

This manuscript is also available at http://patricklonga.bravehost.com/publications.html

Setting Speed Records with the (Fractional) Multibase

Non-Adjacent Form Method for Efficient Elliptic Curve

Scalar Multiplication

Patrick Longa and Catherine Gebotys

Department of Electrical and Computer Engineering

University of Waterloo, Canada

{plonga,cgebotys}@uwaterloo.ca

Abstract. In this paper, we introduce the Fractional Window-w Multibase Non-

Adjacent Form (Frac-wmbNAF) method to perform the scalar multiplication. This

method generalizes the recently developed Window-w mbNAF (wmbNAF) method

by allowing an unrestricted number of precomputed points. We then make a

comprehensive analysis of the most recent and relevant methods existent in the

literature for the ECC scalar multiplication, including the presented generalization

and its original non-window version known as Multibase Non-Adjacent Form

(mbNAF). Moreover, we present new improvements in the point operation formulae.

Specifically, we reduce further the cost of composite operations such as doubling-

addition, tripling, quintupling and septupling of a point, which are relevant for the

speed up of methods using multiple bases. Following, we also analyze the

precomputation stage in scalar multiplications and present efficient schemes for the

different studied scenarios. Our analysis includes the standard elliptic curves using

Jacobian coordinates, and also Edwards curves, which are gaining growing attention

due to their high performance. We demonstrate with extensive tests that mbNAF is

currently the most efficient method without precomputations not only for the

standard curves but also for the faster Edwards form. Similarly, Frac-wmbNAF is

shown to attain the highest performance among window-based methods for all the

studied curve forms.

Keywords: Elliptic curve cryptosystem, scalar multiplication, multibase non-

adjacent form, fractional windows, point operation, composite operation,

precomputation scheme.

1 Introduction

Since Koblitz and Miller independently proposed the use of elliptic curves in

cryptography [Kob87,Mil85], giving birth to a new area of study known as Elliptic Curve

Cryptography (ECC), the elegant elliptic curve-based cryptosystems have attracted

increasing attention from the research and industry communities. Contrary to what is

2 P. Longa and C. Gebotys

currently known for other traditional public-key cryptosystems such as RSA, the problem

of solving discrete logarithms on the group of points on an elliptic curve over a finite field

in subexponential time is intractable. Hence, EC-based cryptosystems can attain

equivalent security levels to RSA with significantly smaller cryptographic parameters. For

instance, it is widely accepted that 160-bit ECC offers equivalent security to 1024-bit

RSA. This significant difference makes ECC especially attractive for applications in

constrained environments as shorter key sizes are translated to less storage requirements

and reduced computing times.

Scalar multiplication, denoted by kP, where P is a point on the elliptic curve and k is a

scalar (working as the secret key in some cryptographic protocols), is the central and most

resource demanding operation in many EC-based systems. Hence, its efficient

implementation has been the focus of intensive research during the last few years.

Well-known methods [Rei60,Sol00] to efficiently execute kP are Non-Adjacent Form

(NAF) and window-w NAF (wNAF), which use short signed radix 2-based representations

of the scalar to attempt to minimize the number of point operations, namely doubling of a

point (2P) and addition of points (P+Q). In particular, wNAF offers very high

performance at the cost of a few precomputations.

Recently, there have been new methods proposed for scalar multiplication using

numeric representations that mix radices 2 and 3 [DIM05,DI06], and 2, 3 and 5 [MD07a].

We will refer to these methods as Double-Base (DB) and Triple-Base (TB) respectively.

Since these methods use very compact representations in their number of terms, the

number of point additions to perform the scalar multiplication is significantly reduced,

which is expected to reduce the computational cost of kP. Very recently, new research

expanding and demonstrating the capabilities of DB, especially focusing on window-

based variants, have appeared in the literature [BBP07,MD07b,BBL
+
07].

However, DB and TB (and their variants) have critical shortcomings, questioning the

real usefulness of these methods in practice. First, conversion to DB (or TB)

representation is based on a “Greedy” algorithm that basically searches for the closest

{2,3} (or {2,3,5}) terms in a pre-stored table. In the best case scenario, this approach

requires more memory resources. Second, from a theoretical perspective, these schemes

are difficult to define in terms of the expected number of nonzero terms. In fact, the

performance of most efficient DB schemes is determined empirically. Furthermore,

expansions are constructed with a heuristic selection of the upper bounds for exponents of

powers of 2 and 3 (and 5).

On the other hand, in a recent effort Longa [Lon07] introduced a new generic multibase

representation that also mixes radices to represent the scalar (see also Longa and Miri

[LM08]). However, the main difference with previous works is that this representation

uses a non-adjacent form (similar to NAF), and consequently, its conversion process

becomes efficient, and its theoretical definition, straightforward. We will refer to this

method as Multibase Non-Adjacent Form (mbNAF). Its window-based version with an

extended set of precomputations appears as a natural extension and will be referred to as

Window-w mbNAF (wmbNAF).

Nevertheless, wmbNAF restricts the allowed number of precomputed points to

Setting Speed Records with the (Fractional) Multibase Non-Adjacent Form Method 3

2
(2 1)

w−
− (without including {0, 1}±), where > 2w

+
∈Z , following the same restriction

of its analogous counterpart in the radix-2 domain, namely wNAF. In some settings, it is

possible that the optimal performance is achieved by precomputing a number of points

that do not follow such a standard window size.

To solve that problem, in this paper we propose the Frac-wmbNAF method, which

generalizes wmbNAF to any number of precomputed points by following a similar idea

applied by Möller [Möl02] when generalizing wNAF to his well-known Fractional wNAF

method (denoted by Frac-wNAF).

We then focus on demonstrating the performance of the mbNAF and Frac-wmbNAF

methods to compute the elliptic curve scalar multiplication, specifically in the case where

the point P to perform kP is not known in advance, as happens in several cryptographic

systems such as the ElGamal encryption and the Diffie-Hellman key exchange. We

analyze the performance of these methods and compare to that of NAF, DB and TB (and

their variants) in the context of the standard form of an elliptic curve over prime fields

(see eq. (1)). Then, we extend our analysis to other very efficient elliptic curve forms

proposed recently, namely Edwards curves [Edw07].

It should be noted that in the case that P is fixed, very efficient methods based on

precomputations already exist (see [HMV04, pp. 103] for further details). As a

consequence, precomputations will be included in the total cost of the methods (window-

based schemes) with the objective of quantifying true performance. Such a comprehensive

analysis has not been included in most previous research

[DIM05,DI06,MD07a,MD07b,LM07c]).

Unlike previous research, this paper proposes new and/or applies existing

precomputation schemes that are the most efficient, to the best of our knowledge, for each

scalar multiplication method. Also, the state-of-the-art in point operation formulae is

applied to estimate the overall cost of the scalar multiplication. In that sense, the paper

includes formulas by Bernstein and Lange for Edwards coordinates [BL07a] and Inverted

Edwards coordinates [BL07b], and formulas by Longa and Miri [LM07a,LM07b] for

Jacobian coordinates. We also include new formulas introduced here using radix-3 in the

context of Edwards curves.

Furthermore, this paper extends the work presented in [LM07b,LM07c] and introduces

revised formulas for computing the doubling-addition (2P+Q), and the tripling (3P),

quintupling (5P) and septupling (7P) of a point. The superior performance of these new

operations will be shown to further speed up the computation of all methods discussed in

this work including the traditional NAF and wNAF, in the case of standard elliptic curves

using Jacobian coordinates.

Extensive tests in the last section of this work will be shown to demonstrate the

superior performance of mbNAF over all other schemes without precomputations. On the

other hand, Frac-wmbNAF will be shown to achieve the lowest costs when some extra

memory is available. Our comparisons take into account all the improvements introduced

and described throughout this work, including efficient point operations and

precomputation schemes.

4 P. Longa and C. Gebotys

Our work is organized as follows. In Section 2, we detail some background about ECC

over prime fields. Then, in the following section we describe the state-of-the-art point

formulae for Jacobian coordinates, giving some extra details about composite operations.

Improvements to these operations are discussed in this section. In Section 4, we give a

quick overview about Edwards curves, summarizing the state-of-the-art point formulae in

this setting. We introduce here a few new formulas using radix-3. In the following section,

a detailed analysis of traditional and very recent scalar multiplication methods is carried

out. We highlight drawbacks that make some of them potentially impractical. The mbNAF

and wmbNAF methods are also described in this section. In Section 6, we introduce the

new Frac-wmbNAF method for the scalar multiplication, highlighting its advantages and

high performance. In the following section, we discuss efficient precomputation schemes

for the different studied methods. These are then used in Section 8 to evaluate the cost

performance of various methods for scalar multiplication through extensive tests. Some

conclusions summarizing the contributions of this work are presented at the end.

2 Preliminaries

Here we work with an elliptic curve E over a prime field
p
F (denoted by ()

p
E F), which

is defined by the reduced Weierstrass equation [HMV04]:

2 3

:E y x ax b= + + , (1)

where a , b ∈
p
F and ∆ = 4a

3
+ 27b

2
 ≠ 0 . ∆ denotes the discriminant, and its inequality

with zero guarantees that a unique tangent line exists for each point on the elliptic curve

E. The latter, together with a few other additive rules (see [HMV04], pp. 79, for further

details) allows for the conformation of the so called “group law”, which mainly consists

of two basics point operations: the doubling of a point (2P) and the addition of two points

(P+Q). In the remainder, we will refer to (1) as the standard elliptic curve form.

The set of pairs (,)x y that solves (1), where ,
p

x y ∈ F , together with the point at

infinity Ο, which works as the identity for the “group law”, form an abelian group,

(()
p

E F ,+), on top of which the basic ECC point operations are performed.

The representation using (,)x y , known as affine coordinates, introduces field

inversions (I) during the computation of point operations. In efficient implementations, we

would like to get rid of these expensive operations. To that end, new point representations

with the form (, ,)X Y Z , known as projective coordinates, were introduced to replace

inversions by a few cheaper field operations by means of a third coordinate, Z.

The foundation of these inversion-free coordinate systems can be explained by the

concept of equivalence classes, which are defined in the following in the context of

Jacobian coordinates, a special case of projective coordinates that has yielded very

efficient inversion-free point operations.

Given a prime field
p
F , there is an equivalence relation ~ among nonzero triplets over

Setting Speed Records with the (Fractional) Multibase Non-Adjacent Form Method 5

p
F , such that [HMV04, pp. 86]:

1 1 1 2 2 2
(, ,) (, ,)X Y Z X Y Z∼ ⇔ 2

1 2X Xλ= , 3
1 2Y Yλ= and 1 2Z Zλ= , for some *

pλ ∈ F .

Thus, the equivalence class of a (Jacobian) projective point, denoted by (: :)X Y Z , is:

 2 3 *(: :) {(, ,) : }pX Y Z X Y Zλ λ λ λ= ∈ F (2)

It is important to remark that any triplet (, ,)X Y Z in the equivalence class (2) can be

used as a representative of a given (Jacobian) projective point. This fact has also been

exploited to reduce further the cost of point operations by replacing multiplications for

squarings (see [LM07a]). In this work, we again make use of such a flexible technique to

modify point formulas in Section 3.

3 Point Operations in Jacobian Coordinates

In this section, we summarize the state-of-the-art point formulae for standard ECC curves

using Jacobian coordinates, and compare it with previous efforts. Further, we introduce

additional speed ups to formulas for doubling-addition (DA), tripling, quintupling and

septupling of a point in Jacobian coordinates, and also present new formulas using mixed

coordinate systems. For instance, we present formulas to compute 3 →A J and

5 →A J , where A and J denote points in affine and Jacobian coordinates, respectively.

This development is critical to boost the performance not only of traditional scalar

multiplications methods such as NAF but also, and more critically, of methods using

radices 2, 3 and 5. See [EPAF] for an up-to-date compilation of the most efficient

formulas to perform point arithmetic on standard EC curves using Jacobian coordinates.

For the remainder of this work, we will follow the general approach of expressing the

cost of point operations in terms of field multiplications (M) and squarings (S),

disregarding the cost of field addition/subtractions (A) and multiplication/divisions by

small constants as negligible for simplification purposes. We however remark that such

cheaper operations do have an impact in the total cost depending on their relative ratio

with regard to multiplication (which depends on the targeted platform). Hence, we will

discuss their influence in the cost of point formulas whenever relevant.

Also, to determine the superiority of a given formula, we will assume that 1 0.8S M≈ ,

which is widely assumed in the literature. In some implementations, however, it has been

observed that the S/M ratio can be as low as 0.6. The reader must note that the

improvements introduced in this work are actually more advantageous in such scenario.

