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Abstract

Elliptic curve cryptography (ECC), independently introduced by Koblitz and Miller in the 

80’s, has attracted increasing attention in recent years due to its shorter key length 

requirement in comparison with other public-key cryptosystems such as RSA. Shorter key 

length means reduced power consumption and computing effort, and less storage 

requirement, factors that are fundamental in ubiquitous portable devices such as PDAs, 

cellphones, smartcards, and many others. To that end, a lot of research has been carried out 

to speed-up and improve ECC implementations, mainly focusing on the most important and 

time-consuming ECC operation: scalar multiplication.

In this thesis, we focus in optimizing such ECC operation at the point and scalar 

arithmetic levels, specifically targeting standard curves over prime fields. At the point 

arithmetic level, we introduce two innovative methodologies to accelerate ECC formulae: 

the use of new composite operations, which are built on top of basic point doubling and 

addition operations; and the substitution of field multiplications by squarings and other 

cheaper operations. These techniques are efficiently exploited, individually or jointly, in 

several contexts: to accelerate computation of scalar multiplications, and the computation of 

pre-computed points for window-based scalar multiplications (up to 30% improvement in 

comparison with previous best method); to speed-up computations of simple side-channel 

attack (SSCA)-protected implementations using innovative atomic structures (up to 22% 

improvement in comparison with scalar multiplication using original atomic structures); and 

to develop parallel formulae for SIMD-based applications, which are able to execute three

and four operations simultaneously (up to 72% of  improvement in comparison with a 
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sequential scalar multiplication). 

At the scalar arithmetic level, we develop new sublinear (in terms of Hamming weight) 

multibase scalar multiplications based on NAF-like conversion algorithms that are shown to 

be faster than any previous scalar multiplication method. For instance, proposed multibase 

scalar multiplications reduce computing times in 10.9% and 25.3% in comparison with 

traditional NAF for unprotected and SSCA-protected scenarios, respectively. Moreover, our 

conversion algorithms overcome the problem of converting any integer to multibase 

representation, solving an open problem that was defined as hard. Thus, our algorithms 

make the use of multiple bases practical for applications as ECC scalar multiplication for 

first time.
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Chapter 1

Introduction

1.1 Motivation

Elliptic curve cryptography (ECC) was independently introduced by Koblitz and Miller in 

1985. Since then, this public-key cryptosystem has attracted increasing attention due to its

shorter key size requirement in comparison with other established systems such as RSA and 

DL-based cryptosystems. For instance, it is widely accepted that 160-bit ECC offers 

equivalent security as 1024-bit RSA. This significant difference makes ECC especially 

attractive for applications on constrained environments as shorter key sizes are translated to

less power and storage requirements, and reduced computing times. 

Denoted by dP, where d is the secret key (scalar) and P a point on the elliptic curve, the 

scalar multiplication is the central operation of elliptic curve cryptosystems. The 

computation of this operation involves three mathematical levels: field arithmetic, point 

arithmetic and scalar arithmetic. Significant effort to optimize ECC operations through each 

of those levels has been carried out through the last few years. In this work, we concentrate 

efforts at the point and scalar arithmetic levels, specifically for the case of standard curves 

[NIST] over prime fields.
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ECC point arithmetic involves the efficient execution of doubling and addition operations. 

At this level, several authors have been working on making those basic point operations as 

efficient as possible. Although the idea of combining basic operations to build more 

sophisticated point operations was around years ago, it mainly focused on affine coordinates 

formulae, which are particularly inefficient because they contain expensive field inversions. 

Only recently such approach became practical on standard curves over prime fields with the 

introduction of a tripling operation using inversion-free coordinates [DIM05].   

In the scalar arithmetic level, efforts have mainly focused on developing efficient numeric 

expansions for integers (scalar d in our case) that reduce to the minimum the number of 

point operations required for the computation of the scalar multiplication. The well-known 

NAF and wNAF are traditional and efficient examples for the latter. Progress in the point 

arithmetic level with the introduction of the tripling operation mentioned previously has 

benefited this area with the appearance of the fastest scalar multiplication known in the 

literature, which uses radix 3 beside radix 2 (DB scalar multiplication [DIM05]). However, 

conversion to DB is either slow or require extra memory, drawbacks that are critical for 

constrained applications.   

