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Abstract. Recently, democratic group signatures(DGSs) particularly
catch our attention due to their great flexibilities, i.e., no group manager,
anonymity, and individual traceability. In existing DGS schemes, individ-
ual traceability says that any member in the group can reveal the actual
signer’s identity from a given signature. In this paper, we formally de-
scribe the definition of DGS, revisit its security notions by strengthening
the requirement for the property of traceability, and present a concrete
DGS construction with (t, n)-threshold traceability which combines the
concepts of group signatures and of threshold cryptography. The idea
behind the (t, n)-threshold traceability is to distribute between n group
members the capability of tracing the actual signer such that any subset
of not less than t members can jointly reconstruct a secret and reveal
the identity of the signer while preserving security even in the presence
of an active adversary which can corrupt up to t− 1 group members.
Keywords: democratic group signature, anonymity, traceability, thresh-
old traceability

1 Introduction

In 1991, Chaum and Heyst introduced the innovative concept of group signatures
[9] that is further studied and improved successively in the literature [1, 3, 4, 7].
A group signature scheme allows any member of a group to digitally sign a
document in a manner such that a verifier can confirm that it came from the
group, but does not know which individual in the group signed the document.
In case of disputes the identity of the signer can be discovered by a designated
group authority(group manager). Group signature is a very useful tool in real
world, such as e-cash, e-voting or attestation in trusted computing group, etc.

We address that most group signature schemes rely on the existence of the
group manager who requires the use of certificates to guarantee the authenticity
of group signature so that he can trace the real signer from a given signature.
However, such roles of the manager in traditional group signatures are not ap-
plicable to the following scenario[19]. In the presence of economic globalization
joint venture is one of the most common and effective means of conducting
business internationally. By building joint ventures companies form strategic al-
liances that help them to enter new economic markets and further their business



goals in a cooperative effort without loosing own independence. Upon building a
joint venture company, two or more “parent” companies agree to share capital,
technology, human resources, risks and rewards in a formation of a new entity
under shared control by a “board of directors”, which consists of representatives
of “parent” companies. The establishment of such shared control is tricky and
relies generally on the “trust, but verify” relationship, i.e., companies trust the
information they receive from prospective partners, but it is a good business
practice to verify the facts. Traditional group signatures contradicts to the re-
quirements of individual tracing of group signatures and of joint control over
the membership in the group. Additionally shared financial control is also an
important issue in a joint venture. Shared control means that every member of
the board is able to issue payment orders on behalf of the joint venture, but at
the same time representatives of other companies, should be able to monitor the
accounting to achieve fairness in the spending of shared funds.

To these goals, Manulis [19] proposed a group-oriented signature scheme,
called democratic group signature(DGS), which modifies the traditional notion
of group signatures by eliminating the role of the group manager. In a DGS
scheme, group members can cooperatively initialize and maintain the group with-
out relying on any centralized authority. DGSs provide three security properties:
anonymity, traceability, and unforgeability. Anonymity requires that the identity
of the actual signer is not known to non-members. Traceability requires that the
signer’s identity can be revealed by (and only by) the group members. Unforge-
ability requires that only group members are able to sign messages on behalf of
the group. (The properties of traceability and unforgeability can be formalized
in one definition as shown in [19]).

1.1 Related Work

Anonymity is becoming a major concern in many multi-user electronic commerce
applications such as e-lotteries, e-cash and online games. Group-oriented signa-
ture schemes enable an entity of a group to produce a signature on behalf of the
group. There are two major paradigms in anonymous group-oriented signature
schemes: group signature as explained above and ring signature(also known as
spontaneous anonymous group signature[25]).

Ring signature, introduced by Rivest et al.[21], is a paradigm for achieving 1-
out-of-n group signature. In a ring signature scheme, any single user/signer can
conscript the public keys of n-1 other users to form a group of n members. Then
a signature can be generated by that single signer which can be publicly verified
to be signed by one of the n group members. But the group formation and
the signature generation are both spontaneous, meaning that no participation
or even knowledge of the other n-1 users are needed. The 1-out-of-n signature
generated this way is also anonymous(signer indistinguishable). Furthermore,
the anonymity of ring signature is unconditional (information-theoretic) and
exculpable (signer anonymous even after subpoenaing all n secret keys and all
communication transcripts), while in the traditional group signature scheme, the



group manager has the capability of discovering the identity of the real signer
who generated a given group signature.

