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Abstract. We present efficiently computable homomorphisms of the groups G2 and G for
pairings G1 X G2 — Gr. This allows exponentiation in G2 and Gt to be accelerated using
the Gallant-Lambert-Vanstone method.

Keywords: pairings.

1 Introduction

Let r be a prime and let G1, G2 and G be cyclic groups of order r with a bilinear pairing
e: Gy x Gy — G

In practice G is a set of points on some elliptic curve £ over IF, and G is a set of points on a
twist E’ of E over some field F,.. The group Gr is a subgroup of F;k, where k is the embedding
degree, and is usually represented in a compressed form by using traces or algebraic tori.

Pairings over ordinary elliptic curves suffer in comparison to those over supersingular curves, in
that a larger group G5 is often required for one of the two parameters to the pairing. The quadratic
twist is always an option if k is even, so e = k/2 and for the case kK = 2 the quadratic twist is
again over the base field. There is a family of pairing-friendly curves [10] of embedding degree k = 6
where the sextic twist applies, and again in this case e = k/6 = 1. However for most other cases of
interest e > 1. For example with the BN curves [5], even though the sextic twist applies, G is over
the field F,>. This suggests that manipulations of points over Gy in some pairing-based protocols
are in general likely to be more expensive than those over G, and perhaps much more expensive.
Here we will demonstrate that this is not necessarily the case.

Gallant, Lambert and Vanstone (GLV) [12] gave a method to speed up operations in groups
when a suitable group homomorphism is available. The main result of the paper is to get such a
group homomorphism from the Frobenius map in F,x. This particularly speeds up operations in
G5, but also has implications for Gr.

The main contributions of our paper are:
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1. To speed up arithmetic in G5 and G7 using the GLV method.

2. To show that simpler GLV decompositions of an exponent are often possible for pairing friendly
curves (i.e., not requiring lattice reduction as a precomputation), especially for Ate friendly
curves.

3. To remark that parameters for Ate-friendly curves give rise to good parameters for XTR and
torus based cryptography.

4. To note that our methods can be used to obtain larger equivalence classes for the Pollard rho
method.

We now outline the paper. Sections 2 and 3 recall basic facts about pairings and the GLV
method. Section 4 analyses the methods of Stam and Lenstra when applied in the target group G
for pairing-based cryptography. Section 5 contains our main result, namely the construction of a
group homomorphism on Gs. Section 6 studies some specific examples. Section 7 summarises the
costs and benefits of the GLV method. Sections 8 and 9 mention some consequences for trace/torus
cryptography and the difficulty of the DLP in G5, and we conclude in Section 10.

2 Elliptic Curves and Pairings

Let E be an elliptic curve over IF, where p is prime. Denote by oo the point at infinity on E. Let
#E(F,) = p+1—t be the number of points on the curve, where ¢ is the trace of the Frobenius. Let
r | #E(F,) be a large prime. The embedding degree is the smallest integer k such that r | (pF — 1).
We assume that no proper subfield of IF;k contains elements of order r.

Let G; = E(F,)[r] and let G be the subgroup of s of elements of order r. Denote by m,
the p-power Frobenius map on E. Define G to be the subgroup of E(F,x)[r] such that 7, acts
as multiplication by p. We assume we have a non-degenerate bilinear pairing (such as the Ate
pairing [15])

e Gl X GQ — GT.

Following Section 4 of [15] we represent G5 as a group of points on a twist E' of E. This
means there is an isomorphism ¢ : E' — E with field of definition F,q«. It is necessary that the
automorphism group Aut(F) contain an element of order d. Hence the only non-trivial possibilities
are d = 2, d = 4 if j(F) = 1728 (CM discriminant D = —4) and d = 3,6 if j(E) = 0 (CM
discriminant D = —3). We assume d | k and write k = de. Then Gy = E'(Fpe)[r] and ¢(G2) C
E(F,x). If r > d then the image of E'(Fye)[r] under ¢ does lie in the eigenspace of the g-power
Frobenius on E(IF,«) with eigenvalue p.

