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Abstract. In this paper, we revisit a generally accepted opinion: im-
plementing Elliptic Curve Cryptosystem (ECC) over GF (2m) on sensor
motes using small word size is not appropriate because XOR multiplica-
tion over GF (2m) is not efficiently supported by current low-powered mi-
croprocessors. Although there are some implementations over GF (2m) on
sensor motes, their performances are not satisfactory enough to be used
for wireless sensor networks (WSNs). We have found that a field multipli-
cation over GF (2m) are involved in a number of redundant memory ac-
cesses and its inefficiency is originated from this problem. Moreover, the
field reduction process also requires many redundant memory accesses.
Therefore, we propose some techniques for reducing unnecessary memory
accesses. With the proposed strategies, the running time of field multi-
plication and reduction over GF (2163) can be decreased by 21.1% and
24.7%, respectively. These savings noticeably decrease execution times
spent in Elliptic Curve Digital Signature Algorithm (ECDSA) operations
(signing and verification) by around 15% ∼ 19%. We present TinyECCK
(Tiny Elliptic Curve Cryptosystem with Koblitz curve – a kind of TinyOS
package supporting elliptic curve operations) which is the fastest ECC
implementation over GF (2m) on 8-bit sensor motes using ATmega128L
as far as we know. Through comparisons with existing software imple-
mentations of ECC built in C or hybrid of C and inline assembly on
sensor motes, we show that TinyECCK outperforms them in terms of
running time, code size and supporting services. Furthermore, we show
that a field multiplication over GF (2m) can be faster than that over
GF (p) on 8-bit ATmega128L processor by comparing TinyECCK with
TinyECC, a well-known ECC implementation over GF (p). TinyECCK
with sect163k1 can compute a scalar multiplication within 1.14 secs on
a MICAz mote at the expense of 5,592-byte of ROM and 618-byte of
RAM. Furthermore, it can also generate a signature and verify it in 1.37
and 2.32 secs with 13,748-byte of ROM and 1,004-byte of RAM.
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1 Introduction

Many researchers have tried to apply the public-key cryptosystem, especially
ECC to wireless sensor networks to overcome the limitations of the symmetric-
key based protocols at pairwise key setup and broadcast authentication phases.
They concluded that employing ECC is viable in WSNs: Their implementations
have been shown reasonable performances in running time and code size [1, 8,
10, 15]. Until now, implementations giving relatively satisfactory performance
are all based on GF (p) [1, 8, 15]. On the other hand, the implementations over
GF (2m) result in disappointing performance [4, 7, 9, 10]. Some literatures [1, 8,
10, 15] imputed the poor performances to insufficient support of field arithmetic
operations over GF (2m), especially field multiplication, of current low-powered
microprocessors that work in small word size, thus the implementation of ECC
over GF (2m) would lead to lower performances. This paper revisits this opinion
and shows that the field multiplication in GF (2m) can be faster than that in
GF (p). There are following misunderstandings about the implementation of ECC
over GF (2m) on sensor motes:
Inefficient field multiplication: The field multiplication which is one of the most
frequent operations in the elliptic curve operation in GF (2m) is regarded as being
less efficient than that in GF (p) on low-powered and small word-sized devices
since it requires partial XOR multiplications which are not efficiently supported
by current microprocessors at instruction level.1

Heavy memory requirement for ECDSA: ECDSA implementations over GF (2m)
require not only field arithmetic over GF (2m) but also field arithmetic over
GF (p) for generating and verifying digital signatures. Thus, it may be thought
that the code size of ECDSA over GF (2m) is larger than that over GF (p). Actu-
ally, most of existing works over GF (2m) only implement Elliptic Curve Diffie-
Hellman (ECDH) protocol in their motes. However, the code size of optimized
implementation of ECDSA over GF (2m) is comparable to that over GF (p).
Our implementation, TinyECCK, achieves optimized code size for ECDSA and
outperforms TinyECC known as the most efficient software implementation of
ECDSA over GF (p) on sensor motes.

The contributions of this paper are described as follows.

1. Showing field multiplication over GF (2m) can be faster than that over GF (p):
We have found that the field multiplication and reduction over GF (2m) are
involved in many redundant memory accesses. In fact, most of the intermedi-
ate results of consecutive XOR multiplications during a field multiplication
over GF (2m) are stored at the same memory destination and same values
are loaded several times. We present some techniques to eliminate much of
redundant memory accesses at field multiplication and reduction phases. As
the result of applying the proposed techniques, the execution times of field
multiplication and reduction over GF (2163) are saved as much as 21.1% and

1 Partial XOR multiplication: The XOR operations of partial products in the field
multiplication over GF (2m). There is no carries in XOR multiplications.



TinyECCK 3

24.7%, respectively. At this time, the running time of the proposed multipli-
cation method is faster than the optimized field multiplication over GF (p)
by 7.4%.

2. Fastest software implementation of ECC over GF (2m): TinyECCK outper-
forms existing all software implementations of ECC over GF (2m). Further-
more, TinyECCK is the fastest among the software implementations built
in C or mixture of C and inline assembly over both GF (p) and GF (2m) on
ATmega128L processors.

3. Efficient implementation of Koblitz curve over GF (2m) on 8-bit ATmega128L
processor : TinyECCK implements elliptic curve operations on Koblitz curve
for fast scalar multiplications. Because the point doubling operation in the
Koblitz curve can be replaced by some trivial field squarings, the perfor-
mance can be much improved compared with ordinary curves over GF (2m).

2 Related Work

There have been several implementations of ECC over both GF (2m) and GF (p)
on sensor motes. They have tried to prove the feasibility of ECC for WSNs.

2.1 Existing Implementations over GF (2m)

Malan et al. implemented EccM which was the first implementation of ECC over
GF (2m) on a 8-bit sensor mote [4]. They used ECC to provide a key distribution
mechanism for UC Berkeley’s TinySec [2] module. EccM takes 34 secs for gen-
erating a public key and requires 34,342-byte of ROM as code size. In [9], Yan
and Shi indicated that the software implementations of ECC over GF (2m) were
still slow on small computing devices such as sensor nodes. They implemented
163-bit ECC using fast modular reduction on a 8-bit ATmega128L processor.
Their implementation requires 11,592-byte of code size and takes 13.9 secs for a
scalar multiplication. Eberle et al. pointed out that field arithmetic over GF (2m),
especially field multiplication is prohibitively slow since general-purpose micro-
processors do not support arithmetic in that field [10]. They claimed that the
performance of ECC implementation over GF (2m) can be faster than that over
GF (p) with additional architectural extension using instruction set extension.
Actually, the implementation using architectural extension took only 0.29 secs
for a 163-bit ECC point multiplication over GF (2m) while their assembly imple-
mentation takes 4.14 secs. This result supports that ECC over GF (2m) is more
suitable for hardware implementation rather than software implementation. Blaß
and Zitterbart implemented ECDH, ECDSA and El-Gamal over GF (2113) and
compared their performances with those of EccM [7]. Their implementation took
6.88 and 24.17 secs for signature generation and verification, respectively. Their
code occupies 75,088-byte of ROM.

