obtain a canonical functionality by incorporating the language decider as part of the
functionality’s validate() predicate. We describe the three steps in more detail below.
Step 1: Defining the environment and simulator. We first present the transformation from the game G for a task
T implemented by a scheme Σ to the corresponding environment ZA

G and the ideal world adversary SΣ
G . We say

that the transformation is sound, provided that the judge J decides that the attacker wins the game if and only if
ZA
G returns 1 in an execution with Fdum

T and SΣ
G . More specifically, it holds that Pr[IDEALFdum

T ,ZA
G,S

Σ
G

(1λ) = 1] =

SuccGA .
First, we describe how we derive the environment ZA

G based on the game G. ZA
G will simulate both the attacker

A and the challenger C; whenever C makes an oracle call to some action of the task, the environment ZA
G issues

the corresponding ACTION symbol. The program of C will be executed by ZA
G. For example, in the unforge-

ability game for digital signatures, an oracle call to the key generation operation will result in issuing the symbol
(KEYGEN, 〈S, sid〉) to a party called S, where S is a random name from the namespace for some random sid ;
subsequent calls by C to the signing oracle for a message m, will result in the symbols (SIGN, 〈S, sid〉,m) directed
to the same party S. Continuing with the description of ZA

G, if the attacker A needs to play the role of some party
of the cryptographic task T , ZA

G will need to spawn a party and corrupt it and then simulate it according to the
operation of A.

Second, we define an ideal world adversary SΣ
G that will be paired with ZA

G. SΣ
G will interact with ZA

G to
corrupt parties if the environment requests it and it will also provide influence action symbols whenever a leak
action symbol occurs following the program of the scheme Σ.

4Typically, the functionality of the judge is incorporated as part of the challenger program; we find it more convenient to specify it as a
separate function.

12

Step 2: Defining the “bad language.” This language will correspond to the event that the attacker wins the game.
It is denoted by BT,G ⊆

⋃
A,Σ LFdum

T ,ZA
G,S

Σ
G

and contains those strings for which ZA
G returns 1. It is easy to see

that given the way the transformation of the game G to the environment ZA
G was performed, those strings exactly

correspond to the event when the attacker A wins the game G against the challenger C.
Now, while this language captures the event that the attacker wins the game, it is not sufficient for describing

the winning event within more complex executions because the bad sequence of symbols may be interleaved with
other actions. This calls for the specification of an extended bad language that would contain all possible bad
symbol sequences. It is tempting to define such language as the set of all strings that have a substring in BT,G.
However, while this works in many cases it would fail for any property where it is possible for good strings to be
superstrings of bad ones (for example, in the case of signatures, a single valid VERIFY symbol is a bad string while
if the same symbol is preceded by a corresponding SIGN symbol is a good string). To address this monotonicity
issue a point of reference in the form of a (restricted) good language would be helpful.

It turns out that this role can be played successfully by the “attack-fail” language, denoted by
AT,G ⊆

⋃
A,Σ LFdum

T ,ZA
G,S

Σ
G

, that we define as the set of all strings that the environment ZA
G returns 0; in other

words, these are strings that structurally resemble the strings in the bad language but where the judge predicate
proclaims the challenger as the winner. Armed with these notions, we now define the extended bad language to be
those stringsw ofLFdum

T
that contain as a subsequence a stringw′ in languageBT,G wherew′ has no supersequence

in language AT,G (which in turn is a subsequence of w). Formally, we write this language as

Bext
T,G =

{
w | ∃w′ 4 w s.t. w′ ∈ BT,G ∧ w′ 6∈ A

4
T,G ∩ {w}

4
}
.

Step 3: Defining the ideal functionality. In order to define the class of canonical functionalities that capture the
game G we need first to show that the extended bad language Bext

T,G defined in step 2 is polynomial-time decidable.
Then, given the decider D for the language, we define the canonical functionality FG that captures the game G
by requiring that validate(w) = 0 if and only if w ∈ Bext

T,G; in other words, the function validate() simulates the
decider D, and whenever the decider accepts the functionality halts.

We now show that the translation detailed above is sound.

Theorem 4.1. Assume that a scheme Σ implements a task T and G is a consistency game for T . It holds that if πΣ

UC-realizes some F & FG then Σ satisfies the property defined by G.

Remark 4.2. While investigating the opposite direction of the above theorem for arbitrary consistency games
(namely, if a given scheme satisfies a property, then the corresponding protocol UC-realizes the derived func-
tionality) is beyond the scope of this paper, we note that for the consistency games studied in this paper (i.e.,
unforgeability, consistency, and completeness games for digital signatures), we show that the opposite direction
also holds.

4.2.2 Ideal functionalities from hiding games

Let G be a hiding game for a cryptographic task T . We show how to define a canonical functionality for the task
that implies the hiding property. In this case, our methodology proceeds in two steps: we first define an environment
and an ideal world simulator based on the game G. Second, based on the environment’s operation we define the
canonical functionality by appropriately modifying the suppress function.
Step 1: Defining the environment and simulator. As in the case of consistency games, we define an environment
ZA
G and simulator SΣ

G based on the operation of the challenger C, the attacker A, the judge J and the scheme Σ. The
transformation is identical to the one in step 1 in Section 4.2.1.
Step 2: Defining the canonical functionality. During any execution of the environment ZA

G with SΣ
G , it holds that

the environment issues an ACTION symbol with input xb where b is a random bit selected by ZA
G and x0, x1 were

provided by the attacker A (which is simulated by ZA
G). Assuming that x0 = 〈xL0 , xR0 〉 and x1 = 〈xL1 , xR1 〉 and the

gameG contains the test xL0 = xL1 and xR0 6= xR1 , we define the suppress function for symbol a = (ACTION,P, xb)

where b ∈ {0, 1} by suppress(a) = 〈xLb , (−)|x
R
b |〉 (recall that suppress(a) � xb).

13

Theorem 4.3. Suppose that a cryptographic scheme Σ implements a cryptographic task T and G is a hiding game
for T . Then it holds that if πΣ UC-realizes some F & FG, then Σ satisfies the hiding property defined by game G.

5 Applying the Methodology

We now apply our methodology to a variety of cryptographic tasks, including digital signatures, oblivious transfer,
commitments and ZK proofs of knowledge. In some cases the canonical functionalities we derive are equivalent to
the ones that have been identified before, where in others their differences point to subtle definitional problems in
their previous formulations (despite successive revisions).

5.1 Digital signatures

The basic requirements for digital signatures, completeness, consistency and unforgeability, were first formulated
in [GMR88]5. Each property is specified by a consistency game. In this section we show how to translate these
traditional notions into the corresponding canonical functionalities, from which we obtain FSIG, and conclude with
a comparison to previous signature functionalities.

Following Figure 2, any canonical signature functionality FSIG is defined for two types of roles, the signer S
and the verifier V , with three actions, KEYGEN, SIGN,VERIFY. We denote the canonical signature functionality
class as FSIG.

5.1.1 Unforgeability

Definition 5.1 (Unforgeability [GMR88]). A signature scheme Σ(SIG) = 〈gen, sign, verify〉 is unforgeable if
for all PPT attackers A,

Pr

[
(vk, sk)← gen(1λ); (m,σ)← Asign(vk,sk,·)(vk);φ← verify(vk,m, σ)

: φ = 1 and A never submitted m to the sign(vk, sk, ·) oracle

]
≤ negl(λ)

The above definition can be formulated as a consistency game Guf for the task SIG as follows: the challenger
C uses algorithms gen(), sign(), verify() as oracles, and interacts with the attacker A: the challenger C queries
the gen() oracle and obtains 〈sk, vk〉, and then sends such vk to A; each time upon receiving m from the attacker
A, the challenger C queries the sign() oracle with m and obtains σ, and then returns σ to A; upon receiving from
A a pair 〈m′, σ′〉, C queries the verify() oracle with 〈m′, σ′, vk〉 and obtains the verification result. The judge J
decides that A wins the game if m′ has never been queried before and the verification result is 1.
Step 1. Based on the game Guf described above, we can construct an environment ZA

uf and the corresponding
ideal world adversary SΣ

uf as follows. In order to simulate the game, the environment first picks S and V from
the namespace at random as well as a random sid . The environment sends (KEYGEN, 〈S, sid〉) to party S and
receives (KEYGENRETURN, 〈S, sid〉, vk); then the environment simulates A on input vk ; when A queries m to
its signing oracle, the environment sends (SIGN, 〈S, sid〉,m) to party S and returns the output of S to A. Once A
outputs a pair 〈m,σ〉, the environment sends (VERIFYRETURN, 〈V, sid〉, 〈m,σ, vk〉) to some party V and receives
the verification result φ. In the case that m has never been queried and φ = 1, the environment terminates with 1;
otherwise with 0.

We next define the ideal-world adversary SΣ
uf . Each time SΣ

uf receives (LEAKKEYGEN, 〈S, sid〉) from the ideal
functionality, it runs (vk, sk) ← gen(1λ) and sends (INFLKEYGEN, 〈S, sid〉, vk) to the functionality. When
SΣ

uf receives (LEAKSIGN, 〈S, sid〉,m) from the ideal functionality, it runs σ ← sign(vk, sk,m), and sends
(INFLSIGN, 〈S, sid〉, σ) to the functionality. When SΣ

uf receives (LEAKVERIFY, 〈V, sid〉, 〈m,σ, vk〉) from the
ideal functionality, it runs φ← verify(vk, sk,m, σ), and sends (INFLVERIFY, 〈V, sid〉, φ) to the functionality.

5Consistency is implied in the GMR specification, as pointed out by Canetti [Can04].

14

Step 2. For any adversary A and signature scheme Σ we define LFdum
SIG ,ZA

uf ,S
Σ
uf

(cf. Section 3.2) with ZA
uf ,SΣ

uf as

defined in step 1. We next define the set of strings BSIG,uf as the subset of
⋃

A,Σ LFdum
SIG ,ZA

uf ,S
Σ
uf

that contains exactly
those strings for which the environment returns 1.

Lemma 5.2. (1) BSIG,uf =



w

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

w = (KEYGEN, 〈S, sid〉)
(KEYGENRETURN, 〈S, sid〉, vk)
(SIGN, 〈S, sid〉,m1)
(SIGNRETURN, 〈S, sid〉, σ1)
· · ·
(SIGN, 〈S, sid〉,m`)
(SIGNRETURN, 〈S, sid〉, σ`)
(VERIFY, 〈V, sid〉, 〈m′, σ′, vk〉)
(VERIFYRETURN, 〈V, sid〉, φ)

such that
φ = 1 ∧m′ 6∈ {m1, . . . ,m`}



,

and (2) BSIG,uf is decidable in polynomial time.