In threshold ring signature schemes[6, 24], any group of t entities sponta-
neously conscript arbitrarily n − t entities to generate a publicly verifiable t-
out-of-n signature on behalf of the whole group, yet the actual signers remain
anonymous. The spontaneity of these schemes is desirable for ad-hoc groups such
as mobile ad-hoc networks. Like the ring signature, threshold ring signature does
not support anonymity revocation mechanism.

Fujisaki and Suzuki described the term of traceable ring signature[13]. In
traceable ring signature scheme, anyone who creates two signatures for different
messages with respect to the same tag can be traced. As long as a signer does
not sign on two different messages with respect to the same tag, the identity of
the signer is indistinguishable from any of the possible ring members. Traceable
ring signature is also known as one-time anonymous signature.

Group signature and ring signature schemes have been the subject of a great
deal of recent work and found many practical applications[15, 26]. Detailed com-
parison of properties for group signature and ring signature can be found in
Fig.1.

1.2 Motivation

DGS schemes eliminate the role of the centralized authority group manager.
Given a group signature σ, the identity of the real signer who generated σ can
be traced by any member in the group. We believe that this requirement is
somewhat too loose.

Again take the example of joint ventures into account. Every member of
the board can issue payment orders on behalf of the joint venture. And it is
reasonable that the accounting should be monitored to achieve fairness in the
spending of shared funds. However, it is unnecessary for them to reveal the actual
signer for every accounting as these companies have the “trust” relationship and
each one has the will to maximize the interest of the joint venture. Additionally,
individual traceability would unduly provide every member in the group with
the unconstrained use of the capability of tracing. Such action would in turn
restrict the decision-making of the members as each individual in the board may
trace the accounting and then according to his short-term profit judge/critique
the member who made the decision.

Motivated by above points, we extend in this paper Manulis’s DGS method-
ology [19, 20] to democratic group signatures with threshold traceability. In our
contexts, group member can normally sign any message on behalf of the whole
group. Given a signature σ of a group of n members, we mean by threshold trace-
ability that in case of dispute, any subset of not less than t parties can jointly
reconstruct a secret and reveal the identity of the real signer who generated σ.

To the aforementioned goal, we exploit the method of publicly verifiable
secret sharing(PVSS) introduced by Stadler[23]. A secret sharing scheme allows
to share a secret among several participants such that only certain groups of them
can recover it. A publicly verifiable secret sharing scheme is a verifiable secret



sharing scheme with the property that the validity of the shares distributed by
the dealer can be verified by any party; hence verification is not limited to the
respective participants receiving the shares[22].

Combining the functionalities of DGS and of PVSS to realize “democratic
group signature with threshold traceability” is our main focus in current work.
We address that the so-called threshold traceability requires that for any re-
sulting signature on any message, t out of n members can jointly trace the real
signer by co-operatively performing some computation, while any subset of less
than t parties can not do this. This potentially means that when signing a mes-
sage on behalf of the group, the signer has to embed on the fly some auxiliary
information into the resulting signature. Conversely, if the signer distributes the
information among the group before he generates the signature, any t parties
can then together reconstruct the data on the instant and each of them can
individually trace the signatures originating from him.

One can see that our scheme complements existing group-oriented crypto-
graphic primitives: group signature, democratic group signature, ring signature,
threshold ring signature and one-time anonymous signature. It is an explicit goal
that unlike the one-time anonymous signature, our scheme allows the signer to
sign any message of his choice, and each time he may be traced by any qualified
subset. Worth a special mention is that threshold of our terminology is exe-
cuted in the process of tracing, whereas threshold of threshold ring signature
is in the signing step[6].

1.3 Our Contributions

In this paper we first borrow the definition and security notions for democratic
group signature schemes, slightly modified, from Manulis’s paper, and then pro-
pose a DGS scheme with threshold traceability. Compared with related work,
our scheme enjoys the following features:

– There is no need to have a group manager. This is a desirable property since
the manager is a centralized authority.

– Our scheme allows anonymity: given a valid group signature, it is infeasible
for anyone to identify the actual signer.