Beside efforts to speed-up scalar multiplication, there are two additional and important 

areas of research in ECC: side-channel attacks and efficient implementations on parallel 

architectures. First, side-channel information, such as power consumption and 

electromagnetic emission, leaked by electronic devices has been shown to be highly useful 

for revealing the secret key and effectively breaking public-key cryptosystems. One version 

of this attack, known as simple side-channel attack (SSCA), is based on the analysis of a 

single execution trace of the scalar multiplication to reveal the secret key through direct 

observation of the point operation sequence. More sophisticated attacks, known as 

differential side-channel attacks (DSCA), can be carried out through the use of statistical 

analysis on data from several execution traces. To avoid these and new variants of these 

attacks remains an open and challenging problem. 

In particular, side-channel atomicity [CCJ04] has shown to give effective protection 



Chapter 1.  Introduction                  3

against SSCA at reduced overhead. However, atomic structures, which are the basic blocks 

used to build SSCA-protected ECC formulae, are still sub-optimal in terms of computing 

cost and vulnerable to potential attacks that exploit differences between field squarings and 

multiplications.   

Second, the appearance of multiprocessor/parallel architectures, which can execute several 

operations simultaneously, has become an important topic in recent years since current 

processor design is reaching its limits in terms of clock frequency. Some works already 

propose ECC formulae that can execute several operations simultaneously for architectures 

such as the well-known SIMD. The fastest methods in the literature at the point arithmetic 

level can execute two or three field operations in parallel [AHK+01,IT02]. Also, SSCA-

protected implementations exist with capability to execute two parallel computations 

[Mis06].      

In this thesis, we deal with several of the open challenges described for the previous 

scenarios. In the following section, we summarize the accomplishments of this work.  

1.2 Significance of this Work

Our work focuses on the optimization of the ECC scalar multiplication at point and scalar 

arithmetic levels for the case of standard curves over prime fields. However, it is important 

to note that some methodologies are applicable to other areas of cryptography or signal 

processing. Of particular importance are, for instance, the proposed multibase scalar 

multiplications, which can be applied to ECC over binary fields, Hyperelliptic Curve 

Cryptosystems (HECC), pairing-based cryptosystems, and others.  

The contributions of this thesis are as follows:

1. Introduction of new composite operations of the form dP and dP+Q that exploit the 

efficiency of a new special addition with identical z-coordinate [Mel06]. Of 
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particular interest are the introduction of new composite doubling-addition operation 

(denoted by DA) and efficient higher order operations such as quintupling (5P), 

septupling (7P) and others. 

2. Speed-up of traditional and simultaneous scalar multiplication methods by exploiting 

the efficiency of the new DA operation. For instance, computation time of NAF has 

been reduced in 3.1% and 22.2% for the case of unprotected and SSCA-protected 

implementations, respectively. 

3. Speed-up of computation of the pre-computed table for window-based scalar 

multiplications. We achieve up to 30% of improvement in terms of speed in 

comparison with the best previous method.

4. Introduction of an innovative methodology for accelerating the elliptic curve point 

formulae over prime fields. This flexible technique uses the substitution of 

multiplication with squaring and other cheaper operations by exploiting the fact that 

field squaring is generally less costly than multiplication. By applying this 

substitution to the traditional formulae, we obtain faster point operations in 

unprotected sequential implementations. Remarkably, our technique can be 

efficiently applied to other curve-based cryptosystems to achieve reduced computing 

cost.

5. Development of new SSCA-protected formulae using innovative atomic structures: 

M-N-A-M-N-A-A and S-N-A-M-N-A-A. We achieve up to 22% of improvement in 

terms of speed in comparison with scalar multiplications using traditional atomic 

structures. Additionally, S-N-A-M-N-A-A gives higher protection by distinguishing 

squarings from multiplications.  

6. Development of the fastest formulae for SIMD-based schemes, which are capable of 

executing three and four operations simultaneously. Up to 72% of speed-up can be 

achieved with our parallel formulae in comparison with a sequential execution.

7. Development of a new parallel SSCA-protected scheme for multiprocessor/parallel 
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architectures by applying the new atomic structures presented in this work. Our 

parallel scheme is 24% faster than the best previous method [Mis06].