Following the methodology in Section 4.2, by changing the judge decision condition into its negation, i.e.,
φ = 0 ∨ m′ ∈ {m1, . . . ,m`}, we can define the “attack-fail” language ASIG,uf (in fact in this way we define a
strict subset of the attack-fail language but this is sufficient for our purposes; for the complete specification of this
language refer to Appendix A). We further define the extended bad languageBext

SIG,uf as indicated there, and observe
that Bext

SIG,uf is also decidable in polynomial time.

Step 3. Next we define the class of ideal functionalities that corresponds to the unforgeability property.

Definition 5.3 (Canonical Functionality Fuf). The functionality Fuf ∈ FSIG equals F suppress,validate
SIG , where (1)

suppress() satisfies that for all x and any ACTION ∈ {KEYGEN, SIGN,VERIFY}, suppress((ACTION,P, x)) = x,
(i.e., the same as in Fdum

SIG), and (2) validate(w) = 0 if and only if w ∈ Bext
SIG,uf .

Based on Theorem 4.1, we have the following corollary:

Corollary 5.4. If πΣ(SIG) realizes some F & Fuf , then Σ(SIG) is unforgeable.

Further, we show that for unforgeability the other direction also holds – i.e., the transformation is tight.

Theorem 5.5. If Σ(SIG) is unforgeable, then πΣ(SIG) realizes Fuf .

5.1.2 Completeness

Informally, completeness means that the verification value of an honestly generated message-signature pair should
be true except with negligible probability.

Definition 5.6 (Completeness). A signature scheme Σ(SIG) = 〈gen, sign, verify〉 is complete if for all PPT
attackers A,

Pr
[
m← A(1λ); (vk, sk)← gen(1λ);σ ← sign(vk, sk,m);φ← verify(vk,m, σ) : φ = 0

]
≤ negl(λ).

The above definition can be modeled as a consistency game, Gcomp as follows. The challenger C uses algorithms
gen(), sign(), verify() as oracles, and interacts with completeness attacker A: after receiving m produced by
A, the challenger C queries the gen() oracle and obtains sk, vk; then C queries the sign() oracle with sk,m and
obtains σ; later C queries the verify() oracle with 〈m,σ, vk〉 to obtains the verification result. The judge J decides
that A wins the game if the verification result is 0.
Step 1. Based on the game Gcomp described above, we can construct an environment ZA

comp and the corresponding
ideal world adversary SΣ

comp. The environment ZA
comp here is similar to the environment ZA

uf ; the environment first

15

picks S and V from the namespace at random as well as a random sid . The environment simulates A with input 1λ

and obtains m; it then sends (KEYGEN, 〈S, sid〉) to party S and receives (KEYGENRETURN, 〈S, sid〉, vk) from
the party S; later the environment sends (SIGN, 〈S, sid〉,m) to party S and receives σ; the environment inputs
(VERIFYRETURN, 〈V, sid〉, 〈m,σ, vk〉) to V and receives the verification result. If the verification result φ = 0,
the environment terminates with 1; otherwise with 0. The adversary SΣ

comp is defined similarly to the adversary SΣ
uf

in the previous section.
Step 2. For any completeness attacker A and scheme Σ, the environment ZA

comp, the adversary SΣ
comp, and the

dummy canonical signature functionality together give rise to the language LFdum
SIG ,ZA

comp,SΣ
comp

. We consider the
subset of strings BSIG,comp of the union of all the languages quantified over all possible completeness attackers
A and schemes Σ that contains exactly those strings for which the environment returns 1. Formally, BSIG,comp ⊆⋃

A,Σ LFdum
SIG ,ZA

comp,SΣ
comp

.
We next prove the following characterization of this language as well as determine its time complexity:

Lemma 5.7. (1) BSIG,comp =


w

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

w = (KEYGEN, 〈S, sid〉)
(KEYGENRETURN, 〈S, sid〉, vk)
(SIGN, 〈S, sid〉,m)
(SIGNRETURN, 〈S, sid〉, σ)
(VERIFY, 〈V, sid〉, 〈m,σ, vk〉)
(VERIFYRETURN, 〈V, sid〉, φ)

such that φ = 0


,

(2) BSIG,comp is decidable in polynomial time.

Following the methodology in Section 4.2, by changing the judge decision condition φ = 0 inBSIG,comp into its
negation, i.e., φ = 1, we can similarly define the attack-fail languageASIG,comp. Note thatBSIG,comp andA4

SIG,comp

are disjoint. We observe that Bext
SIG,comp is also decidable in polynomial time.

Step 3. We now define the class of ideal functionalities that corresponds to the completeness property.

Definition 5.8 (Canonical Functionality Fcomp). The functionality Fcomp ∈ FSIG equals F suppress,validate
SIG , where

(1) suppress() is the same as in Fdum
SIG , and (2) validate(w) = 0 if and only if w ∈ Bext

SIG,comp.

The following corollary follows from Theorem 4.1.

Corollary 5.9. If πΣ(SIG) realizes some F & Fcomp, then Σ(SIG) is complete.

The other direction also holds in this case:

Theorem 5.10. If Σ(SIG) is complete, then πΣ(SIG) realizes Fcomp.

5.1.3 Consistency

Informally, consistency of a signature scheme means that verifying the same message-signature pair twice will
return two different verification values with only negligible probability. More formally:

Definition 5.11 (Consistency). A signature scheme Σ(SIG) = 〈gen, sign, verify〉 is consistent if for all PPT
attackers A,

Pr
[

(vk,m, σ)← A(1λ);φ1 ← verify(vk,m, σ);φ2 ← verify(vk,m, σ) : φ1 6= φ2

]
≤ negl(λ).

The above definition can also be modeled by a consistency game, Gcons, as follows. The challenger C uses algo-
rithms gen(), sign(), verify() as oracles, and interacts with the consistency attacker A: C simulates A on input
1λ to obtain 〈vk,m, σ〉 and then calls the the verify() oracle with 〈m,σ, vk〉 twice and obtains the verification
results φ1 and φ2 respectively. The judge J decides that A wins the game if the two verification results are different,
i.e., φ1 6= φ2.

16

Step 1. Based on the game Gcons described above, we can construct an environment ZA
cons and the correspond-

ing ideal world adversary SΣ
cons as follows. The environment first picks S and two V ’s from the namespace at

random as well as a random sid . Then the environment simulates A to obtain 〈vk,m, σ〉 and gives the sym-
bols (VERIFY, 〈V1, sid〉, 〈m,σ, vk〉) and (VERIFY, 〈V2, sid〉, 〈m,σ, vk〉) to obtain the symbols (VERIFYRETURN,
〈V1, sid〉, φ1) and (VERIFYRETURN, 〈V2, sid〉, φ2). In the case that φ1 6= φ2, the environment terminates with 1
otherwise with 0. SΣ

cons is defined similarly to SΣ
uf .

Step 2. For any consistency attacker A and scheme Σ, the environment ZA
cons, the ideal adversary SΣ

cons, and the
dummy canonical signature functionality together give rise to the language LFdum

SIG ,ZA
cons,SΣ

cons
. We consider the

subset of strings BSIG,cons of the union of all the languages quantified over all possible consistency attackers A
and schemes Σ that contains exactly those strings for which the environment returns 1. Formally, BSIG,cons ⊆⋃

A,Σ LFdum
SIG ,ZA

cons,SΣ
cons

. We next prove the following characterization of this language as well as determine its time
complexity:

Lemma 5.12. (1) BSIG,cons =

w
∣∣∣∣∣∣∣∣∣∣
w = (VERIFY, 〈V1, sid〉, 〈m,σ, vk〉)

(VERIFYRETURN, 〈V1, sid〉, φ1)
(VERIFY, 〈V2, sid〉, 〈m,σ, vk〉)
(VERIFYRETURN, 〈V2, sid〉, φ2)

such that φ1 6= φ2

,

and (2) BSIG,cons is decidable in polynomial time.

Following the methodology in Section 4.2, by changing the judge decision condition φ1 6= φ2 in BSIG,cons

into its negation, i.e., φ1 = φ2, we can similarly define the attack-fail language ASIG,cons. Note that BSIG,cons and
A4
SIG,cons are disjoint. We observe that Bext

SIG,cons is also decidable in polynomial time.
Step 3. We proceed next to define the canonical functionality that corresponds to the consistency property.

Definition 5.13 (Canonical Functionality Fcons). The functionality Fcons ∈ FSIG equals F suppress,validate
SIG , where

(1) suppress() is the same as in Fdum
SIG , and (2) validate(w) = 0 if and only if w ∈ Bext

SIG,cons.

The following corollary also follows from Theorem 4.1:

Corollary 5.14. If πΣ(SIG) realizes some F & Fcons, then Σ(SIG) is consistent.

In the case of consistency, the other direction also holds:

Theorem 5.15. If Σ(SIG) is consistent, then πΣ(SIG) realizes Fcons.

Remark 5.16. We first recall the definition of consistency as given in [Can04]. We call it “weak consistency” as it
restricts the adversary by requiring honest key generation.

Definition 5.17. A scheme Σ(SIG) = 〈gen, sign, verify〉 is weakly consistent if for all PPT attackers A,

Pr

[
(vk, sk)← gen(1λ); (m,σ)← Asign(vk,sk,·)(vk);
φ1 ← verify(vk,m, σ);φ2 ← verify(vk,m, σ) : φ1 6= φ2

]
≤ negl(λ).

We now construct a counterexample Σ′ which satisfies completeness, unforgeability and weak consistency as de-
fined above, but in which the corresponding πΣ′ does not realize FSIG in [Can04] (or the FSIG that is produced from
our translation methodology).

Let Σ be a scheme that satisfies completeness, unforgeability and weak consistency. We modify such Σ into
Σ′: (1) prepend a bit b to the verification key; if b = 0 then the verification procedure remains the same; if
b = 1 then the verification procedure accepts its input message-signature pair with probability 1/2; (2) the key
generation algorithm returns a verification key starting with bit 0. Notice that Σ′ still satisfies the three properties,
completeness, unforgeability and weak consistency, since the honest key generation will never return a verification
key starting with bit 1. According to Theorem 2 in [Can04], the corresponding πΣ′ would realize FSIG. This,
however, does not hold. When the signer is corrupted at the beginning of the execution, a verification key vk′ with
starting bit 1 can be chosen and then two verification requests with the same input 〈m,σ, vk′〉 will return different
verification results with non-negligible probability — 1/2 in this case.

17

5.1.4 The canonical ideal signature functionality

The (canonical) ideal signature functionality FSIG = Fuf ∧ Fcomp ∧ Fcons and is shown in Figure 4. In light of
Theorem 3.7 we obtain the following:

Corollary 5.18. If πΣ(SIG) realizes some F & Fuf ∧ Fcomp ∧ Fcons, then the signature scheme Σ(SIG) satisfies
the game-based properties of unforgeability, completeness, and consistency.