3.1 Basic Point Operations

Researchers in [LM07a] presented a simple but highly flexible technique to trade

6 P. Longa and C. Gebotys

multiplications for squarings and other few cheaper operations. They combined the

algebraic relation over a prime field

 ()
2 2 2

2ab a b a b= + − − (3)

with a transformation of the point formulae by means of an equivalent representative of

the form

2 3

(: :) {(2 , 2 , 2)}X Y Z X Y Z= . (4)

The algebraic substitution (3) allows trading one multiplication for one squaring,

assuming that the remainder squarings are already included in a given formula. On the

other hand, if a field multiplication that can be potentially replaced using (3) does not

have the even form 2ab, where ,
p

a b ∈ F , we first transform the formula using the form

given by (4) to introduce the necessary multiples of 2.

Table 1 summarize the costs of the new formulae by [LM07a] using the described

technique, and compare it with the previous point operation costs. We consider the well-

known general (random a) and special (a = −3) cases, and also an additional scenario

when the parameter a is defined as sparse and any multiplication with it is considered

negligible (it includes the case a = −3). Note that the latter is convenient for

implementations where squarings are very fast (e.g., 1S ≈ 0.6M).

Table 1. Costs of revised and traditional point operations using Jacobian coordinates.

Operation general a sparse a = −3

 Fast doubling [LM07a] 2M + 8S 1M + 8S 3M + 5S

 Traditional doubling 4M + 6S 3M + 6S 4M + 4S

 Fast addition [LM07a] 11M + 5S - -

 Traditional addition 12M + 4S - -

 Fast mixed addition [LM07a] 7M + 4S - -

 Traditional mixed addition 8M + 3S - -

3.2 Composite Operations

Composite operations are point operations of the form dP, where 2d > ∈Z , or the form

dP+Q, where 2d ≥ ∈Z . They receive this name because these more complex operations

are usually built on top of the basic point doubling and addition.

We will summarize the best results for cases d = 3, 5 and 7, which have a special

importance since the performance of these composite operations allow the efficient

realization of multibase methods for the scalar multiplication.

In the case of tripling, [DIM05] introduced a formula in Jacobian coordinates with a

Setting Speed Records with the (Fractional) Multibase Non-Adjacent Form Method 7

cost of 10M + 6S. A quintupling formula was presented by [MD07a] with costs of 15M +

8S and 15M + 10S for the special and general cases, respectively.

Later on, in [LM07a] and [LM08] Longa and Miri reduced the cost of the previous

formulas by rearranging terms optimally and applying the technique described in Section

3.1 to trade multiplications for squarings. The result yielded tripling formulas with costs

of 7M + 7S (respect. 6M + 10S) for the special case (respect. general case), and

quintupling formulas with costs of 11M + 11S (respect. 10M + 14S) for the special case

(respect. general case).

A different approach, presented in [LM07b,LM07c], is based on a special addition with

identical z-coordinate. The idea of this approach is to derive composite operations of the

form dP and dP+Q, where 2d ≥ is prime, by iteratively adding points using the

aforementioned special addition as follows:

 dP = (2P + (… + (2P + (2P + P)) …)). (5)

 dP + Q = (P + (… + (P + (P + (P+Q))) …)). (6)

The special addition with identical z-coordinate due to [Mel06] is now described. Let

1 1
(, ,)P X Y Z= and

2 2
(, ,)Q X Y Z= be two points with the same Z in Jacobian

coordinates on the standard elliptic curve (1). The addition
3 3 3

(, ,)P Q X Y Z+ = can be

obtained as follows:

() () ()
2 3 2

3 2 1 2 1 1 2 1
2X Y Y X X X X X= − − − − − .

() ()() ()
2 3

3 2 1 1 2 1 3 1 2 1
Y Y Y X X X X Y X X= − − − − − .

()
3 2 1

Z Z X X= − . (7)

As can be seen, this new addition formula (derived from the original addition formula

in Jacobian coordinates) is surprisingly simple and only costs 5M + 2S.

The authors in [LM07b] shown that we first require one doubling followed by

(1) / 2d − special additions (7) to compute dP. In this case, the cost can be expressed by

 ()1
1D (5 2)

2

d
M S

−
+ + , (8)

where D = 3M + 5S or 1M + 8S for the special and general cases, respectively (see Table

1). Remarkably, composite operations of the form dP+Q using the previous strategy do

not use conventional doubling, tripling or quintupling operations. Hence, the cost given by

(8) applies indistinctly to the general and special cases without caring about the value of

the parameter a (eq. (1)).

Similarly, we require one addition (P+Q) and then (1)d − special additions (7) with P

to perform dP+Q [LM08]. Thus, the cost can be expressed by

8 P. Longa and C. Gebotys

 A (1)(5 2)d M S+ − + , (9)

where A represents the cost of a point addition. We remark here that such addition is a

mixed addition with Jacobian-affine coordinates (with a cost of 7M + 4S; see Table 1) if

the point Q is in affine coordinates, or a general addition (with a cost of 11M + 5S) if

otherwise Q is in Jacobian coordinates.

In [LM07b] and [LM08], the researchers shown that the new formulas yielded by

combining (7) with the schemes (5) and (6) are faster and/or require very low memory

resources.

In the following, we describe a procedure to accelerate further these composite

operations.

Additional Cost Reductions

The methods described previously respect the structure of each operation, which keeps the

internal execution modular and simple. However, we notice here that the number of field

additions can be reduced by avoiding intermediate computations. Further, because of the

latter, new multiplications are generated in such a way that more substitutions of field

multiplications for squarings can be carried out.

Following, we illustrate this procedure with the DA operation (2P+Q), when points P

and Q are in Jacobian and affine coordinates, respectively. Application of this idea to

other cases, such as 2P+Q when both P and Q are in Jacobian coordinates (referred to as

general DA), and dP (i.e., tripling, quintupling and so on), easily follows.

The first addition in (6) is computed with a mixed Jacobian-affine addition [CMO98]

1 1 1 2 2
(, ,) (,)P Q X Y Z x y+ = + =

3 3 3
(, ,)X Y Z with the following:

2 3 2

3 1
2X Xα β β= − − , ()2 3

3 1 3 1
Y X X Yα β β= − − ,

3 1
Z Z β= , (10)

where
3

1 2 1
Z y Yα = − ,

2

1 2 1
Z x Xβ = − .

A new representative of P having the same z coordinate as
3 3 3

(, ,)X Y Z is:

 () ()(1) (1) (1) 2 3

1 1 1 1 1 1 1 1 1
, , , , (, ,)X Y Z X Y Z X Y Zβ β β= ≡ . (11)

Then, by applying the special addition (7) to computation P + (P+Q), we obtain:

2 3 (1) 2

4 1
2X Xω θ θ= − − , ()(1) 2 (1) 3

4 1 4 1
Y X X Yω θ θ= − − ,

(1)

4 1
Z Z θ= , (12)

where
(1)

3 1
X Xθ = − ,

(1)

3 1
Y Yω = − .

The cost of the previous execution sequence is (8M + 3S) + (5M + 2S) = 13M + 5S.

Also note that these formulae require a very low number of additions. If we take these

Setting Speed Records with the (Fractional) Multibase Non-Adjacent Form Method 9

operations into account the total cost is approximately 13M + 5S + 12A, which is superior to

the traditional execution consisting of a doubling followed by a mixed addition: 12M + 7S

+ 16A if 3a = − , and 12M + 9S + 15A if a is randomly chosen. See [HMV04, Section

3.2.2] for cost details of traditional operations. To simplify comparisons, costs of field

multiplication/division by small constants have been considered equivalent to field

addition. The reader must note that, if these cheaper operations are relatively expensive in

a given implementation, the advantage of the proposed DA is further increased.

If the cost ratio A/M is very low, then we can reduce costs as follows. The addition in

(10) is first transformed using the strategy described in Section 3.1 consisting in trading

multiplications for squarings [LM07a]:

2 3 2

3 1
4 4 8X Xα β β= − − ,

()2 3

3 1 3 1
2 4 8Y X X Yα β β= − − ,

()
2 2 2

3 1 1 1
2Z Z Z Zβ β β= + − −= , (13)

where
3

1 2 1
Z y Yα = − ,

2

1 2 1
Z x Xβ = − .

Then, the new representative of P having the same z coordinate as
3 3 3

(, ,)X Y Z is:

 () () ()(1) (1) (1) 2 3

1 1 1 1 1 1 1 1 1
, , 4 , 8 , 2 , ,X Y Z X Y Z X Y Zβ β β= ≡ . (14)

And by applying the special addition (7) to computation P + (P+Q), we obtain:

2 3 (1) 2

4 1
2X Xω θ θ= − − , ()(1) 2 (1) 3

4 1 4 1
Y X X Yω θ θ= − − ,

(1)

4 1
Z Z θ= . (15)

where
(1)

3 1
X Xθ = − ,

(1)

3 1
Y Yω = − .

Observe that:

(1) 2 3 2 2 2 3 2

3 1 1 1 1
(4 4 8) (4) 4 4 12X X X X Xθ α β β β α β β= − = − − − = − − ,

() ()(1) 2 3 3 2 3

3 1 1 3 1 1 1 3 1
2 4 8 8 2 4 16Y Y X X Y Y X X Yω α β β β α β β= − = − − − = − − ,

 ()(1) 3 3 2 2 2 3

1 3 1 1 1
2 16 2 16 () 16X X Y Y Yα β αθ β α θ α θ β= − − = − − = − + + + − ,

which avoids intermediate computations
3 3 3

(, ,)X Y Z , and fixes the cost of the DA

operation at only 11M + 7S. We remark at this point that this formula achieves better

performance than the one described previously (eq. (10), (11) and (12)) whenever field

additions are very inexpensive, as the performed transformations introduce a few more of

these operations. Also, the reader must observe that this new formula benefits from a

small S/M cost ratio (e.g., implementations where 1S ≈ 0.6M).

Similar results can be obtained for the computation of a general DA by simply

replacing the first mixed addition + →J A J (13) by a general addition + →J J J ,

10 P. Longa and C. Gebotys

where J and A represent points in Jacobian and affine coordinates, respectively. In this

case, the cost is fixed at 14M + 9S. A further reduction can be achieved if some extra

memory is available. By precomputing and storing values 2

2
Z and 3

2
Z (see [EPAF] for

complete details), the cost of the general DA can be reduced to only 13M + 8S.

Similarly, we can apply the described procedure to composite operations derived from

the scheme (5). Table 2 contains the costs of the composite operations optimized in such a

way (items labeled with (2)), and compares them with the costs of previous formulas

(tripling and quintupling) presented in [LM07a,LM07c]. Also, we compare our results

with the best previous operation costs in the literature. Since there is no septupling

formula in the literature which we could compare with, we estimate its cost by combining

doubling, tripling and general addition in the cheapest possible way (a doubling/tripling

formula for the general case was presented in [LM07b, Appendix A] with a cost of 9M +

15S; other operations in the special case are from [LM07a]; see Table 1).

Table 2. Costs of optimized composite operations using Jacobian coordinates in comparison with

previous works.

Composite Operation Our work

 general a = −3 # reg.

 Tripling [DIM05]

 Tripling [LM07a]

 Tripling [LM08]

 Tripling (this work)

 (1) 10M + 6S - 10

 6M + 10S 7M + 7S 8
 (2) 7M + 10S 8M + 7S 6
 (2) 6M + 11S 7M + 8S 6

 Quintupling [MD07a]

 Quintupling [LM07c, Appendix C]

 Quintupling [LM08]

 Quintupling (this work, Appendix A)

 15M + 10S 15M + 8S N/A

 10M + 14S 11M + 11S 10
 (2) 12M + 12S 13M + 9S 6
 (2) 9M + 15S 10M + 12S N/A

 Septupling (traditional)

 Septupling [LM08]

 Septupling (this work)

 20M + 20S 21M + 17S 8

(2)17M + 14S 18M + 11S 6

(2)13M + 18S 14M + 15S N/A

 General DA (traditional)

 General DA (this work)

 General DA with extra storage (this work)

 16M + 10S 16M + 8S N/A

(3) 14M + 9S 14M + 9S N/A
(3) 13M + 8S 13M + 8S N/A

 DA (traditional)

 DA (this work)

 DA (this work; also [LM07b])

 12M + 9S 12M + 7S 7

(3) 13M + 5S 13M + 5S 6
(3) 11M + 7S 11M + 7S 6

 (1) SSCA-protected tripling by [DIM05]; (2) Using scheme (5); (3) Using scheme (6)

As can be seen, composite operations derived using schemes (5) and (6) are

significantly faster and, remarkably, more memory-efficient. Further reductions

introduced in this section have contributed with this high performance in terms of

computing cost.