– Our scheme allows threshold traceability: given a valid group signature, any
qualified subset can trace the real signer who generated it.

– Our scheme is unforgeable: only group members are able to sign messages
on behalf of the group.

We illustrate the properties of our scheme in Fig.1 by comparing it with
related cryptographic primitives.

1.4 Overview

The rest of this paper is organized as follows. Section 2 gives brief introductions
to the complexity assumptions on which our scheme based and to a building



group Manulis’s democratic ring our
signatures group signatures signatures scheme

unforgeability X X X X
anonymity X X X X

manager traceability X × × X1

individual traceability × X × X2

threshold traceability × × × X

1,2 Our scheme provides (t, n)-traceability. If t = 1, our property of threshold
traceability leads to individual traceability as emphasized in the work by Manulis. If
t = n, threshold traceability means that the identity of the true signer can be
revealed only if all n members cooperatively perform some computation. We view the
joint function of all n members as that of a group manager.

Fig. 1. comparisons of properties of group-oriented signatures

block, namely, publicly verfiable secret sharing. We formalize the definition and
security notions for DGS in Section 3. Formal notions of security properties
include anonymity, unforgeability and threshold traceability. In Section 4, we
present a concrete DGS scheme which satisfies our requirements. Section 5 con-
cludes this paper.
Notations. Throughout this paper, let Zq denote the set {0, 1, 2, · · · , q−1}, and
Z∗q denote Zq\{0}. By ∈R S, it means choosing a random element from the set S
with a uniform distribution. For an algorithm A, we use x ← A to denote that
A is executed on some specified input and its output is assigned to the variable
x; if A is a probabilistic algorithm, we write x

R← A. Finally, throughout this
paper, we often equate a user with his identity.
Negligible Function. We say a function f : N → R is negligible if for every
constant c ≥ 0, there exists an integer kc such that f(k) < k−c for all k > kc.

2 Preliminaries

2.1 Complexity Assumptions

We first review a few concepts. Let G be a cyclic group of prime order q, g the
generator of G. Consider the following problems:

Computational Diffie-Hellman (CDH) Problem. The CDH problem in
G is defined as follows: given a 3-tuple (g, ga, gb) as input, output gab ∈ G.
An algorithm A has advantage ε in solving CDH in G if

Pr[A(g, ga, gb) = gab] ≥ ε,

where the probability is over the random choice of a, b ∈ Zq and of the
random bits of A.



Definition 1. We say that the (t, ε)-CDH Assumption holds in G if no t-time
algorithm has advantage at least ε in solving the CDH problem in G.

Decisional Diffie-Hellman (DDH) Problem. The DDH problem in G is
defined as follows: given a 4-tuple (g, ga, gb, gc) as input, output yes if ab = c
and no otherwise.
One can easily show that an algorithm for solving CDH in G gives an algo-
rithm for solving DDH in G. The converse is generally believed to be false.
More precisely, we define the advantage of an algorithm A in deciding the
DDH problem in G as

AdvDDHA
def=

∣∣∣∣∣
Pr[A(g, ga, gb, gab) = yes : a, b

R← Zq]
−Pr[A(g, ga, gb, gc) = yes : a, b, c

R← Zq]

∣∣∣∣∣

where the probability is over the uniform random choice of the parameters
to A, and over the coin tosses of A. We say that an algorithm A (t, ε)-decides
DDH in G if A runs in time at most t, and AdvDDHA is at least ε.

Definition 2. We say that the (t, ε)-DDH Assumption holds in G if no t-time
algorithm has advantage at least ε in solving the DDH problem in G.

2.2 Publicly Verifiable Secret Sharing Scheme

Secret sharing and its many variations form an important primitive in cryptog-
raphy. A secret sharing scheme distributes a secret among several participants
such that only certain groups of them can recover it. Publicly verifiable secret
sharing allows that not just the participants can verify their own shares, but that
anybody can verify[22]. Suppose that a dealer D wishes to share a secret value
s among n participants P1, ...Pn. Basically, PVSS schemes possess the following
structure.
Initialization All system parameters are generated as part of the initialization.
Each participant Pi taking part in a run of the PVSS scheme registers a public
key to be used with a public key encryption method. We assume w.l.o.g. that
participants P1, ..., Pn are the actual participants in the run described below.
Distribution The protocol consists of two steps:

1. Distribution of the shares.
To distribute a secret s, the dealer first generates the respective shares si

for participant Pi, for i = 1, ..., n, then publishes the encrypted share E(si)
and a proof to show that E encrypts a share si.