Canonical Signature Functionality FSIG

Actions: KEYGEN, SIGN,VERIFY

Well-formedness (WFSIG): Any (SIGN, 〈S, sid〉, ·) symbol must be preceded by a (KEYGEN, 〈S, sid〉) symbol.
Public and Secret Outputs (POSIG, SOSIG): For all w, a, POSIG(w, a) = ε, and SOSIG(w, a) = ε.
Suppress and Validate: (1) suppress() satisfies that for all x and any ACTION ∈ {KEYGEN, SIGN,VERIFY},
suppress((ACTION,P, x)) = x, (2) validate(w) = 1 iff w 6∈ Bext

SIG,uf and w 6∈ Bext
SIG,comp and w 6∈ Bext

SIG,cons.

Figure 4: Ideal functionality for digital signature based on the canonical functionality template.

5.1.5 Comparison to previous signature functionalities

Canonical functionality FSIG from Figure 4 can be shown to be UC-equivalent to the digital signature ideal func-
tionality given in [Can04]. This can be done by showing that the dummy protocol in the FSIG-hybrid world realizes
unconditionally FCan

SIG as well as the dummy protocol in the FCan
SIG -hybrid world realizes unconditionally our FSIG.

The proof requires the construction of two ideal world simulators, one that interacts with the ideal functionality
FSIG and simulates the view of any environment operating in the FCan

SIG hybrid world as well as a simulator that
interacts with the functionality FCan

SIG and simulates the view of any environment that operates in the FSIG hybrid
world. The proof is similar to the proof of Proposition 5.22, where we demonstrate that our canonical oblivious
transfer ideal functionality is UC equivalent to that of [CLOS02]); we refer to that section for more details.

However, our canonical functionality capturing the consistency property as described above is derived from a
game-based definition for consistency that is different from the one in [Can04]. The reason is that the consistency
formulation given there falls short of capturing the intended properties for the digital signature task in the UC
setting. We elaborate on this issue below.

Recall that a first rendering ofFSIG [Can01] failed to capture the consistency property, as pointed out in [BH04].
The latter work, however, did not capture consistency fully either as was in turn pointed out in [Can04], which
performed a thorough investigation between the correspondence of the game-based security formulation of the
Goldwasser et al. [GMR88] notion for digital signatures and the FSIG ideal functionality. Indeed, a correspondence
theorem was shown in [Can04] establishing that any digital signature scheme secure in the GMR sense would result
in a UC-secure signature protocol.

However, as we now show with the help of our methodology, this correspondence does not stand. In fact, when
one applies our translation methodology to the three game-based definitions that are put forth in [Can04] to capture
the [GMR88] notion of security, the resulting functionality is not the FSIG functionality as defined above. This is
due to the fact that the consistency game as defined in [Can04] (cf. page 12, Definition 1) assumes an honest key
generation. More specifically, if our consistency game translation is applied to that game, it results in the following
bad language (see Lemma 5.12):

B′SIG,cons =


w

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

w = (KEYGEN, 〈S, sid〉)
(KEYGENRETURN, 〈S, sid〉, vk)
(VERIFY, 〈V1, sid〉, 〈m,σ, vk〉)
(VERIFYRETURN, 〈V1, sid〉, φ1)
(VERIFY, 〈V2, sid〉, 〈m,σ, vk〉)
(VERIFYRETURN, 〈V2, sid〉, φ2)

such that φ1 6= φ2


18

It follows that the corresponding canonical functionality F ′cons would have a validate predicate that checks for
verification inconsistency only in the case that a KEYGEN symbol has been recorded in the history of the function-
ality. This is too restrictive as it precludes corrupted signers that may never register a KEYGEN symbol with the
functionality (and in fact this is exactly the issue pointed out in [Can04] regarding the previous work of [BH04]).

It is easy to see that the resulting (weaker) canonical functionality F ′SIG = Fuf ∧ Fcomp ∧ F ′cons resides at
a lower point compared to FSIG in the FSIG lattice. This is due to the fact that Bext

SIG,cons ⊇ B′ext
SIG,cons where

B′ext
SIG,cons is the extended bad language that corresponds to the bad language B′SIG,cons. Furthermore, as shown

in Remark 5.16, it is possible to design a digital signature scheme Σ′ so that its corresponding protocol πΣ′ UC-
realizes F ′SIG but fails to realize FSIG. This scheme passes the game-based formulation in [Can04] and, based on
our methodology, it will UC-realize F ′SIG; nonetheless, FSIG will not be realized by this digital signature. As a
result, the appropriate formulation of the consistency game (from which we derive the language BSIG,cons) is the
one presented in Definition 5.11, and this provides the exact game-based correspondence to the FSIG canonical
functionality.

Finally, as mentioned in Section 3, the current formulation of our framework does not attempt to capture the
“object-oriented insulation” of functionalities. Thus, in the case of signatures, the adversary is notified of the event
of a signature generation and is capable of influencing the way the signatures are represented as strings. While
this formulation is more general, see the treatment of signatures and discussions in [Can05, Pat05] about applica-
tions where the locally run, “object” approach where the functionality does more than providing an authenticated
message delivery service might be desired.

5.2 Oblivious transfer

We consider the 1-out-of-2 version of oblivious transfer [Rab81, EGL85, Cré87]. The FOT functionality is defined
for two roles, the sender S and the receiver R. The actions, well-formedness, and public and secret outputs of FOT
are given in Figure 5. We next describe the three constituent canonical functionalities of oblivious transfer that
correspond to its three basic properties: correctness, sender privacy and receiver privacy.

5.2.1 Correctness

In order to obtain the bad language for correctness, we observe that for every two messages (m0,m1) from the
sender and every selection bit i from the receiver, the value the receiver obtains should be equal to mi. Based on
this, we identify the set of strings that are inconsistent with the correctness property as:

BOT,corr =

w
∣∣∣∣∣∣∣∣∣∣
w = abc or bac where
a = (TRANSFER, 〈〈S,R, sid〉, S〉, 〈m0,m1〉),
b = (TRANSFER, 〈〈S,R, sid〉, R〉, i),
c = (TRANSFERRETURN, 〈〈S,R, sid〉, R〉,m′),
such that m′ 6= mi


Following the methodology in Section 4.2, by changing the judge decision condition in BOT,corr into its nega-

tion, i.e., m′ = mi, we can similarly define the “attack-fail” language AOT,corr; note that BOT,corr and A4
OT,corr are

disjoint. We observe that Bext
OT,corr is also decidable in polynomial time.

Definition 5.19 (Canonical Functionality Fcorr). The functionality Fcorr ∈ FOT equals F suppress,validate
OT , where

(1) suppress() satisfies that for all x, suppress((TRANSFER,P, x)) = x, (i.e., the same as in Fdum
OT), and (2)

validate(w) = 0 if and only if w ∈ Bext
OT,corr.

5.2.2 Sender and receiver privacy

In order to capture sender privacy, we modify suppress() to withhold the sender’s input from the adversary. This
results in the following canonical functionality:

19

Definition 5.20 (Canonical Functionality Fssec). The functionality Fssec ∈ FOT equals F suppress,validate
OT , where (1)

validate() = 1 always, and (2) suppress(a) = (−)|m0|+|m1|, for a = (TRANSFER, 〈〈S,R, sid〉, S〉, 〈m0,m1〉).

Similarly, we capture receiver privacy by suppressing the receiver’s input:

Definition 5.21 (Canonical Functionality Frsec). The functionality Frsec ∈ FOT equals F suppress,validate
OT , where (1)

validate() = 1 always, and (2) suppress(a) = (−)|i|, for a = (TRANSFER, 〈〈S,R, sid〉, R〉, i).

5.2.3 The canonical ideal oblivious transfer functionality

Based on the above, we obtain the canonical functionality FOT = Fssec ∧ Frsec ∧ Fcorr; see Figure 5.

Canonical Oblivious Transfer Functionality FOT

Action: TRANSFER

Well-formedness (WFOT): Any TRANSFERRETURN symbol should be preceded by a TRANSFER symbol.
Public and Secret Outputs (POOT, SOOT): For all w, a, POOT(w, a) = ε.
For all w, SOOT(w, (INFLTRANSFER, 〈〈S,R, sid〉, R〉)) = mi if w contains (TRANSFER, 〈〈S,R, sid〉, S〉, 〈m0,m1〉)
and (TRANSFER, 〈〈S,R, sid〉, R〉, i) and ε otherwise.
Suppress and Validate: (1) suppress() satisfies that for all x suppress((TRANSFER,P, x)) = ε, and (2) validate(w) =
1 if w 6∈ Bext

OT,corr.

Figure 5: Ideal functionality for oblivious transfer based on the canonical functionality template.

5.2.4 Comparison to previous OT functionalities

Here we show thatFOT from Figure 5 is UC-equivalent to the oblivious transfer functionality as defined in [CLOS02],
but different from the corresponding functionality given in [Can05]. The latter highlights a larger issue in the way
ideal functionalities interact with the adversary in the UC framework. We first show the equivalence, followed by
the treatment of the larger issue.

Call the ideal OT functionality from [CLOS02] FCLOS
OT (refer to page 23, Figure 1 in [CLOS02]; we state the

result more formally:

Proposition 5.22. Functionality FOT = Fcorr ∧ Fssec ∧ Frsec is UC-equivalent to FCLOS
OT .

We now elaborate on the differences of our OT functionality with the one given in [Can05]. In [Can05], the
notion of “delayed output” was introduced as a mechanism to enable the ideal-world adversary to delay the output
of a certain action any amount time necessary to make the view of the environment indistinguishable to the real
world’s. This is important, as failing to provide such capability to the adversary may enable an impossibility result
due to the existence of environments that can tell the real world from the ideal by simply observing the failure of
the simulator to “synchronize” with the protocol flow in the real world.

Now, while the delayed output artifact successfully serves functionalities such as zero-knowledge and com-
mitments (that turn out to be identical to our corresponding canonical versions), that is not the case for oblivious
transfer. This is due to the fact that the basic action in oblivious transfer requires the input contribution from both
the sender and the receiver prior to producing output. This asks for a more finely grained interaction between the
ideal functionality and the ideal-world adversary. In our setting this is captured by the LEAKTRANSFER symbols
that are sent to the adversary whenever a TRANSFER symbol is submitted by either the sender or the receiver.

In contrast, in the OT functionality of [Can05] such notifications are handled with two delayed outputs, some-
thing that forces the ideal functionality to wait when the receiver’s input is submitted in case the sender has not
submitted his input yet (cf. [Can05], Figure 25, page 108). Effectively, this creates a problem for OT protocols
where the receiver is supposed to send the first message: in such case the environment can distinguish the real

20

world from the ideal world by activating the receiver without activating the sender and observing the network com-
munication. This would not affect our canonical formulation of the OT functionality that notifies the ideal world
adversary using the LEAKTRANSFER symbols whenever either party provides input.