In terms of speed, the tripling presented in [LM07a] is still the fastest. However, our

introduced improvements have made the quintupling, septupling and doubling-addition

derived from the schemes (5) and (6) the current speed leaders. Note that the explicit

Setting Speed Records with the (Fractional) Multibase Non-Adjacent Form Method 11

formula for quintupling is given in Appendix A.

We use these faster operations for our comparisons and cost analyses of scalar

multiplication methods in Section 8. As it will turn out, composite operations of the form

dP will be highly useful for the efficient realization of methods using multiple radices

(e.g., mbNAF and Frac-wmbNAF). In the case of DA and general DA, besides

contributing to speed up further multibase NAF methods, these operations will be shown

to significantly reduce the cost of the traditional radix-2 methods such as NAF, wNAF and

Frac-wNAF.

3.3 New Point Operation Formulas in mixed Jacobian-affine coordinates

The use of radices other than 2 opens the possibility of improving the computing time of

the scalar multiplication by allowing specialized formulas with other radices. In this

context, we contribute in this section with a new set of formulas in radices 3 and 5 for the

special cases 3 →A J and 5 →A J , respectively. Thus, they represent the computation

of the tripling (or quintupling) of a point that is in affine coordinates and yields the result

in Jacobian coordinates.

The costs of the new formulas are summarized in Table 3. They appear on top of the

corresponding formulas which they were derived from. For details about these formulas,

the reader is referred to Appendices B and C. Also, they can be found in our online

database of state-of-the-art formulas in Jacobian coordinates [EPAF].

Table 3. Costs of new formulas in mixed Jacobian-affine coordinates.

Operation Cost

 Tripling (
1

1Z =) (this work) 5M + 7S

 Tripling [LM07a] 7M + 7S

 Quintupling (
1

1Z =) (this work) 8M + 12S

 Quintupling (this work; Appendix A) 10M + 12S

As can be seen, these formulas in mixed Jacobian-affine coordinates reduce the cost in

2M in comparison with their traditional counterparts. They can be used for instance to

perform computations with the points in affine coordinates stored in a precomputed table.

We make use of these formulas to reduce further the computing cost of the scalar

multiplication using mbNAF and Frac-wmbNAF methods in Section 8.

12 P. Longa and C. Gebotys

4 Edwards Curves

The standard ECC curve (1) has been widely deployed in most implementations using

elliptic curves as it has been sponsored by international standardization bodies such as

NIST. However, nowadays they do not present the fastest group law. In fact, in [Edw07]

Edwards introduced a new normal form for elliptic curves with more efficient group

operations. Such a curve has the following form

2 2 2 2

: 1E x y dx y+ = + , (16)

where {0,1}d ∉ . The addition law is given by

 ()1 2 1 2 1 2 1 2

1 1 2 2

1 2 1 2 1 2 1 2

(,), (,) ,
1 1

x y y x y y x x
x y x y

dx x y y dx x y y

+ −

+ −
� , (17)

Interestingly enough, if d is not a square in the underlying finite field, say
p
F , there are

no exceptions in the group law. It works for all points, contrarily to what happens with the

standard ECC form (1).

In [BL07a], the authors presented explicit formulas for point operations in Edwards

curves using (, ,)X Y Z coordinates, which are known as Edwards coordinates. They

showed that general addition, mixed addition, doubling and tripling can be performed with

10M + 1S, 9M + 1S, 3M + 4S and 9M + 4S, respectively, when d from eq. (16) is fixed at a

small value and, hence, multiplications with it can be considered negligible in comparison

with a regular field multiplication.

Later, [BL07b] introduced a new coordinate system, known as inverted Edwards

coordinates, where (,)
i i

x y is represented by (/ , /)
i i i i

Z X Z Y instead of (/ , /)
i i i i

X Z Y Z

(used to derive formulas in Edwards coordinates). With these new coordinates, the costs

of most operations remain the same, with exception of general and mixed additions that

are reduced in 1M to 9M + 1S and 8M + 1S, respectively.

Other useful operations are doubling and addition in mixed (inverted) Edwards-affine

coordinates. In the first case, a doubling with the form 2 →A E , where A denotes an

initial point in affine and E denotes the resulting point in (inverted) Edwards coord., costs

3M + 3S. An addition with form + →A A E costs 6M + 1S and 7M in Edwards and

inverted Edwards coordinates, respectively.

In the following section, we contribute with new formulas for the computation of

operations using mixed coordinates on these efficient elliptic curve forms.

4.1 New Point Operation Formulas in mixed Edwards-affine coordinates

Similarly to the case of Jacobian coordinates, the use of multibase methods for the scalar

multiplication on an Edwards curve allows the improvement of the computing time by

Setting Speed Records with the (Fractional) Multibase Non-Adjacent Form Method 13

means of specialized formulas with radices different than 2. In this section, we contribute

to the state-of-the-art with a new set of formulas in radix 3 for the special case 3 →A E .

The costs of the new formulas are summarized in Table 4. They appear on top of the

corresponding formulas which they were derived from. For details about these formulas,

the reader is referred to Appendices D and E.

Table 4. Costs of new formulas in Edwards and inverted Edwards coordinates.

Operation
Coordinate

system
Cost

 Tripling (
1

1Z =) (this work)

Edw.
6M + 3S

 Tripling [BBL+07] 9M + 4S

 Tripling (
1

1Z =) (this work)

InvEdw.
7M + 3S

 Tripling [BBL+07] 9M + 4S

As can be seen, these formulas in mixed Edwards (inverted Edwards)-affine

coordinates reduce the cost in 3M + 1S (2M + 1S) in comparison with their traditional

counterparts.

These formulas are used to accelerate the execution of the multibase methods for

scalar multiplication on Edwards curves in Section 8.

5 Scalar Multiplication Methods

Much work has been invested to the development of efficient methods for the ECC scalar

multiplication. In this section, we explore and present a detailed analysis of some very

recent efforts, especially of the methods working with double-base number representation

(DB). Also, we discuss the advantages of the mbNAF and wmbNAF methods. For

completeness, the popular radix 2-based approaches, namely NAF, wNAF and Frac-

wNAF, are also defined. The reader must note that we do not deal here with methods

protected against side-channel attacks. If, for instance, simple side-channel analysis

(SSCA) attacks are a concern, then we could apply a technique based on side-channel

atomicity [CCJ04] to protect the methods discussed in this section (see [LM08] for an

example of the SSCA-protected implementation of mbNAF and wmbNAF).

In the following, we assume that # () .
p

E h q=F , where q is prime and h << q. Hence, p

≈ q. If the scalar k of a scalar multiplication kP is randomly chosen in the range [1, q − 1],

and 2 2log logn p q= ≈ , then the average length of k is l ≈ n – 1. We refer indistinctly as

density or Hamming weight to the number of nonzero elements of a given scalar

representation. In the case of scalar multiplication, the latter directly translates to the

number of point additions required to compute kP using such representation.

14 P. Longa and C. Gebotys

5.1 Non-Adjacent Form (NAF) and Window-w Non-Adjacent Form (wNAF)

Radix 2 or binary representations have been traditionally used because the expansion

translates directly into a given sequence of point doublings (2P) and additions (P + Q),

which are the basic ECC point operations. For instance, the binary method using elements

{0,1} is known to achieve a density of 1/2. The density of the binary expansion can be

effectively reduced with a signed representation that uses elements in the set {−1,0,1},

taking advantage of the fact that the cost of computing inverses of points (e.g., −P) in

additive groups is negligible. Among different signed radix 2-based representations, NAF

is a canonical representation with the fewest number of nonzero digits for any scalar k.

The NAF representation of k, denoted by NAF(k), contains at most one nonzero digit

among any two successive digits.

The expected number of doublings and additions using NAF is approximately (n – 1)

and n/3, respectively. Thus, the cost of the scalar multiplication using this method is

approximately (1)D (/ 3)An n− + , where D and A represent the cost of a point doubling

and addition, respectively.

If there is memory available, one can make use of precomputations to reduce the

computing time for scalar multiplication. In such case, wNAF is the natural expansion of

NAF. It basically exploits the availability of precomputed values to “insert” windows of

width w, which permits the consecutive execution of several doublings to reduce the

density of the expansion. The wNAF representation of k, denoted by NAFw(k), contains at

most one nonzero digit among any w successive digits.

It can be observed that wNAF is simply a generalization of NAF to any window value,

and that NAF is the only variant in such a generalization that does not require

precomputations Pi (hereafter we refer as precomputed points to non-trivial points not

including {O, P}).

The average density of nonzero digits in wNAF for a window of width w is

1

1w
=

+
D , (18)

and the number of required precomputed points is 2(2 1)w− − . Thus, the cost of the wNAF

method is approximately (1)D (/(1))An n w− + + .

Fractional Window-w NAF (Frac-wNAF)

In [Möl02], the author observed that the required table of precomputed points using

wNAF is of the form 1{ 1, 3, 5, , (2 1)}w
id D −∈ = ± ± ± ± −… , where 2w

+> ∈Z . The latter

limits the number of precomputed points to 1, 3, 7, 15 points, and so on. However, a

specific implementation could have memory restrictions that are different to these values.

Moreover, because methods involving an unknown scalar force to compute the

precomputed table every time a scalar multiplication is performed, it can happen that a

Setting Speed Records with the (Fractional) Multibase Non-Adjacent Form Method 15

table with a different number of points achieves the minimal cost. Thus, [Möl02] proposes

to recode the binary representation of an integer by using windows of flexible size in such

a way that allows the use of a digit set of the form { 1, 3, 5, , }id D m∈ = ± ± ± ±… , where

1m ≥ is an odd integer. In this way, one can flexibly choose any number of precomputed

points.

The average nonzero density for Frac-wNAF is given by [Möl04]

 ()
2

1

2 log

(1)
log 1

2
m

m
m

−

  

+
= + +  D (19)

Note that if 1m = , Frac-wNAF is actually reduced to the NAF method with a nonzero

density of about 1/3. Similarly, eq. (19) attains the same values as (18) for the standard

window values of wNAF. For instance, Frac-wNAF with 7m = reduces to wNAF with w

= 4 (D ≈ 0.2).

We will apply the same concept of fractional windows in radix 2 to the context of

multibase methods to derive the new Frac-wmbNAF in Section 6.

5.2 Double-Base (DB) Methods

[DIM05] proposed to represent the scalar k using mixed powers of 2 and 3 as follows:

1

2 3i i

m
b c

i

i

k k
=

=∑ , (20)

where m is the length of the expansion, ki is the sign (i.e., ki ∈{−1,1}), and bi and ci form

decreasing sequences max 1 2 0mb b b b≥ ≥ ≥ ≥ ≥… and max 1 2 0mc c c c≥ ≥ ≥ ≥ ≥… ,

respectively.

This Double-Base (DB) representation is highly sparse and, consequently, permits to

reduce the Hamming weight of the expansion for the scalar. With the introduction of

efficient tripling formulae [DIM05], these representations using ternary bases are thought

to greatly reduce the execution time of scalar multiplication.

Nevertheless, finding the expansion (20) of a given integer in a reasonable amount of

time and utilization of resources is probably the main obstacle to apply this method in

practice. In fact, several authors have speculated about the difficulty of finding short

expansions using {2 3 }-i ib c
terms, and have defined it as a difficult problem on its own.

[DIM05] proposed to solve that problem by establishing “efficient” maximum bounds

bmax and cmax for the powers of 2 and 3, respectively, and then executing an exhaustive

search for closest terms 2 3i ib c
 (method referred to as “Greedy” algorithm). This approach

is obviously heuristic and introduces several drawbacks into the DB scheme. We

summarize some of them in the following.

1. From a theoretical point of view, DB expansions cannot (until today) be defined

16 P. Longa and C. Gebotys

adequately. The density or number of nonzero terms expected for an n-bit scalar is,

thus, estimated only empirically.

2. To find short expansions, some authors have suggested some heuristics to establish the

maximum values for exponents of powers 2 and 3. If the level of security (i.e., the

bitlength of the scalar) and/or curve form are modified, then different estimates must

be applied. This increases the difficulty to analyze optimal parameters, making the

implementers’ work harder.

3. Looking for closest {2 3 }-i ib c
terms to build a DB expansion implies having a table

storing several powers of 2 or 3 or combinations of these. At first sight this would

result very impractical in constrained settings. We can trade memory for speed and

store only part of the required table. However, this leads to higher conversion times (to

DB representation) and/or very expensive precomputation stages (we will explore

some recent developments of this kind later).