For efficient pairing computation, much work has been done to find viable bilinear pairings, with
the minimum number of iterations in Miller’s algorithm. Starting with the Duursma-Lee method [9]
and subsequent work by Barreto et al. [4] (in the context of supersingular curves), Hess al. extended
the idea to ordinary elliptic curves with the discovery of the Ate pairing. Now the main Miller loop
in the pairing computation iterates only lg(|¢t — 1|) times, rather than lg(r) times as required by the
Tate pairing. An “Ate pairing friendly curve” is defined as one where |t — 1] is as small as possible
compared to 7. It has been conjectured that the minimum possible ratio between |t — 1| and r
is 1/¢(r) (where ¢ is the Euler totient function), and indeed this ideal condition is met by some
pairing-friendly families of curves. Recently Lee, Lee and Park [18], Hess [16] and Vercauteren [28]
have shown how to achieve the same level of loop truncation on curves, even if they are not Ate
pairing friendly.



Many families of pairing-friendly curves have been found - see [10] for a survey. The most
sought after curves are those with the minimum value of p, which is defined as the rounded fraction
lg(p)/lgr. It is relatively easy to find families of curves with p & 2, but it is much preferred that
p =~ 1, as this leads to more efficient implementations.

3 The GLV method

Gallant, Lambert and Vanstone [12] introduced a method to speed up general point multiplication
nP in E(F,)[r]. In its simplest form their method works if, given a point P, one can somehow
have knowledge of a non-trivial multiple of P. This extra information is available if there is an
efficiently computable endomorphism 1 on E defined over F, such that ¢(P) = AP. One can then
compute nP efficiently by writing n = ng + n1A  (mod r) with |n;| < /r and performing the
double exponentiation ngP + n1t(P). Decomposing n as ng +niA  (mod r) is done by solving a
closest vector problem in a lattice and the Euclidean algorithm can be used to compute a suitable
lattice basis, see [12,23] for the details. We call this the GLV method.

Double exponentiation algorithms require precomputation and storage, but their efficiency comes
from halving the number of doublings. One can simultaneously reduce the number of additions by
using window methods, but this adds further precomputation and storage. Another method to
reduce the number of additions is to allow signed representations for ng and n; and compute their
joint sparse form (that is such that the signed expansions of ng and n; both have i-th bit equal to
0 with probability approximately 1/2). We refer to Section 9.1.5 of [1] for further details.

The idea generalises to m-dimensional expansions n = ng + niA + -+ + ny, 1 A™"1 (mod 7)
assuming that the powers of A are sufficiently different modulo r (the typical requirement is that
the endomorphism v satisfies a characteristic polynomial of degree > m; see the discussion below).
We call this the m-dimensional GLV method.

The task of decomposing n is again solving a closest vector problem in a lattice. This prob-
lem can be efficiently solved using Babai’s rounding method [2] if an LLL-reduced lattice basis is
precomputed. More precisely, define the modular lattice

i=0

L{xEZm:mZ_xi)\iO (modr)}. (1)

The 2m vectors (0,...,0,7,0,...,0) and (0,...,0,A,—1,0,...,0) generate the (row) lattice L if
ged(A,7) = 1. Run LLL on this basis to obtain a new basis. Given an exponent n use the Babai
rounding technique to find a lattice vector x = (zg,...,Zm—1) close to w = (n,0,...,0). Define
u=w —x. Then Y7 ;A" =n (mod r) by definition. If the LLL-reduced basis is sufficiently
good then the coefficients w; will be such that |u;| = r1/™_ The practical performance of this
approach depends on the particular parameters under consideration.

We stress that the lattice reduction is a pre-computation; the online cost in point multiplication
is just the Babai rounding step. An alternative approach (when a random multiple of a point P is
required) is to simply choose random coefficients ng, ..., n,—1 instead of choosing n first and then
decomposing it.

We remark that there are natural boundaries on the size of m. For example, let r | (p? —p+1)
and let ¢ be the p-power Frobenius map in the subgroup G of Fy's of order 7. Then A = p (mod r)

satisfies A =1 (mod r) and one might expect to be able to take m = 6. However, since A2 = A—1



(mod r) it follows that ng + ni A +naA? = (ng — n2) + (n1 +n2)A  (mod r). Therefore the size of
the largest coefficient n; in the 3-dimensional expansion cannot be significantly smaller than the
size of the largest coefficient in the 2-dimensional case.

