Cryptanalysis of White-Box Implementations

(draft version)

W. Michiels!, P. Gorissen!, and H.D.L. Hollmann'!

Philips Research Laboratories, High Tech Campus 34, Eindhoven, The Netherlands,
wil.michiels@philips.com

Abstract. A white-box implementation of a block cipher is a software
implementation from which it is difficult for an attacker to extract the
cryptographic key. Chow et al. [4,5] published white-box implementa-
tions for AES and DES that both have been cryptanalyzed. However,
these white-box implementations are based on ideas that can easily be
used to derive white-box implementations for other block ciphers as well.
As the cryptanalyses published use typical properties of AES and DES,
it remains an open question whether the white-box techniques proposed
by Chow et al. can result in a secure white-box implementation for other
ciphers than AES and DES. In this paper we identify a generic class of
block ciphers for which the white-box techniques of Chow et al. do not
result in a secure white-box implementation. The result can serve as a
basis to design block ciphers and to develop white-box techniques that
do result in secure white-box implementations.

1 Introduction

Symmetric block ciphers, such as AES and DES, are designed to secure commu-
nication against an eavesdropper that has access to the communication channel.
This means that the security of symmetric block ciphers is based on attack
models that can be referred to as ‘black box’: to derive a cryptographic key, an
attacker is assumed to have at most access to the input and output of a crypto-
graphic algorithm. An attacker is assumed to have no access to the execution of
the cryptographic algorithm.

Crucial for a black-box attack model to apply is that the communicating
parties are trusted. However, in many applications this condition is not satisfied.
If, for instance, a content provider broadcasts encrypted data to a user, then the
user may benefit from illegally distributing the key for decrypting the data to
other users. As a second example we mention a virus that has installed itself
on a system to extract a key that is used by the system for securing financial
transactions. To protect a cryptographic key in the case of a potentially malicious
host, we have to deal with the severe ‘white-box attack model’ in which an
attacker is assumed to have full access to and full control over the implementation
of a cryptographic algorithm.

White-box cryptography is the discipline that aims at solving the problem
of how to implement a cryptographic algorithm in software, such that the key

cannot be extracted by a white-box attack. A software implementation of a cryp-
tographic algorithm that tries to resist a white-box attack on its key is called a
white-box implementation. Chow et al. present white-box implementations for
the block ciphers AES and DES [4,5]. These white-box implementations are
based on similar ideas that can easily be used to derive white-box implementa-
tions of other block ciphers as well.

White-box attacks have been published for extracting the 128-bit AES key
and the 56-bit DES key from the white-box AES and DES implementations of
Chow et al. [2,6-9]. However, the attacks use typical properties of AES and
DES and do not translate to white-box implementations of other block ciphers.
Hence, it remains an open question whether the white-box techniques proposed
by Chow et al. can result in a secure white-box implementation for other ciphers
than AES and DES, such as, for instance, Serpent [1]. In this paper we prove
for a generic class of block ciphers that the white-box techniques of Chow et
al. do not result in a secure white-box implementation. More specifically, we
prove that under some mild conditions on the diffusion matrix, we can extract
the round keys from the white-box implementation of an arbitrary substitution-
linear transformation cipher (see Definition 1). Note that if the key scheduling
algorithm is invertible, then having these round keys suffices to also derive the
main key used.

Definition 1 (Substitution-Linear Transformation Cipher (SLT cipher)).
A cipher is called an SLT cipher if it can be specified as follows. It consists of R
rounds. A single round r is a bijective function F& (21,2, ...,25) on GF(2)"
with x; € GF(2)™ andn = m-s. A round consists of the following operations. It
starts with adding an n-bit round key k" = (k7, k5, ..., k") to its input. That is,
the value y; = kI ® x; is computed. Next, the round computes z; = ST (y;) for all
Yi, where the (non-linear) S-bozes S7,S5, ..., St are part of the cipher specifica-
tion and thus key-independent. These two steps realize confusion. The diffusion
is realized by multiplying the outcome z = (z1,22,...,25) of the S-boxes with an
n X n invertible matriz M". This matriz is also part of the cipher specification.