8. Development of new multibase scalar multiplications based on NAF-like conversion 

algorithms and the introduced composite operations. Our scalar multiplication 

methods are shown to exhibit sublinearity in their non-zero density and be faster than 

any previous method. In unprotected implementations, our method achieves up to 

10.9% of improvement in terms of speed in comparison with NAF. In the case of 

SSCA-protected implementations using atomicity the improvement is as high as 

25.7%. Moreover, conversion to multibase does not require extra memory and is 

relatively faster.

1.3 Thesis Outline

The organization of this work is detailed in the following.

Chapter 2 introduces basic concepts about elliptic curves and abstract algebra. Also, it 

gives the reader an introduction to each of the arithmetic levels that constitute the scalar 

multiplication.

In Chapter 3, we introduce our methodology to derive composite operations of the form 

dP and dP+Q. New doubling-addition, tripling-addition, quintupling, septupling and higher 

order operations are described, and their performance discussed for each case. The chapter 

ends with the description of two applications for the new operations: computation of pre-

computed points and speed-up of traditional/simultaneous scalar multiplication methods.

In Chapter 4, we present our innovative methodology of replacing field multiplication by 

cheaper operations. Fast doubling, addition and tripling are presented and their performance 

compared against traditional formulae. Also, we apply this methodology to further reduce 

computing costs of new composite operations introduced in Chapter 3.
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Chapter 5 deals with SSCA-protected implementations. First, we present improved M-A-

N-A-based operations, and then, develop new atomic formulae on top of innovative atomic 

structures M-N-A-M-N-A-A and S-N-A-M-N-A-A. We end the chapter with a performance 

evaluation of the different structures and a comparison with the traditional approach. 

In Chapter 6, we develop new 3- and 4-parallel ECC operations by applying the efficient 

methodology of substituting multiplications. Performance of these operations is compared 

with previous works in the case SSCA is not a concern. We then introduce a 2-parallel 

scheme protected against SSCA using atomicity, and compare it against the best previous 

efforts in the literature.  

In Chapter 7, we present our scalar multiplication methods based on multiple bases and 

NAF-like expansions of the scalar: multibase (mb)-NAF, window-w multibase (wmb)-NAF 

and extended window-w multibase (extended wmb)-NAF scalar multiplications. We end the 

chapter with a comparison of the costs for the different scalar multiplication methods 

obtained from extensive tests with random numbers. Two scenarios are discussed: when 

SSCA is not a concern and when implementations should be protected using an efficient 

technique as atomicity.

Chapter 8 finishes this thesis with conclusions about our overall work, and makes 

suggestions for future work.



7

Chapter 2

Background

In this chapter, we introduce the basic theory behind Elliptic Curve Cryptosystems (ECC), 

from the abstract algebra of groups and finite fields to the arithmetic layers that constitute 

the computation of the ECC scalar multiplication. 

This is intended as a brief introduction into the topic, which can be complemented by a 

more extensive review in [HMV04,ACD+05].

  

2.1 Preliminaries

Before beginning with the description of Elliptic Curve Cryptosystems, we first introduce 

some necessary concepts about groups and fields. 

Groups

[HMV04] A set G is called an abelian group (G, ) with a binary operation : G G G  

if it satisfies the following properties:
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 Associativity: ( ) ( )a b c a b c      for all , , Ga b c .

 Commutativity: a b b a    for all , Ga b .   

 Identity: there exists Gi such that a i i a a     for all Ga .

 Inverse: for each Ga , there exists Gb  such that a b b a i    . Element b is 

called the inverse of a. 

[HMV04] The group is called additive or multiplicative if the binary operation is called 

addition (+) or multiplication (  ), respectively. For the first case, the identity element is 

usually denoted by 0, and the additive inverse of an element a, by –a. For the second case, 

the identity element is usually denoted by 1, and the multiplicative inverse of an element a, 

by a1. 

If the number of elements in the group is finite with q elements, G is called a finite group 

with order q.

Finite Fields

We will explain the concept of finite fields through the definition of the finite field Fp that is 

used through this work.

[HMV04] First, let’s define the next finite group with order prime p, Fp : {0,1,…,p1}. 

Then, (Fp,+) is an additive finite group of order p and additive identity 0, and ( p


 ,  ) is a 

multiplicative finite group of order p and multiplicative identity 1, where p


  denotes the 

non-zero elements in Fp. The triple (Fp,+,  ), simply known as Fp or prime field, is a finite 

field. 