2.2 Existing Implementations over GF (p)

To prove the feasibility of public-key cryptography on WSNs, Gura et al. im-
plemented RSA and ECC over GF (p) with assembly code and instruction set
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extension on a 8-bit ATmega128 processor and compared the performance be-
tween RSA and ECC [15]. Their ECC implementation took only 0.81 secs for
a scalar multiplication, which supports the assertion that the use of public-key
cryptography, especially ECC is viable for WSNs. They also presented a hybrid
multiplication algorithm exploiting advantages of operand and product scanning
multiplication algorithm to reduce the number of memory accesses. TinyECC
[1] is a software package providing ECC operations such as a scalar multiplica-
tion, and ECDSA services over GF (p) on TinyOS [16]. TinyECC adopted sev-
eral optimization techniques such as optimized modular reduction using pseudo-
Mersenne prime, sliding window method, Jacobian coordinate systems, inline as-
sembly and hybrid multiplication to achieve computational efficiency. TinyECC
– its major operations such as field multiplication and modular reduction are
built in inline assembly – can generate a signature and verify it within 2.00 and
2.43 secs, respectively, at the cost of more code size: i.e., 19,308-byte of ROM. On
the other hand, TinyECC sorely built in C takes 6.26 and 7.92 secs for generation
and verification of a signature with smaller code size: i.e., 15,872-byte of ROM.
Until now, the performance of ECC implementations over GF (p) surpasses those
over GF (2m) with 8-bit word.

From these observations, it appears that software implementation of ECC
over GF (p) outperforms that of ECC over GF (2m) on small devices and ECC
implementation over GF (2m) is suitable only for hardware implementation.
However, in this paper we show that the performance of the optimized soft-
ware implementation (TinyECCK) of ECC over GF (2m) can surpass that of the
optimized one (TinyECC) of ECC over GF (p) on 8-bit sensor motes.

3 Overview of Elliptic Curve Cryptosystem

The set of solutions of following weierstrass equation over a field F forms an
abelian group with the point at infinity O as its identity.

E/F : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6, ai ∈ F (1)

In case characteristics of F is 2, the equation is simplified as follows:

E/GF (2m) : y2 + xy = x3 + ax2 + b, a, b ∈ GF (2m) (2)

According to the principle of abelian group, a point P3 which is result of adding
two points P1 and P2 on a curve is also on the curve. Adding two different
points and two same points are called elliptic curve point addition (ECADD) and
elliptic curve point doubling (ECDBL). Let us assume two arbitrary points P1 =
(x1, y1) and P2 = (x2, y2) ∈ E(GF (2m)) with P1 6= −P2. Then the coordinate of
P3 = (x3, y3) which is the result of P1 + P2 can be computed as follows in affine
coordinate:

x3 = λ2 + λ + x1 + x2 + a, y3 = (x1 + x3)λ + x3 + y1,
λ = (y1+y2)

(x1+x2)
if P1 6= P2, and λ = y1

x1
+ x1 if P1 = P2
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Both ECADD and ECDBL in affine coordinate require 1 field inversion and 2
field multiplications. It brings advantages to use projective coordinate when the
field inversion is more expensive than field multiplication. For example, López-
Dahab (LD) projective coordinate requires 14 field multiplications and 4 field
multiplications in ECADD and ECDBL, respectively.2 Therefore, it is expected
that the use of LD coordinate is more suitable than that of affine coordinate
when I > 7M (I = field inversion, M = field multiplication) on the target
platform. Adding a point P to itself k times is called scalar multiplication; it is
expressed as Q = kP , where k is an integer and P ∈ E(GF (2m)). This scalar
multiplication is the dominant operation in ECC such as ECDH and ECDSA.

4 Implementation Details

We have implemented TinyECCK on a MICAz [14] sensor mote including the
8-bit ATmega128L processor. We use the domain parameter (sect163k1) rec-
ommended by [3] and polynomial basis to represent elements in GF (2m). We
modified the original field arithmetic algorithms using 32-bit word size which are
presented in Guide to Elliptic Curve Cryptography [5, 6] into the forms suitable
for 8-bit word environment. For efficiency, TinyECCK makes use of recoding
algorithms such as wNAF and wTNAF and selects mixed coordinate system
rather than affine coordinate.

4.1 Preliminaries

We assume that the used word size is 8-bit since the ATmega128L processor
works with 8-bit word memory address. The following notations are used in the
rest of this paper. Let us assume A and B are elements in GF (2m).

A⊕B: bitwise exclusive-or.
A & B: bitwise AND.
A À i: right shift of A by i positions with padding i upper bits as 0.
A ¿ i: left shift of A by i positions with padding i lower bits as 0.
W : a 8-bit word.
U(W ): it returns (W À 4).
L(W ): it returns (W & 0x0F ).
A[j] denotes j-th word of the A polynomial.
A{j} denotes the partial array from the most significant word (n) to j-th word
(A[n], . . . , A[j + 1], A[j]).
A{j, . . . , i} denotes the part of A polynomial from i-th word to j-th word
(A[j], . . . , A[i + 1], A[i]), j ≥ i.
t = dm/W e is the required number of words to store A in memory.

4.2 Field Arithmetic over GF (2m)

Field Squaring Squaring an element a(z) = am−1z
m−1+. . .+a2z

2+a1z+a0 in
GF (2m) results in a(z)2 = am−1z

2m−2 + . . .+a2z
4 +a1z

2 +a0 that comes out by
2 Detail about López-Dahab projective coordinate can be found in [5, 6, 12].
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inserting a value 0 between two consecutive bits of binary representation of a(z).
Thus, it can be efficiently computed by table lookup (The lookup table requires
only 16-byte since it is about the 4-bit combinations). Alg. 1 expands one word
into two words (Alg. 1 is the 8-bit version of original algorithm presented in [5,
6]). The higher 4-bit and lower 4-bit are expanded to 8-bit words by inserting a
0 bit into each odd position.