4. There is no established “distance” between terms. In fact, it can happen for instance

that only triplings are required between two additions (i.e., between two nonzero

terms). On the standard EC curve (1) this would increase the computing cost of scalar

multiplication as DB would not allow the use of the highly efficient DA operation.

These were some of the problems inherent to this method since its proposal in

[DIM05]. Nevertheless, the authors showed that DB leaded to lower costs to compute the

scalar multiplication, even surpassing NAF4. However, point arithmetic has been greatly

improved since then and their findings do not completely apply today. Also, their

comparisons against other methods did not take into account the memory/computing time

penalty that the DB method requires for precomputation and/or conversion. The latter is

also missing in most of the subsequent works about DB.

Window-based DB methods by [DI06]

Later, [DI06] extended the DB approach with two methods intended for applications that

can afford precomputations. The first method, which we will refer to as DB with

anomalies, allows extending the range of search for {2 3 }-i ib c
terms by relaxing the

condition of monotonically decreasing powers of 2 and 3 during conversion to DB. Thus,

it makes use of a precomputed table of the form 1 22 2
{ 2, 2 , , 2 , 3, 3 , , 3 }

w w
± ± ± ± ± ±… … ,

where
1

w and
2

w represent the maximum exponents expanding the range of search. Note

that the authors restrict the precomputation values to individual powers of 2 and 3.

Otherwise, we would be forced to precompute and store values of the form 2 3
a b

, whose

cost grows very rapidly (we will show later that recent approaches use in fact these mixed

terms for precomputations, which lead to inefficient implementations).

Setting Speed Records with the (Fractional) Multibase Non-Adjacent Form Method 17

The second method presented in [DI06], referred to as Extended DB, makes use of an

extended set S of odd digits ki (see (20)) coprime to 3. For instance,
i

k ∈ S = {±1, ±5, ±7,

±11,…}. We will denote this method by S-DB. Comparing it with the traditional table

used by wNAF (namely
1

1, 3, 5, , (2 1){ }w−
−…), we notice that one disadvantage of the

Extended DB method is the particular structure of the precomputed table, which would

require more computations to have a given number of precomputed points. This fact will

be evident in Section 7 when we explore efficient schemes for precomputation.

Also, observe that these two window-based DB methods inherit the problems found in

the original DB method without precomputations, i.e., the drawbacks of the conversion to

DB and the lack of a theoretical foundation.

An extension of the previous work (referred to as Triple-Base or TB) was presented in

[MD07a] by adding radix 5 to the DB method. It is also based on a “Greedy” algorithm to

find a scalar representation, and hence, exhibits the same shortcomings as DB.

Window-based DB method by [MD07b]

Mishra and Dimitrov presented very recently a new variant for the window version of DB.

In this case, they actually resort to precomputed values of the form 2 3
a b

 with the

objective of reducing the searching time during conversion to DB. If compared with the

original approach of looking for best approximations in the set

max max
{2 3 : 0 , 0 }i ib c

i i
b b c c≤ ≤ ≤ ≤ , where

max
b and

max
c are the maximum exponents

allowed for 2 and 3, respectively, at each searching iteration, this new method restricts the

search at each round to the set
max 1 max max 2 max

{2 3 : , }i ib c

i i
b w b b c w c c− ≤ ≤ − ≤ ≤ ,

where
1

w and
2

w are the window parameters for the exponents 2 and 3, respectively. The

latter reduces considerably the time to convert a number to DB representation. Note that

max
b and

max
c in both cases are updated at each iteration following the monotonically

decreasing condition max 1 2 0mb b b b≥ ≥ ≥ ≥ ≥… and max 1 2 0mc c c c≥ ≥ ≥ ≥ ≥… .

Nevertheless, the authors of [MD07b] also observed the problem that involves the

expensive computation of precomputed values of the form 2 3
a b

. The latter does not only

grows very rapidly for small values
1

w and
2

w , but also presents a very sparse structure

that increases considerably the cost of the precomputation stage for a given number of

points. It is expected then that the possible savings obtained during the scalar

multiplication (and the conversion stage) are overwhelmingly downplayed by the

excessive cost of the precomputation.

To try to solve this problem, [MD07b] uses a modified scheme in which only part of

the required precomputed points are computed in advance. The remainder points are

computed on-the-fly when required by the scalar multiplication. However, we note that

this approach introduces a new problem into the method. Since the computation of some

points required during the scalar multiplication has to be completed on top of the few

points precomputed, these precomputed points must be stored in Jacobian coordinates

18 P. Longa and C. Gebotys

forcing the use of general additions instead of the very efficient mixed Jacobian-affine

addition. Comparisons in Section 8 will show that this fact increases the overall costs.

Besides the problems highlighted, the execution sequence of the point operations in the

scalar multiplication as proposed by [MD07b] does not allow the use of the very efficient

DA operation discussed in Section 3.2. Moreover, although speeding up and reducing the

memory requirements of the conversion step, it still does requires extra memory in

comparison to other methods, and its heuristic nature (in the selection of maximum

bounds for exponents 2 and 3) does not allow for a theoretical analysis of performance.

Window-based DB method by [BPP07]

An alternative window-based method using double-base number representations was

recently presented in [BPP07]. From a theoretical viewpoint, the advantage of this method

is that allows for an estimation of the expected number of point operations by fixing the

size of the windows for exponents of 2 and 3. This permits to establish the number of

expected terms in the DB representation, and also to minimize the search space for

{2 3 }-i ib c
terms, which reduces further the conversion times to DB and its memory

requirements.

 However, through a more detailed analysis, it can be seen that (similarly to the method

by [MD07b]) the problem of finding closest {2 3 }-i ib c
terms by means of the “Greedy”

algorithm has been shifted to the problem of having a very expensive precomputation

stage which, at the end, although reduces the memory requirements (the table used to look

for DB terms is significantly smaller), increases the overall cost of the scalar

multiplication.

In Section 8, we will compare the performance of the DB methods discussed in this

section with the new multibase NAF methods introduced in [Lon07] which, as it will be

evident in the following section, avoid the drawbacks of DB.

5.3 Multibase Non-Adjacent Form (mbNAF) and window-w NAF (wmbNAF)

methods

Longa and Miri recently solved the problem of finding short and generic multibase

representations in a very efficient manner [Lon07,LM07c].

They proposed the use of the following representation for the scalar k:

 ()

1 1

ji

Jm

c
i j

i j

k k a
= =

=∑ ∏ , (21)

where: bases a1 ≠ a2 ≠ … ≠ aJ are positive prime integers (a1 : main base).

 m is the length of the expansion.

Setting Speed Records with the (Fractional) Multibase Non-Adjacent Form Method 19

 ki are signed digits from a given set D.

()
i

c j are monotonically decreasing exponents, s.t. 1 2() () () 0mc j c j c j≥ ≥ ≥ ≥…

for each j from 2 to J, and

(1)
i

c are monotonically decreasing exponents for the main base a1 (i.e., j = 1),

s.t. 1 2(1) (1) (1) 0mc c c> > > >… .

Note that this multibase representation is quite generic, and does not have restrictions in

the number or order of bases (contrarily to what happens in the DB representation). In

fact, the only restriction is given by the last two conditions of monotonically decreasing

exponents given above, which guarantee that an expansion of the form (21) is efficiently

executed by a scalar multiplication scanning the digits from left to right.

The key strategy applied to this multibase representation (21) is the use of the property

of non-adjacency given by the last condition above. By fixing the minimal number of

consecutive zero terms of the base a1 (called the main base) to only 2 in (21), we achieve

the mbNAF representation, which minimizes the number of required precomputed points.

On the other hand, if we relax the previous condition and allow larger window sizes

(i.e., allowing 3, 4, 5, or more, consecutive zero terms of the main base before the

following nonzero term is expected) we can reduce further the average number of nonzero

terms in the representation of the scalar at the expense of a larger precomputed table. The

previous technique is known as wmbNAF.

Algorithm 5.1 performs the conversion of any positive integer to mbNAF (and

wmbNAF) representation following the description above. Note that we have integrated

here the algorithms for mbNAF and wmbNAF given in [Lon07] and [LM08].

Algorithm 5.1 Computing the mbNAF (wmbNAF) of a positive integer

INPUT: scalar k, bases A = {a1,a2,…,aJ}, where +

ja ∈Z are primes for 1 j J≤ ≤ ,

 window 2w = for mbNAF, and window 2w > for wmbNAF, where w +∈Z

OUTPUT: the () 2 1() ()
1 2 2 1, , ..., NAF () = (... , ,)a a

J wa a a k k k

 1. i = 0

 2. While k > 0 do

 2.1. If 1mod 0k a = or 2mod 0k a = or … or mod 0jk a = , then 0ik =

 2.2. Else:

 2.2.1 1mods w
ik k a=

 2.2.2 ik k k= −

 2.3

 2.3.1 If 1mod 0k a = , then ()1

1/ , a
i ik k a k k= =

 2.3.2 elseif 2mod 0k a = , then ()2

2/ , a
i ik k a k k= =

20 P. Longa and C. Gebotys

 �

 2.3.J elseif mod 0Jk a = , then ()/ , Ja
J i ik k a k k= =

 2.4 i = i + 1

 3. Return 2 1() ()
2 1(... , ,)a ak k

The function mods in Algorithm 5.1 represents the next computation:

()

1 1

1 1

1

If mod / 2 , then:

mod

Else,

mod

w w

w w
i

w
i

k a a

k k a - a

k k a

≥

=

=







 (22)

Note that Algorithm 5.1 approximates every computation to the closest number

divisible by a power of the main base, namely a1. Thus, two or more consecutive

operations by a1 are guaranteed before the next addition. In contrast to traditional radix-2

methods, here the nonzero density of the expansion is further reduced as the number of

bases is increased since the algorithm looks for extra divisions by the additional bases.

As shown in [LM08], the mbNAF and wmbNAF methods require a precomputed table

of the form

{ } { }
1

1 1
1 1 1

1
1 , 2 , ,

2

1
0, 1, 2, ,

2
\

w w

i

a
a a a

a
d D

− −
± ± ±

−
∈ = ± ± ±    

   
…… , (23)

where 0 i m≤ ≤ and 2w
+≥ ∈Z (2w = for mbNAF). The precomputed table (23)

involves

1

1 1
2

2

w w
a a

−
− −

 (24)

precomputed points without considering {0, ±1}. Further, preliminary analysis shows that

the expected average nonzero density is asymptomatically

()

1

1

1

1 1

a

w a

−
=

− +
D (25)

with regard to the main base. Note that if
1

{ }a=A (single-base case) with
1

2a = , the

multibase representation reduces to the traditional radix-2 methods. Specifically, if 2w =

Setting Speed Records with the (Fractional) Multibase Non-Adjacent Form Method 21

mbNAF reduces to NAF (with the same nonzero density around 1/3), and if 2w >

wmbNAF converts into wNAF (eq. (25) takes the form of eq. (18)).

Note that it is expected that having a1 = 2 yields the most efficient scalar multiplication

in terms of speed on standard EC curves and Edwards curves, where point doubling is

highly efficient in comparison with other operations. In fact, results in Section 8 will show

that cases using the set of bases {2,3}=A or {2,3,5}=A yields the highest performance

on the aforementioned curve forms. However, in other settings where triplings (or other

composite operations) are more efficient, the expectation is that the case with a1 ≠ 2

provides a better performance.

We will illustrate what has been said to this point with the following example. Let k =

618 and bases a1 = 2, a2 = 3. Using mbNAF, k would be computed (following the form

(21)) as

6 2 4 3 2618 2 3 2 3 2 3 2 3(2 (2 3 1) 1)= × + × − × = × × + − , (26)

where the inner parentheses are executed first during a scalar multiplication execution.

Note that at least two doublings are executed before the following addition. This

restriction adjusts to the description given above regarding the minimal number of zero

terms associated to the main base that should happen before any addition. This can be

more easily visualized if we present (26) as would be given by Algorithm 5.1:

(2) (3) (2) (2) (2) (2) (2) (3) (2)

2
(2,3)NAF (618) 1 0 0 1 0 0 1 0 0= − , (27)

where the superscript (aj) represents the base associated with a given digit. Note that in a

scalar multiplication the execution is from left to right, performing a doubling if the digit

is (2)0 , a tripling if it is (3)0 , and a doubling followed by an addition if it is (2)1± .

According to (27) a scalar multiplication only costs 6D+2T+2A, where D, T and A

represent doubling, tripling and addition, respectively. Then, if we use operations costs

from Table 1 (special case a = −3; 1S = 0.8M), the scalar multiplication [618]P would

cost approximately 87.6M. Further, every doubling followed by an addition can be

replaced by a cheaper DA operation. In that case the cost can be reduced to only

4D+2T+2DA = 86.4M.