The original proposal of Gallant, Lambert and Vanstone specifically proposed using the auto-
morphisms of elliptic curves E with j(E) = 0,1728. Hence it is standard that the GLV method can
be used to speed up point multiplication in G; and G5 in the cases for which using twists gives
good compression of Ga. In both cases the automorphisms satisfy a characteristic polynomial of
degree 2 with coefficients in {0, 1}, so only the two-dimensional GLV method applies.

4 Using the Frobenius to speed up operations in Gr

In this case much of the work has already been done by Stam and Lenstra. However here we consider
their results in the context of pairings.

We call the subgroup of F,. of order ®4(p) (where @y () is the k-th cyclotomic polynomial) the
“cyclotomic group”. The group G of order r is a subgroup of the cyclotomic group in F,.. For the
case k=6, 7| (p? —p+ 1) and G is a subgroup of the well studied “XTR subgroup” of F. For
the case k = 2, the cyclotomic group is of order p + 1, and was used in the LUC cryptosystem (see
Stam and Lenstra [25]).

There are three approaches for efficient arithmetic in cyclotomic subgroups. The simplest ap-
proach is to perform arithmetic using a standard representation for IF,,x and to exploit tricks which
arise from elements having order dividing @ (p) (for example, the fact that the inverse of an element
can be computed efficiently). The other approaches are based on compression of field elements using
traces or algebraic tori respectively. All three methods can be applied for efficient exponentiation
in Gr (for example see [13]). The latter two methods are also useful for minimising bandwidth in
pairing-based cryptography.

Stam and Lenstra [26] discuss the first approach. They exploit the fact that elements in the
cylotomic group have some extra properties that do not hold for general elements in F,». Specifically
field inversion is a simple conjugation, and thus effectively free, and the field squaring operation can
be significantly cheaper. Also as inversion is free, faster NAF methods of windowing are applicable
[22].

For exponentiation in the XTR subgroup the most efficient method is to use traces. For XTR
the trace is over IF,2, so the compression is by a factor of 3. For LUC the trace is over I, and
the compression is by a factor of two. However traces can only be manipulated in limited ways:
for example multiplication of subgroup elements, if required by a protocol, is non-trivial. When
using compression by a factor of 2 then exponentiating using a torus representation is competitive
with LUC [13]. One advantage of tori is that one can efficiently multiply group elements as well as
exponentiate them. In [8] the applications of higher dimensional tori are considered, and indeed it
is suggested that in principle a degree 8 Frobenius automorphism can be used to split the exponent,
and then use multi-exponentiation, in much the same way as suggested here.

In [25] a method for double exponentiation using traces is proposed, for both the LUC and
XTR cases. This is required for example for the application of LUC/XTR to ElGamal-like digital
signature verification schemes. But the authors also point out that the Frobenius endomorphism
can be used to implement a single exponentiation using a variant of the GLV idea (independently
discovered) with their double exponentiation algorithm, and indeed this is the fastest way to do it.
In Section 4.4 of [25] it is pointed out that if p mod r = /7 then the 2-dimensional decomposition



of the exponent is particularly easy, and the decomposition can be found at the cost a division and
a remainder. In the sequel we will refer to such a decomposition as “natural”. As we will see, in the
context of pairings, natural decompositions arise quite frequently.

It is apparently non-trivial to extend the double exponentiation of traces to general multi-
exponentiation [25], and so if multi-exponentiation is possibly beneficial then we must either use
torus methods or else work in the full F*, (see Stam and Lenstra [26]).

Pairings evaluate as elements in G, often in higher degree cyclotomic fields than those consid-
ered by Stam and Lenstra. Many of the same ideas apply immediately if the embedding degree is
a multiple of 2 or 6. However in the context of pairings, since we know that the pair (p,r) arise
in the context of an elliptic curve, we know that p mod r = t — 1. Fortunately for us, for many
pairing friendly curves |t — 1] is often rather small compared with r, in which case higher dimen-
sional natural decompositions will also be possible. Application of the Frobenius to an element x
of order r gives us the value 2P = 2'~!, so the exponent n can be expressed to the base (t — 1) and

multi-exponentiation applied as 20 .(zP)™ (27" )" - ... See the examples below for more details.