Algorithm 1 Polynomial squaring

1: INPUT: A binary polynomial a(z) of degree at most m− 1
2: OUTPUT: c(z) = a(z)2

3: Precomputation. For each 4-bit d = (d3, d2, d1, d0), compute the 8-bit value T (d) =
(0, d3, 0, d2, 0, d1, 0, d0).

4: for i ← 0 to t− 1 do
5: Let A[i] = (d7, d6, d5, d4, d3, d2, d1, d0) where dj is a bit.
6: C[2i] ← T (d3, d2, d1, d0), C[2i + 1] ← T (d7, d6, d5, d4).
7: end for
8: Return (c)

Field Multiplication Because field multiplication is one of the most frequent
operations during a scalar multiplication, it should be efficiently implemented.
Even though the shift-and-add method is the most straightforward, it is not
desirable for software implementations due to the large number of memory ac-
cesses and word shifts. Throughout the experiments, we found that the left-to-
right comb method using window is more efficient compared with shift-and-add
and right-to-left comb method: at this time, the optimal window size on the
8-bit ATmega128L processor is 4.3 Even though the table using window size 4
requires the computation of 15 elements (except for the zero element), the main
computation can be considerably accelerated at the expense of small overhead.
Alg. 2 describes the left-to-right comb method using window (w = 4) with 8-bit
wordlength (Alg. 2 is the 8-bit version of left-to-right comb method depicted
in [5, 6]). Since the wordlength is 8-bit and window size is 4, u ← U(a[j]) and
u ← L(a[j]) are efficiently computed as u ← (a[j] À 4) and u ← (a[j] & 0x0F ),
respectively. In fact, C{j} ⊕ Tu, a partial XOR multiplication, of step 6 and
step 10 in the Alg. 2 are involved in for-loop. In other words, the real code of
“C{j} ⊕ Tu” is “for(i = 0; i ≤ t; i + +) C[i + j] ← C[i + j] ⊕ Tu[i];” (After
C[i + j] and Tu[i] loaded from the memory are XORed, then the result is stored
at C[i + j]) 4. Accordingly, the smaller word size this algorithm uses, the larger
3 Even if the right-to-left comb method is a little faster than the left-to-right comb

method using window size 1. However it can not be extended to use a window
mechanism.

4 Tu generated from Alg. 2 consists of t + 1 words since it is the product of b(z) and
u(z). Thus, C[i + j] ← C[i + j]⊕ Tu[i] should be computed during 0 ≤ i ≤ t.
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number of memory accesses it requires. For example, let us compare the num-
ber of used LOAD and STORE operations between W = 32 and W = 8 over
GF (2163). Since d 163

32 e = 6 and d 163
8 e = 21, the former uses 14 LOADs and 7

STOREs while the latter requires 44 LOADs and 22 STOREs for C{j} ⊕ Tu.

Algorithm 2 Left-to-right comb method using window width w = 4

1: INPUT: a(z) and b(z) in GF (2m)
2: OUTPUT: c(z) = a(z) · b(z)
3: Compute Tu = u(z) · b(z) for all polynomials u(z) of degree at most w − 1.
4: C ← 0.
5: for j ← 0 to t− 1 do
6: u ← U(a[j]), C{j} ⊕ Tu.
7: end for
8: C ← C · zw.
9: for j ← 0 to t− 1 do

10: u ← L(a[j]), C{j} ⊕ Tu.
11: end for
12: Return (c)

Modular Reduction The result of both multiplying two elements and squar-
ing an element in GF (2m) should be reduced with the irreducible polynomial f .
There are some reduction polynomials, for fast reduction modulo, recommended
by NIST in the FIPS 186-2 standards [3]. Since these polynomials are either pen-
tanomial or trinomial, reduction of c(z) modulo f(z) can be efficiently performed
by one word at a time. The Alg. 3 reduces the result of field multiplication or
field squaring into an element in GF (2163) (Alg. 3 is the 8-bit version of fast
reduction modulo presented in [5, 6]). Similar to the aforementioned field mul-
tiplication algorithm, Alg. 3 is also associated with a large number of memory
accesses since the word size (W = 8) is small.

4.3 Selection of Coordinate System

The ratio of inversion to multiplication over GF (2163) on ATmega128L is 24.99
(e.g., M : I = 1 : 24.99). Thus, eliminating the inversion operations during
scalar multiplication is beneficial to better performance. This is why we select the
López-Dahab coordinate system rather than affine coordinate system. Table 1
supports the selection of our coordinate system for TinyECCK. We use the mixed
coordinates for ECADD since the addition of two points which are represented
in different coordinate system is more efficient than that of two points using the
same representation [12, 6]. Hence, we build a precomputed table of the points
represented in affine coordinate system.
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Algorithm 3 Fast reduction modulo f(z) = z163 + z7 + z6 + z3 + 1

1: INPUT: A binary polynomial c(z) of degree at most 324
2: OUTPUT: c(z) mod f(z)
3: for i ← 41 to 21 do
4: T ← C[i].
5: C[i− 21] ← C[i− 21]⊕ (T ¿ 5).
6: C[i− 20] ← C[i− 20]⊕ (T ¿ 4)⊕ (T ¿ 3)⊕ T ⊕ (T À 3).
7: C[i− 19] ← C[i− 19]⊕ (T À 4)⊕ (T À 5).
8: end for
9: T ← C[20] À 3.

10: C[0] ← C[0]⊕ (T ¿ 7)⊕ (T ¿ 6)⊕ (T ¿ 3)⊕ T .
11: C[1] ← C[1]⊕ (T À 1)⊕ (T À 2).
12: C[20] ← C[20] & 0x07.
13: Return C[20], . . . , C[2], C[1], C[0].

Table 1. Comparison of field operations in GF (2163) on ATmega128L (times for multi-
plication and squaring include the time for modular reduction, all timings are measured
by secs).