Let us now compare the multibase NAF representation with the DB method [DIM05].

Let bmax = 9 and cmax = 5 be the maximum bounds for exponents of bases 2 and 3,

respectively. By searching for the closest {2 3 }-i ib c
terms in a table containing the power

values, we find that 3 4 3 2 3618 2 3 3 3 3 (3 (2 3 1) 1)= × − − = × − − , which can be

represented as a digit string by

(2) (3) (2) (2) (2) (3) (3) (3)DB(618) 1 0 0 0 1 0 1 0= − − . (28)

Using operations of Table 1, (28) costs 3D+4T+2A = 91.8M (or 2D+4T+1A+1DA =

91.2M), which is higher than 86.4M obtained with the mbNAF method.

22 P. Longa and C. Gebotys

The main observation from the previous example is that, besides requiring extra

memory to store the powers of the bases, the DB method does not necessarily require a

minimum number of doublings before each addition. That is one of the reasons why the

DB method is quite difficult to define theoretically. It searches for closest terms

independently on whether such a term has a well defined “distance” with the precedent

one. Consequently, the DB method reduces the number of terms in the scalar

representation but insert other operations “randomly”. If, for instance, too many triplings

relative to doublings are inserted, then the overall cost is increased because tripling is a

more expensive operation. Furthermore, DB does not guarantee that a doubling will

happen before every addition. Thus, the efficient DA cannot be used in all the cases (as

can be seen in the example above). The multibase NAF methods avoid such drawbacks

because these allow flexibly “defining” the number of operations of each kind that can

appear in the representation of k.

To summarize, it is easy to see that both mbNAF and wmbNAF are natural extensions

of NAF and wNAF. In that sense, they inherit such valuable properties as non-adjacency,

simplicity and efficiency in the conversion of any integer to such representations, and no

memory penalty.

In the following section, we generalize these methods using a new multibase recoding

that allows any number of points in the precomputed table.

6 Fractional Window-w Multibase Non-Adjacent Form

(Frac-wmbNAF) method

In the previous section, we described how the (w)mbNAF method approximates a given

integer to the value that maximizes the number of divisions by the main base a1 in

subsequent operations. Such approximation is restricted by the chosen window, whose

size is fixed in advance, and which ultimately determines the required number of

precomputed points.

Let us illustrate the latter with the integer k = 1105, window w = 4 and bases

{2,3}=A . From (23), we know that we should have available the precomputed points

id P , where { 1, 3, 5, 7}id D∈ = ± ± ± ± . By applying Algorithm 5.1 to get the wmbNAF

representation of k, we obtain the following

(2) (2) (2) (2) (2) (3) (2) (2) (2) (2)

4
(2,3)NAF (1105) 1 0 0 0 7 0 0 0 0 1= ,

where again the superscript ()ia represents the base (i.e., 2 or 3) associated with a digit

from the set {0, 1, 3, 5, 7}± ± ± ± . Note that digits 0 correspond to doubling or tripling

operations (depending on the associated base), and that the remainder digits corresponds

to additions with one of the precomputed points id P . The iterative conversion process

can be visualized more easily as follows

Setting Speed Records with the (Fractional) Multibase Non-Adjacent Form Method 23

1104 552 276 138 69 16 8 4 2
1105 1 23 7 1

2 2 2 2 3 2 2 2 2
− → → → → → → − → → → → → .

We can see in the example that, by shifting the initial odd value to 1104, we guarantee

at least four subsequent divisions by 2 (or four doublings in terms of computations for the

scalar multiplication) because 41104 0 (mod 2)≡ . In other words, we establish a

“window” from 1104 to 1120, and approximate our integer to the closest extreme, i.e.,

1104, using one of the digits of the precomputed table D.

The drawback of the previous approach is that windows have a fixed size and we are

forced to precompute 1 point if w = 3, 3 if w = 4, 7 if w = 5, and so on. There is no

flexibility to choose tables of 2, 4, 5, 6, 8 points, and so on. As mentioned previously, it

can happen that tables with a number of points different to the number provided by fixed

windows w achieve the highest performance.

To solve the previous problem, we propose a new multibase recoding scheme that uses

“fractional” windows. Instead of fixing the windows to a given value, we flexibly resize

the window size in such a way that only a given number of precomputed points is

required.

For the remainder, we will assume that the main base a1 is 2 as this value is expected to

achieve the lowest costs with most efficient EC curve forms. A straightforward variation

of the following procedure would allow the use of other bases as the main base.

First, let us establish our ideal table with unrestricted number of precomputed points

id P

 { }1, 3, 5, ,
i

d D m∈ = ± ± ± ±… (29)

where 3m
+≥ ∈Z is an odd integer. If we define m in terms of the standard windows w

from wNAF and wmbNAF, it would be expressed as

 22wm s−= + (30)

where 2 12 2w wm− −< < and 1s
+≥ ∈Z is odd. Notice that expressions are using the

absolute values of digits id .

We can now define the rules of our recoding scheme for bases A = {a1,a2,…,aJ} in the

following:

1. If mod 2 0k = or 2mod 0k a = or … or mod 0Jk a = then 0ik = ,

2. Elseif 0 < r m≤ then ik r= ,

3. Elseif < (3 4)m r m s< − then 12i
wk r −= − ,

4. Elseif (3 4) 2wm s r− ≤ < then 2i
wk r= − ,

where mod 2wr k= .

Basically, the proposed recoding first detects if k is divisible by one of the bases from

A. If not, it establishes a window w and checks if k can be approximated to the closest

24 P. Longa and C. Gebotys

extreme of the window using any of the digits id available. It can be easily verified that

the latter will be accomplished if conditions 2 or 4 are satisfied. Thus, ik gets the

corresponding value id . Otherwise, the established window is too large and, hence, it is

“reduced” to the immediately preceding window size to which k can be approximated

(condition 3).

The described procedure is presented in detail in Algorithm 6.1, which converts any

positive integer to its Frac-wmbNAF representation. Note that t represents the number of

precomputed points (without including {0, 1}±) that would be required to perform a scalar

multiplication.

We remark that the proposed algorithm is a generalization of the original mbNAF and

wmbNAF representations (see Section 5.3). In fact, if we fix 2w
+≥ ∈Z with the

traditional window values where the last term m in the precomputed table
1{1,3, 7,15, , (2 1)}w−∈ −… , we obtain the mentioned representations. Observe that we

have included the extra conditions m = 1, s = 0, so that Algorithm 6.1 is also able of

converting any integer to its mbNAF form (for the particular case 1 2a =).

Algorithm 6.1 Computing the Frac-wmbNAF of a positive integer

INPUT: scalar k, bases A = {a1,a2,…,aJ}, where 1 2a = and +

ja ∈Z are primes for

 1 j J≤ ≤ , table { 1, 3, , (2 1)}D m t= ± ± ± = +… , 2w +≥ ∈Z ; 22wm s−= + and

 2 1,2 2w wm− −< < where 3m ≥ and 1s ≥ are odd integers (m = 1, s = 0 for mbNAF)

OUTPUT: the () 2 1() ()
2 2 12, , ..., NAF () = (... , ,)a a

J w,ta a k k k

 1. i = 0

 2. While k > 0 do

 2.1. If mod 2 0k = or 2mod 0k a = or … or mod 0Jk a = , then 0ik =

 2.2. Else:

 2.2.1 mod 2wr k=

 2.2.2 If 0 < r m≤ , then ik r=

 2.2.3 Elseif < (3 4)m r m s< − , then 12i
wk r −= −

 2.2.4 Elseif (3 4) 2wm s r− ≤ < , then 2i
wk r= −

 2.2.5 ik k k= −

 2.3

 2.3.1 If mod 2 0k = , then ()2/2 , i ik k k k= =

 2.3.2 Elseif 2mod 0k a = , then ()2

2/ , a
i ik k a k k= =

 �

 2.3.J Elseif mod 0Jk a = , then ()/ , Ja
J i ik k a k k= =

Setting Speed Records with the (Fractional) Multibase Non-Adjacent Form Method 25

 2.4 i = i + 1

 3. Return 2 1() ()
2 1(... , ,)a ak k

Let us illustrate the new method with an example. If k = 1105 (following the example

above) and we select m = 5 to have a table of the form { }1, 3, 5D = ± ± ± , then w = 4 and

s = 1 by means of (30). Then, using the conversion Algorithm 6.1 we obtain

(2) (3) (2) (2) (2) (3) (2) (2) (2) (2)

4,2
(2,3)NAF (1105) 1 0 0 0 1 0 0 0 0 1= − ,

and the conversion process can be visualized as follows

1104 552 276 138 69 24 12 6 3

1105 1 23 1 1
2 2 2 2 3 2 2 2 3

− = = = = = = + = = = = = .

We can see that, this time, when 23 is obtained in the middle of the conversion, the

algorithm finds that it requires an addition with −7 to approximate the value to 16 (which

is the closest number 40 (mod 2)≡ , as required for a window w = 4). However, the digit

−7 is not part of our table D anymore, so the window size is reduced accordingly to w = 3

to establish a new window between 16 and 24. Then, 23 is rightly approximated to the

closest value (i.e., 24) using an addition with 1.

As can be seen, our method resizes the window in such a way that allows the use of a

flexible number of digits. Furthermore, in contrast to the traditional radix 2-based Frac-

wNAF [Möl02,Möl04], our algorithm looks for additional divisions by an extended set of

bases so that the number of divisions (or zero terms in the representation) is efficiently

extended. This is expected to reduce the nonzero density of the scalar representation, and

consequently, reduce the total cost of the scalar multiplication.

Again, it is important to remark that this method falls in the same category as mbNAF

and wmbNAF, inheriting the property of non-adjacency using multiple bases. And also, it

has a simple and efficient conversion process with no memory penalty.

In Section 8, we provide extensive tests proving the high performance of this multibase

method. In the following, we present efficient schemes for the precomputation of points as

required for methods as the one introduced in this section.

7 Precomputation Schemes

Precomputed points are a useful tool exploited to implement window-based methods for

the scalar multiplication. However, when the point to be multiplied is variable, there is no

other option that calculating such precomputed points each time a scalar multiplication is

executed. Hence, computing the precomputed table is a critical task. In fact, its efficiency

26 P. Longa and C. Gebotys

determines not only the maximum number of points that yields the optimal performance

but also determines whether the scalar multiplication method is actually efficient or not.

In the following, we summarize the precomputation schemes that, to our knowledge,

offer the lowest cost in each scenario. Note that some of them are introduced in this work.

7.1 Standard ECC Curve in Jacobian Coordinates

In [LM07b], Longa and Miri introduced a new highly efficient scheme for the

computation of the precomputed table of the form { }1, 3, 5, ,
i

d D m∈ = ± ± ± ±… , for

1m
+

≥ ∈Z odd, using Jacobian coordinates. The scheme was based on the following

execution sequence combined with the special addition (7)

 diP = 2P+…+2P+2P+P . (31)

Two versions with slightly different memory requirements were derived from this

approach. They basically differ in the number of values that are stored from the additions

in (31) and reused later during conversion to affine representation. In this work, we will

use the fastest scheme (referred to as Scheme J), which requires some extra memory for

high window values but achieves the lowest computing cost known in the literature for the

standard curve (1). That cost is given by

 SchemeCost 1 (9) (2 6)I L M L S= + + +
J

, (32)

where L represents the number of points in the precomputed table without including { 1}± .

In this paper, we introduce a modification to the previous scheme to include the

precomputed point 2P. In (31) it is easy to see that 2P is calculated as part of the process,

so we can add this point to the table to have an additional precomputed point (i.e.,

{ }1, 2, 3, 5, ,
i

d D m∈ = ± ± ± ± ±…) at the cost of some extra fields operations required

to convert it to affine coordinates in the last stage of the scheme. Since the latter requires

4M, the new cost of the modified scheme (referred to as Extended Scheme J) is given by

 Ext. SchemeCost 1 (9 5) (2 4)I L M L S= + − + +
J

, (33)

 Note that the number of points has been increased by one. Hence, in this case

(1) / 2L m= + .

As can be seen, the cost given by (33) involves one field inversion, which is required

when converting points to affine coordinates during the last stage of the scheme.

However, we note here that an alternative approach would be to avoid that conversion of

coordinates. In fact, for implementations where field inversions are very expensive, it

Setting Speed Records with the (Fractional) Multibase Non-Adjacent Form Method 27

could be advantageous to leave points in Jacobian coordinates once computed as in (31).