5 A homomorphism on G,

As described above, the group G is a subgroup of E’'(Fp) and there is a group homomorphism
¢ : E'(Fpe) — E(F,r). We now explain how to use the p-power Frobenius on E(F,) to get an
efficiently computed group homomorphism on Gs. lijima et al [17] used essentially the same ideas
to construct a homomorphism for a different application.

Lemma 1. Let notation be as above. Denote by m, the p-power Frobenius map on E. Then 9 =
¢~y is an endomorphism of E' such that 1 : Go — Ga. Further, for Q € Go we have v*(Q) = Q,
Y(Q) = pQ and P (¥)(Q) = co where Py (x) is the k-th cyclotomic polynomial.

Proof. Clearly 1 is a morphism from E’ to E’ which fixes the point at infinity. Hence ¢ is an
endomorphism of E’.
Let Q € E'(F,e)[r]. Then ¢(Q) € E(F,x) and, as mentioned in Section 2, we have m,(4(Q)) =
pd(Q). Hence Q' = 7,(¢(Q)) lies in the image of E'(F,c) under ¢ and so Q" = ¢~ 1(Q’) € E'(Fpe).
Clearly % = ¢’17r’;¢ = d)’lwpk ¢. Since 7T£ =1 on E(F,) it follows that Y*(Q) = Q. Further,
as noted above, m,(¢(Q)) = pé(Q) and so

P(Q) = ¢ 'mpe(Q) = ¢~ 'pd(Q) = pQ.

Finally, since @ has order r and r | §x(p) it follows that @ (¢)(Q) = Pr(p)Q = oco. This completes
the proof. OJ

The group homomorphism ¢ can be computed efficiently and so is potentially useful for the
GLV method. However, there are cases when this map is just a familiar homomorphism arising
in an unfamiliar way. Our main interest is when the construction gives something which was not
previously used for efficient computation. The following result shows that if e = 1 then we are just
recovering elements of the automorphism group of the curve.

Lemma 2. Ife =1 then ¢ is equal to p7r}’, where w; 1s the p-power Frobenius on E' and where p
is an element of Aut(E’).



Proof. By Corollary 2.12 of [24] 1 can be written as pm, where 7, : ' — E'(?) is the p-power
Frobenius to a Galois conjugate of E/ and p : E'®) — E’ is an isomorphism. In the case e = 1 we
have B/ = E'®) and so p € Aut(E'). O

This result shows that our methods give no new result in the case e = 1 (although decomposition
of a random exponent is always simpler than the general case of GLV). The case ¢ > 1 is interesting
as it gives potential for new and improved applications of the GLV method. In particular, we have
homomorphisms which do not come from Aut(E").

We mention that a similar optimisation for G; was proposed by Granger, Page and Stam in
Section 4 of [13]. They considered a supersingular elliptic curve E(Fsm) and used the fact that
multiplication by 3" on E is given by a simple and easy to compute formula. Since 3™ = 43(m+1)/2_
1 (mod r) they remarked that it is easy to obtain a GLV decomposition in this case.

6 Examples

Pairing friendly families vary significantly in detail, so the benefits of our methods are best consid-
ered on a case-by-case basis. The first two examples correspond to the case e = 1 and, as explained
earlier, our methods give nothing new in this case. However, it is useful to demonstrate how simple
the GLV decomposition is in these cases.

Ezample 1. Consider the pairing-friendly family of &k = 6,p = 2 curves (see Section 6.7 of [10]),
with D = -3 and j(F) =0

p=272* + 923 + 322 +3x+1 r=922+3zx+1 t=3zx+2

One can construct an elliptic curve E : Y2 = X®+ B over F,, having r | #F(F,). The embedding
degree is 6 and one can identify G5 with E’(FF,) where E’ is the sextic twist of E defined over F),
(in other words, e = 1).

Since j(F) = 0 the standard GLV method applies immediately to G;. However observe that r
is of the form A% + A + 1, with A = 3z. Therefore the standard automorphism p(x,y) = ((37,y)
applied to a point P = (z,y), gives us the point AP, and presents us with a natural 2-dimensional
decomposition of a point multiplier into its quotient and remainder modulo 3z.

Now consider the homomorphism 1 of Lemma 1. For @ € G2 we have ¥(Q) = TQ where
T =t—1=3x+ 1. Hence ¢ = p + 1, which can naturally be interpreted as —p?. The point
multiplication by n < r can be written as noQ + n1¢(Q) by taking the base T representation of n.