In our notation we omit the index r denoting the round when this value is
clear from the context. The remainder of this paper is organized as follows. In
Section 2 we give a precise formulation of the result that is proved in this paper.
Key in this formulation is a specification of the information that is available
to an attacker in a white-box implementation. In Sections 3-6 we next present
our cryptanalysis. To illustrate the cryptanalysis we conclude in Section 7 with
showing how it can be used to extract the round keys from a white-box AES
and a white-box Serpent implementation.

2 Problem formulation and notation

In order to attack the white-box implementation of an SLT cipher, we have to
specify what kind of information we can obtain from it by a white-box attack.

To answer this question, we briefly discuss how Chow et al. derive a white-box
implementation of a block cipher.

First, they derive for each round of the block cipher an implementation that
computes its output by only performing a sequence of table lookups. The input
to a lookup table is either the input to the round or it is obtained by sequencing
the outputs of one ore more other lookup table. Such an implementation can be
modeled by a network of lookup tables, where an arc from table T to T' means
that (part of) the output of table T is used as (part of the) input to table T".

To arrive at a white-box implementation, we next obfuscate the lookup tables
by encoding their input and output. Encoding the input and output of a table
T with bijective functions f;, and f,4:, respectively, corresponds to replacing
table T' by foutoT o fi;f. Hence, we incorporate in it an input decoding and an
output encoding. To see that the application of encodings realizes obfuscation,
observe that encoding the input of a lookup table changes the order of its rows
and that encoding the output changes the value of the rows.

The lookup tables are encoded in such a way that the functionality of the
entire implementation does not change. A possible strategy to do this is as
follows. The first tables in the network do not get an input encoding and the last
ones do not get an output encoding. Furthermore, we choose the input encoding
of a table, such that it matches the encoding that has been put on its input data
by the tables that directly precede it in the network. To illustrate this, suppose
that the input of a table T" is exactly given by the output of a table T'. We then
encode the output of T" by a randomly chosen encoding f. The input encoding of
T’ is chosen correspondingly, which means that the input decoding incorporated
in T" consists of applying f~!. The result is that the output encodings of T' and
the input decoding of 7" have no net effect.

Let (z1,x2,...,Ts) be the input to a round of an SLT cipher, where z; is the
m-bit input to S-box S;. Then, before applying the encodings, the network of
lookup tables has the the property that each word z; is input to some lookup
table T;. For details, we refer to [4, 5]. For the white-box implementation obtained
after applying the encodings, this means that an attacker who can observe the
inputs of all tables in the implementation, which we assume to be true in a
white-box attack, has access to the encoded version f;(x;) of each value z;. Here
fi is a secret bijective function that is used as input encoding for 7;. This brings
us at the following property, which specifies the information that is available to
an attacker who tries to extract the round keys from a white-box implementation
based on the techniques of Chow et al.

Property 1. In a white-box attack of a white-box implementation of an SLT
cipher, an attacker has for each m-bit input word z; of round r access to the
encoded version f](z;) of z;. Function f] is an arbitrary m-bit bijective function
that is unknown to the attacker.

In order to formulate the main result of this paper, we need the following
definitions.

Definition 2. Let N be an n X n matriz with n = m - s. We partition N into
s wertical strips of size n x m and denote strip j with 1 < j < s by N;. To be
specific,

(Nj)a,y = Nw,(j71)~m+y7

where the rows and columns are indexed with {1,2,...,n}.
We can partition N further by splitting N; into s blocks N; ; of size m x m
with 1 <14,j <s. That s,

(Ni,j)w,y = N('ifl)m+z,(j71)m+ya

which implies that
Nl,l Nl,g . Nl,s

Nyjy Nop ... Nog
N = L

Nsi1 Ngo ... Ny

We refer to row
(Nix Ni2 ... Nis)

of blocks as the ith block row of N.