Finally, some formulations of OT include an additional output produced by the functionality notifying the
sender that the receiver has submitted its input [Wul07], which can be used to assist in the synchronization of
the two parties. Such synchronization is not an essential aspect of oblivious transfer and as such it has not been
included in previous formulations (see, e.g., [CLOS02]), nor it is here. We view this issue (relevant not only to OT
but to any functionality that allows actions with inputs from more than one party) as a higher-layer consideration
and not an aspect that is intended to be captured by an ideal formulation of the task.

5.3 Commitments

Following Figure 2, any canonical functionality for commitment, FCOM, is defined for two types of roles, the com-
mitter C and the verifier V , with two actions, COMMIT and OPEN. The WFCOM predicate and POCOM, SOCOM map-
pings for FCOM are defined in Figure 6. Based on these functions the dummy functionality Fdum

COM is defined (cf.
Definition 3.3).

5.3.1 Correctness

In order to obtain the bad language for correctness, we observe that any committed value that is opened to should be
accepted. Based on this, we identify the set of strings that are inconsistent with the correctness property as follows:

BCOM,corr =

w
∣∣∣∣∣∣∣∣∣∣
w = (COMMIT, 〈C, V, sid〉,m)

(COMMITRETURN, 〈C, V, sid〉)
(OPEN, 〈C, V, sid〉)
(OPENRETURN, 〈C, V, sid〉, 〈m,φ〉)

such that φ = 0


Following the methodology in Section 4.2, by changing the judge decision condition φ = 0 in BCOM,corr into its

negation, i.e., φ = 1, we can similarly define the attack-fail language ACOM,corr. Note that BCOM,corr and A4
COM,corr

are disjoint. We observe that Bext
COM,corr is also decidable in polynomial time.

The class of ideal functionalities that corresponds to the correctness property can now be defined as follows:

Definition 5.23 (Canonical Functionality Fcorr). The functionality Fcorr ∈ FCOM equals F suppress,validate
COM , where (1)

suppress() is the same as in Fdum
COM , and (2) validate(w) = 0 if and only if w ∈ Bext

COM,corr.

5.3.2 Binding

The binding property basically states that any committed value that is opened to a different one should not be
accepted. Based on this, we identify the set of strings that are inconsistent with the binding property as follows:

BCOM,bind =

w
∣∣∣∣∣∣∣∣∣∣
w = (COMMIT, 〈C, V, sid〉,m)

(COMMITRETURN, 〈C, V, sid〉)
(OPEN, 〈C, V, sid〉)
(OPENRETURN, 〈C, V, sid〉, 〈m′, φ〉)

such that m 6= m′ ∧ φ = 1


Following the methodology in Section 4.2, by changing the judge decision condition m 6= m′ ∧ φ = 1 in

BCOM,bind into its negation, i.e., m = m′ ∨ φ = 0, we can similarly define the attack-fail language ACOM,bind. Note
that BCOM,bind and A4

COM,bind are disjoint. We observe that Bext
COM,bind is also decidable in polynomial time.

We now define the class of ideal functionalities that corresponds to the binding property.

Definition 5.24 (Canonical Functionality Fbind). The functionality Fbind ∈ FCOM equals F suppress,validate
COM where

(1) suppress() is the same as in Fdum
COM , and (2) validate(w) = 0 if and only if w ∈ Bext

COM,bind.

21

5.3.3 Hiding

For this property there is a natural hiding game. We apply our translation methodology to the game to obtain the
corresponding ideal functionality class.

Definition 5.25 (Hiding). A commitment scheme Σ(COM) = 〈commit, verify〉 is hiding if for all PPT attackers
A = (A1,A2), it holds that

Pr

[
(m0,m1, st)← A1(1λ); b

r← {0, 1};
(c, ξ)← commit(mb); b

∗ ← A2(st , c) : b∗ = b ∧m0 6= m1

]
≤ 1

2
+ negl(λ)

The above definition can be modeled as a hiding game Ghide for the task COM as follows. The challenger C is
allowed to use algorithms commit(), verify() as oracles, and interacts with the attacker A = (A1,A2). First A1

produces a tuple 〈m0,m1〉, where m0 6= m1. In response, the challenger randomly chooses a bit b and queries the
commit() oracle with mb to obtain 〈c, ξ〉. Then, C sends c to A2 to obtain b∗ as a guess of b. The judge J decides
that A wins the game if b∗ = b. We next proceed to apply the methodology in Section 4.2.2.
Step 1. We construct an environment ZA

hide and the corresponding ideal world adversary SΣ
hide based on the game

Ghide described above. In order to simulate the game, the environment first picks C, V from the namespace at
random as well as a random sid . Then it requests the corruption of the party V and simulates A1 on input 1λ.
Once A1 produces 〈m0,m1〉, ZA

hide flips a random coin b, gives to C the symbol (COMMIT, 〈C, V, sid〉,mb) and
waits for the transmission from C to V that contains the commitment c. Then, ZA

hide simulates A2 on input c to
obtain b∗ and terminates with 1 if and only if b = b∗ and m0 6= m1. The ideal world adversary SΣ

hide, whenever it
receives (LEAKCOMMIT, 〈C, V, sid〉,m), executes commit() on m and communicates the output of the protocol
to the environment (similarly, it simulates the real world in any other respect).
Step 2. Based on the environment ZA

hide we define the functionality class that corresponds to the hiding game:

Definition 5.26 (Canonical Functionality Fhide). The functionality Fhide ∈ FCOM equals F suppress,validate
COM , where

(1) validate() = 1 always, and (2) suppress(a) = (−)|m| for a = (COMMIT, 〈C, V, sid〉,m).

Based on Theorem 4.3, we have the following corollary:

Corollary 5.27. If πΣ(COM) realizes some F & Fhide, then Σ(COM) satisfies hiding.

We note that in this case the converse of the above corollary does not hold as hiding is not sufficiently strong to
imply the UC-realization of Fhide.

5.3.4 The canonical ideal commitment functionality

The (canonical) ideal commitment functionality FCOM = Fcorr ∧Fbind ∧Fhide, is instantiated in Figure 6, based on
the canonical functionality template.

Canonical Commitment Functionality FCOM

Actions: COMMIT and OPEN

Well-formedness (WFCOM): Symbols COMMITRETURN should be preceded by COMMIT, OPENRETURN preceded by
OPEN, OPEN by COMMIT, and OPENRETURN by COMMITRETURN.
Public and Secret Outputs (POCOM, SOCOM): For all w, a, SOCOM(w, a) = ε.
For all w, we have two cases (1) POCOM(w, (COMMIT, 〈C, V, sid〉,m)) = ε, and (2) POCOM(w, (OPEN, 〈C, V, sid〉)) =
m if w contains (COMMIT, 〈C, V, sid〉,m).
Suppress and Validate: (1) suppress() satisfies that for all m suppress((COMMIT,P,m)) = ε, and
suppress((OPEN,P)) = ε, and (2) validate(w) = 1 if w 6∈ Bext

COM,corr and w 6∈ Bext
COM,bind.

Figure 6: Ideal functionality for commitment based on the canonical functionality template.

22

Remark 5.28. FCOM can be shown to be equivalent (in the sense of UC-emulation) to the commitment functionality
as it appears in [Can05], in a way similar to the one used to show the equivalence between our canonical OT
functionality and the one in [CLOS02]. As such, FCOM is unrealizable in the plain model. Interestingly, the pairwise
conjunction of its constituent functionalities is in fact realizable (refer to Figure 3 for the realizability “horizon”).
The three simple protocols are given below; it is easy to see they realize the corresponding conjunctions.

Fcorr ∧ Fbind: Consider the following protocol:

? Upon receiving (COMMIT,P,m) from the environment Z , party C sends m as the commitment value to
party V (through the real world adversary A), and whenever party V receives commitment value m from
party C (through A), it returns (COMMITRETURN,P) to Z;

? upon receiving (OPEN,P) from Z , party C sends m as the opening to party V (through A), and whenever
party V receives opening value m from party C (through A), it returns (OPENRETURN,P, 〈m, 1〉) to Z .

Fcorr ∧ Fhide: Consider the following protocol:

? Upon receiving (COMMIT,P,m) from Z , party C sends a committing notice as the commitment value
to party V (through A), and whenever party V receives such notice from party C (through A), it returns
(COMMITRETURN,P) to Z;

? upon receiving (OPEN,P) from Z , party C sends m as the opening to party V (through A), and whenever
party V receives opening value m from party C (through A), it returns (OPENRETURN,P, 〈m, 1〉) to Z .

Fbind∧Fhide: The protocol is very similar to the protocol above except for the following difference: here party
V rejects the opening, while in the protocol above, it accepts the opening:

? Upon receiving (COMMIT,P,m) from Z , party C sends a committing notice as the commitment value
to party V (through A), and whenever party V receives such notice from party C (through A), it returns
(COMMITRETURN,P) to Z;

? upon receiving (OPEN,P) from Z , party C sends m as the opening to party V (through A), and whenever
party V receives opening value m from party C (through A), it returns (OPENRETURN,P, 〈m, 0〉) to Z .

5.4 Zero-knowledge proofs

Following Figure 2, the canonical functionality for zero-knowledge [GMR89, BG92], FRZK, is defined for two types
of roles, the prover P and the verifier V , with a single action PROVE. We denote the zero-knowledge proof
functionality class as FR

ZK. (Sometimes we omit the reference to R in the notation for simplicity.) The WFZK
predicate for FRZK, requires that a PROVE symbol should precede PROVERETURN. The public output POZK returns
〈x, φ〉 whenever (PROVE, 〈P, V, sid〉, 〈x,w〉) is in the history, where φ = 1 if and only if 〈x,m〉 belongs to
the relation that parameterizes the zero-knowledge task, and φ = 0 otherwise. Based on the above the dummy
functionality Fdum

ZK is defined (cf. Definition 3.3).

5.4.1 Completeness

In order to obtain the bad language for completeness, we observe that any (x,m) ∈ R should be accepted; the set
of strings that are inconsistent with the completeness property are as follows:

BZK,comp =

w
∣∣∣∣∣∣
w = (PROVE, 〈P, V, sid〉, 〈x,m〉)

(PROVERETURN, 〈P, V, sid〉, 〈x, φ〉)
such that (x,m) ∈ R ∧ φ = 0


Following the methodology in Section 4.2, by changing the judge decision condition (x,m) ∈ R ∧ φ = 0 in

BZK,comp into its negation, i.e., (x,m) 6∈ R ∨ φ = 1, we can similarly define the attack-fail language AZK,comp.
Note that BZK,comp and A4

ZK,comp are disjoint. We observe that Bext
ZK,comp is also decidable in polynomial time.

The class of ideal functionalities that corresponds to the completeness property is as follows:

23

Definition 5.29 (Canonical Functionality FRcomp). The functionality FRcomp ∈ FR
ZK equals F suppress,validate

ZK where
(1) suppress() is same as in Fdum

ZK , and (2) validate(w) = 0 if and only if w ∈ Bext
ZK,comp.