Exponentiation in G can use the fast trace methods of [25]. However the decomposition is
again simple to obtain, as p mod r = 3z + 1 ~ /r. Note that the fast squaring operations of [25,
26] do not apply since p Z2 (mod 3), but one can still obtain very efficient field arithmetic in this
case.

Ezample 2. Miyaji, Nakabayashi and Takano [21] gave parameters for curves of prime order r over
F, with embedding degree 6. These curves are ideal, in the sense that p = 1.

p=a?+1 r=a?—z+1 t=z+1

One major drawback of the MNT method is the necessity of solving Pell equations to generate
the curves. Furthermore, certain CM discriminants cannot be used. Indeed, it is not possible to



generate a suitable curve with j(F) = 0. In the more general setting we have Aut(F) = {1,—1} and
the GLV method cannot usefully be applied. The best representation for G is then as a subgroup
of E'(IF,s) where E’ is a quadratic twist of £ which is defined over F),.

In this case nothing can be done for G, but E’ is now a “subfield curve” so it is natural to use
the Frobenius map 7r;) on E' to speed up arithmetic on E’(IF,s). For the subgroup of relevance m,
satisfies 7r;,2 + 7, +1 =0 and so a 2-dimensional GLV method is the best on can hope for.

As with the previous example, our approach gives the same performance with simpler decompo-
sition of the exponents. The group homomorphism v on G defined above satisfies 2 — ¢ +1 =10
and acts as multiplication by ¢ — 1.

Ezample 8. Consider this family of Ate pairing-friendly curves [3], with k = 12, D = —3,p = 3/2.
p=(25-22°+22° +2+1)/3 r=a*—2?+1 t=x+1

In this case standard GLV applies to GG1, and again a natural 2-dimensional decomposition is
possible with the standard automorphism, given the special form of r. The group G5 is a subgroup
of the sextic twist E’(F,2). Since j(E’) = 0 we could use the standard GLV method, but in this
case e = 2 so it is possible to do better. In this case for Go and G we get a natural 4-dimensional
decomposition, as any multiplier in G5 or exponent in G can be written as a degree 4 polynomial in
T =t—1 = z. For G trace methods are probably not practical for a degree 4 multi-exponentiation,
so fast non-trace based methods should be used here instead.

Ezample 4. Consider this family of Ate pairing-friendly curves [3], with k = 24, D = —3,p = 5/4.
This curve might be appropriate at the highest levels of security.

p=(20—22% 428 — a5+ 2% — 2t + 2% 42 4+1)/3 r=2-2'+1 t=x+1

As before standard GLV applies to G, again with a natural 2-dimensional decomposition. G5 is a
subgroup of the sextic twist E'(IF,4). In this case for Go and G we get a natural 8-dimensional
decomposition, as any multiplier in G5 or exponent in G can be written as a degree 8 polynomial
inT =t—1=uxz. Again for G fast non-trace-based methods should be used.

Ezample 5. (BN curves [5]) Consider the BN parameters
t=6z%+1, p = 362 + 3623 + 242% + 62 + 1, r=p+1—t.

One can construct an elliptic curve E : Y? = X3 +aq over F,, having r points. The embedding degree
is 12 and one can identify G5 with a subgroup of E'(F,2) where £’ is a twist of E defined over F 2.

Taking ¢~ 'm2¢ gives the usual automorphism (g(x,y) = ({3, —y) which satisfies the charac-
teristic polynomial (3 — (s + 1 = 0. It is standard that the GLV method using this automorphism
speeds up point multiplication on E’.

Now consider ¢ = ¢~!7,¢, which satisfies »* — 1% + 1 = 0 and so behaves as (;2. Note that
Aut(E’) does not contain an element of order 12. Since v acts as multiplication by p and p = (t —1)
(mod r) one can naturally decompose n as ng +mn1(t — 1) such that |ng| < |t — 1| and n4 is a similar
size. Hence one gets the 2-dimensional GLV method with natural decomposition.

Unlike the previous two examples, |t — 1| % /™ and so obtaining the GLV expansion is not as
simple as writing the exponent n in base (¢ — 1). In this case it is necessary to use lattice reduction.