As an extension of the definition of groups, the prime field Fp is finite since it contains a 

finite number of elements given by p, which also represents the order of the field. In a more 

general sense, given a field Fq of order q, it is said to be a finite field if and only if its order 

is a prime power q = pm. In particular, we have seen that Fq is a prime field if m  1.
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We will see later that all the points belonging to an elliptic curve over such finite field Fp

will be used to implement the EC-based cryptosystem.

2.2 Introduction to Elliptic Curves

An elliptic curve E over a field K (denoted by E(K)) is defined by the general Weierstrass 

equation [HMV04]:

                                         2 3 2
1 3 2 4 6:E y a xy a y x a x a x a                   (2.1)

Where: 1 2 3 4 6, , , ,a a a a a K

0  , where   is the discriminant of E. 

The previous condition guarantees that there do not exist more than one tangent line for a 

given point on the curve, i.e., the curve is “smooth”.

The set of pairs (x,y) that solves (2.1) and the point at infinity , which is the identity for 

the group law, form an abelian group (E(K),+) with binary operation denoted by addition. 

This group of points is used to implement the Elliptic Curve Cryptosystem (ECC).

We can define ECC over different finite fields K. Most important finite fields used to date 

to implement this cryptosystem have been binary, prime and extension fields. 

In the present thesis, we work with a prime field, denoted by Fp, where p is a large prime

and also represents the number of elements of the field. In this case, the general Weierstrass 

equation simplifies to the following [HMV04]:             

                                                         2 3:E y x ax b                                       (2.2)

Where:  a,b  Fp and  4a3 + 27b2  0



Chapter 2.  Background                  10

Consequently, the set of pairs (x , y) that solves (2.2), where , px y , and the point at

infinity  form an abelian group (E(Fp),+), which ultimately contains all the possible 

elements for computations on ECC over prime fields:

                             (E(Fp),+) 2 3( , ) : 0{ } { }p px y y x ax b O                               (2.3)

We remark without further proofs at this point that defined group (E(Fp),+) satisfies 

properties corresponding to abelian groups (see Section 2.1): 

 Addition is commutative and associative for all points P(x1,y1)  E(Fp).

 The additive identity is denoted by O, such that P+O = O+P = P for all P  E(Fp).

 Every P (x1 ,y1 )  E(Fp) has an additive inverse denoted by P. We will see later 

that 1 1( , )P x y   .

2.2.1 Elliptic Curve Discrete Logarithm Problem (ECDLP)

Let E be the elliptic curve over the finite field Fp. We can represent the main operation in 

ECC, namely scalar multiplication, as follows:

                                                                  Q  dP          (2.4) 

Where P and Q are points in E(Fp) of order q, and d is the secret scalar. 

We define the Elliptic Curve Discrete Logarithm Problem (ECDLP) as the problem of 

determining scalar d, given P and Q. 

Security of systems based on ECC relies on the hardness of this problem. In general, 

ECDLP has proven to be harder than other recognized problems such as the integer 

factorization problem and the discrete logarithm problem, which are the foundation of RSA 

(Rivest-Shamir-Adleman) and DH (Diffie-Hellman) cryptosystems, respectively.  
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Definition 2.1 [HMV04] Given an algorithm with input n, where n is an integer with size l 

log2n, its running time is:

                                               1
2 2 2( (1))(log ) (log log )[ , ]

a ac n n
nL a c e

                                      (2.5)

Where c  0 and 0 1a   are constants.

The running time of (2.5) is said to be polynomial in l ((lc)) if a  0, exponential in l if a

 1, and subexponential in l if 0 1a  .

In particular, there exists a subexponential attack, called Number Field Sieve (NFS), to 

solve the integer factorization problem and discrete logarithm problem in the following 

expected running time:

                                                               1[ ,1.923]
3nL                                                          (2.6)

In contrast, the fastest known method to solve ECDLP is Pollard’s rho, which is 

exponential with the following expected running time:

                                                                    
2

q                                                                (2.7)

Where q is the order of P and Q in (2.4). 

Therefore, it is expected that smaller key sizes are required for ECC for a given security 

level. 