Field operation Execution time Inversion / operation

Multiplication 0.00292224 24.99

Squaring 0.00036982 197.47

Inversion 0.07302550 1

4.4 Width-w NAF

The inverse of P = (x, y) over GF (2m) is −P = (x, x + y). In this manner, the
inverse of an element in E(GF (2m)) can be calculated at negligible cost: the
subtraction of points can be computed as efficient as addition. This motivates
to use signed digit representation k =

∑l−1
i=0 ki2i, l = log2 k, ki ∈ {0,±1}. Non-

adjacent form (NAF) provides optimal nonzero density ( 1
3 ) among all signed

digit representations. With NAF, the scalar multiplication can be computed
with l · ECDBL + l

3 · ECADD (cf. a scalar multiplication with binary rep-
resentation of k can be computed with l · ECDBL + l

2 · ECADD). If some
extra memory is available, the execution time of scalar multiplication can be
decreased with application of sliding window method which processes w digit of
k at a time. A width-w NAF (wNAF) provides 1

w+1 of nonzero density at the
expense of a precomputation table containing (2w−2 − 1) precomputed points
except for the original point. Thus, the scalar multiplication using wNAF can
be done with l · ECDBL + l

w+1 · ECADD. Since 128-Kbyte of ROM memory
are available in a MICAz sensor mote, we applied wNAF recoding algorithm to
scalar multiplication.
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4.5 Koblitz Curves and Width-w TNAF

Koblitz curves are binary elliptic curves and they are defined over a binary
field GF (2m) by the eqaution: E/GF (2m) : y2 + xy = x3 + ax2 + 1, where
a ∈ {0, 1}. The main advantage of Koblitz curves is that elliptic curve doublings
in a scalar multiplication can be replaced by the efficiently computable Frobenius
map τ(x, y) = (x2, y2), τ(∞) = ∞, thus scalar multiplication algorithms can be
developed without using any point doublings. Because it is known that (τ2 +
2)P = µτ(P ) holds for all points on the curve, where µ = (−1)1−a, the Frobenius
map can be regarded as a complex number τ , τ = (µ +

√
(−7)/2), satisfying

τ2 + 2 = µτ .
The strategy for computing a scalar multiplication over Koblitz curves is to

convert a scalar k to a radix τ expansion such as k =
∑l−1

i=0 uiτ
i, where ui ∈

{0,±1}. Such a τ -adic representation can be obtained by repeatedly dividing k
by τ . To decrease the number of point additions in a scalar multiplication, the
τ -adic representation for k should be sparse and short. This can be achieved by
applying τ -adic NAF (TNAF), which can be viewed as a τ -adic analogue of the
ordinary NAF.

The running time of TNAF-based scalar multiplications can be decreased by
applying a window method for TNAF representations, width-w TNAF (wTNAF),
which processes w digit at a time at the expense of extra memory. Since the re-
mainders of the wTNAF belong to the set u ∈ {±1,±3, . . . ,±(2w−1 − 1)}, it
requires (2w−2 − 1) of precomputed points which are same as those for wNAF.
In [11], Solinas proposed efficient algorithms for computing TNAF, wTNAF:
partial reduction modulo δ = (τm − 1)/(τ − 1), TNAF and wTNAF recoding.

TinyECCK provides the implementations of width-w τ -adic non-adjacent
form (wTNAF) [11] since it is based on sect163k1 [3]. Therefore, the scalar mul-
tiplication using wTNAF can be computed with only l

w+1 ·ECADD. However,
the implementation of wTNAF requires more code size than wNAF, because it
needs additional partial reduction modulo function and rounding off procedure
[11]. TinyECCK takes 10,870-byte and 13,748-byte of ROM memory in case of
using wNAF and wTNAF, which are only 8.3% and 10.5% of total ROM size
(128-Kbyte). We found that the optimal window size on the 8-bit MICAz mote
is 4 from the experiments. TinyECCK mainly uses wTNAF recoding algorithm
rather than wNAF since the scalar multiplications with wTNAF can be com-
puted faster than with wNAF with the same number of precomputed points.

4.6 Efficient implementation of partial reduction modulo in
wTNAF recoding

The length of TNAF(k) and wTNAF(k) is approximately 2 log2(k), which
is twice the length of NAF(k). To handle the problem of a long TNAF, we
need to find nice representation of k. In other words, it is required to find an
appropriate ρ ∈ Z[τ ] to be as small norm as possible with ρ ≡ k (mod ρ),
where ρ = (τm − 1)/(τ − 1), then apply ρ to TNAF or wTNAF instead of k
[6, 11]. Alg. 4 is responsible for finding such a ρ in nice representation. It is the
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Algorithm 4 Partial reduction modulo δ = (τm−1)
(τ−1) [5, 6, 11]

1: INPUT: k ∈ [1, n− 1], C ≥ 2, s0 = d0 + µd1, s1 = −d1, where δ = d0 + d1τ .
2: OUTPUT: ρ′ = k partmod δ.
3: k′ ← bk/2a−C+(m−9)/2c.
4: Vm ← 2m + 1−#Ea(F2m).
5: for i ← 0 to 1 do
6: g′ ← si · k′, j′ ← Vm · bg′/2mc.
7: λi ← b(g′ + j′)/2(m+5)/2 + 1

2
c/2C .

8: end for
9: Compute (q0, q1) ← Round(λ0, λ1).

10: r0 ← k − (s0 + µs1)q0 − 2s1q1, r1 ← s1q0 − s0q1.
11: Return (r0 + r1τ).

most complicated part when generating TNAF or wTNAF representation of k
since it involves some long floating point arithmetic. The m is 163 according to
the key size of TinyECCK. The values of s0, s1, and Vm can be precomputed
before beginning a scalar multiplication (s1 = 2579386439110731650419537,
s1 = −755360064476226375461594, and Vm = −4845466632539410776804317,
in case of sect163k1). s0 and s1 are calculated with Lucas sequence [11] and
TinyECCK sets the value of C to be 16 for providing high probability of reduc-
tion. The purpose of the Round function in step 9 is to find appropriate integers
q0 and q1 such that q0 + q1τ is close to complex number λ0 +λ1τ [6, 11]. Instead
of using long floating point numbers, we can obtain fractional part of the λ0 and
λ1 of step 7 by using only some floating point variables. The bits lower than C
become fractional part as the result of division by 2C . For example, let us assume
that (11111111)2 is divided by (10000)2. Then the integer part is (1111)2 and the
fractional part is (.1111)2. Thus, the value of the fractional part is computed by
summing these results (

∑4
i=1

1
2i ). TinyECCK efficiently computes the wTNAF

representation of scalar k with these techniques.

4.7 Interleave Method for the Verification Procedure in ECDSA

Computing a common secret key in ECDH and generating a signature in ECDSA
involve one scalar multiplication. On the other hand, the signature verification
step requires an addition of two scalar multiplications such as uP + vQ where
u, v are scalars and P, Q are points on curve. If the verification step is imple-
mented without care, the execution time will be almost twice of signing step.
Thus, we apply the interleave method [18] which is a kind of multi-scalar mul-
tiplication algorithm for the verification step of ECDSA in TinyECCK. The
interleave method enables to apply different recoding algorithms with different
window sizes to each scalar; it is appropriate for memory-constrained devices
such as sensor motes.
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Fig. 1. Process of field multiplication using Alg. 2.