Definition 3. Let N be an n X n matriz with n = m -s. We say that a subset
UC{1,2,...,s} represents a spanning block set for block row i if the collection
of all the m-bit columns from the blocks N; ; with j € U spans GF(2)™.

If there are two subsets U,V C {1,2,...,s} withUNV = () that both represent
spanning block sets for block row i, then we say that block row i has disjoint
spanning block sets.

The main result of this paper can now be stated as follows.

Theorem 1. Consider an SLT cipher for which the diffusion matrices have the
property that all their block rows have disjoint spanning block sets. Furthermore,
consider a white-box implementation for this cipher that satisfies Property 1. We
can then extract the round key of any round r with 1 < r < R.

The theorem above does not cover the first and last round of the cipher.
The reason for this is as follows. In order to not change the functionality of the
white-box implementation, the input of the first round and the output of the last
round may not be encoded. However, by omitting these encodings the white-box
implementation of the first and last round become less secure. As as solution
to this problem, Chow et al. propose to add the encodings and to either undo
these encodings elsewhere in the software or to include these encodings in the
definition of the block cipher that is implemented. In both cases it will not only
be the goal of an attacker to derive the round keys of the first and last round, but
also to derive the encodings applied. To simplify the discussion we exclude the
attack of these rounds in this paper. We note, however, that these rounds can
also be attacked. The attack is based on the following result. By applying our

cryptanalysis, an attacker can derive the output encoding of the first round and
the input encoding of the last round. This gives the attacker the plain output of
the first round and the plain input to the last round. Using this, the first and
last round can be attacked.

We end this section with the description of some notational conventions used
throughout this paper.

— The multiplication of a matrix N with a vector z will be written as IV - z.

— If N is a matrix, then A denotes the function corresponding to a matrix
multiplication with N, i.e., N(z) = N - z.

— If T denotes a lookup table, then we also write T for the function defined by
it.

— We define @, as the function &.(z) = z @ c. Using this, we can write the
key addition of a SLT cipher as ®y.

— If we consider an affine function a, then we assume that is given by a(z) =
A -z @ a without explicitly defining matrix A and constant a.

— Let g1, g2, - - -, gs be functions on m bits. Furthermore, let © = (21, z2,...,25) €
GF(2)™ with z; € GF(2)™. Then we write

Gease(T) = (91,92, -, 95)(T) = (91(21), g2(22), - - -, 95(T5))

and we say that gcasc is an m-bit cascade.

3 Removing non-linear part of encodings

According to Property 1, an attacker has for each input word x; access to its

encoded version f;(z;), where f; is an unknown bijective function. In the first

step of our cryptanalysis we remove the non-linear part of this encoding.
Consider a round r with 1 < r < R. Let U = {uy,ua,...,u} and V =

{v1,va,...,vp} be two disjoint spanning block sets for block row i of the diffusion
matrix M of round r. Without loss of generality we assume that U UV =
{1,2,...,s}, i.e., I' =m —[. This partitions the s input words of a round input

into two parts: words that are input to an S-box S; with ¢ € U and words that
are input to an S-box S; with ¢ € V. We write z; for an input word that is input
to S-box S; with ¢ € U and we write y; for an input word that is input to S-box
S; with ¢ € V. The vector = contains all [input words x; and vector y contains
all I' input words y;. We then have that the ith output word z; of round r is
given by a(z,y) defined by

a(z,y) = i (B(z) ® 7 (y)),
where B(z) = @ Bj(z;) with
jeu

Bj(x;) = Mi; 0 Sjo @ o (f)) 7" (x)

and v(y) = @ 7;(y;) with
jeV

%5(y3) = Mi 0 Sj o @i o (f)) " (ws)-

Because U and V are spanning blocks, we have that 5(z) and v(y) are surjective
on the vector space GF(2)™.
In the full version of this paper, we prove the following result.