5.4.2 Soundness

In order to obtain the bad language for soundness, we observe that any (x,m) 6∈ R should not be accepted;
therefore, the set of strings that are inconsistent with the completeness property are:

BZK,sound =

w
∣∣∣∣∣∣
w = (PROVE, 〈P, V, sid〉, 〈x,m〉)

(PROVERETURN, 〈P, V, sid〉, 〈x, φ〉)
such that (x,m) 6∈ R ∧ φ = 1


Following the methodology in Section 4.2, by changing the judge decision condition (x,m) 6∈ R ∧ φ = 1 in

BZK,sound into its negation, i.e., (x,m) ∈ R ∨ φ = 0, we can similarly define the attack-fail language AZK,sound.
Note that BZK,sound and A4

ZK,sound are disjoint. We observe that Bext
ZK,sound is also decidable in polynomial time.

We next define the class of ideal functionalities for soundness:

Definition 5.30 (Canonical Functionality FRsound). The functionality FRsound ∈ FR
ZK equals F suppress,validate

ZK where
(1) suppress() is same as in Fdum

ZK , and (2) validate(w) = 0 if and only if w ∈ Bext
ZK,sound.

We note that the soundness notion thatFRsound captures is the “strong” one, as stipulated by the knowledge extraction
property.

5.4.3 Zero-knowledge

To capture the zero-knowledge property, we suppress the input from the prover; based on the template in Figure 2,
we obtain the following functionality.

Definition 5.31 (Canonical Functionality FRzk). The functionality FRzk ∈ FR
ZK equals F suppress,validate

ZK , where (1)
validate() = 1 always, and (2) suppress(a) = (−)|x|+|m| for a = (PROVE, 〈P, V, sid〉, 〈x,m〉).

5.4.4 The canonical ideal ZK functionality

The ZK functionality equals FRcomp∧FRsound∧FRzk, which turns out to be equivalent (in the sense of UC-emulation)
to the zero-knowledge functionality as it appears in [Can05].

Canonical Zero-Knowledge Functionality FR
ZK

Action: PROVE

Well-formedness (WFZK): Symbols PROVERETURN should be preceded by PROVE.

Public and Secret Outputs (POZK, SOZK): For all w, a, SOZK(w, a) = ε.
For all w, POZK(w, (PROVE, 〈P, V, sid〉, 〈x,m〉)) = 〈x, φ〉, where φ = 1 iff (x,m) ∈ R and φ = 0 otherwise.

Suppress and Validate: (1) suppress() satisfies that for all statement-witness pair (x,m), suppress((PROVE,
P, 〈x,m〉)) = ε, and (2) validate(w) = 1 if w 6∈ Bext

ZK,comp and w 6∈ Bext
ZK,sound.

Figure 7: Ideal functionality for zero-knowledge, based on the canonical functionality template.

Acknowledgements. The authors thank Manoj Prabhakaran for helpful comments.

24

References

[Bea91] Donald Beaver. Secure multiparty protocols and zero-knowledge proof systems tolerating a faulty
minority. J. Cryptology, 4(2):75–122, 1991.

[BG92] Mihir Bellare and Oded Goldreich. On defining proofs of knowledge. In Ernest F. Brickell, editor,
CRYPTO, volume 740 of LNCS, pages 390–420. Springer, 1992.

[BH04] Michael Backes and Dennis Hofheinz. How to break and repair a universally composable signature
functionality. In Kan Zhang and Yuliang Zheng, editors, ISC, volume 3225 of LNCS, pages 61–72.
Springer, 2004.

[BPW04] Michael Backes, Birgit Pfitzmann, and Michael Waidner. Low-level ideal signatures and general
integrity idealization. In ISC, pages 39–51, 2004.

[Can00] Ran Canetti. Security and composition of multiparty cryptographic protocols. J. Cryptology,
13(1):143–202, 2000.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In FOCS,
pages 136–145, 2001.

[Can04] Ran Canetti. Universally composable signature, certification, and authentication. In CSFW, pages
219–235, 2004. Full version at http://eprint.iacr.org/2003/239/.

[Can05] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In
Cryptology ePrint Archive, Report 2000/067, December 2005. Latest version at http://eprint.
iacr.org/2000/067/.

[CDPW07] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally composable security with
global setup. In Salil P. Vadhan, editor, TCC, volume 4392 of LNCS, pages 61–85. Springer, 2007.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable two-party
and multi-party secure computation. In STOC, pages 494–503. ACM, 2002. Full version at http:
//eprint.iacr.org/2002/140/.

[Cré87] Claude Crépeau. Equivalence between two flavours of oblivious transfers. In Carl Pomerance, editor,
CRYPTO, volume 293 of LNCS, pages 350–354. Springer, 1987.

[DDM+06] Anupam Datta, Ante Derek, John C. Mitchell, Ajith Ramanathan, and Andre Scedrov. Games and
the impossibility of realizable ideal functionality. In Shai Halevi and Tal Rabin, editors, TCC, volume
3876 of LNCS, pages 360–379. Springer, 2006.

[DDN00] Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable cryptography. SIAM J. Comput.,
30(2):391–437, 2000.

[EGL85] Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol for signing contracts.
Commun. ACM, 28(6):637–647, 1985.

[GKZ09] Juan Garay, Aggelos Kiayias, and Hong-Sheng Zhou. Sound and fine-grain specification of crypto-
graphic tasks. Cryptology ePrint Archive, Report 2008/132, February 15, 2009.

[GL90] Shafi Goldwasser and Leonid A. Levin. Fair computation of general functions in presence of immoral
majority. In Alfred Menezes and Scott A. Vanstone, editors, CRYPTO, volume 537 of LNCS, pages
77–93. Springer, 1990.

25

http://eprint.iacr.org/2003/239/
http://eprint.iacr.org/2000/067/
http://eprint.iacr.org/2000/067/
http://eprint.iacr.org/2002/140/
http://eprint.iacr.org/2002/140/

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput. Syst. Sci., 28(2):270–299,
1984.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput., 17(2):281–308, 1988.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive proof
systems. SIAM J. Comput., 18(1):186–208, 1989.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A completeness
theorem for protocols with honest majority. In STOC, pages 218–229. ACM, 1987.

[Küs06] Ralf Küsters. Simulation-based security with inexhaustible interactive turing machines. In CSFW,
pages 309–320, 2006.

[LPV09] Huijia Lin, Rafael Pass, and Muthuramakrishnan Venkitasubramaniam. A unified framework for con-
current security: universal composability from stand-alone non-malleability. In STOC, pages 179–188.
ACM, 2009.

[MR91] Silvio Micali and Phillip Rogaway. Secure computation (abstract). In Joan Feigenbaum, editor,
CRYPTO, volume 576 of LNCS, pages 392–404. Springer, 1991.

[Pat05] Akshay Patil. On symbolic analysis of cryptographic protocols. In Master’s thesis. Massachusetts
Institute of Technology, 2005.

[PS04] Manoj Prabhakaran and Amit Sahai. New notions of security: achieving universal composability
without trusted setup. In STOC, pages 242–251. ACM, 2004.

[PW01] Birgit Pfitzmann and Michael Waidner. A model for asynchronous reactive systems and its application
to secure message transmission. In IEEE Symposium on Security and Privacy, 2001.

[Rab81] Michael Rabin. How to exchange secrets by oblivious transfer. In Technical Report TR-81. Harvard
University, 1981.

[Wul07] Jürg Wullschleger. Oblivious-transfer amplification. In Moni Naor, editor, EUROCRYPT, volume
4515 of LNCS, pages 555–572. Springer, 2007. Full version at http://arxiv.org/abs/cs.
CR/0608076.

A Digital Signatures (cont’d)

In this section we give an alternative description of the bad language for the unforgeability game, and then we
present the attack-fail language. Recall that, for simplicity, in Section 5.1 we only present a subset of the attack-fail
language. Based on the “full” bad language and the attack-fail language presented here, we derive an extended bad
language which is then shown to be equivalent to the extended bad language presented in Section 5.1.

Similar to the transformation in the Section 5.1, the GMR unforgeability definition can be formulated as a
consistency game Guf for the task SIG as follows: the challenger C uses algorithms gen(), sign(), verify() as
oracles, and interacts with the adversary A: the challenger C queries the gen() oracle and obtains 〈sk, vk〉, and
then sends such vk to A; each time upon receiving mi from the A, the challenger C queries the sign() oracle with
mi and obtains σi, and then returns σ to A; upon receiving from A a pair 〈m′, σ′〉, C queries the verify() oracle
with 〈m′, σ′, vk′〉 and obtains the verification result. The judge J decides that A wins the game ifm′ has never been
queried before, vk′ = vk, and the verification result is 1.
Step 1. Based on the game Guf described above, we can construct an environment ZA

uf and the corresponding
ideal world adversary SΣ

uf as follows. In order to simulate the game, the environment first picks S and V from the

26

http://arxiv.org/abs/cs.CR/0608076
http://arxiv.org/abs/cs.CR/0608076

namespace at random as well as a random sid . The environment sends (KEYGEN, 〈S, sid〉) to party S and receives
(KEYGENRETURN, 〈S, sid〉, vk); then the environment simulates A on input vk ; when A queries mi to its signing
oracle, the environment sends (SIGN, 〈S, sid〉,mi) to party S and returns the output of S to A. Once A outputs
a pair 〈m′, σ′〉, the environment sends (VERIFYRETURN, 〈V, sid〉, 〈m′, σ′, vk ′〉) to some party V and receives
the verification result φ. In the case that m′ has never been queried and φ = 1, and vk′ = vk, the environment
terminates with 1; otherwise with 0.

We next define the ideal-world adversary SΣ
uf . Each time SΣ

uf receives (LEAKKEYGEN, 〈S, sid〉) from the
ideal functionality, it runs (vk, sk)← gen(1λ) and sends (INFLKEYGEN, 〈S, sid〉, vk) to the functionality. When
SΣ

uf receives (LEAKSIGN, 〈S, sid〉,mi) from the ideal functionality, it runs σ ← sign(vk, sk,mi), and sends
(INFLSIGN, 〈S, sid〉, σi) to the functionality. When SΣ

uf receives (LEAKVERIFY, 〈V, sid〉, 〈m′, σ′, vk′〉) from the
ideal functionality, it runs φ← verify(vk′, sk,m′, σ′), and sends (INFLVERIFY, 〈V, sid〉, φ) to the functionality.
Step 2. For any adversary A and signature scheme Σ we define LFdum

SIG ,ZA
uf ,S

Σ
uf

(cf. Section 3.2) with ZA
uf ,SΣ

uf as

defined in step 1. We next define the set of strings BSIG,uf as the subset of
⋃

A,Σ LFdum
SIG ,ZA

uf ,S
Σ
uf

that contains exactly
those strings for which the environment returns 1.