5 Proposed Techniques for Further Improvement

The performance of the field multiplication and reduction algorithms presented
in Sect 4.2 can be improved by eliminating the redundant memory accesses. We
can observe that both field multiplication and reduction algorithms are involved
in a large number of memory access operations. Note that the memory access
operations occupy large portion of the whole execution time.

5.1 Reducing Redundant Memory Accesses in Field Multiplication

Field multiplication over GF (2m) is involved in many redundant memory ac-
cesses. This is the reason why typically the performance of field multiplication
over GF (2m) is inferior to that over GF (p). Fig. 1 describes the process of field
multiplication using Alg. 2. In Fig. 1, odd rows are the intermediate result of the
second for-loop and even rows are related to the first for-loop of Alg. 2. Later, all
rows are XORed each other at corresponding positions to generate final result
C (partial XOR multiplication). According to the Alg. 2, the result of the first
for-loop shifts to left by window size (in our case, w = 4); it makes even rows
to be shifted to the left direction depicted as Fig. 1. In each for-loop of Alg. 2,
the L(a[j]) or U(a[j]) is evaluated to access the precomputed table about b(z).
Afterwards, the corresponding element in the table is loaded and XORed with
C from j to (j + N) word (N = t). Observing the process of multiplication in
Fig. 1 in detail, we can discover that the Alg. 2 is related to redundant memory
accesses. The following example process shows the observation (we consider only
the process of the second for-loop for the sake of simplicity).

C0 ← C0 ⊕ T0;

// C0: 1 LOAD, T0: 1 LOAD, STORE: 1

C1 ← C1 ⊕ T0, C1 ← C1 ⊕ T1;
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Algorithm 5 Proposed left-to-right comb method using window width w = 4

1: INPUT: a(z) and b(z) in GF (2m)
2: OUTPUT: c(z) = a(z) · b(z)
3: Compute Tu = u(z) · b(z) for all polynomials u(z) of degree at most w − 1.
4: C ← 0.
5: for j ← 0 to t− 2 increments j by 2 do
6: u1 ← U(a[j]), u2 ← U(a[j + 1]).
7: C[j] ← C[j]⊕ Tu1 [0], C[j + N + 1] ← C[j + N + 1]⊕ Tu2 [N ].
8: for i ← 1 to N increments i by 1 do
9: C[i + j] ← C[i + j]⊕ Tu1 [i]⊕ Tu2 [i− 1].

10: end for
11: end for
12: u1 ← U(a[t− 1]).
13: for i ← 0 to N increments i by 1 do
14: C[i + t− 1] ← C[i + t− 1]⊕ Tu1 [i].
15: end for
16: C ← C · zw.
17: for j ← 0 to t− 2 increments j by 2 do
18: u1 ← L(a[j]), u2 ← L(a[j + 1]).
19: C[j] ← C[j]⊕ Tu1 [0], C[j + N + 1] ← C[j + N + 1]⊕ Tu2 [N ].
20: for i ← 1 to N increments i by 1 do
21: C[i + j] ← C[i + j]⊕ Tu1 [i]⊕ Tu2 [i− 1].
22: end for
23: end for
24: u1 ← L(a[t− 1]).
25: for i ← 0 to N increments i by 1 do
26: C[i + t− 1] ← C[i + t− 1]⊕ Tu1 [i].
27: end for
28: Return (c)

// C1: 2 LOADs, T0: 1 LOAD, T1: 1 LOAD, STORE: 2

C2 ← C2 ⊕ T0, C2 ← C2 ⊕ T1, C2 ← C2 ⊕ T2;

// C2: 3 LOADs, T0: 1 LOAD, T1: 1 LOAD, T2: 1 LOAD, STORE: 3

C3 ← C3 ⊕ T0, C3 ← C3 ⊕ T1, C3 ← C3 ⊕ T2, C3 ← C3 ⊕ T3;

// C3: 4 LOADs, T0: 1 LOAD, T1: 1 LOAD, T2: 1 LOAD, T3: 1 LOAD, STORE: 4

· · ·

The calculations of C1, C2 and C3 are related to two, three, and four STORE op-
erations which are redundant. In addition to, Ci is loaded i+1 times each step.5

Therefore, the running time of Alg. 2 can be decreased by reducing the number
of STOREs and LOADs of Ci. Our strategy is to reduce the number of STOREs
and LOADs which are related to XOR multiplications (C{j} ⊕ Tu) by combin-
ing them. For example, we can combine “C{0}⊕TU(a[0])” and “C{1}⊕TU(a[1])”
into “C{1} ← C{1}⊕ TU(a[0]){N, . . . , 1}⊕ TU(a[1]){N − 1, . . . , 0}, C[0] ← C[0]⊕
5 Ci is loaded i + 1 times until i ≤ 20, and is loaded 42− i times during 20 < i ≤ 41.
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Table 2. Improved performance of the field operation in GF (2163) (L=LOAD,
S=STORE, X=XOR. all timings are measured by secs).

Field operation Existing Proposed Improvement (%)

Multiplication
Time 0.00370277 0.00292224 21.08

Operations 1,890L+966S+924X 1,430L+506S+924X 460L+460S saved

Reduction
Time 0.00034239 0.00025801 24.68

Operations 80L+80S+140X 50L+50S+140X 30L+30S saved

TU(a[0])[0], C[N +1] ← C[N +1]⊕TU(a[1])[N ]”.6 We formulate this strategy into
Alg. 5. In fact, the more C{j} ⊕ Tu can be integrated at the expense of larger
code size. In our case, we combine two XOR multiplications into one considering
optimization between code size and performance; thus, the counter j of for-loops
is incremented by 2. However, the final XOR multiplications, step 9 and 15 of
Alg. 5, should be computed outside for-loops since the t is a odd number.

Theoretical Analysis
We can calculate the saved number of STOREs and LOADs in the proposed
strategy. In the original algorithm, the counter j of for-loop is from 0 to (t− 1)
and a C{j}⊕Tu consists of (t+1)(2L+S+X) operations (L=LOAD, S=STORE,
X=XOR). Since the XOR multiplication is computed 2t times in the original
algorithm, the total operations in the for-loops of the original algorithm are
2t[(t + 1)(2L + S + X) + (L + S)] = (4t2 + 6t)L + (2t2 + 4t)S + (2t2 + 2t)X
(Additional (L+S) is used by u ← U(a[j]) or L(a[j])). On the other hand, in the
proposed algorithm, the combined XOR multiplication requires [t(3L+S+2X)+
(4L + 2S + 2X)]. Since the combined XOR multiplication is processed (t − 1)
times, the total operations of for-loops are (t− 1)[t(3L + S + 2X) + (6L + 4S +
2X)]+2[(t+1)(2L+S+X)+(L+S)] = (3t2+5t+2)L+(t2+3t+2)S+(2t2+2t)X
7. Therefore, (t2 + t− 2) of STOREs and LOADs are saved. Table 2 shows that
we can significantly decrease the execution time with Alg. 5 replacing Alg. 2 by
21.1% and save (460S+460L) when t = 21.