2. Verification of the shares.
Knowing the public keys for the encryption E, any party may verify the
shares by running for each participant Pi a noninteractive verification algo-
rithm on the proof to verify that E(si) is a correct encryption of a share for
Pi. In case one or more verifications fail, the protocol is aborted.



Reconstruction The protocol consists of two steps:

1. Decryption of the shares.
The participants of a qualified subset decrypt their shares si from E(si).
They release si plus a proof showing that the released share is correct.

2. Pooling the shares.
The proofs are used to exclude the participants which are dishonest or fail
to reproduce their share si correctly. Reconstruction of the secret s can be
done from the shares of any qualified set of participants.

As the special protocol by Schoenmakers[22] will be used as a building block
in our scheme, we review it below.
Initialization Let Gq denote a group of prime order q, g, G independently
selected generators of Gq. Participant Pi generates a private key xi ∈R Zq and
registers yi = Gxi as its public key.
Distribution The protocol consists of two steps:

1. Distribution of the shares.
To distribute a secret Gs with s ∈R Zq among participants P1, ..., Pn, the
dealer picks a random polynomial p(x) of degree t − 1 with coefficients in
Zq: p(x) =

∑t−1
j=0 αjx

j , where α0 = s. He keeps p(x) secret but publishes
the related commitments Cj = gαj , 0 ≤ j < t, and the encrypted shares
Yi = y

p(i)
i , 1 ≤ i ≤ n. Finally, the dealer produces a proof of knowledge of

the unique p(i), satisfying Xi = gp(i), Yi = y
p(i)
i , wherein Xi =

∏t−1
j=0 Cij

j ,
1 ≤ i ≤ n.

2. Verification of the shares.
The verifier first computes Xi =

∏t−1
j=0 Cij

j , a1i = griXc
i , a2i = yri

i Y c
i , 1 ≤

i ≤ n, then checks that the hash of Xi, Yi, a1i, a2i, 1 ≤ i ≤ n, matches c.

Reconstruction The protocol consists of two steps:

1. Decryption of the shares.

Each participant first find the share Si = Gp(i) by computing Si = Y
x−1

i
i ,

then publishes Si plus a proof that the value Si is a correct decryption of Yi.
2. Pooling the shares.

Suppose w.l.o.g. that participants Pi produce correct values for Si, for i =
1, ..., t. The secret Gs is re-derived as Gs =

∏t
i=1 Sλi

i where λi =
∏

j 6=i
j

j−i .

As for its security, we have the following theorem[22].

Theorem 1. Under the Diffie-Hellman assumption, the special PVSS scheme
is secure in the random oracle model. That is, (i) the reconstruction protocol
results in the secret distributed by the dealer for any qualified set of participants,
(ii) any non-qualified set of participants is not able to recover the secret.

In fact, for the special protocol a stronger result that the participants cannot
get any partial information on the secret Gs holds under the DDH assumption.



Theorem 2. Under the DDH assumption and the random oracle assumption,
the special PVSS scheme is secure. That is, (i) the reconstruction protocol results
in the secret distributed by the dealer for any qualified set of participants, (ii) any
non-qualified set of participants is not able to recover any (partial) information
on the secret.

3 Framework of Democratic Group Signatures

Current section defines a security model for the democratic group signatures
with threshold traceability. We start by formally describing the definition of
democratic group signatures.

3.1 Democratic Group Signatures

Definition 3. A democratic group signature scheme is a tuple Π =(Setup,
KeyGen, Sign, Verify, Trace, VTrace):

Setup: a probabilistic setup algorithm, taking as input the security parameters
k, returns a public parameter param. We write param

R← Setup(k);
KeyGen: a probabilistic key generation algorithm, taking as input param and

a user’s identity IDi ∈ {0, 1}∗, returns the secret/public key pair (xi, yi) to
the user. We write (xi, yi)

R← KeyGen(IDi, param);
Sign: a probabilistic signing algorithm, taking as input param, public keys of the

group members, a message m and the secret key xi of the real signer, returns
the resulting signature σ originating from the member IDi on behalf of the
whole group. We write σ