B′SIG,uf =



w

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

w = (KEYGEN, 〈S, sid〉)
(KEYGENRETURN, 〈S, sid〉, vk)
(SIGN, 〈S, sid〉,m1)
(SIGNRETURN, 〈S, sid〉, σ1)
· · ·
(SIGN, 〈S, sid〉,m`)
(SIGNRETURN, 〈S, sid〉, σ`)
(VERIFY, 〈V, sid〉, 〈m′, σ′, vk ′〉)
(VERIFYRETURN, 〈V, sid〉, φ)

such that
φ = 1 ∧m′ 6∈ {m1, . . . ,m`} ∧ vk′ = vk


Following the methodology in Section 4.2, by changing the judge decision condition into its negation, i.e., φ =

0∨m′ ∈ {m1, . . . ,m`}∨vk′ 6= vk, we can define the “attack-fail” languageA′SIG,uf . We note that it is easy to check
that B′SIG,uf = BSIG,uf while ASIG,uf ⊂ A′SIG,uf . We also observe that BSIG,uf is disjointed with A′SIG,uf\ASIG,uf .
Recall that the extended bad language according to the unforgeability property consists of the strings w of LFdum

SIG

that contain as a subsequence a string w′ satisfies the condition that w′ ∈ B′SIG,uf ∧ w′ 6∈ A′4SIG,uf ∩ {w}
4; this

condition can further be simplified as w′ ∈ BSIG,uf ∧ w′ 6∈ A
4
SIG,uf ∩ {w}

4 because B′SIG,uf = BSIG,uf and BSIG,uf

is disjointed with A′SIG,uf\ASIG,uf as observed. So the extended bad language defined here is same as the one in the
body part.

We can also obtain the extended bad languages from the attack-fail languages as demonstrated here for the other
consistency properties. Similarly to the case of unforgeability, for simplicity we obtain the extended bad language
for each consistency property from a subset of the attack-fail language, which can then be shown to be equivalent
to the one from the full attack-fail language.

B Proofs

Proof of Proposition 3.4

Proof. To prove the proposition, we need to show that (1) FT is associative, (2) FT has an identity Fdum
T , and (3)

FT is commutative.
First we show ∧ is associative. That is for all F1 = F suppress1,validate1

T , F2 = F suppress2,validate2

T , and F3 =

F suppress3,validate3

T ∈ FT , we need to show (F1∧F2)∧F3 = F1∧ (F2∧F3). For any a = (ACTION,P, x), we let
suppress12(a) = suppress1(ACTION,P, (suppress2(a)) and let suppress23(a) = suppress2(ACTION,P, (suppress3(a)).

27

For (F1∧F2)∧F3, we have suppress(12)3(a) = suppress12(ACTION,P, (suppress3(a))) = suppress1(ACTION,P,
(suppress2(ACTION,P, (suppress3(a))))). ForF1∧(F2∧F3), we have suppress1(23)(a) = suppress1(ACTION,P,
(suppress23(a))) = suppress1(ACTION,P, (suppress2(ACTION,P, (suppress3(a))))). Therefore suppress(12)3(a) =
suppress1(23)(a). Further validate predicates follow logical conjunction operation, and we have validate(12)3() =
(validate1() ∧ validate2()) ∧ validate3() = validate1() ∧ (validate2() ∧ validate3()) = validate1(23)(). Together,
we have (F1 ∧ F2) ∧ F3 = F1 ∧ (F2 ∧ F3).

Second, we show FT has an identity Fdum
T . Let F0 = Fdum

T = F suppress0,validate0

T , then we have for any
a = (ACTION,P, x), suppress0(a) = x, and validate0() = 1. We need to show for all F1 = F suppress1,validate1

T ∈
FT , it holds thatF1∧F0 = F1 = F0∧F1. Now we have suppress10(a) = suppress1(ACTION,P, suppress0(a)) =
suppress1(ACTION,P, x) = suppress1(a), and suppress01(a) = suppress0(ACTION,P, suppress1(a)) = suppress1(a);
that is suppress10(a) = suppress1(a) = suppress10(a). Further we have validate10() = validate1()∧validate0() =
validate1() ∧ 1 = validate1(), and validate01() = validate0() ∧ validate1() = 1 ∧ validate1() = validate1(); that
is validate10() = validate1() = validate01(). Together, we have F1 ∧ F0 = F1 = F0 ∧ F1.

Third, we show FT is commutative. That is for all F1 = F suppress1,validate1

T , F2 = F suppress2,validate2

T ∈ FT ,
we need to show F1 ∧ F2 = F2 ∧ F1. Note that for any a = (ACTION,P, x), the suppress() functions substitute
with “−” the same locations of x. We let x12 = suppress12(a) = suppress1(ACTION,P, (suppress2(a)) and
let x21 = suppress21(a) = suppress2(ACTION,P, (suppress1(a)). The same locations in both x12 and x21 are
substituted with “−” from x. So x12 = x21, i.e., suppress12(a) = suppress21(a). Further we know validate1() ∧
validate2() = validate2()∧ validate1() because validate predicates follow logical conjunction operation. Together,
we have F1 ∧ F2 = F2 ∧ F1.

Together we show (FT ,∧) is a commutative monoid with the dummy functionality Fdum
T as the identity ele-

ment.

Proof of Theorem 3.6

Proof. Consider a task T , and its well-formedness predicate WFT . We construct a scheme Σ that implements T
such that πΣ realizes the dummy functionality Fdum

T . We first give description for πT , then we design the scheme
Σ; the protocol πΣ will be obtained by implementing all actions of πT with the algorithms of Σ. A πT entity P
maintains an array history, initially empty, which is used to record the entity’s action symbols. In particular, when
P receives a symbol (ACTION,P, x) from the environment, it records the symbol into its history, runs the predicate
WFT over history, and if the predicate returns 0, then the input is ignored, and the input will be removed from its
history. Whenever required by the action, the πT entity returns an output symbol (ACTIONRETURN,P, y), using
the WFT predicate to ensure well-formedness. We next describe the scheme Σ implementing the cryptographic
task T . Recall that for each action T specifies a domain and range; given that we are only interested in designing
a protocol realizing the dummy functionality we will simply define each action of Σ to map every input of the
action domain D(λ)

i to an element of the action range R(λ)
i . This captures the case of a non-interactive action.

For interactive actions, say between two parties, Σ provides a two party protocol where the two parties coordinate
according to the input-output behavior of the action. This completes the description of Σ that together with πT
defines the protocol πΣ.

Next, we construct an ideal world adversary S such that no environment Z can distinguish an execution involv-
ing πΣ and the real world adversary from an execution of Fdum

T and the ideal world adversary. The construction
of S is as follows: S will simply perform a faithful simulation of the real world execution with the protocol πΣ

and the real-world adversary. This is possible as the canonical dummy functionality relays all (valid) I/O from the
environment without any modifications. We next prove that no environment Z can distinguish the ideal from the
real world for the above simulator S and in fact the simulation is perfect.

Observe that the only difference between the real world execution and the ideal world execution is the fact
that the verification of the well-formedness predicate in the real world is distributed amongst the parties whereas
in the ideal world it is handled by the canonical functionality. Observe that if the combined history of all parties
in an ideal world execution is well-formed then the local history of each party in the real world will also be well-

28

formed (as the same WFT predicate is used globally and locally and the predicate is only sensitive in the order of
symbols). Note that the reverse direction is not necessarily true; indeed a set of well-formed local histories may
not be composed to a global history that is well-formed (and this may provide an opportunity for an adversarial
environment to distinguish the real from the ideal world). Nevertheless, this is not the case due to the fact that a Σ
scheme, specifically the coordination component of the protocol implementation of interactive actions, will ensure
that the composition (according to the real order of events as induced by the adversary) of the local histories of all
parties in a real world execution will result in a well-formed global history.

In the case of corrupted parties observe that the composed global history of a real world execution might cease
to be well-formed as it may not include the local histories of corrupted parties (which are handled internally by the
adversary). This discrepancy, however, will not result in any distinguishing advantage as the simulator S has the
power to insert symbols in the canonical functionality’s history that follow the actions of corrupted parties and thus
maintain the well-formedness of the functionality’s history.

Based on the above we conclude that the ideal world adversary S is performing a perfect simulation of the ideal
world when interacting with Fdum

T and thus πΣ is a UC-realization of Fdum
T .

Proof of Theorem 3.7

Proof. Let π be a protocol that UC-realizes F and let F ′ be any functionality such that F ′ . F which means that
F = F ′ ∧ F ′′ for some F ′′ ∈ FT . Let F ′ = F suppress1,validate1

T ,F ′′ = F suppress2,validate2

T ∈ FT . To prove the
theorem, it suffices to prove the following statement that any protocol π that UC-realizes F also UC-realizes F ′.

To prove that π UC-realizes F ′, we need to show that for any A′ there is an ideal world adversary S ′ such that
for all Z ′, IDEALF ′,S′,Z′ ≈ REALπ,A′,Z′ . Notice that based on the condition that protocol π realizes F , for any A
there is an ideal world adversary S such that for all Z , IDEALF ,S,Z ≈ REALπ,A,Z .

Given a real world adversary A′ for the protocol π, there exists an S from the premise of the theorem that
simulates it in the ideal world interacting with F . We construct an S ′ that interacts with F ′ as follows: S ′ simulates
S in its interface with the functionality F ′ with the following modification: each time when F ′ has input a =
(ACTION,P, x) it gives to the adversary the symbol (LEAKACTION,P, x1) where x1 = suppress1(a); given this
symbol, S ′ computes x2 = suppress2(ACTION,P, x1) and gives the symbol (LEAKACTION,P, x2) to S. This
completes the description of S ′.

Given an environment Z ′ we will show that IDEALF ′,S′,Z′ ≈ REALπ,A′,Z′ . From the premise of the theorem
we know that IDEALF ,S,Z′ ≈ REALπ,A′,Z′ , thus it suffices to show IDEALF ,S,Z′ ≈ IDEALF ′,S′,Z′ .

To each run of F with S and Z ′ we can correspond a run of F ′ with S ′ and Z ′; observe that the correspondence
will preserve the history of the canonical functionality, i.e., the history ofF in the run with S andZ ′ will be the same
in the corresponding run ofF ′ with S ′ andZ ′ (the environment is the same in both cases and S ′ operates identically
to S in terms of the way it influences the functionality). Thus, given that the event that validate2(history) = 0
happens with negligible probability over all runs of F with S and Z ′ (since this a real world simulation and
whenever this event happens the functionality F returns an error symbol), it follows that it also happens with
negligible probability over the runs of F ′ with S ′ and Z ′. Consider the event that Z ′ returns 1 over all runs of
F with S and Z ′ and observe that its probability is the same to the event that Z ′ returns 1 over all runs of F ′
with S ′ and Z ′ where both events are taken over the conditional space where validate2(history) = 1. Given that
validate2(history) = 0 is a negligible probability event in either space the proof of the theorem follows.