5.2 Reducing Redundant Memory Accesses in Modular Reduction

The fast reduction modulo (Alg. 3) also involves many redundant memory ac-
cesses. Let us consider an example that the counter i decreases from 30 to
27 in the process of Alg. 3. Regarding the decrease of the counter (i.e., i =

6 In this process, only LOAD and STORE operations are reduced, not XOR opera-
tions.

7 In case of sect163k1, t is odd number (t = 21). Therefore, the final XOR multi-
plication must be computed outside of for-loop (postprocessing steps: step 12–15
and 24-27 of Algorithm 5). The operations of the final XOR multiplications are
2[(t + 1)(2L + S + X) + (L + S)].
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Table 3. Improvement of overall performances with the proposed methods (TinyECCK
uses sect163k1, all times are measured by secs.)

Binary 2NAF 3NAF 4NAF 2TNAF 3TNAF 4TNAF

Original
Sign 5.4900 4.3061 3.8897 3.5750 2.2003 1.8770 1.6111

Verify 7.5789 5.9157 5.0642 4.5383 4.2179 3.3391 2.7815

Proposed
Sign 4.4036 3.4718 3.1430 2.8949 1.8287 1.5745 1.3613

Verify 6.0825 4.7473 4.0750 3.6590 3.4499 2.7425 2.3116

Saving (%)
Sign 19.78 19.37 19.19 19.02 16.88 16.11 15.50

Verify 19.74 19.74 19.53 19.37 18.20 17.86 16.89

Table 4. The ratio of contribution between Alg. 5 and Alg. 6. The ratio is computed
as (saved time from Alg. 5 or Alg. 6)/ (total saved time using Alg. 5 and Alg. 6).

Used algorithms
2TNAF 3TNAF 4TNAF

Sign Verify Sign Verify Sign Verify

Alg. 2, Alg. 3 2.2003 4.2179 1.8770 3.3391 1.6111 2.7815

Alg. 2, Alg. 6 2.1043 4.0606 1.7938 3.2073 1.5356 2.6725

Alg. 5, Alg. 3 1.9230 3.6096 1.6590 2.8805 1.4366 2.4224

Alg. 5, Alg. 6 1.8287 3.4499 1.5745 2.7425 1.3613 2.3116

Alg. 5/(Alg. 5+Alg. 6) (%) 74.61 79.20 72.06 76.87 69.85 76.42

Alg. 6/(Alg. 5+Alg. 6) (%) 25.83 20.48 27.49 22.10 30.20 23.20

30, 29, 28, 27), the execution steps are as follows:

1. T ← C[30];

2. C[9] ← C[9]⊕ (T ¿ 5);

3. C[10] ← C[10]⊕ (T ¿ 4)⊕ (T ¿ 3)⊕ T ⊕ (T À 3);

4. C[11] ← C[11]⊕ (T À 4)⊕ (T À 5);

5. T ← C[29];

6. C[8] ← C[8]⊕ (T ¿ 5);

7. C[9] ← C[9]⊕ (T ¿ 4)⊕ (T ¿ 3)⊕ T ⊕ (T À 3);

8. C[10] ← C[10]⊕ (T À 4)⊕ (T À 5);

9. T ← C[28];

10. C[7] ← C[7]⊕ (T ¿ 5);

11. C[8] ← C[8]⊕ (T ¿ 4)⊕ (T ¿ 3)⊕ T ⊕ (T À 3);

12. C[9] ← C[9]⊕ (T À 4)⊕ (T À 5);

13. T ← C[27];

14. C[6] ← C[6]⊕ (T ¿ 5);

15. C[7] ← C[7]⊕ (T ¿ 4)⊕ (T ¿ 3)⊕ T ⊕ (T À 3);

16. C[8] ← C[8]⊕ (T À 4)⊕ (T À 5);

Alg. 3 uses 16 STOREs and 16 LOADs to compute C[30], C[29], C[28], and C[27].
However, we can use the following strategy to reduce the redundant STOREs
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Algorithm 6 Proposed fast reduction modulo f(z) = z163 + z7 + z6 + z3 + 1

1: INPUT: A binary polynomial c(z) of degree at most 324
2: OUTPUT: c(z) mod f(z)
3: for i ← 41 to 21 decrements i by 4 do
4: T1 ← C[i], T2 ← C[i− 1], T3 ← C[i− 2], T4 ← C[i− 3].
5: C[i− 24] ← C[i− 24]⊕ (T4 ¿ 5).
6: C[i− 23] ← C[i− 23]⊕ (T3 ¿ 5)⊕ (T4 ¿ 4)⊕ (T4 ¿ 3)⊕ T4 ⊕ (T4 À 3).
7: C[i− 22] ← C[i− 22]⊕ (T2 ¿ 5)⊕ (T3 ¿ 4)⊕ (T3 ¿ 3)⊕T3⊕ (T3 À 3)⊕ (T4 À

4)⊕ (T4 À 5).
8: C[i− 21] ← C[i− 21]⊕ (T1 ¿ 5)⊕ (T2 ¿ 4)⊕ (T2 ¿ 3)⊕T2⊕ (T2 À 3)⊕ (T3 À

4)⊕ (T3 À 5).
9: C[i−20] ← C[i−20]⊕(T1 ¿ 4)⊕(T1 ¿ 3)⊕T1⊕(T1 À 3)⊕(T2 À 4)⊕(T2 À 5).

10: C[i− 19] ← C[i− 19]⊕ (T1 À 4)⊕ (T1 À 5).
11: end for
12: T1 ← C[21], T2 ← C[20].
13: C[0] ← C[0]⊕ (T1 ¿ 5)⊕ (T2 ¿ 4)⊕ (T2 ¿ 3)⊕ T2 ⊕ (T2 À 3).
14: C[1] ← C[1]⊕ (T1 ¿ 4)⊕ (T1 ¿ 3)⊕ T1 ⊕ (T1 À 3)⊕ (T2 À 4)⊕ (T2 À 5).
15: C[2] ← C[2]⊕ (T1 À 4)⊕ (T1 À 5).
16: C[20] ← C[20] & 0x07
17: Return C[20], . . . , C[2], C[1], C[0].

and LOADs.