R← Sign(param, y1, · · · , yn,m, xi);
Verify: a deterministic signature verification algorithm, taking as input param,

a message m, a candidate signature σ on m and the public keys of the par-
ticipants in the group, returns 1 if σ is a valid signature, 0 otherwise. We
write (1 or 0) ← Verify(param, y1, · · · , yn,m, σ);

Trace: a tracing protocol between t out of n group members, say, ID1, ..., IDt,
taking as input param, a message m, a candidate signature σ on m, secret
keys of the t participants, and the public keys of the participants in the group,
returns the identity IDj(1 ≤ j ≤ n) from which σ originated together with
a proof π of this fact. We write (IDj , π) ← Trace(param, m, σ, x1,..., xt,
y1,..., yn);

VTrace: a deterministic signer verification algorithm, taking as input param,
an identity IDj, a message m, a candidate signature σ on m, the pub-
lic keys of the participants in the group, and a candidate proof π, returns
1 if (IDj , π) = Trace(param, m, σ, x1, ..., xt, y1, ..., yn) and the noninterac-
tive verification algorithm run on π is successful, 0 otherwise. We write
(1 or 0) ← VTrace(param, m, σ, y1, · · · , yn, IDj , π).

Consistency requires that ∀m ∈ M, j ∈ {1, ..., n}, Verify(param, y1, · · · , yn,
m, σ)=1 and VTrace(param, m, σ, y1, · · · , yn, IDj , π) = 1 hold, where σ =
Sign(param, y1, · · · , yn, m, xj), (IDj , π) = Trace(param, m, σ, x1,..., xt, y1,...,
yn) and M denotes the message space.



3.2 Security Notions for Democratic Group Signatures

We borrow the security notions for democratic signature schemes, slightly mod-
ified, from Manulis’s paper. Before giving the security notions for DGS, we con-
sider the following oracle which models the abilities of an adversary against DGS:
S(·, ·): a signing oracle, on a tuple 〈IDi,m〉 comprising a user’s identity IDi and
a message m, returns a signature Sign(param, y1, · · · , yn,m, xi).

Let Π = (Setup, KeyGen, Sign, Verify, Trace, VTrace) be a DGS scheme, n a
polynomial and A an adversary attacking the property of anonymity for DGS.
Without loss of generality, we suppose hereafter the group U = {ID1, ID2, ..., IDn}.
Our model takes insider attack into account by allowing the adversary to corrupt
some fraction of the members and thereby come into possession of their secret
keys. Given an initial information string, the adversary can adaptively ask for
the secret key of the members up to t− 1 out of n. A runs in three stages.

In the select stage the adversary is given an initial information string I and
outputs t−1 identities which indicate that it wants to corrupt, assumed without
loss of generality to be users IDn−t+1, ..., IDn−1. In the find stage the adversary
is given I and the public keys of the honest members ID0, ..., IDn−t. It outputs
two identities, say ID0 and ID1, for the honest users and a message m ∈ {0, 1}∗.
Based on a challenge bit b, one of the two identities is selected to yield a challenge
signature on the message m, which is returned to the adversary, now in its guess
stage. Finally A returns a bit d as its guess of the challenge bit b. In each stage
the adversary will output state information that is returned to it in the next
stage. In the find and guess stages A is given signing oracles corresponding to
the secret keys of the honest users. We now provide a formal definition.

Definition 4. Let Π = (Setup, KeyGen, Sign, Verify, Trace, VTrace) be a DGS
scheme. For a PPT adversary A, let n be a polynomial, b ∈ {0, 1}, consider the
experiment:

Experiment ExpAN-b
A,Π (k)

I
R← Setup(k);

(IDn−t+1, ..., IDn−1; st) ← A(select, I);
For i = 0, ..., n− t do (xi, yi)

R← KeyGen(I) EndFor;
(ID0, ID1;m; st) ← AS(·,·)(find, I, y0, ..., yn−t; st);
σ

R← Sign(I, y0, ..., yn−t,m, xb);
d ← AS(·,·)(guess, σ; st);
return d.

The advantage of the adversary is defined as

AdvAN
A,Π(k)

def
= |Pr[ExpAN-0

A,Π (k) = 0]− Pr[ExpAN-1
A,Π (k) = 0]|.