Theorem 2. In O(min(s,m)-2%™) time we can construct sets W, and W,, with
[Wa| = [Wy| = 2™, such that a(z,y) is (i) a bijection on x € W, for any fized
y and (i) a bijection ony € W, for any fized x.

Let ac(z) = a(z,c). We then get that for any c¢i,c2 € W, and ¢ = y(¢1) ®
~v(c2) € GF(2)™ we have

e, 0 ag, (21) = f{ T (e (F77) 7 (20))-

By keeping ¢; constant and by letting c2 cycle through all its 2™ possible values
from W, we can realize any value ¢ € GF(2)™. That is, we can construct a
collection of 2™ lookup tables, each specifying for a different value ¢ the function
I o®. o (f7T1) 1. We can now use the following result of Billet et al. [2] to
derive the non-linear part of f/ .

Theorem 3. Let a set of functions {f o ®.0 f~1 | ¢ € GF(2™)} be given as
lookup tables, where f is an arbitrary permutation of GF(2™) and ®. is the
translation by ¢ in GF(2™). One can construct a function g such that there
exists an affine mapping a satisfying g = f o a.

Combining Property 1 with the theorem above yields that an attacker can
get access to the following information when extracting the round keys from a
white-box implementation.

Property 2. In a white-box attack of a white-box implementation of an SLT
cipher, an attacker has for each m-bit input word z; of round r with 2 <r < R
access to the encoded version af (x;) of z;. Here, af (z;) = AT -z @ al is an m-bit
affine function.

4 Transformation into table network

From Property 2 it follows that after performing the first step of our cryptanal-
ysis, an attacker has for each round r with 1 < r < R access to the input-output
behavior of the function

Girr = gt © Férr 0 (Afase) ™" (1)

We now present an implementation of Gsr;r that only consists of s lookup tables.
More specifically, we define tables Ty,T%,...,Ts such that Gsyr(%1,22,...,Ts)
8

equals @ T;(x;).
i=1

i=
Let #; with x; € GF(2)™ be the s-dimensional vector over GF(2)™ that
contains value x; at position ¢ and value 0 at any other position. We now define
T; as
Ti(z:) = {QSLT(fUl) ifi=1,
GsLr (:L‘z) ® Gsir (0) otherwise.

By the definitions of Gsit and FsrT, we have

s
Gsur (@1, T2, . -, 2s) = @D aliht 0 M 0 Si 0 @y 0 (a]) ™ (). (2)
i=1

This implies that for ¢ = 1 value T;(x;) is given by
s
apst 0 My 0 Sy o @y 0 (af) " (21) & @D alt o My o S0 @y 0 (a7) 1 (0) (3)
1=2

while for ¢ > 2 value Tj(x;) is given by
alde © Mi o0 S; 0@ o (af) (i) @ alfic o Mio S0 ®pr 0 (af) H(0). (4)

From (2), (3), and (4) it easily follows that Gspr(x1,22,...,2s) is given by
el

@ Ti(z;), which was our goal.

i=1

5 Transformation into SAT cipher

In an SLT cipher, we can merge the key-addition operation into the S-box. The
resulting S-box is then given by S; o @,. Hence, an SLT cipher can be viewed
as a generic SAT cipher as defined below.

Definition 4 (Generic Substitution-Affine Transformation Cipher (generic
SAT cipher)). A cipher is called a generic SAT cipher if it can be specified

as follows. It consists of R rounds. A single round r is a bijective function
Fgen—SAT(Z1, %2, - ..,%s) on GF(2)" with z; € GF(2)™ and n=m-s. A round
consists of the following operations. First, the values y; = Q% (z;) are computed
for all input words x;, where the specification of the S-bozes Q)] are derived from

the key. Next, an invertible affine function b"(y) = B" -y ® b" is applied to the
outcome y = (y1,Y2,-.-,Ys) of the S-bozes. Also the specification of this affine
function b" is derived from the key.