In such case, the cost of the precomputation is only

2SchemeCost (5 4) (2 3)L M L S= − + +
J

. (34)

Observe that the cost of (31) without conversion to affine involves one doubling

2 →A J (1M + 5S) and (L−1) special additions (5M + 2S).

Also note that, when using this approach (referred to as Scheme J2) with cost (34),

general additions must be used in place of mixed additions since precomputed points are

left in Jacobian coordinates. Although this increases the cost of the scalar multiplication, it

is expected that the savings introduced by (34) during the precomputation stage are

advantageous in the overall cost when using large windows w and the implementation has

a high I/M ratio.

The efficient schemes discussed in this section (namely, Extended Scheme J and

Scheme J2) will be used to estimate the cost of precomputing points for wNAF and Frac-

wmbNAF methods in Section 8.

In the following, we adapt the schemes presented here and propose improved

precomputation schemes in Jacobian coordinates for the Extended DB method.

Improving the Precomputation in the Extended DB method by [DI06]

Precomputations in the Extended DB method have the form

{ }1, 5, 7, 11, 13, 17, ,
i

d D m∈ = ± ± ± ± ± ± ±… . If we use (31) with the special addition

with identical z-coordinate (7), the cost of the precomputation can be fixed at

 ()-1
1mD + A 1 3(1) (3 1)

2

m
I L M M S L

∗
+ + − + + , (35)

where mD and A
∗

 represent the costs of a doubling of the form 2 →A J and a special

addition, respectively. L and m denote the number of points and the last point in the table,

respectively.

The validity of (35) is easy to verify. First, the table requires to compute 2P. Since P is

in affine representation and the result should be in Jacobian coordinates, we require a

doubling of the form 2 →A J . To complete the computation with the sequence

1 3 5P P P mP→ → → →… , it is obvious that we require (1)/2m − additions. If we

follow [LM07b], these additions can be in fact special additions (7). Then, to convert to

affine representation (we need points in affine coordinates to use mixed additions during

the scalar multiplication) we can use the Montgomery’ simultaneous inversion method.

The latter requires one inversion, 3(1)L − multiplications to calculate the denominator
1

i
Z

−
 for the points, and (3 1)M S+ per point to compute the coordinates

2
/

i i i
x X Z= ,

3
/

i i i
y Y Z= .

By taking into account point operation costs, (35) can be expressed by

28 P. Longa and C. Gebotys

 ()-1
1 + 5 2 2(3 1) (1 5)

2
()m

I M S L M L S+ + − + + . (36)

We remark that our scheme can be easily modified to work with an extended table of

the form { }1, 2, 3, 5, 7, ,
i

d D m∈ = ± ± ± ± ± … , as we did in Section 7.1.

7.2 Edwards Curves in Edwards and inverted Edwards Coordinates

For our analysis in Section 8, we will use wNAF and Frac-wmbNAF to compute the scalar

multiplication in Edwards curves. In this case, it is also recommended to have a

precomputed table of the form { }1, 2, 3, 5, ,
i

d D m∈ = ± ± ± ± ±… , where

3m
+

≥ ∈Z odd.

Following the same pattern as (31), computing precomputations would cost

 1mD +1mA + (2)gA 1 3(1) (2)L I L M L M− + + − + , (37)

where mD, mA and gA represent the costs of a doubling of the form 2 →A E (Edwards

coordinates), a mixed addition + →E A E and a general addition + →E E E ,

respectively.

Note that the cost (37) involves the computation of 2P with the form 2 →A E . The

first addition to obtain 3P uses the mixed form + →E A E . Then, the sequence

3 5P P mP→ → →… requires (3)/2 2m L− = − general additions with form

+ →E E E . Finally, to convert to affine representation, we can use the Montgomery’

simultaneous inversion method, which requires one inversion, 3(1)L M− to calculate the

denominator
1

i
Z

−
 for the points, and 2M per point to compute the coordinates

/
i i i

x X Z= , /
i i i

y Y Z= .

By taking into account point operation costs (see Section 4), (37) can be expressed by

1SchemeCost 1 + (15 11) (2)I L M L S= − + +
E

, (38)

in Edwards coordinates.

 In the case of inverted Edwards coordinates the conversion to affine at the end of the

precomputation process is slightly different since the transformation involves the

computations /
i i i

x Z X= and /
i i i

y Z Y= (see Section 4). It can be verified that this step

requires 1 (4) (2) /I L M L L M+ + −   using the simultaneous inversion method.

Thus, the total cost of this scheme in inverted Edwards coordinates is

 1mD +1mA + (2)gA 1 (4) (2) /L I L M L L M− + + + −   , (39)

If we take cost operations into account, (39) can be expressed by

Setting Speed Records with the (Fractional) Multibase Non-Adjacent Form Method 29

  
1SchemeCost 1 + ((2) / (13 7) (2)I L L L M L S= − + − + +

IE
, (40)

in inverted Edwards coordinates.

 As previously discussed, inversion can be very expensive in some implementations.

For that case, we propose an alternative method without inversions. To achieve the latter,

conversion to affine representation should not be included and precomputed points left in

Edwards coordinates (, ,)X Y Z (or inverse Edwards coord.). In this case, the cost is only

1mD +1mA + (2)gAL − . When expressed with operation costs given in Section 4, the

costs are

2SchemeCost (10 8) (2)L M L S= − + +
E

, (41)

in Edwards coordinates, and

2SchemeCost (9 7) (2)L M L S= − + +

IE
, (42)

in inverted Edwards coordinates.

 The proposed schemes for Edwards coordinates (
1 2

Schemes andE E) and inverse

Edwards coordinates (
1 2

Schemes andIE IE) will be used in the following section for the

estimation of costs of the scalar multiplication.

8 Implementation Results

We have carried out extensive tests to determine the performance of the most efficient

scalar multiplication methods discussed in this work when applied on both standard (1)

and Edwards (16) curves. To have a fair comparison we have used for all methods

(whenever possible) the state-of-the-art formulas for the point arithmetic. The costs for

Jacobian coordinates, standard ECC curves, were detailed in Section 3. In Section 4, we

did the same for Edwards curves for the two known representations: Edwards and inverted

Edwards coordinates. Table 5 summarizes these costs. Note that we will consider for our

analysis 1S = 0.8M, so the special case a = −3 is assumed for doubling, tripling and

quintupling in Jacobian coordinates as this gives the lowest costs for this case. Also, we

disregard the cost of cheaper operations such as field additions and multiplications by

small constants to simplify comparisons.

We implemented NAF, Frac-wNAF, mbNAF and Frac-wmbNAF and ran the

algorithms with 1000 160-bit scalars chosen randomly. We first counted the required

number of point operations, averaged the results and then estimated the cost for each

method using data from Table 5. Also, for window-based methods we included in the

overall cost the cost of calculating the precomputed points. For each case we used the best

precomputation scheme as detailed in Section 7. Thus, in the case of Jacobian coordinates

we used the Extended Scheme J (labeled as case 1 in Table 6), whose cost is given in

(33), and the Scheme
2
J (labeled as case 2) with cost (34). In the case of Edwards

30 P. Longa and C. Gebotys

coordinates we also considered two schemes (Section 7.2): using one field inversion (cost

given by (38); case 1) and with no inversions (cost given by (41); case 2). Finally, for

inverted Edwards coordinates we considered the
1 2

Schemes andIE IE (using one and nil

field inversions, respect.), whose costs are given by (40) and (42), respectively.

Table 5. Costs of point operations in Jacobian, Edwards and inverted Edwards coordinates.

Operation Cost

 Doubling [LM07a] 3M + 5S

 Doubling
1

1)(Z = [LM07b] 1M + 5S

 Tripling [LM07a] 7M + 7S

 Tripling
1

1)(Z = (this work, Appendix B) 5M + 7S

 Quintupling (this work, Appendix A) 10M + 12S

 Quintupling
1

1)(Z = (this work, Appendix C) 8M + 12S

 General addition [LM07a] 11M + 5S

 Mixed addition [LM07a] 7M + 4S

 Special addition
1 2

)(Z Z= [Mel06] 5M + 2S

 Doubling-addition (this work; also [LM07b]) 11M + 7S

 General doubling-addition (this work) 14M + 9S

 Doubling [BL07a] 3M + 4S

 Doubling
1

1)(Z = [BL07c] 3M + 3S

 Tripling [BL07a] 9M + 4S

 Tripling
1

1)(Z = (this work, Appendix D) 6M + 3S

 General addition [BL07a] 10M + 1S

 Mixed addition [BL07a] 9M + 1S

 Doubling [BL07b] 3M + 4S

 Doubling
1

1)(Z = [BL07c] 3M + 3S

 Tripling [BL07b] 9M + 4S

 Tripling
1

1)(Z = (this work, Appendix E) 7M + 3S

 General addition [BL07b] 9M + 1S

 Mixed addition [BL07b] 8M + 1S

Setting Speed Records with the (Fractional) Multibase Non-Adjacent Form Method 31

The results for 160 bits are shown in Table 6. They are divided by number of

precomputed points, curve form and scalar multiplication method.

As we can see, the mbNAF method using bases (2,3) and (2,3,5) represents a

significant improvement in comparison with NAF. The latter holds for the standard and

Edwards curves. For instance, mbNAF using bases (2,3,5) is about 8.1% faster than our

highly optimized NAF using Jacobian coordinates. This highlights the relevance of the

multibase method for implementation on constrained devices where storing precomputed

points is not possible or too expensive.

In the case of window-based methods, it can be seen that Frac-wmbNAF allows a

flexible number of precomputed points. In Table 6, we show the performance of this new

method against wNAF and Frac-wNAF when 2, 4, 6 and 7 points are precomputed (not

including { 1}±). In all the cases, for both standard and Edwards curves we observe that

Frac-wmbNAF surpasses the performance of previous methods. However, in this case the

differences between our method and wNAF (or Frac-wNAF) reduce as the window grows.

In particular, Frac-wmbNAF achieves the highest performance using bases (2,3,5) in the

case of standard curves, and bases (2,3) in the case of Edwards curves. Also, it is

important to note that for all the cases the highest speed up is achieved when using the

digit set { 1, 2, 3, , 13}± ± ± ±… (the lowest costs per curve are highlighted in bold), which

corresponds to a “fractional” window and, thus, highlights the importance of the new

recoding method introduced in Section 6.

For the record, in Table 7 we present a comparison of the lowest costs found in the

literature for the case of Jacobian coordinates. We can see that Frac-wmbNAF is the speed

leader for the cases when precomputations include one or nil field inversions, surpassing

the optimized implementations of DB and Frac-wNAF due to [BBL
+
07] and [BL07c].

Moreover, our highly optimized implementations of wNAF and Frac-wNAF are also

superior in performance. In this case, the high efficiency of our implementations is due to

improved precomputation schemes and more efficient point formulas.

The reader should note that mbNAF is also superior to the best numbers by [BBL
+
07]

and [BL07c] even though our method does not require precomputations.

In Table 7 we also include costs of DB methods by [BPP07] and [MD07b], which were

analyzed in Section 5.2. We present there the cases for which those DB methods achieve

the lowest costs. Nevertheless, we see that our methods (and also NAF) largely surpass

them not only in computing costs but also in memory requirements. As stated before,

although the conversion time and the table used to convert numbers to DB (see the

column “Table”) have been significantly reduced, the precomputation stage has become

expensive, which ultimately increases the overall cost.

Finally, in Table 8 we present the lowest costs achieved by the Frac-wmbNAF method

in comparison with previous efforts for the case of the highly efficient Edwards curves.

As we can see, our method is the fastest for both Edwards and inverted Edwards

coordinates, achieving slightly lower costs than the results by [BBL
+
07] and [BL07c].

This is, to our knowledge, the lowest costs in terms of field operations reported in the

32 P. Longa and C. Gebotys

literature for any elliptic curve over prime fields.