Let Π=(Setup, KeyGen, Sign, Verify, Trace, VTrace) be a DGS scheme. We say
that it is anonymous if the function AdvAN

A,Π(k) is negligible for any poly(k)-time
adversary A and any polynomial n.



Informally, unforgeability of a DGS scheme is equivalent to the nonexistence
of an adversary capable, within the confines of a certain game, of forging a DGS
signature that can pass the algorithm Verify after adaptively querying polyno-
mially many democratic group signatures, and of forging a signature that can be
traced to an honest member after corrupting some group members. We express
unforgeability for DGSs as the following.

Definition 5. We specify two experiments for capturing the following attacks:

1. After learning polynomially many signatures, an outsider generates a message-
signature pair (m,σ) such that Verify(param, y1, · · · , yn,m, σ)=1.

2. A group member impersonates someone in the group to generate a signature
from which that one will be traced to be the real signer.

Let Π = (Setup, KeyGen, Sign, Verify, Trace, VTrace) be a DGS scheme. For
a PPT adversary A whose goal is to forge a group signature that can be checked
as valid, let n be a polynomial, C the group of corrupted members, |C| < n,
C = U− C, consider the experiments:

Experiment ExpUF1
A,Π(k)

I
R← Setup(k);

For i = 0, ..., n− 1 do (xi, yi)
R← KeyGen(I) EndFor;

(m∗, σ∗) ← AS(·,·)(I, y0, ..., yn−1);
A wins if m∗ was not queried to the signing oracle,

and Verify(param, y1, · · · , yn,m∗, σ∗)=1;
The advantage of the adversary is defined as

AdvUF1
A,Π(k)

def
= Pr[A wins].

Experiment ExpUF2
A,Π(k)

I
R← Setup(k);

(C; st) ← A(select, I);
For ID ∈ C do (xID, yID) R← KeyGen(I) EndFor;
y ← {yID : ID ∈ C};
(m∗, σ∗) ← AS(·,·)(I, y; st);
A wins if m∗ was not queried to the signing oracle,

Verify(param, y1, · · · , yn,m∗, σ∗)=1,
and algorithm Trace traces σ∗ to some member in C;

The advantage of the adversary is defined as AdvUF2
A,Π(k)

def
= Pr[A wins].

We denote by

AdvUF
A,Π(k) = AdvUF1

A,Π(k) + AdvUF2
A,Π(k)

the advantage of an adversary in breaking the unforgeability of Π. We say that
Π is unforgeable if the function AdvUF

A,Π(k) is negligible for any poly(k)-time
adversary A and any polynomial n.



To describe proper security definitions for DGS, we should also consider its
traceability. We revisit the requirement of individual traceability described in
[19] by presenting the term threshold traceability. We express (t, n) threshold
traceability for DGSs as the following.

Definition 6. Let Π = (Setup, KeyGen, Sign, Verify, Trace, VTrace) be a DGS
scheme. We say that Π is (t, n) traceable if given a valid signature: (1) any t
out of n members can perform Trace algorithm and reveal the identity of the real
signer; and (2) any t− 1 out of n members can not do this.

What interest us is to combine group signature and PVSS so that we can
embed into the resulting signature the on-the-fly tracing trapdoor from which a
qualified subset of the members can successfully perform the tracing computa-
tion. To gain such a goal is far from trivial. The coming sections do this.

4 The Proposed Democratic Group Signature Scheme

We describe the construction for (t, n)-threshold tracing. Our solution follows
the ideas as explained in the first section and is presented in detail below.

Setup: given a security parameter κ, the algorithm:
– generates a group G of prime order q;
– picks two group generators g, h ∈ G independently(hence no one knows

the discrete log of g with respect to h);
– chooses a cryptographically secure hash function H : {0, 1}∗ → {0, 1}κ;
– defines and returns param = (G, q, g, h, H).

KeyGen: this randomized algorithm takes as input a parameter n, the number
of members of the group, and proceeds as follows. With the group G and a
generator h ∈ G as above, a user IDi generates a private key xi ∈ Z∗q , and
registers yi = hxi as its public key. Assume that n participants in the group
are IDi whose key pairs are (xi, yi)(i = 1, ..., n) respectively.