By (1) the round function Gg; ;. is obtained from F; . by encoding each m-
bit input to an S-box S} by an affine function a] and by encoding each m-bit
output word of the round by an affine function a/™'. Hence, besides FZ; 1 also
round function G, can be specified as a round of a generic SAT cipher. In this
section we show how to derive the round key for which a round of the generic
SAT cipher corresponds to G&; r, i.e., to the function implemented by the lookup
table network Ty, T5,...,Ts derived in the previous section.

From (3) and (4) it follows that T; is given by

Ti(z) = C; 0 S; 0 &y, o (af) " (z) @ &, (5)

for a constant ¢; and n x m matrix C; defined by

AT 0 0... 0
0 A3t'o0... 0
Ci =) L - M;.

0 0 0.. AT+

Because A:H and M are invertible matrices, also n xn-bit matrix (C, Cs, ..., Cs)
is an invertible matrix. This implies that the m columns of n x m matrix C; are
all independent. Let U; be the m-dimensional vector space spanned by these
independent columns. Then it follows from (5) that the 2™ rows of table T; are
exactly all the 2™ points in the space U; @ ¢;, i.e., in the space obtained by
translating vector space U; over &;.

After these observations, we are ready to specify the round key of the generic
SAT cipher corresponding to Gspr. From each table T; we select an arbitrary
n-bit row v;, and we define the constant value b in round r of the generic SAT

cipher as
s
B = @ V;.
i=1

If we add v; to all rows of a table T;, then its 2™ rows are exactly all the points
in the m-dimensional vector space U;. This can be seen as follows. The rows of
T; form the space U; @ ¢;. Hence, v; = u @ ¢&; for an u € U;. By adding v; to all
rows, the space U; @ ¢; defined by the rows of T; is translated to U; because

Udé;iov,=U;0¢dudé;=U; ®u="U;.

We derive m independent vectors ui,us, ..., u,, that span the vector space U;,
and we define the m columns of submatrix B; of B as these m independent
vectors. We then have that each value T;(z;) @ v; can be written in a unique way
as a linear combination of the m columns of B;, i.e.,

m
TZ(Z',) Dv; = @gj(xi) s Uj
j=1

where g(z;) : 2™ — 2™ is a bijective function and g;(z;) gives the jth bit of
g(z;). We define S-box @Q; as the function g. This concludes our definition of the
round key of the generic SAT cipher. To see that by choosing this round key the
generic SAT cipher indeed corresponds to Ggyr, observe that

Feen—sAT(T1, 22, ..., 7.) = b & @) Bi o Qi(:)

i=1

=@vi®®@gj(m)-uj

i=1 j=1

= @Uz’ &) @ (Ti(z:) © vi)

=QSLT($1,$2,---;$s)-

6 Extracting the key

In this chapter we describe the last step of our cryptanalysis. We adopt the
following strategy. First, we derive a relation between the S-boxes S of the
white-boxed SLT cipher and the S-boxes @} specified by the key of the generic
SAT cipher that we derived in Section 5. This relation will be of the form Q} =
c; o ST od; for affine functions ¢}, d}. The function d} depends on both the round
key k" of F&; and the affine encodings a] that G&;+ puts on the input of round
F&p- The function ¢ depends on the encoding ai™' that G&; . puts on the
output of F& . by G;.r. By comparing the functions ¢/ ™' and df, we can find
the key k" contained in dJ.

We now make the last step of our cryptanalysis more precise. The outcome
of the previous step are S-boxes); and an affine function b, such that Gy =
b o Qcasc- By (1) an equivalent definition of Gsir is given by

Agatsc © M © Seasc © B © (Agase)
Using this and the observation that the functions b, aTfl, M, &y, and al,,. are
all affine, we get

Qease = Cease © Scase © dease (6)
for affine functions
Cease = b1 0 agls o M (7)
and
dease = Bk © (Afasc) ™ (8)