1. T1 ← C[30], T2 ← C[29], T3 ← C[28], T4 ← C[27];

2. C[6] ← C[6]⊕ (T4 ¿ 5);

3. C[7] ← C[7]⊕ (T4 ¿ 4)⊕ (T4 ¿ 3)⊕ T4 ⊕ (T4 À 3)⊕ (T3 ¿ 5);

4. C[8] ← C[8]⊕(T4 À 4)⊕(T4 À 5)⊕(T3 ¿ 4)⊕(T3 ¿ 3)⊕T3⊕(T3 À 3)⊕(T2 ¿ 5);

5. C[9] ← C[9]⊕(T3 À 4)⊕(T3 À 5)⊕(T2 ¿ 4)⊕(T2 ¿ 3)⊕T2⊕(T2 À 3)⊕(T1 ¿ 5);

6. C[10] ← C[10]⊕ (T2 À 4)⊕ (T2 À 5)⊕ (T1 ¿ 4)⊕ (T1 ¿ 3)⊕ T1 ⊕ (T1 À 3);

7. C[11] ← C[11]⊕ (T1 À 4)⊕ (T1 À 5);

In this case, the number of STOREs and LOADs is reduced from 16 to 10.
Alg. 3 requires 20*4 = 80 STOREs and LOADs in the for-loop. However, the
proposed method requires only 5*10 = 50 STOREs and LOADs, which results
in the saving of 30 STOREs and 30 LOADs. Alg. 6 is the formulation of the pro-
posed strategy. As Table 2 indicates, the execution time of modular reduction
with Alg. 6 replacing Alg. 3 is decreased by 24.7%. Actually, we can extend the
degree of combination. However, the deeper degree of combination is used, the
more code size is required. Therefore, it is necessary to find the optimal degree.
Throughout experiments, we found that the 4 is more appropriate than other
degrees. We apply the two aforementioned strategies to implement TinyECCK.
Table 3 depicts the improved performances when TinyECCK equipped with Alg.
5 and 6 instead of Alg. 2 and 3. When the proposed strategies are applied, the
TinyECCK presents around 15% ∼ 19% saving in execution time. The improve-
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ment when TinyECCK uses wTNAF is lower than when it uses wNAF since
ECDBL operation is replaced by some trivial squarings with wTNAF.

Remarks
The Algorithm 2, Loop-unrolled reduction modulo with 32-bit word size, pre-
sented in [17] is very similar to the proposed Alg. 6. However, the focus of [17] is
to show that changing the reduction polynomial can improve the performance of
reduction algorithm rather than to verify that unrolling techniques can reduce
the redundant memory accesses. Therefore, the purposes and contributions of
[17] are different from our proposals which aim at showing that the concept of
unrolling techniques can be used in both field multiplication and reduction so as
to reduce the number of redundant memory accesses. Furthermore, the improve-
ment from Alg. 5 is bigger than that from Alg. 6. Thus,the main contribution
of this paper is Alg. 5. Table 4 shows that the ratio of improvement from Alg. 5
occupies around 70% while that from Alg. 6 is only 20 ∼ 30%.

6 Experimental Results and Analysis

This section analyzes the performance of TinyECCK – in terms of running time,
memory occupancy, and supporting services – and compares it with the perfor-
mances of existing ECC software implementations.

6.1 Analysis of Field Operations

We compare TinyECCK with TinyECC [1] in the light of the running time of
field operations to show that the field multiplication over GF (2m) can be faster
than that over GF (p) on sensor motes. TinyECC applies hybrid multiplica-
tion/squaring using additional registers to reduce unnecessary memory accesses
and optimized modular reduction using pseudo-Mersenne prime. Thus it is fair
to compare TinyECCK with TinyECC since TinyECCK also uses left-to-right
comb method using window (Alg. 5) and fast reduction modulo (Alg. 6). Table
5 shows that the multiplication of TinyECCK is faster than that of TinyECC
(the running time of multiplication and squaring includes the reduction time).
In fact, the running time of field multiplication of TinyECCK is slower than
that of TinyECC when using Alg. 2. However, with Alg. 5, TinyECCK’s field
multiplication becomes faster than TinyECC’s one. Apart from the advantage
of field inversion in TinyECCK, the field squaring in TinyECCK is much more
efficient than that in TinyECC.

6.2 Consideration of Code Size

Even though TinyECCK implements the field arithmetics over both GF (2m) and
GF (p) to provide ECDSA services, it requires less code size than that TinyECC
uses. Table 6 compares TinyECCK with TinyECC in view of the running time
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Table 5. Comparison of field operations between TinyECCK and TinyECC (for a fair
comparison, the C version of TinyECC is compared with TinyECCK and all timings
are measured by secs).

Field operation TinyECC TinyECCK Improvement (%)

Multiplication 0.00315647 0.00292224 7.42

Squaring 0.00314779 0.00036982 88.25

Inversion 0.14856858 0.07302550 50.84

Table 6. Performance Comparisons between TinyECCK and TinyECC (Time and
code size are measured by secs and bytes, respectively).

TinyECCK TinyECC (C) TinyECC (asm)

SM
Time 1.1411 6.1418 1.8825
Code 5,592 8,528 10,092

Sign
Time 1.3607 6.2694 2.0016
Code 12,084 13,192 16,478

Verify
Time 2.3237 7.9208 2.4318
Code 13,748 15,872 19,308
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Fig. 2. Performance analysis of ECC implementations on sensor motes (asm and SM
mean assembly code and scalar multiplication, respectively. All timings are measured
by secs.)
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and the code size when they do same operations. TinyECC using inline assem-
bly at the critical parts such as multiplication, squaring and reduction could
achieve the improved performance at the expense of more code size, however it
is still inferior to TinyECCK. Actually TinyECC implements hybrid multiplica-
tion/squaring algorithms which aim at reducing the number of memory accesses
by using additional registers through inline assembly codes; thus the code size
of TinyECC is highly increased.

The code size of the scalar multiplication module in TinyECCK is only 5,592-
byte since the field multiplication and squaring can be simply implemented.
However, ECDSA module of TinyECCK requires more code size in that sig-
nature generation and verification need additional field operations over GF (p).
The code size for field arithmetics over GF (p) in TinyECCK is relatively smaller
than that of TinyECC. This is because TinyECCK applies only a few optimiza-
tion techniques for field arithmetics over GF (p) while TinyECC uses all known
optimization algorithms.