Proof skeleton of Theorem 4.1

Proof. By contradiction, assume scheme Σ does not satisfy the property defined by game G. This means there
exists an attacker A winning the game. To finish the proof, we need to present an environment Z which can
distinguish the real from the ideal world with non-negligible probability. Based on the successful attacker A, we
use Z = ZA

G as defined in step 1 in Section 4.2.1. Note that in the real world, A is a successful attacker against
the schemeΣ, so Z outputs 1 with non-negligible probability. However in the ideal world, the winning case would

29

cause any canonical functionality F & FG to halt, so the environment Z can never output 1. Therefore the
constructed Z distinguishes the two worlds with non-negligible probability. This finishes the proof.

Proof of Lemma 5.2

Proof. (1) Denote by Y the language in the right hand side of the lemma’s statement (1). First we need to
show BSIG,uf ⊆ Y . Let w be any string in BSIG,uf ; then it holds that there exist A,Σ such that w equals the
history string in the ideal world execution of the environment ZA

uf with adversary SΣ
uf and the dummy function-

ality Fdum
SIG . Based on the definition of the environment ZA

uf and the adversary SΣ
uf , we know that the symbols

(KEYGEN, 〈S, sid〉)(KEYGENRETURN, 〈S, sid〉, vk)(SIGN, 〈S, sid〉,m1)(SIGNRETURN, 〈S, sid〉, σ1) · · · (SIGN,
〈S, sid〉,mk)(SIGNRETURN, 〈S, sid〉, σ`)(VERIFY, 〈V, sid〉, 〈m′, σ′, vk〉)(VERIFYRETURN, 〈V, sid〉, 1) will be
recorded into history in the dummy functionality. It follows that the string w belongs to the set Y .
Second we need to showBSIG,uf ⊇ Y . Let w be any string in Y . We will construct A,Σ such that in the ideal world
execution of ZA

uf with adversary SΣ
uf and the dummy functionality Fdum

SIG it holds that history = w. Given that w ∈
Y , there exist stringw = (KEYGEN, 〈S, sid〉)(KEYGENRETURN, 〈S, sid〉, vk)(SIGN, 〈S, sid〉,m1)(SIGNRETURN,
〈S, sid〉, σ1) · · · (SIGN, 〈S, sid〉,mk)(SIGNRETURN, 〈S, sid〉, σ`)(VERIFY, 〈V, sid〉, 〈m′, σ′, vk〉)(VERIFYRETURN,
〈V, sid〉, 1). Define gen output 〈vk, sk〉. Define sign that upon input mi returns σi for 1 ≤ i ≤ `; Define A output
〈m′, σ′〉; Define verify that upon input 〈m′, σ′, vk〉 returns 1. It follows immediately that the history string that
in the ideal world execution of ZA

uf with adversary SΣ
uf and the dummy functionality Fdum

SIG would equal w.
(2) It is easy to show the language BSIG,uf is decidable.

Proof of Theorem 5.5

Proof. Assume πΣ(SIG) cannot realize Fuf . This means there is a real world adversary A so that for all ideal world
simulator S there exists an environment Z that can distinguish its interaction with S and Fuf in the ideal world
from that with A and πΣ(SIG) in the real world with non-negligible probability. Next we show how to construct A
which can win the unforgeability game with non-negligible probability.

Since Z succeeds for any S, it also succeeds for a generic S as described as follows. S runs a simulated
copy of A internally, and forwards the communications between A and Z; further S simulates protocol parties
internally; whenever S receives a (LEAKKEYGEN, 〈S, sid〉) fromFuf , it simulates a signer S to generate a key pair
(vk , sk) by running the gen() algorithm, and return (INFLKEYGEN, 〈S, sid〉, vk) command to the functionality;
later whenever S receives a (LEAKSIGN, 〈S, sid〉,m) command from Fuf , it simulates the signer S to generate a
signature σ for message m by running the sign() algorithm with the key sk , and return (INFLSIGN, 〈S, sid〉, σ)
command to the functionality; whenever S receives a (LEAKVERIFY, 〈V, sid〉, 〈vk ,m, σ〉) command from Fuf ,
it simulates a verifier V to generate the verification value φ by running the verify() algorithm over the tuple
(vk ,m, σ), and return (LEAKVERIFY, 〈V, sid〉, φ) to the functionality; if at some point, A corrupts a party P ,
where P can be the signer or any verifiers, then S sends the corresponding (CORRUPT, P) command to Fuf .

Now we give the construction of A in detail. A simulates a copy of Z internally. It further tries to simu-
late for Z an interaction with the generic S and Fuf . As in S, A runs a simulated copy of A. But A does not
simulate the signer to run the gen() and sign() algorithms to obtain the key pair, and further to generate sig-
natures for messages as in S; instead, whenever the (KEYGEN, 〈S, sid〉) command is activated by Z , A uses
the vk obtained from challenger C to form the (KEYGENRETURN, 〈S, sid〉, vk) command for Z , and whenever
an (SIGN, 〈S, sid〉,m) command is activated by Z , A obtains the signature σ by interacting the challenger C with
messagem, and returns (SIGNRETURN, 〈S, sid , 〉, σ) command toZ; note that the challenger C queries the sign()
oracle for signatures. For signature verification, A takes the similar way as the generic S did, i.e., whenever the
command (VERIFY, 〈V, sid〉, 〈vk ,m, σ〉) is activated by Z , A simulates a verifier V to generate the verification
value φ ← verify(vk ,m, σ), and returns (VERIFYRETURN, 〈V, sid , 〉, φ) command to Z . At some point, if A
finds a tuple 〈vk ,m, σ〉 satisfies the following conditions: signer is not corrupted by A, verification key vk is from
the challenger, and m is not appeared in any queries with the challenger, and the verification value φ = 1, then A

30

outputs (vk ,m, σ) to the challenger C. Note that later C queries the verify() oracle and obtains the verification
value 1, and the judge J will decide that A wins the game.

We let F denote the event that in a run of πΣ(SIG) with adversary A and environment Z , a sequence w is
generated such that w ∈ Bext

SIG,uf . Observe that if event F does not occur, the simulated Z cannot distinguish
the two worlds. However, based on assumption above that Z can distinguish the two worlds with non-negligible
probability, we know that event F must occur with non-negligible probability. Based on the construction of A,
once F occurs, i.e., w ∈ Bext

SIG,uf , then A can obtain a subsequence w′ ∈ BSIG,uf which enables him to win the
unforgeability game, i.e., A is a successful forger.

Proof skeleton of Theorem 4.3

Proof. By contradiction, assume Σ does not satisfy the hiding property defined by G, i.e., there exists a successful
attacker A who can guess the hidden bit b with non-negligible probability higher than 1/2. Now we need to
construct an environment that distinguish the real from the ideal world with non-negligible probability. Based on
the successful attacker A, we use Z = ZA

G as defined. Notice that in the real world, the protocol transcripts will
be based on the bit B, and given A is a successful attacker, Z will output 1 with probability bounded away from
1/2 by a non-negligible fraction; on the other hand, in the ideal world for any canonical functionality F & FG,
since any such functionality will suppress “sensitive” part of the input which stops b from the adversary S; now
no matter how the adversary S is designed (note that S has adversarial role in this proof), the simulated protocol
transcripts will be independently of b, therefore even an unbounded A will not be able to influence the output based
on b. It follows that Z will output 1 with probability 1/2. It follows that Z distinguishes the two worlds with
non-negligible probability.

Proof of Lemma 5.7

Proof. (1) Denote by Y the language in the right hand side of the lemma’s statement (1). First we need to show
BSIG,comp ⊆ Y . Let w be any string in BSIG,comp; then it holds that there exist A,Σ such that w equals the history

string in the ideal world execution of the environment ZA
comp with adversary SΣ

comp and the dummy functionality
Fdum
SIG . Based on the definition of the environment ZA

comp and the adversary SΣ
comp, we know that the symbols

(KEYGEN, 〈S, sid〉)(KEYGENRETURN, 〈S, sid〉, vk)(SIGN, 〈S, sid〉,m)(SIGNRETURN, 〈S, sid〉, σ)(VERIFY,
〈V, sid〉, 〈m,σ, vk〉)(VERIFYRETURN, 〈V, sid〉, 0) will be recorded into history in the dummy functionality. It
follows that the string w belongs to the set Y .

Second we need to show BSIG,comp ⊇ Y . Let w be any string in Y . We will construct A,Σ such that
in the ideal world execution of ZA

comp with adversary SΣ
comp and the dummy functionality Fdum

SIG it holds that
history = w. Given that w ∈ Y , there exists w = (KEYGEN, 〈S, sid〉)(KEYGENRETURN, 〈S, sid〉, vk)(SIGN,
〈S, sid〉,m)(SIGNRETURN, 〈S, sid〉, σ)(VERIFY, 〈V, sid〉, 〈m,σ, vk〉)(VERIFYRETURN, 〈V, sid〉, 0). Define gen
output 〈vk, sk〉. Define sign that upon input m returns σ; Define A output 〈m,σ〉; Define verify that upon input
〈m,σ〉 returns 0. It follows immediately that the history string that in the ideal world execution of ZA

comp with
adversary SΣ

comp and the dummy functionality Fdum
SIG would equal w.

(2) It is easy to show the language BSIG,comp is decidable.

Proof of Theorem 5.10

Proof. The proof strategy is very similar to the one for Theorem 5.5 above. Assume πΣ(SIG) cannot realize Fcomp,
i.e., there exists A so that for all S there exists an environment Z that can distinguish the two worlds with non-
negligible probability. We again consider the generic S as constructed in proof of Theorem 5.5 above, and our goal
here is to construct A which can win the completeness game with non-negligible probability.

We construct A by simulating a copy of Z internally. A further tries to simulate for Z an interaction with S and
Fuf . As in S, A runs a simulated copy of A, and the protocol parties as in the real world. At some point, if A finds

31

a tuple 〈vk ,m, σ〉 satisfies the following conditions: signer is not corrupted by A, a key pair (vk , sk) is honestly
generated, and (m,σ) is an honestly generated message-signature pair, however the verification value φ = 0, then
A outputs (vk ,m, σ) to the challenger C. Note that later C queries the verify() oracle and obtains the verification
value 0, and the judge J will decide that A wins the game.

We define F as the event that in a run of πΣ(SIG) with A and Z , a sequence w is generated such that w ∈
Bext
SIG,comp. Observe that if the event F does not occur, the simulatedZ cannot distinguish the two worlds. However,

based on the assumption above that Z can distinguish the two worlds with non-negligible probability, we know that
the event F must occur with non-negligible probability. Based on the construction of A described above, from
w ∈ Bext

SIG,comp, the attacker can obtain a subsequence w′ ∈ BSIG,comp, i.e., A can wins the completeness game.
This means A is a successful completeness attacker.