In the notation we indicated that ¢ and d are cascades. For d this is obviously
true. For ¢ this property follows from (6) and the observation that dcasc, Qcascs
and Scasc are cascades. Remark that (6) is equivalent to the condition that
Q; = ¢; 0 S;od; for all i. Biryukov et al. [3] present an algorithm for efficiently
deriving the set 7; of all pairs (¢;, d;) of affine functions that satisfy this equation.
We define I" such that (ceasc, deasc) € I' if (¢i,d;) € 7; for all 4. Note that this
set I' contains the pair (Ccasc, deasc) satisfying (6), (7), and (8). To complete our
cryptanalysis it now suffices to solve the following two problems.
— Which pairs (clt, dit) € I'™™! and (
satisfy (7) and (8)?
— If we have the pairs (ci.L,dl L) € I'"™! and (¢l dlps.) € I'" of affine
functions that satisfy (7) and (8), how can we derive round key k" from
this?

T T T 3
Chaser Arase) € I'" of affine functions

10

Observe that the former problem need not be solved completely. If we can limit
the number of candidate pairs to a value [, then we can apply an algorithm for
the second problem to all [candidate solutions to obtain / candidate round keys.
The correct round key can next be derived by exhaustive search.

From (7) for round r—1 and (8) for round r it follows that brflocgafsi al, .o
M and al, . = (di.) "' 0®pr, respectively. If we write ¢y (z) = C" -zt
and d%,..(z) = D" - ¢ @ d" for matrices C"=', D" and constants & ~!,d", then
combining these equations yields

Br-1 Ocr—l(x) e Br—l e Br—l(ér—l) — (Dr)—l ° Mr—l(x) D (Dr)—l(kr e gr)

The linear parts as well as the constant parts of both sides of the equation have
to be equal. The equality of the linear parts implies that in order to satisfy (7)
and (8), pairs (cl.L,dlL) € I'" ! and (cl,., dhs.) € I'™ of affine functions have

Ceascr Aeasc Ceascr Aeasce
to satisfy
B"™ 1 CT‘ 1 (DT)) Mr—l

Furthermore, the equality of the constant parts implies that if the pairs satisfy (7)
and (8), then the round key k" is given by

kT = DT . Brfl X érfl @ D". 57'71 D d'r_
We now arrive at the algorithm described in Figure 1 for finding k". For imple-

menting Step 1 in the algorithm we already referred to [3]. We now describe how
Step 2 can be implemented.

Known: Qcasc, B, Scasc: M

— Step 1: Derive for a particular pair (r — 1,7) of successive rounds for each S-box S; the

set
vi = {(ci,di) | @i = ci 0 S; od; Ac,d affine}

and let I' be such that (Ccasc; dcasc) e I'if (ci, dl) € Y for all 3.
— Step 2: Derive the subset V" C I'"™! x I'" of affine functions (ciase, dease) € I'" ' and
(cZaSC) dcasc) € I'" such that

-1 Cr—l — (D’I‘)—l X MT_I, (9)
where matrices C"~! and D" define the linear part of ¢t and dly., respectively.
— Step 3: The round key k" of round r is contained in the set

K" = {DT B! ®D"- bt GBJT | (CZasi’dgasi:czascadZasc) € VT} .

Fig. 1. Basic algorithm for finding the round key of a round r

11

6.1 Solving the linear equivalence problem for matrices

Step 2 of the algorithm of Figure 1 deals with the matrices C and D specifying
the linear parts of the affine m-bit cascade functions ccase and dease. To describe
the format of C and D, let ¢; = C;-x®¢; and d; = D; .z ®d; for m x m matrices
C;, D; and m-bit constants ¢é;, d;. Then it can be verified C and D are block
diagonal matrices, as defined below, where the ith diagonal block is given by C;
and D;, respectively.

Definition 5. Let G be an n x n matriz with n = m -s. We partition G into s>
blocks G ; of size m x m as described in Definition 2. Matriz G is called a block
diagonal matriz if all off-diagonal blocks of G are zero matrices. Furthermore,
we denote the ith diagonal block by G;.

Let U =U; x Uy X ... x U, where U; contains m X m matrices. We say that
G € U if G is a block diagonal matriz with G; € U; for all i.