Sign: given the group {ID1, ID2, ..., IDn}, a user’s key xk, and a message m ∈
{0, 1}∗, the process of signature generation consists of two steps:
(1) Distribution of the tracing trapdoor contained in signing.

Acting as a dealer, the member with identity IDk wishes to distribute
a on-the-fly secret among the signing group. With s ∈R Zq, he first
picks a random polynomial p(x) of degree t − 1 with coefficients in Zq:
p(x) =

∑t−1
j=0 αjx

j wherein α0 = s. IDk keeps this polynomial secret but
publishes the related commitments τ = gα0 , τj = gαj , for 1 ≤ j < t, and
the encrypted shares ηi = y

p(i)
i , for 1 ≤ i ≤ n. Let χi =

∏t−1
j=0 τ ij

j .
To show that the values ηi are consistent, IDk produces a proof[5]
ZKPK[p(i) : χi = gp(i)

∧
ηi = y

p(i)
i ], 1 ≤ i ≤ n. More concretely,

the dealer outputs ai1 = gwi , ai2 = ywi
i , e = H(χ1, · · · , χn, η1, · · · , ηn,

a11,· · · ,an1,a12,· · · ,an2) and ri = wi − p(i)e by using wi ∈R Zq, for
1 ≤ i ≤ n. For clarity, we define the vector share = (τ, τ1, · · · , τt−1,
η1, · · · , ηn, e, r1, · · · , rn).



(2) Signing integrated with the tracing trapdoor.
• Set γ = gxk .
• Specify c = hsyk. (This can be viewed as ElGamal encryption of yk

under the pair (g, h).)
• For i 6= k, select zi1, zi2, ρi at random from Zq and set li1 = H(m, τ, c

yi
),

li2 = H(m, γ, yi), ui1 = (gli1h)zi1(τ li1 c
yi

)ρi , ui2 = (hli2g)zi2(yli2
i γ)ρi .

• Select rk1, rk2 at random from Zq and set lk1 = H(m, τ, hs), lk2 =
H(m, γ, yk), uk1 = (glk1h)rk1 , uk2 = (hlk2g)rk2 .

• Set ρk = H(m, τ, c, γ, u11, · · · , un1, u12, · · · , un2)−
∑

j 6=k ρj , and zk1 =
rk1 − ρks, zk2 = rk2 − ρkxk.

• Define the vector sig = (c, γ, ρ1, · · · , ρn, z11, · · · , zn1, z12, · · · , zn2),
and output the signature σ, computed as σ = 〈share, sig〉.

Remark 1. We address that the signature obtained from the Sign algo-
rithm is a signature of knowledge[8, 10, 16]: SK[(xk, s) : τ = gs

∧
c =

hsyk

∧
(y1 = hx1

∨ · · ·∨ yn = hxn)](m).
Remark 2. Our main interest is to gain the threshold traceability for DGS

schemes, so we do not here take into account the constant-size group-
oriented signatures[14]. On second thoughts, as a valid signature σ gen-
erated by our trick consists of a pair 〈share, sig〉 wherein the vector share
is for the algorithms Verify, Trace and VTrace, it seems so far that the
size of σ is unlikely constant, even the component sig is short.

Remark 3. To get our goal, it is possible to use threshold broadcast encryp-
tion(TBE) schemes[11], besides PVSS. However, the performance of this
potential trick needs careful discussion as some TBE schemes[11] further
use threshold secret sharing to be a building block.

Verify: given a signing group {ID1, ..., IDn}, along with param and a pair
(m,σ), verification that σ is a valid signature generated by the group consists
of two steps as follows:
(1) Verification of the shares.

The verifier computes χi =
∏t−1

j=0 τ ij

j from the τj values, 1 ≤ i ≤ n. Using
yi, χi, ηi, ri, 1 ≤ i ≤ n and e as input, the verifier computes ai1, ai2 as
ai1 = griχe

i , ai2 = yri
i ηe

i , and checks whether the hash value of χi, ηi,
ai1, ai2, for 1 ≤ i ≤ n, matches e. If yes, continue; stop otherwise.