Let = be the parameter in the BN polynomial family. Then a reduced basis for the lattice L of
equation (1) with A = T = 62?2 is

z+1 T T —2x
204+1 -z —(z+1) -z
2¢ 2x+4+1 2x+1 2x+1
r—14x+2—-2x—-1) -1

B =

The determinant of B is —3r(x).

To decompose an integer n one needs to find a vector z close to w = (n,0,0,0) in the lattice L.
One first computes a vector v ~ wB~!. As pointed out to us by Barreto, for the above choice of B
one has

wB-! — <n(2x2 +3z+1) n(1223 + 822 + x) n(623 + 422 + z) n(—222 — x))

r ’ r ’ r ’ r
and so computing v can be done using integer multiplication and division by r. One then computes
the vector u = w — vB whose entries are the coefficients n; for the decomposition of n.
We illustrate the method with a toy example. Let x = 10267 and choose the “random” exponent
n = 123456789123456789. The first step is to decompose the vector (n,0,0,0) with respect to the
basis formed by the rows of B. This gives

(n,0,0,0)B~! = (26031281270628101244596820/r, 1603448845102804975614356132115 /r,
801724423185167914772443492389/r, —26028746085463451059434705/r)

Rounding these coefficients to the nearest integer gives a vector v such that vB is a close vector in
the lattice to (n,0,0,0). Finally, compute

u=(n,0,0,0) — vB = (—11418, —5569, —4753, —8683)

and one can check that n = Z?:o u;T* (mod r) as required. Note that all the entries in the vector
u satisfy |u;| < r'/%. Experiments with 64-bit z (i.e., 258-bit p) always had coefficients u; satisfying
lu;| < 295 as desired.

Ezample 6. Pairing friendly elliptic curves with k = 9 were considered by [19]. Since ¢(9) = 6 one
would get a 6-dimensional GLV method in this case.

7 Multi-exponentiation

As high-dimensional exponent decompositions are now possible, it is a useful exercise to see just
how much improvement can be expected from using them. Here we follow the analysis and methods
of Moller [22]. In particular we consider the wNAF-based interleaving windowed exponentiation
method, which applies both for G5 and for Gp. NAF methods apply when inversion is easy in the
group. It is well known that inversion is easy for points on an elliptic curve, but perhaps not as well
known that this also applies to elements in Gr. Indeed as part of the final exponentiation of the
pairing, there is a component in that exponentiation of p¥/2 — 1. After this exponentiation elements
become “unitary” (i.e., norm 1), and with this property inversion becomes a simple conjugation,
and field squaring becomes significantly cheaper [26].



We stress that we are considering exponentiation for a variable base. Hence our estimates and
timings include the cost of any “precomputation” required. If the base in exponentiation is fixed
then there are all sorts of different optimisations based on precomputation which can be adopted.

Here for simplicity, we do not further consider trace-based methods, as they are limited by the
extent to which they can exploit multi-exponentiation. But we will of course exploit the “unitary”
property of elements in Gr.

When estimating the cost of multi-exponentiation, it is important to estimate the relative costs
of field multiplication and squaring in G, and of point doubling and addition in G'5. So we make the
assumption that a point addition/field multiplication is ¢ times the cost of a point doubling/field
squaring, where we will keep ¢ as a variable.

In fact the relative costs of these operations for an elliptic curve over a prime field is the subject
of much debate, and improved formulae for both doubling and addition are still being found, often
using novel coordinate systems [6]. On the other hand, for curves over larger extension fields the
subject has not received much attention. Indeed it seems likely that affine coordinates may be faster
than projective coordinates for higher extensions. In G the matter is also not so clear cut - but the
fast methods for field squaring of unitary elements [26] are certainly relevant. (Even just exploiting
their quadratic extension formulae leads to significant improvements when applied over large even
extension fields; see [14].)

Assuming that the same window size is used for all exponents, the cost of multi-exponentiation
[22] is approximated by

(me(2¥~t = 14b/(w+2)) +b)

point doublings/field squarings for an m-dimensional decomposition, using a window size of w, and
exponents of constant size b bits. Here w is simply chosen to minimise this cost — we ignore the
space required for the precomputation. Clearly we have a choice as to the extent to exploit the
possible decomposition, so we might double m (which will halve the size of b) to see how this effects
the cost.