Proof of Lemma 5.12

Proof. (1) Denote by Y the language in the right hand side of the lemma’s statement (1). First we need to show
BSIG,cons ⊆ Y . Let w be any string in BSIG,cons; then it holds that there exist A,Σ such that w equals the history

string in the ideal world execution of the environment ZA
cons with adversary SΣ

cons and the dummy functional-
ity Fdum

SIG . Based on the definition of the environment ZA
cons and the adversary SΣ

cons, we know that the symbols
(KEYGEN, 〈S, sid〉)(KEYGENRETURN, 〈S, sid〉, vk) (VERIFY, 〈V1, sid〉, 〈m,σ, vk〉)(VERIFYRETURN, 〈V1, sid〉, φ1)
(VERIFY, 〈V2, sid〉, 〈m,σ, vk〉)(VERIFYRETURN, 〈V2, sid〉, φ2) where φ1 6= φ2 will be recorded into history in
the dummy functionality. It follows that the string w belongs to the set Y .

Second we need to show BSIG,cons ⊇ Y . Let w be any string in Y . We will construct A,Σ such that
in the ideal world execution of ZA

cons with adversary SΣ
cons and the dummy functionality Fdum

SIG it holds that
history = w. Given that w ∈ Y , there exist string w = (KEYGEN, 〈S, sid〉)(KEYGENRETURN, 〈S, sid〉, vk)
(VERIFY, 〈V1, sid〉, 〈m,σ, vk〉) (VERIFYRETURN, 〈V1, sid〉, φ1) (VERIFY, 〈V2, sid〉, 〈m,σ, vk〉) (VERIFYRETURN,
〈V2, sid〉, φ2) with φ1 6= φ2. Define gen output 〈vk, sk〉. Define A output 〈m,σ〉; Define verify that upon input
〈m,σ, vk〉 returns φ1 for the first time and φ2 for the second time. It follows immediately that the history string
that in the ideal world execution of ZA

cons with adversary SΣ
cons and the dummy functionality Fdum

SIG would equal w.
(2) It is easy to show the language BSIG,cons is decidable.

Proof of Theorem 5.15

Proof. The proof strategy is similar to the one for Theorem 5.5 above. Assume πΣ(SIG) cannot realize Fcons, i.e.,
there existsA so that for all S there exists an environmentZ that can distinguish the two worlds with non-negligible
probability. Recall the generic S constructed in proof of Theorem 5.5 above, and here our goal is to construct A
which can win the consistency game with non-negligible probability.

We construct A by simulating a copy of Z internally. A further tries to simulate for Z an interaction with S
and Fuf . As in S, A runs a simulated copy of A, and the protocol parties as in the real world. In the verification,
if A finds a tuple 〈vk ,m, σ〉 was verified twice and two different verification values are obtained, then A outputs
(vk ,m, σ) to the challenger C. Note that later C queries the verify() oracle twice with the tuple and obtains two
different verification values, and the judge J will decide that A wins the game.

We define F as the event that in a run of πΣ(SIG) with A and Z , a sequence w is generated such that w ∈
Bext
SIG,cons. Observe that if the event F does not occur, the simulated Z cannot distinguish the two worlds. However,

based on the assumption above that Z can distinguish the two worlds with non-negligible probability, we know
that the event F must occur with non-negligible probability. Based on the construction of A described above, from
w ∈ Bext

SIG,cons, the attacker can obtain a subsequence w′ ∈ BSIG,cons, i.e., A can wins the completeness game. This
means A is a successful consistency attacker.

Proof of Proposition 5.22

32

Proof. First some observations. Note that in the [CLOS02] setting, the adversary is allowed to know all the com-
munication between the functionality and the dummy parties except for the secret information, and it is in charge
of message delivery. (Note also that “... and (sid) to S,...” is redundant because the simulator is allowed to learn
the header of the message.) Further, the Corrupt item is not explicitly shown in their functionality.

Now, to show the equivalence, we consider the “dummy” protocol πdummy, which just forwards the input/output
communication between the functionality and the environment, and we show that πdummy in the FCLOS

OT -hybrid
world (resp., FOT-hybrid world) realizes functionality FOT (resp., FCLOS

OT).

We first show that πdummy in the FCLOS
OT -hybrid world realizes functionality FOT. We need to construct a

simulator S such that no Z can tell with non-negligible probability whether it interacts with A and πdummy in
the FCLOS

OT -hybrid world or with S and FOT. The simulator S invokes a copy of A internally, and simulates for
A the interaction with Z and the protocol πdummy in the FCLOS

OT -hybrid world.
In the case that no party is corrupted, whenever S receives (LEAKTRANSFER, 〈〈S,R, sid〉, S〉) symbol

from the “outside” functionalityFOT (which means the functionality has an input (TRANSFER, 〈〈S,R, sid〉, S〉,
〈x0, x1〉) from the dummy sender), S sends (sender, sid , ·) to the internally simulated FCLOS

OT ; note that A
is allowed to see (sender, sid) but not its contents. Whenever S receives (LEAKTRANSFER, 〈〈S,R, sid〉,
R〉) from the FOT (which means the functionality has an input (TRANSFER, 〈〈S,R, sid〉, R〉, i) from the
dummy receiver), S sends (receiver, sid , ·) to the simulated FCLOS

OT ; note again that A can read the header
(receiver, sid) but not the contents of the message. Now S simulates the inside functionality to send (sid , ·)
to the internally simulated receiver; again, note thatA can read (sid) but not the content. WheneverA delivers
the command (sid , ·), S sends the outside functionality the symbol (INFLTRANSFER, 〈〈S,R, sid〉, R〉).

Next we discuss the cases where corruptions occur. Whenever A corrupts a party by sending a corruption
command (Corrupt, S), S sends (CORRUPT, S) to the outside functionality FOT. As a result, the outside func-
tionality will return historyS to S and also S will be removed from the binding array, which means that S will
be allowed to revise some part in history; note that such a revision should not violate the correctness restrictions
defined by the extended bad languages (otherwise the validate predicate will trigger an error symbol which im-
mediately would cause the simulation to fail). S reads historyS and if (TRANSFER, 〈〈S,R, sid〉, S〉, 〈x0, x1〉)
has been recorded, then it simulates the inside functionality to reveal (x0, x1) to A. In the case that A further
supplies a pair (x′0, x

′
1), and no (sid , ·) has been delivered to the receiver, S by using (PATCH, history), will

revise (TRANSFER, 〈〈S,R, sid〉, S〉, 〈x0, x1〉) into (TRANSFER, 〈〈S,R, sid〉, S〉, 〈x′0, x′1〉); we note that the
symbol (TRANSFER, 〈〈S,R, sid〉, S〉, 〈x0, x1〉) is allowed to be revised because the corresponding binding is
empty given that party S is corrupted. Further, we note that at the moment the (sid , ·) is delivered to the internal
receiver, S will send an INFLTRANSFER symbol to the outside functionality, and a TRANSFERRETURN symbol
will be returned to the environment as described above. Now, although (TRANSFER, 〈〈S,R, sid〉, S〉, 〈x0, x1〉)
is not marked, for the sake of the simulation, S will not revise this symbol into (TRANSFER, 〈〈S,R, sid〉, S〉,
〈x′0, x′1〉), as otherwise the correction restriction would be violated.

Next we consider case when the receiver is corrupted. WheneverA sends a command (Corrupt, R) to the
inside functionality, S sends (CORRUPT, R) to the outside functionality FOT. Now the outside functionality
returns historyR to S and R will be removed from the binding array, and accordingly, S will be allowed to
revise some parts of history; based on historyR, S reconstructs the receiver’s input and output and simulates
the inside functionality to reveal such input and output to A.

This completes the construction of the simulator. We note that the simulation is perfect.
We now show the other direction, i.e., that πdummy in the FOT-hybrid world realizes FCLOS

OT . We again need
to construct a simulator S such that no Z can distinguish the two worlds with non-negligible probability. The
construction is very similar to the one above. The simulator S invokes a copy of A internally, and simulates
for A the interaction with Z and πdummy in the FOT-hybrid world. S interacts with the outside functionality
FCLOS
OT .

In the case of no corruptions, whenever Z inputs (sender, sid , x0, x1) to the dummy sender, S delivers
the input to the outside functionality and learns the header (sender, sid), and it simulates the inside func-
tionality FOT to send (LEAKTRANSFER, 〈〈S,R, sid〉, S〉) to A. Whenever Z inputs (receiver, sid , i) to
the dummy receiver, S delivers the input to the outside functionality and learns the header (receiver, sid).

33

Now the functionality returns (sid , xi) for the receiver, and further it simulates the inside functionality FOT
to send (LEAKTRANSFER, 〈〈S,R, sid〉, R〉) to A. If both are received, and A returns (INFLTRANSFER,
〈〈S,R, sid〉, R〉) to the inside functionality, S delivers (sid , xi), which is produced by the outside functionality,
to the receiver.

Next we discuss the cases when corruptions occur. Whenever A corrupts a party by sending a corruption
symbol (CORRUPT, S), S sends (Corrupt, S) to the outside functionality FCLOS

OT . Now the outside function-
ality will return (x0, x1) if there is an input (sender, sid , x0, x1). S can construct historyS based on (x0, x1)
and return it to A. Similarly, whenever A sends out (CORRUPT, R), S can issue a (Corrupt, R) command
and learn the receiver’s input and output, and based on them construct historyR for A. In the case that the
sender is corrupted and no output has been received by the receiver, historyS can be revised into (TRANSFER,
〈〈S,R, sid〉, S〉, 〈x′0, x′1〉); note that this would not violate the correctness restriction. Now S operates as fol-
lows: S holds the input (receiver, sid , i) and until receives the revised information (x′0, x

′
1) from A; then S

delivers (receiver, sid , i) to the outside functionality and obtains the response which will be (sid , x′i), and S
delivers it to the receiver.

This concludes the simulation, and the simulation is perfect.

34

	Introduction
	Preliminaries
	Canonical Ideal Functionalities
	The communication language of ideal functionalities
	The canonical functionality of a cryptographic task
	The algebraic structure of canonical functionality classes

	Deriving Canonical Ideal Functionalities
	The general approach
	Ideal functionalities from game-based security definitions
	Ideal functionalities from consistency games
	Ideal functionalities from hiding games

	Applying the Methodology
	Digital signatures
	Unforgeability
	Completeness
	Consistency
	The canonical ideal signature functionality
	Comparison to previous signature functionalities

	Oblivious transfer
	Correctness
	Sender and receiver privacy
	The canonical ideal oblivious transfer functionality
	Comparison to previous OT functionalities

	Commitments
	Correctness
	Binding
	Hiding
	The canonical ideal commitment functionality

	Zero-knowledge proofs
	Completeness
	Soundness
	Zero-knowledge
	The canonical ideal ZK functionality

	Digital Signatures (cont'd)
	Proofs