We can now formulate the problem of Step 2 as an instance of the Linear
Equivalence Problem of Matrices (LEPM); see Definition below. In the remainder
of this section we discuss in a self-contained way how this problem can be solved.
For the sake of readability, we can therefore reuse variables that already have
an interpretation elsewhere in this paper.

Definition 6 (Linear Equivalence Problem of Matrices (LEPM)). A
problem instance is defined by (M, N,U,V) for n x n matrices M and N and
sets U = Uy x Uy x ... xUs; and V = V) x Vo x ... x Vi, where U; and V;
contain invertible m X m matrices and n = m-s. Find all pairs of n X n matrices
(A,B) e U xV such that N=A-M - B.

In Figure 2 we describe an algorithm for solving LEPM. The algorithm starts
with reducing the sets U; and Vj. This is done as follows. Suppose that the pair
A, B € U x V satisfies N = A- M - B. Then this means that for all pairs i, j
we have N;; = A; - M, ; - B;. Hence, if for a particular A} € U; no B} € V
exists with N; ; = A} - M, ; - B, then we know that we can safely remove A;
from U; to solve LEPM. Similarly, if for an B; € V; no A} € U; exists with
N;j = A} - M;; - B, then we can safely remove B} from V;.

If, after this reduction step, a set U; or V; exists that is empty, then we
know that the LEPM problem instance has no solutions. Furthermore, it can be
showed that if one empty set exists, then all sets are empty. Hence, it suffices to
check for one set whether it is empty.

Next, suppose that all sets U; and V; contain exactly one linear mapping.
Then the only candidate solution to the LEPM problem instance is the solution
defined by these linear mappings. It follows from the reduction step that all linear
mappings A;, B; satisfy N; ; = A; - M;; - B;. Hence, the candidate solution is
also a valid solution. This solves the LEPM problem for this case.

The only case that remains is that either a set U; or a set V; exists that
contains more than one linear mapping. It can be proved that if no set V; exists
that contains more than one linear mapping, then neither does a set U; exist

12

that contains more than one linear mapping. Hence, we only have to consider
the case that a set V; exists that contains more than one linear mapping. We
define an equivalence relation ~; on U x V such that (4,B) ~; (A',B') if
and only if B; = Bj. The equivalence relation ~; partitions the pairs (4, B)
of matrices that satisfy V = A - M - B into classes. For each matrix B; € V},
the algorithm derives all pairs (A4, B) in the corresponding class by solving the
problem instance obtained by setting V; to the singleton set {B;}. The solution
to the LEPM problem is then given by the union of all classes.

algorithm LEPM solver(U, V)

begin
repeat
for all U; do
for all A; € U; do
if ﬂHBjerNq;,j = A, . M’i,j . Bj then
Ui :==Us \ {4i};
for all V; do
for all B; € V; do
if —EIAieUZ.N,-,J- = 14z . Mi,j - Bj then
V= Vi \ B,);
until U and V do not change;
if U1 =0 then
return {;
else if V;|U;| = 1 AV;|V;| =1 then
return {(A, B)} with A; € U; and B; € Vj;
else /* case 3;|V;| > 1 */
select smallest j with |V;| > 1;
return UBJ-er LEPM . solver(U, V (V; = {B;}));

end;

Fig. 2. Algorithm for solving LEPM problem in pseudo code. In the algorithm V(V; =
{B;}) denotes V', where V; is replaced by {B;}.

To know whether the algorithm presented is effective for attacking a white-
box implementation, we have to know an upper bound on the number of solutions
returned and the number of recursive invocations. The former number is related
to the cardinality of the set K of candidate round keys in the algorithm of
Figure 1. The latter number determines the time complexity of the algorithm of
Figure 2. The problem is that we do not want to answer the question for one
particular white-box implementation of a block cipher, but for any white-box
implementation of that block cipher. Hence, we want to derive upper bounds on
these numbers that only depend on the block cipher specification and not, for
instance, on the encodings put on the input and output of a round Fsrr by the

13

white-box implementation. The following theorem, which is proved in the full
paper, can be used to derive such bounds.