Table 2.1 shows the equivalent key sizes for EC, RSA and DL cryptosystems for an 

equivalent level of security. Estimates are based on the time to run the fastest algorithms that 

solve each problem (i.e., Pollard’s rho and NFS). Security level is expressed by the key size 

in bits, meaning that for a key (scalar d) of size l, one would require 2l steps to break the 

cryptosystem [HMV04].   
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Cryptosystem Security level (bits)

ECC 160 224 256 384 512

RSA / DL 1024 2048 3072 8192 15360

Table 2.1.  Key sizes for EC, RSA and DL-based cryptosystems                                            
for equivalent security levels [HMV04] 

From Table 2.1, we observe that ECC requires much smaller keys. This is directly 

translated to faster computations and reduced memory requirements, which make this 

cryptosystem ideal for devices with constrained resources such as smartcards, cellphones, 

PDAs, laptops, and many others.

In the following section, we succinctly describe the arithmetic layers that constitute the 

computation of the scalar multiplication. The interested reader is referred to 

[HMV04,ACD+05] for a more detailed look at the topic.

2.3 ECC Arithmetic

The mathematical hierarchy of the ECC scalar multiplication (2.4) consists of three levels: 

scalar arithmetic, point arithmetic and field arithmetic (see Figure 2.1).  
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POINT ARITHMETIC  (point addition P+Q, point doubling 2P, others)

SCALAR ARITHMETIC  (dP)

LEVEL 1

LEVEL 2

LEVEL 3

FINITE FIELD ARITHMETIC

(addition, subtraction, squaring,
multiplication, inversion in      )p

Figure 2.1.  Elliptic curve mathematical hierarchy

2.3.1 Level 3: Finite Field Arithmetic

Basic curve operations in ECC over prime fields are performed using field operations. The 

latter consists of traditional arithmetic operations performed modulo the prime p:

 Addition: given a, b p , (a  b) mod p  r, where r is the remainder of dividing a

b by p, and 0 ≤ r ≤ p  1.

 Subtraction: given a, b p , (a  b) mod p  r, where r is the remainder of dividing 

a b by p, and 0 ≤ r ≤ p  1. This operation is commonly replaced by an addition 

performed on a and (b), given that the negative of any element is easily obtained. 

 Multiplication: given a, b p , (ab) mod p  r, where r is the remainder of dividing 

a b by p, and 0 ≤ r ≤ p  1.

 Squaring: given pa , (a mod p  r, where r is the remainder of dividing a by p, 

and 0 ≤ r ≤ p  1. In some hardware implementations, this operation is replaced by a 

multiplication of the form .a a , given that there is normally only a hardware 
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multiplier at hand. 

 Inversion: given a, a non-zero element in p , (a1) mod p  r, is the unique integer 

pr for which (ar) mod p  1.

Example 2.2.1   Given the elements of 11 : {0,1,2,…,10}, examples of field operations over 

such finite field are:

 6  8  14  3 mod 11.   

 6  8  2  9 mod 11.   

 6  8  48  4 mod 11.   

 62  36  3 mod 11.   

 61  2 mod 11, since 6  2  12  1 mod 11.  

NOTE: for the remainder of this work, we use the following notation in italics to specify the 

computing time (or computing cost) to perform field operations: A (field addition or 

subtraction), S (field squaring), M (field multiplication) and I (field inversion).

In this work, and to compare the various methods, we assume, as it is widely accepted, 

1 0.6S M  or 1 0.8S M  for the case of software-based implementations 

[BHL+01,GAS+05,LH00,GG03,Ava04,Ber]. In hardware platforms, only one multiplier is 

usually available to execute both squaring and multiplication. Consequently, it is assumed 

1 1S M  in that case. Cost of field addition/subtraction and field division/multiplication by 

small constants can be considered equivalent in terms of computation time [Ber,Ber06]. 

Also, their cost is widely assumed negligible in comparison with field multiplications and 

squarings. Consequently, these operations are not included in our analysis for simplification 

purposes. 
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Two exceptions to the previous assumption. We consider the cost of additions when two 

algorithms offer equivalent costs in terms of multiplications and squarings to ultimately 

establish which of these is more efficient. Also, in SSCA-protected implementations, we 

include field additions in the cost evaluation since our methods significantly reduce the 

required number of additions. In these cases we generally assume 1A = 0.05M. For details of 

costs of efficient addition/subtractions and division/multiplications with small constants, the 

reader is referred to [Ber] and [Ber06]. 

2.3.2 Level 2: Point Arithmetic

Scalar multiplication (2.4) directly depends on operations over points on the elliptic curve E. 