Table 6. Costs of different scalar multiplication methods (n = 160 bits)

Method Curve Precomputed table
Cost of

precomputations

Cost of scalar

multiplication
Total cost

 (2,3)NAF InvEdw. { 1}± - 1377.5M 1377.5M

 NAF InvEdw. { 1}± - 1447.2M 1447.2M

 (2,3)NAF Edw. { 1}± - 1414.3M 1414.3M

 NAF Edw. { 1}± - 1500.1M 1500.1M

 (2,3,5)NAF Jac. { 1}± - 1484M 1484M

 (2,3)NAF Jac. { 1}± - 1509.3M 1509.3M

 NAF Jac. { 1}± - 1615.2M 1615.2M

 (2,3)NAF, case 2 InvEdw. { 1, 2, 3}± ± ± 14.2M 1322.1M 1336.3M

 (2,3)NAF, case 1 InvEdw. { 1, 2, 3}± ± ± 1I + 22.2M 1303.7M 1I + 1325.9M

 wNAF, case 2 InvEdw. { 1, 2, 3}± ± ± 14.2M 1339.6M 1353.8M

 wNAF, case 1 InvEdw. { 1, 2, 3}± ± ± 1I + 22.2M 1318.7M 1I + 1340.8M

 (2,3)NAF, case 2 Edw. { 1, 2, 3}± ± ± 15.2M 1356.4M 1371.6M

 (2,3)NAF, case 1 Edw. { 1, 2, 3}± ± ± 1I + 22.2M 1337.6M 1I + 1359.8M

 wNAF, case 2 Edw. { 1, 2, 3}± ± ± 15.2M 1379M 1394.2M

 wNAF, case 1 Edw. { 1, 2, 3}± ± ± 1I + 22.2M 1357.7M 1I + 1379.9M

 (2,3,5)NAF, case 2 Jac. { 1, 2, 3}± ± ± 11.6M 1496.4M 1508M

 (2,3,5)NAF, case 1 Jac. { 1, 2, 3}± ± ± 1I + 19.4M 1426.1M 1I + 1445.5M

 (2,3)NAF, case 2 Jac. { 1, 2, 3}± ± ± 11.6M 1525M 1536.6M

 (2,3)NAF, case 1 Jac. { 1, 2, 3}± ± ± 1I + 19.4M 1444.6M 1I + 1464M

 wNAF, case 2 Jac. { 1, 2, 3}± ± ± 11.6M 1567.1M 1578.7M

 wNAF, case 1 Jac. { 1, 2, 3}± ± ± 1I + 19.4M 1474.8M 1I + 1494.2M

 (2,3)NAF, case 2 InvEdw. { 1, 2, 3, 5, 7}± ± ± ± ± 33.8M 1257M 1290.8M

 (2,3)NAF, case 1 InvEdw. { 1, 2, 3, 5, 7}± ± ± ± ± 1I + 50.8M 1235.3M 1I + 1286.1M

 wNAF, case 2 InvEdw. { 1, 2, 3, 5, 7}± ± ± ± ± 33.8M 1267.2M 1301M

 wNAF, case 1 InvEdw. { 1, 2, 3, 5, 7}± ± ± ± ± 1I + 50.8M 1242.1M 1I + 1292.9M

 (2,3)NAF, case 2 Edw. { 1, 2, 3, 5, 7}± ± ± ± ± 36.8M 1283.8M 1320.6M

 (2,3)NAF, case 1 Edw. { 1, 2, 3, 5, 7}± ± ± ± ± 1I + 53.8M 1261.7M 1I + 1315.5M

 wNAF, case 2 Edw. { 1, 2, 3, 5, 7}± ± ± ± ± 36.8M 1298.8M 1335.6M

 wNAF, case 1 Edw. { 1, 2, 3, 5, 7}± ± ± ± ± 1I + 53.8M 1273.2M 1I + 1327M

Setting Speed Records with the (Fractional) Multibase Non-Adjacent Form Method 33

 (2,3,5)NAF, case 2 Jac. { 1, 2, 3, 5, 7}± ± ± ± ± 24.8M 1448.4M 1473.2M

 (2,3,5)NAF, case 1 Jac. { 1, 2, 3, 5, 7}± ± ± ± ± 1I + 40.6M 1362.1M 1I + 1402.7M

 (2,3)NAF, case 2 Jac. { 1, 2, 3, 5, 7}± ± ± ± ± 24.8M 1462.3M 1487.1M

 (2,3)NAF, case 1 Jac. { 1, 2, 3, 5, 7}± ± ± ± ± 1I + 40.6M 1367.5M 1I + 1408.1M

 wNAF, case 2 Jac. { 1, 2, 3, 5, 7}± ± ± ± ± 24.8M 1501.9M 1526.7M

 wNAF, case 1 Jac. { 1, 2, 3, 5, 7}± ± ± ± ± 1I + 40.6M 1390.6M 1I + 1431.2M

 (2,3)NAF, case 2 InvEdw. { 1, 2, 3, , 11}± ± ± ±… 53.4M 1231.2M 1288.7M

 (2,3)NAF, case 1 InvEdw. { 1, 2, 3, , 11}± ± ± ±… 1I + 78.4M 1210.4M 1I + 1284.6M

 Frac-wNAF, case 2 InvEdw. { 1, 2, 3, , 11}± ± ± ±… 53.4M 1236M 1289.4M

 Frac-wNAF, case 1 InvEdw. { 1, 2, 3, , 11}± ± ± ±… 1I + 78.4M 1212.8M 1I + 1291.2M

 (2,3)NAF, case 2 Edw. { 1, 2, 3, , 11}± ± ± ±… 58.4M 1256.5M 1314.9M

 (2,3)NAF, case 1 Edw. { 1, 2, 3, , 11}± ± ± ±… 1I + 85.4M 1235.2M 1I + 1320.6M

 Frac-wNAF, case 2 Edw. { 1, 2, 3, , 11}± ± ± ±… 58.4M 1264.8M 1323.2M

 Frac-wNAF, case 1 Edw. { 1, 2, 3, , 11}± ± ± ±… 1I + 85.4M 1241M 1I + 1326.4M

 (2,3,5)NAF, case 2 Jac. { 1, 2, 3, , 11}± ± ± ±… 38M 1419.8M 1457.8M

 (2,3,5)NAF, case 1 Jac. { 1, 2, 3, , 11}± ± ± ±… 1I + 61.8M 1338.3M 1I + 1400.1M

 (2,3)NAF, case 2 Jac. { 1, 2, 3, , 11}± ± ± ±… 38M 1434.1M 1472.1M

 (2,3)NAF, case 1 Jac. { 1, 2, 3, , 11}± ± ± ±… 1I + 61.8M 1343.4M 1I + 1405.2M

 Frac-wNAF, case 2 Jac. { 1, 2, 3, , 11}± ± ± ±… 38M 1460.6M 1498.6M

 Frac-wNAF, case 1 Jac. { 1, 2, 3, , 11}± ± ± ±… 1I + 61.8M 1358.6M 1I + 1420.4M

 (2,3)NAF, case 2 InvEdw. { 1, 2, 3, , 13}± ± ± ±… 63.2M 1218.6M 1281.8M

 (2,3)NAF, case 1 InvEdw. { 1, 2, 3, , 13}± ± ± ±… 1I + 92.2M 1199M 1I + 1291.2M

 Frac-wNAF, case 2 InvEdw. { 1, 2, 3, , 13}± ± ± ±… 63.2M 1222.1M 1285.3M

 Frac-wNAF, case 1 InvEdw. { 1, 2, 3, , 13}± ± ± ±… 1I + 92.2M 1200.1M 1I + 1292.3M

 (2,3)NAF, case 2 Edw. { 1, 2, 3, , 13}± ± ± ±… 69.2M 1242.4M 1311.6M

 (2,3)NAF, case 1 Edw. { 1, 2, 3, , 13}± ± ± ±… 1I + 101.2M 1222.2M 1I + 1323.4M

 Frac-wNAF, case 2 Edw. { 1, 2, 3, , 13}± ± ± ±… 69.2M 1249.6M 1318.8M

 Frac-wNAF, case 1 Edw. { 1, 2, 3, , 13}± ± ± ±… 1I + 101.2M 1227M 1I + 1328.2M

 (2,3,5)NAF, case 2 Jac. { 1, 2, 3, , 13}± ± ± ±… 44.6M 1403.8M 1448.4M

 (2,3,5)NAF, case 1 Jac. { 1, 2, 3, , 13}± ± ± ±… 1I + 72.4M 1326.5M 1I + 1398.9M

 (2,3)NAF, case 2 Jac. { 1, 2, 3, , 13}± ± ± ±… 44.6M 1414.7M 1459.3M

 (2,3)NAF, case 1 Jac. { 1, 2, 3, , 13}± ± ± ±… 1I + 72.4M 1329.6M 1I + 1402M

 Frac-wNAF, case 2 Jac. { 1, 2, 3, , 13}± ± ± ±… 44.6M 1441.9M 1486.5M

 Frac-wNAF, case 1 Jac. { 1, 2, 3, , 13}± ± ± ±… 1I + 72.4M 1344.7M 1I + 1417.1M

34 P. Longa and C. Gebotys

 (2,3)NAF, case 2 InvEdw. { 1, 2, 3, , 15}± ± ± ±… 73M 1211.6M 1284.6M

 (2,3)NAF, case 1 InvEdw. { 1, 2, 3, , 15}± ± ± ±… 1I + 106M 1189.5M 1I + 1295.5M

 wNAF, case 2 InvEdw. { 1, 2, 3, , 15}± ± ± ±… 73M 1213.2M 1286.2M

 wNAF, case 1 InvEdw. { 1, 2, 3, , 15}± ± ± ±… 1I + 106M 1188.9M 1I + 1294.9M

 (2,3)NAF, case 2 Edw. { 1, 2, 3, , 15}± ± ± ±… 80M 1235.1M 1315.1M

 (2,3)NAF, case 1 Edw. { 1, 2, 3, , 15}± ± ± ±… 1I + 117M 1212.5M 1I + 1329.5M

 wNAF, case 2 Edw. { 1, 2, 3, , 15}± ± ± ±… 80M 1239.5M 1319.5M

 wNAF, case 1 Edw. { 1, 2, 3, , 15}± ± ± ±… 1I + 117M 1214.7M 1I + 1331.7M

 (2,3,5)NAF, case 2 Jac. { 1, 2, 3, , 15}± ± ± ±… 51.2M 1406.7M 1457.9M

 (2,3,5)NAF, case 1 Jac. { 1, 2, 3, , 15}± ± ± ±… 1I + 83M 1318.4M 1I + 1401.4M

 (2,3)NAF, case 2 Jac. { 1, 2, 3, , 15}± ± ± ±… 51.2M 1418.4M 1469.6M

 (2,3)NAF, case 1 Jac. { 1, 2, 3, , 15}± ± ± ±… 1I + 83M 1321.7M 1I + 1404.7M

 wNAF, case 2 Jac. { 1, 2, 3, , 15}± ± ± ±… 51.2M 1440.2M 1491.4M

 wNAF, case 1 Jac. { 1, 2, 3, , 15}± ± ± ±… 1I + 83M 1232.5M 1I + 1415.5M

Table 7. Comparison with previous methods in Jacobian coordinates (n = 160 bits).

Method Table

points

Cost of

precomputations

Cost of scalar

multiplication
Total cost

 (2,3,5)NAF (this work) - 7 44.6M 1403.8M 1448.4M

 (2,3,5)NAF (this work) - 7 1I + 72.4M 1326.5M 1I + 1398.9M

 Frac-wNAF (this work) - 7 44.6M 1441.9M 1486.5M

 wNAF (this work) - 8 1I + 83M 1232.5M 1I + 1415.5M

 DB [BBL+07] (2) 3800 7 N/A N/A 1504.3M

 Frac-wNAF [BL07c] - 7 N/A N/A 1511.9M

 wNAF [BL07c] - 8 N/A N/A 1I + 1434.1M

 (2,3,5)NAF (this work) - 0 - 1484M 1484M

 (2,3)NAF (this work) - 0 - 1509.3M 1509.3M

 NAF (this work) - 0 - 1615.2M 1615.2M

 (3,1)DB,
P

all
T , [BPP07] 8 11 1I + 143M 1478M 1I + 1621M

 (4,3)DB, [MD07b] (1)(2) 4332 26 290.4M 1699.2M 1989.6M

(1) Values are not updated with state-of-the-art point operation formulae.

(2) Table stores all the possible {2 3 }
b c

× values, where maxb b≤ and maxc c≤ .

Setting Speed Records with the (Fractional) Multibase Non-Adjacent Form Method 35

Table 8. Comparison with previous methods in Edwards and inverted Edwards coordinates (n =

160 bits).

Method Curve Table

points
Total cost

 (2,3)NAF (this work) InvEdw. - 7 1281.8M

 Frac-wNAF [BL07c] InvEdw. - 7 1287.8M

 DB [BBL+07] (1) InvEdw. 468 7 1290.3M

 (2,3)NAF (this work) Edw. - 7 1311.6M

 Frac-wNAF [BL07c] Edw. - 7 1321.6M

 DB [BBL+07] (1) Edw. 468 7 1322.9M

 (1) Table stores all the possible {2 3 }
b c

× values, where maxb b≤ and maxc c≤ .