Theorem 4. Let for a round r of an SLT cipher I = (N, M,U,V) be the prob-
lem instance of LEPM that is associated with the cryptanalysis of its white-box
implementation. Furthermore, let I' = (M, M,U’, V") be the problem instance in
which U} is given by the set of all invertible m x m matrices and V' by

Vi ={G; | S] = gio S] oh; A gi, h; affine}

Then, compared to I', problem instance I does neither result in more recursive
invocations nor in more solutions when applying the algorithm of Figure 2.

7 Proof of concept

As proof of concept, we indicate that our cryptanalysis can be used to attack
white-box AES and white-box Serpent. It can be verified that the diffusion ma-
trices of both AES and Serpent satisfy the property that all their block rows have
disjoint spanning blocks. Recall that this is a necessary property to perform the
first step of the cryptanalysis. After applying the steps described in Sections 3-5,
the cryptanalysis runs the algorithm of Figure 1 to find a set K" of candidate
round keys for a given round r. The algorithm first derives for each S-box S;
the set ;. For the AES S-boxes these sets can be shown to have a cardinality
of 2040, while for the Serpent S-boxes the cardinality is either 4 or 1. Next, the
algorithm solves an LEPM problem instance to find the set V. As each affine
function ¢; and d; from a pair (¢;,d;) € v; can be shown to have a unique linear
part for AES and Serpent, the size of set V" is given by the number of solutions
of this LEPM problem instance. Using Theorem 4 it can be proved that for
any LEPM problem instance associated with a white-box implementation the
algorithm does not go into recursion and that it returns only one solution. As a
consequence, V" consists of one solution. It now follows from the third step of
the algorithm of Figure 1 that the set K" of candidate round keys consists of
only one solution as well, which must thus be the round key we are looking for.

References

1. Anderson, R.J., Biham, E., Knudsen, L.R.: Serpent: A proposal for the advanced
encryption standard. Proceedings of the First AES Candidate Conference, 1998.

2. Billet, O., Gilbert, H., Ech-Chatbi, C.: Cryptanalysis of a White-Box AES Imple-
mentation. Proceedings of the 11th Annual Workshop on Selected Areas in Cryptog-
raphy, 227-240, 2004.

3. Biryukov, A., De Cannire, C., Braeken, A., Preneel, B.: A Toolbox for Cryptanalysis:
Linear and Affine Equivalence Algorithms. Proceedings of Eurocrypt 2003, 33-50,
2003.

4. Chow, S., Eisen, P., Johnson, H., van Oorschot, P.C.: A White-Box DES Imple-
mentation for DRM Applications. Proceedings of the 2nd ACM Workshop on Digital
Rights Management, 1-15, 2002.

14

5. Chow, S., Eisen, P., Johnson, H., van Oorschot, P.C.: White-Box Cryptography and
an AES Implementation. Proceedings of the 9th Annual Workshop on Selected Areas
in Cryptography, 250-270, 2002.

6. Goubin, L., Masereel, J.M., Quisquater, M.: Cryptanalysis of White-Box DES Im-
plementations. Proceedings of the 14th Annual Workshop on Selected Areas in Cryp-
tography, 278-295, 2007.

7. Jacob, M., Boneh, D., Felten, E.: Attacking an Obfuscated Cipher by Injecting
Faults. Proceedings of the Digital Rights Management Workshop, 16-31, 2002.

8. Link, H.E., Neumann, W.D.: Clarifying Obfuscation: Improving the Security of
White-Box DES. International Symposium on Information Technology: Coding and
Computing, 679-684, 2005.

9. Wyseur, B., Michiels, W., Gorissen, P., Preneel, B.: Cryptanalysis of White-Box
DES Implementations with Arbitrary External Encodings. Proceedings of the 14th
Annual Workshop on Selected Areas in Cryptography, 264-277, 2007.