(2) Verification of the signature.
First re-derive ui1 = (gli1h)zi1(τ li1 c

yi
)ρi , ui2 = (hli2g)zi2(yli2

i γ)ρi , wherein
li1 = H(m, τ, c

yi
) and li2 = H(m, γ, yi), for 1 ≤ i ≤ n, then check

that the hash of m, τ, c, γ, and ui1, ui2(1 ≤ i ≤ n), matches the sum of
ρi, 1 ≤ i ≤ n.

Trace: given a signing group {ID1, ..., IDn}, along with param and a pair
(m,σ), suppose w.l.o.g that IDi, 1 ≤ i ≤ t, wish to trace σ to an honest
member of the group. Note that if the signature is not valid, we can surely
turn to the direct discard. Detailed steps proceed as follows:
(1) Signature verification.

Call the Verify algorithm as a subroutine to make sure that the signature
is valid, i.e., Verify(param, y1, · · · , yn,m, σ) = 1.



(2) Reconstruction of the tracing trapdoor.
Using its private key xi, each participant finds the share ξi = hp(i) from

ηi by computing ξi = η
x−1

i
i . They publish ξi plus a proof πi that the

value ξi is a correct decryption of ηi: πi = ZKPK[xi : ηi = ξxi
i ∧ yi =

hxi ]. Finally, the secret µ = hs is obtained by Lagrange interpolation
hs =

∏t
i=1 ξλi

i where λi =
∏

j 6=i
j

j−i is a Lagrange coefficient.
(3) Revealing identity.

With the secret µ, locate in the signing group the identity, say, IDk

whose public key matches cµ−1. Output IDk along with the vectors
proof = (π1, · · · , πt) and dec = (ξ1, ..., ξt).

VTrace: given a signing group {ID1, ..., IDn}, param, (m,σ), IDk along with
the vectors proof, dec, the algorithm proceeds as follows. First, make sure
that the signature is valid and that the identity IDk belongs to the signing
group, and then use proof to verify the consistency of dec. If such an event
occurs, then re-derive µ as in the Trace algorithm. Finally, output 1 if c = µyk

holds, and 0 otherwise.

This ends the description of our detailed construction. It is easy to check that
the requirements for consistency are satisfied, i.e., if σ is generated correctly and
the algorithm Trace is run successfully, then the outputs of algorithms Verify and
VTrace are 1.

Remark 4. There are many situations in which PVSS schemes can be ap-
plied, such as electronic voting, threshold binding ElGamal, threshold revoca-
ble electronic cash, threshold software key escrow, etc. Here we offer a fresh
application setting for PVSS and then obtain (t, n)-threshold tracing for DGS
scheme.

Remark 5. For the property of traceability, our scheme is very general. More
specially, if t = 0, this leads to the standard definition of untraceability for
ring signatures; if t = 1, then we get a DGS with individual traceability
proposed by Manulis; if t = n, then the resulting DGS is traceable as long
as the whole group co-operatively perform the tracing computation. Practical
systems can keep the proper capability of tracing by adaptively specifying the
value of t.

5 Conclusion

In this paper, we introduced a democratic group signature scheme with threshold
traceability. By using this kind of signatures, any member of a group can sign
any message on behalf of the whole group so that he remains anonymous to any
verifier outside of the group and so that he will be inescapably traced by any
qualified subset of the group. The scheme gives a more appropriate option to
handle the shared financial control in joint ventures companies or other scenarios
where “trust, but verify” relationship exists. Our design trick is to use a special
PVSS as a building block. The proposed scheme provides a fresh application of



PVSS in the sense that PVSS is traditionally used as a secret sharing primitive
or in Electronic Voting, threshold binding ElGamal situations[22].

Additionally, one can observe that our scheme allows anyone to determine
whether two signatures of the same group have been issued by the same group
member, which can be achieved via the elements γ of the given signatures. This
results in the property of linkability that is very useful in many settings[17]. We
omit the formalization of linkability as it is not our main focus. By applying our
trick, it is not hard to design a DGS scheme with threshold traceability which
has no linkability property.

As can be seen, the property of threshold traceability is at the cost of signa-
ture size. It seems so far unlikely to make the resulting signature constant[12]
since we need to share a secret with which any qualified subset can trace the
actual signer. Another important issue worth to further discuss is the security
reduction which is asymptotic and loose in our theorems. It is interesting to
design an efficient DGS with threshold traceability and with more satisfactory
(ideally tight) security reduction.
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