As shown in Table 6, TinyECCK is more faster and memory-efficient than
TinyECC. The main reason that the code size of TinyECCK can be smaller than
that of TinyECC is that TinyECCK presents better performance than imple-
mentations using inline assembly code even though it is built in only C code.
TinyECCK does not need the use of inline assembly codes in that it presents
good performance without applying them8. Application of the proposed algo-
rithms and wTNAF-based scalar multiplications contributes this performance
achievement. Through this result, we can verify our assertion: the code size of
the optimized ECDSA implementation over GF (2m) can be smaller than that
over GF (p).

6.3 Performance Comparisons

Fig. 2 analyzes the existing software implementations of ECC on sensor motes
and compares the performance of TinyECCK with them in respect to various
aspects such as running time, code size, supporting protocols, and so on. The
performances of existing implementations of ECC over GF (2m) [4, 9, 7, 10] are
relatively low compared with [8, 1]. Even if ECC in [10] is implemented with
assembly code, its performance is still inferior to [1] which is implemented with
C and partially inline assembly. The implementations in [4, 9] could not exploit
the advantages of Koblitz curve since they did not implement wTNAF recoding
algorithm even if they used the sect163k1 as a domain parameter. The criti-
cal reason why TinyECCK can be the fastest among software implementations
of ECC over GF (2m) is that TinyECCK implements the wTNAF-based scalar
multiplication and applies the proposed algorithms for field multiplication and
reduction (Without applying signed recoding algorithms, the running time of
TinyECCK is almost same as that of [10]). TinyECCK provides the improved
performance in view of running time, used ROM and RAM size compared with

8 We expect that TinyECCK operates faster than now, if its performance-critical parts
are implemented with inline assembly codes at the expense of larger code size.
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existing implementations. The modules for a scalar multiplication in TinyECCK
require only 5,592-byte of ROM; 330-byte of RAM is occupied with 2TNAF, and
618-byte with 4TNAF. Moreover, its running time is also superior to the existing
software implementations built in C or hybrid of C and inline assembly. Even
if the ECDSA modules of TinyECCK require more code size (13,748-byte of
ROM, 1,004-byte of RAM in case 4TNAF is applied) for the signature genera-
tion and verification, its code size is still smaller than that of TinyECC (19,308-
byte of ROM and 1,510-byte of RAM). Moreover, TinyECCK is better than
TinyECC with regard to initialization time for establishing precomputed tables
and initializing domain parameters. TinyECCK takes 0.2515 secs to compute
a precomputed table when 4TNAF is applied, while TinyECC takes 1.83 secs
to establish a precomputed table with 4-ary window method. With TinyECCK,
two sensor nodes can compute a common pairwise key around 1.14 secs. Fur-
thermore, a sensor node can generate a signature and verify it in 1.37 and 2.32
secs, respectively. In light of supporting protocols, TinyECCK provides modules
for all elliptic curve operations over GF (2m) from point addition, doubling and
scalar multiplication to ECDSA services.

Remarks
After finishing our work, we have noticed the existence of NanoECC [19]. Na-
noECC provides the implementations of ECC and pairing-based cryptography
(PBC) over GF (p) and GF (2m) on both widely used MICA2 and Tmote Sky
motes. NanoECC is based on MIRACL (Multiprecision Integer and Rational
Arithmetic C/C++ Library) which provides all the necessary primitives and
functions for symmetric-key and public-key cryptography. When implementing
ECC over GF (2m), NanoECC use the sect163k1 same as the curve TinyECCK
uses. For the optimized field level arithmetics, NanoECC makes use of Karatsuba-
Ofman multiplication and fast reduction algorithm using f(x) = x163+x7+x6+
x3 +1. NanoECC implements the hybrid multiplication algorithm and a fast re-
duction algorithm using Solinas prime (p = 2160−2112 +264 +1) for efficient big
integer arithmetic over GF (p). The elliptic curve points in NanoECC are repre-
sented as projective coordinate and the fixed-based comb method is applied for
efficient scalar multiplications with w = 4 using 16 precomputed points. Table
7 compares TinyECCK with NanoECC. Even if NanoECC can compute scalar
multiplication relatively fast compared with existing ECC implementations on
the ATmega128L processor, it requires a heavy amount of ROM and RAM sizes.
We think that the heavy memory requirement of NanoECC is due to using the
MIRACL which is originally intended for efficient big number arithmetic on typ-
ical computer systems. On the other hand, TinyECCK has been developed with
considering memory and computing-constrained environments of sensor motes.
Therefore, TinyECCK using 4TNAF or 5TNAF provides better performance
than NanoECC with regard to both computation times and memory require-
ments. However, the development of NanoECC is significant because it imple-
ments not only ECC but also pairing-based cryptography on widely used two
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Table 7. Performance Comparisons between TinyECCK and NanoECC on AT-
mega128L processor (Time and code size are measured by secs and bytes, respectively).

TinyECCK NanoECC
Using 4TNAF Using 5TNAF Binary field Prime field

Scalar Multiplication (secs) 1.14 0.99 2.16 1.27

ROM (byte) 5,592 5,592 33,177 47,206

RAM (byte) 618 1,002 1,740 1,843

sensor motes (MICA2 and Tmote Sky). In case of PBC, NanoECC privides the
fastest pairing computations.

7 Conclusion

In this paper, we have described that the inefficiency of field multiplication and
reduction over GF (2m) are caused by a heavy amount of redundant memory
accesses. Therefore, we have proposed techniques to reduce unnecessary memory
accesses. With the proposed techniques, running times of field multiplication and
reduction over GF (2163) are saved as much as 21.1% and 24.7%, respectively.
These savings decrease the running time of ECDSA operations around 15% ∼
19%. The proposed multiplication algorithm is approximately 7.4% faster than
hybrid field multiplication over GF (p).

We have implemented TinyECCK with the proposed techniques on a MICAz
sensor mote and compared it with the existing implementations built in C or
hybrid of C and inline assembly. The comparisons show that TinyECCK provides
more improved performance than the existing implementations in respect to
running time, code size, and supporting services.

From experimental results and comparisons, we obtain the two conclusions.
Firstly, the software implementation of ECC over GF (2m) is more suitable for
sensor motes with small word size than that of ECC over GF (p). Note that
this fact is contrast to existing opinions. Especially, the field multiplication over
GF (2m) can be faster than that over GF (p) with careful implementations. Sec-
ondly, the use of ECC, especially TinyECCK is applicable for securing sensor
networks.
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