Our estimates (based on the above formula) are given in Table 1, for a group whose order r is
256-bits, assuming that a 1, 2, or 4 dimensional decomposition is possible (as is the case for the BN
curve). We conclude that it is beneficial to decompose to the maximum extent possible, assuming
that space for precomputation is not an issue.

Table 1. Cost of multi-exponentiation (Optimal w in brackets)

c=1.0|c=1.33|c=1.66| c=2.0 | ¢c=3.0
306 (4)|322 (4)|338 (4)|355 (4)|405 (4)
185 (4)[203 (4)]222 (4)[241 (4)[298 (4)
127 (3)[148 (3)[169 (3)[190 (3)|254 (3)

%MHS

8 Hashing to G

Some pairing based protocols, for example the original Boneh and Franklin IBE scheme [7], require
hashing of identities to G; or Go. In the latter case this might be considered inefficient, as a large



co-factor multiplication would be required. For example consider hashing an identity to the group
G2 C E'(F,2) on a BN curve. The number of points on E'(F,2) is r(p — 1 +t) (see [5]) where t is
the trace of Frobenius of E(F,). To hash-and-map an identity to a point of order r, the approach
might be to hash the identity to an x coordinate, solve the quadratic curve equation to find a y
coordinate (and iterate on z if one should not exist), and finally multiply this point by the co-factor
p—1+t

However, in this case the homomorphism 1 of Lemma 1 can be exploited to advantage. As we
have seen, 1) satisfies the equation

¥ (P) = [t (P) + [p|P =0
for P € E'(F)2). Therefore by simple substitution
[p—1+tP = [t](x(P) + P) — n*(P) — P

The major cost of the cofactor calculation is therefore a multiplication by ¢, which is “half-sized”
compared to a full multiplication by p — 1 4 ¢.

9 Application to XTR and torus-based cryptography

As mentioned in Section 4.7 of Stam’s thesis [27], a natural problem is to develop the XTR cryp-
tosystem in Fpem. The main obstacle is efficient key generation. A key generation algorithm was
given in [20] but it requires factoring integers so is not very practical for large security levels.

A fact (which does not seem to have been noted before) is that polynomial families of param-
eters for pairing-friendly curves give efficient key generation algorithms for XTR or torus based
cryptography over extension fields. Once such parameters are available then one can immediately
apply the GLV method to speed up exponentiation (see [25,26,13]).

Furthermore, if one works in a subgroup of order r where » = p—T is “super Ate friendly” then
one can also benefit from the easy decomposition of exponents using the base-|T| expansion and
hence get very efficient multi-exponentiation in dimension > 2.

10 Security implications

Gallant, Lambert and Vanstone [11] and Wiener and Zuccherato [29] showed how to speed up
the parallel Pollard rho algorithm by using equivalence classes coming from efficiently computable
endomorphisms on elliptic curves. One can always work with equivalence classes of size #Aut(E).

Such methods can also exploit our homomorphism, giving a slight lowering of security for the
group G compared with what was previously believed. As shown in Lemma 1, the homomorphism
1 on G4 has order k and so we can partition Go — {0} into equivalence classes of size k. Similarly
Gt — {1} can be partitioned into equivalence classes of size k.

The size of equivalence classes for G2 and G is therefore k, while the size of equivalence classes
for G7 is Aut(E). When e = 1 then k£ = #Aut(E) and so our result is not new, but when e > 1
then k > #Aut(F). For example, with BN curves the size of equivalence classes is 6 for G; and 12
for Gy and G7. This does not imply that the DLP is easier by a factor v/2 in G5 and Gp than Gy,
since those groups are defined over larger fields; in practice it will still be quicker to solve the DLP
in G; = E(F,)[r] than in G or Gr.
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11 Conclusion

In the deployment of pairing-based cryptography there has been much emphasis on the efficiency
of the pairing itself. But in real protocols the efficiency of operations in the groups G1, G2 and G
are also of significance, but have been rather overlooked. In this paper we address this imbalance
by suggesting faster algorithms for group operations in G, and particularly in G5. The latter is of
particular significance for pairing-friendly ordinary elliptic curves, where Go may be defined over
an extension field. Further work is required to determine more precisely the speed-up that can be
achieved in practise.
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