7 Conclusions

We have introduced a new multibase method that uses “fractional” windows, generalizing

previous wmbNAF and mbNAF methods to any number of precomputations. We have

presented a more comprehensive analysis of scalar multiplications methods and tested

their performance in comparison with the multibase NAF methods in the context of

standard and Edwards curves. The conclusion is that mbNAF is currently the fastest in the

literature among methods without precomputations, independently of the curve selected.

Using bases (2,3,5) we can perform a scalar multiplication with a cost of only 1484M

(field multiplications) in Jacobian coordinates. With inverted Edwards coordinates, that

cost can be as low as 1377M using bases (2,3). Similar results are attained by the new

Frac-wmbNAF when there is available memory to store precomputations. In this case, we

present the lowest costs reported in the literature: 1448M or 1I+1398M in Jacobian

coordinates and 1281M in inverted Edwards coordinates, both achieved with a fractional

window using a precomputed table of 7 points.

We also conclude that in general double-base (DB) methods (and all its known

variants) become impractical in comparison to other methods due to their higher memory

requirements and / or costly precomputation stage. (w)NAF, (w)mbNAF and Frac-

wmbNAF should be largely preferred in realistic scenarios.

Finally, we have contributed with improved composite operation formulas and

precomputation schemes that have been beneficially used to accelerate significantly all the

studied methods, including the efficient multibase NAF methods and the traditional NAF,

wNAF and Frac-wNAF.

36 P. Longa and C. Gebotys

References

[BPP07] R. Barua, S.K. Pandey and R. Pankaj, “Efficient Window-Based Scalar

Multiplication on Elliptic Curves using Double Base Number System,” in

Progress in Cryptology - Indocrypt 2007, LNCS Vol. 4859, pp. 351-360,

Springer, 2007.

[BBL
+
07] D. Bernstein, P. Birkner, T. Lange, and C. Peters, “Optimizing Double-Base

Elliptic-Curve Single-Scalar Multiplication,” in Progress in Cryptology -

Indocrypt 2007, LNCS Vol. 4859, pp. 167-182, Springer, 2007.

[BL07a] D. Bernstein and T. Lange, “Faster Addition and Doubling on Elliptic Curves,”

in Advances of Cryptology - Asiacrypt 2007, LNCS Vol. 4833, pp. 29–50,

Springer, 2007.

[BL07b] D. Bernstein and T. Lange, “Inverted Edwards Coordinates,” in Applied

Algebra, Algebraic Algorithms, and Error Correcting Codes Symposium

(AAECC 2007), 2007.

[BL07c] D. Bernstein and T. Lange, “Analysis and Optimization of Elliptic-Curve

Single-Scalar Multiplication”, in Cryptology ePrint Archive, Report 2007/455,

2007.

[CCJ04] B. Chevallier-Mames, M. Ciet and M. Joye, “Low-Cost Solutions for

Preventing Simple Side-Channel Analysis: Side-Channel Atomicity,” in IEEE

Transactions on Computers, Vol. 53, No 6, pp. 760-768, 2004.

[CMO98] H. Cohen, A. Miyaji, and T. Ono, “Efficient Elliptic Curve Exponentiation

using Mixed Coordinates,” in Advances in Cryptology – Asiacrypt 1998, LNCS

Vol. 1514, pp. 51–65, Springer, 1998.

[DI06] C. Doche and L. Imbert, “Extended Double-Base Number System with

Applications to Elliptic Curve Cryptography,” in Progress in Cryptology -

Indocrypt 2006, LNCS Vol. 4329, pp. 335-348, Springer, 2006.

[DIM05] V. Dimitrov, L. Imbert and P.K. Mishra, “Efficient and Secure Elliptic Curve

Point Multiplication using Double-Base Chains,” in Advances in Cryptology –

Asiacrypt 2005, LNCS Vol. 3788, pp. 59–78, Springer, 2005.

[DOS07] E. Dahmen, K. Okeya and D. Schepers, “Affine Precomputation with Sole

Inversion in Elliptic Curve Cryptography,” in Australasian Conference on

Information Security and Privacy (ACISP’07), LNCS Vol. 4586, pp. 245-258,

Springer, 2007.

[Edw07] H.M. Edwards, “A Normal Form for Elliptic Curves,” in Bulletin of the

American Mathematical Society, Vol. 44, pp. 393–422, 2007.

[EPAF] P. Longa, “ECC Point Arithmetic Formulae,” available at

http://patricklonga.bravehost.com/jacobian.html.

[HMV04] D. Hankerson, A. Menezes and S. Vanstone, “Guide to Elliptic Curve

Cryptography,” Springer-Verlag, 2004.

Setting Speed Records with the (Fractional) Multibase Non-Adjacent Form Method 37

[Kob87] N. Koblitz, “Elliptic Curve Cryptosystems,” in Mathematics of Computation,

Vol. 48, pp. 203–209, 1987.

[LM07a] P. Longa and A. Miri, “Fast and Flexible Elliptic Curve Point Arithmetic over

Prime Fields,” in IEEE Transactions on Computers, Vol. 57, No 3, pp. 289-

302, 2008. Also available at:

 http://doi.ieeecomputersociety.org/10.1109/TC.2007.70815.

[LM07b] P. Longa and A. Miri, “New Composite Operations and Precomputation

Scheme for Elliptic Curve Cryptosystems over Prime Fields,” in Public Key

Cryptography (PKC’08), LNCS Vol. 4939, pp. 229-247, Springer, 2008.

[LM08] P. Longa and A. Miri, “New Multibase Non-Adjacent Form Scalar

Multiplication and its Application to Elliptic Curve Cryptosystems (Extended

Version),” in Cryptology ePrint Archive, Report 2008/052, 2008.

[Lon07] P. Longa, “Accelerating the Scalar Multiplication on Elliptic Curve

Cryptosystems over Prime Fields,” Master’s Thesis, University of Ottawa, June

2007. Also available at http://patricklonga.bravehost.com/publications.html.

[MD07a] Mishra and V. Dimitrov, “Efficient Quintuple Formulas for Elliptic Curves and

Efficient Scalar Multiplication using Multibase Number Representation,” in

Cryptology ePrint Archive, Report 2007/040, 2007.

[MD07b] P.K. Mishra and V. Dimitrov, “Window-Based Elliptic Curve Scalar

Multiplication using Double Base Number Representation,” in Inscrypt 2007,

Short Papers, 2007.

[Mel06] N. Meloni, “Fast and Secure Elliptic Curve Scalar Multiplication over Prime

Fields using Special Addition Chains,” in Cryptology ePrint Archive, Report

2006/216, 2006.

[Mil85] V. Miller, “Use of Elliptic Curves in Cryptography,” in Advances in

Cryptology - Crypto’85, LNCS Vol. 218, pp. 417-426, Springer, 1986.

[Möl02] B. Möller, “Improved Techniques for Fast Exponentiation,” in ICISC’02,

LNCS Vol. 2587, pp. 298–312, Springer, 2003.

[Möl04] B. Möller, “Fractional Windows Revisited: Improved Signed - Digit

Representations for Efficient Exponentiation,” in ICISC’04, LNCS Vol. 3506,

pp. 137–153, Springer, 2005.

[Rei60] G.W. Reitweisner, “Binary Arithmetic,” in Adv. Comput., Vol. 1, pp. 232–308,

1960.

[Sol00] J.A. Solinas, “Efficient Arithmetic on Koblitz Curves,” in Design, Codes and

Cryptography, Vol. 19, pp. 195–249, 2000.

38 P. Longa and C. Gebotys

Appendix A: Point Quintupling

Given
1 1 1

(, ,)P X Y Z= on the elliptic curve E, the quintupling
5 5 5

5 (, ,)P X Y Z= in

Jacobian coordinates (special case a = −3) can be computed by:

2 3 (1) 2

5 2
4 8X Xγ φ φ= − − ,

(1) 2 (1) 3

5 2 5 2
4 8[]Y X X Yγ φ φ= − − ,

2 2 2

5 2
2 ()[]Z Z θ φ θ φ= + − − ,

where
2 2

1 1 1 1
3()()X Z X Zα = + − ,

2 (1)

2 1
2X Xα= − ,

2 2 2 (1)

2 1
2 () 2Y Yα θ α θ= + − − − ,

(1)

1 2
X Xθ = − ,

(1)

1 2
2 2Y Yω = − ,

2 2 2 (1)

2
() 4Yφ φγ ω ω= + − + − ,

(1) 2

1 1 1
4X X Y= ,

(1) 4

1 1
2 16Y Y= ,

2 3 (1)

2
4 3Xφ ω θ= − − ,

(1) 2

2 2
4X X θ= ,

(1) 3

2 2
8Y Y θ= ,

2 2 2

2 1 1 1 1
()Z Y Z Y Z= + − − .

This quintupling formula derived from the Scheme (5) (see Section 3.2) costs 10M + 12S.

The general case (parameter a random) can be easily derived from the formula above. In

this case, the cost is fixed at 9M + 15S with the following change of parameters:

2 4

1 1
3X aZα = + ,

(1) 2 2 2 4

1 1 1 1 1
2 ()[]X X Y X Y= + − − .

Appendix B: Tripling with mixed Jacobian-affine coordinates

Given
1 1

(,)P x y= on the elliptic curve E, the tripling
3 3 3

3 (, ,)P X Y Z= in Jacobian

coordinates can be computed by:

2 2

3 1 1
4 (2 2)X y xβ α ω= − + ,

3

3 1
(2 2)(4 2)[]Y y α β β α ω= − − − ,

2 2 2 4 2

3 1 1 1 1
6 ()[]Z x y yx θ= + − − − ,

where
2 2 2

2 ()α θ ω θ ω= + − − ,
4

1
8Yβ = ,

2

1
3(1)xθ = − . This tripling formula has a cost

of 5M + 7S.

Setting Speed Records with the (Fractional) Multibase Non-Adjacent Form Method 39

Appendix C: Quintupling with mixed Jacobian-affine coordinates

If we set
1

1Z = in the quintupling formula given in Appendix A (a = −3), we obtain the

following formula to compute
1 1 5 5 5

5 5(,) (, ,)P x y X Y Z= = in Jacobian coordinates:

2 3 (1) 2

5 2
4 8X Xγ φ φ= − − ,

(1) 2 (1) 3

5 2 5 2
4 8[]Y X X Yγ φ φ= − − ,

2 2 2

5 1
4 ()[]Z y θ φ θ φ= + − − ,

where
2

1
3(1)xα = − ,

2 (1)

2 1
2X Xα= − ,

2 2 2 (1)

2 1
2 () 2Y Yα θ α θ= + − − − ,

(1)

1 2
X Xθ = − ,

(1)

1 2
2 2Y Yω = − ,

2 2 2 (1)

2
() 4Yφ φγ ω ω= + − + − ,

(1) 4

1 1
2 16Y y= ,

(1) 2 2 2 4

1 1 1 1 1
2[()]X x y x y= + − − ,

2 3 (1)

2
4 3Xφ ω θ= − − ,

(1) 2

2 2
4X X θ= ,

(1) 3

2 2
8Y Y θ= .

This quintupling with mixed Jacobian-affine coordinates costs 8M + 12S.

Appendix D: Tripling with mixed Edwards-affine coordinates

Given
1 1

(,)P x y= , the tripling
3 3 3

3 (, ,)P X Y Z= in Edwards coordinates can be obtained

with the following:

3 1
[()]()X x β α θ α θ= − − − ,

3 1
[()]()Y y β α ω α ω= + − − ,

3
[()][()]Z β α θ β α ω= − − + − ,

where
2 2 2

1 1
()x yα = + ,

2 2 2 2

1 1 1 1
2()()x y x yβ = + − ,

2 2

1
4c xω = ,

2 2

1
4c yθ = . This tripling

formula has a cost of only 6M + 3S if we fix the parameter c to a small value.

Appendix E: Tripling with mixed inverted Edwards-affine coord.

Given
1 1

(,)P x y= , the tripling
3 3 3

3 (, ,)P X Y Z= in inverted Edwards coordinates can be

obtained with the following:

3 1
X x φ α= ,

3 1
Y y ω β= ,

3
Z ω φ= ,

40 P. Longa and C. Gebotys

where
2 2

1 1
x yθ = + ,

2 2 2

1
4 y dcα θ= − + ,

2 2 2

1
4x d cβ θ= − ,

2 2 2

1 1
(4) 4x x d cω θ θ= − + ,

2 2 2

1 1
(4) 4y y d cφ θ θ= − + .

This tripling formula has a cost of only 7M + 3S if we fix the parameter c and d to small

values.