In general, traditional methods to compute the scalar multiplication rely on the execution of 

a given sequence of point doubling (2P) and point addition (PQ) operations, where P and 

Q are points on the elliptic curve E. 

Formulae to compute the previous elementary point operations are derived according to 

what is best known as group law.

Group Law

To best understand the way point formulae are derived, elementary point operations are 

typically described geometrically. The following description is based on the natural 

representation of points using x and y coordinates, which is called in the context of ECC 

affine coordinates representation.

Given an elliptic curve over a field K, E(K), the resultant point PQ  (x3 ,y3) of adding 

two points P (x1 ,y1) and Q (x2 ,y2) in E(K) is the reflection about the x-axis of the point 

that is intersected by the line crossing P and Q.  Figure 2.2(a) permits to visualize such 

operation.
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y

x

y

x
1 1( , )P x y

1 1( , )P x y

2 2( , )Q x y

3 3( , )P Q x y 
3 32 ( , )P x y

                   (a) Addition P+Q                                                      (b) Doubling 2P       

Figure 2.2.  Group law over 

The exception to the previous procedure is the case where the points to be added have 

identical x-coordinate. Given equation (2.2), for any x  x1, one has two solutions y  y1, 

and consequently, two points with the same x-coordinate, i.e., (x1, y1) and (x1, y1).

The latter is simply solved by using the identity of the group law, namely the point at 

infinity O, which can be geometrically defined as the point “lying far out on the y-axis such 

that any line x  c, for some constant c, parallel to the y-axis passes through it” [ACD+05]. 

Thus, the line crossing (x1, y1) and (x1, y1) obviously intersects the curve in the point at 

infinity O. Following the same definition, the reflection of O about the x-axis gives again the 

point at infinity O, so that (x1, y1)  (x1, y1) = O. As a consequence, we can define the 

negative of P = (x1, y1) as P = (x1, y1). 

By following the previous geometric description, formula for the point addition in affine 

coordinates has been derived and is described in the following [HMV04]. 

Let E( p ) be an elliptic curve over the prime field p , where p > 3. Given two points 

1 1( , )P x y  and 2 2( , )Q x y  on E( p ), where P Q, the addition 3 3( , )P Q x y   is 
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obtained as follows: 

2
3 1 2x x x   ,  3 1 3 1y x x y            (2.8)

Where:      2 1

2 1

y y
x x

  

The cost of the previous formula is 1I + 2M + 1S.

Similarly, doubling of a point can be explained by its geometric description.

Given an elliptic curve over a field K, E(K), the resultant point 2P  (x3,y3) of doubling the 

point P (x1 ,y1) in E(K) is the reflection about the x-axis of the point that is intersected by 

the tangent line of P.  Figure 2.2(b) permits to visualize such operation.

Formula for the point doubling in affine coordinates can be easily derived from the 

previous geometric description. It is described in the following [HMV04]. 

Let E( p ) be an elliptic curve over the prime field p , where p > 3. Given a point 

1 1( , )P x y  on E( p ), where PP, the doubling 3 32 ( , )P x y  is obtained as follows: 

2
3 12x x  ,           3 1 3 1y x x y                               (2.9)

Where:      
2
1

1

3
2

x a
y

 

The cost of the previous formula is 1I + 2M + 2S.

Inversion-free (projective) coordinates

The representation of points on the elliptic curve E with two coordinates (x,y), namely affine 

coordinates, introduces field inversions into the computation of point doubling and point 

addition. Inversions over prime fields are the most expensive field operation and are avoided 

as much as possible. Although their relative cost depends on the characteristics of a 

particular implementation, it has been observed that, especially in the case of efficient forms 
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for the prime p as recommended by [NIST], 1I > 30M [BHL+01, HMV04]. 

Projective coordinates (X ,Y ,Z) solve the previous problem by adding the third coordinate 

Z to replace inversions with a few other field operations. The foundation of these inversion-

free coordinate systems can be explained by the concept of equivalence class, which is 

defined in the following. 

Given a field K, there is an equivalent relation  among non-zero triplets over K, such that 

[HMV04,ACD+05]:

(X1,Y1,Z1) (X2 , Y2 , Z2)  2 1
cX X , 2 1

dY Y  and 2 1Z Z , for some *K , and 

,c d 

Thus, the equivalence class of a projective point, denoted by (X : Y : Z), is:

                                      *( : : ) {( , , ) : , , }c dX Y Z X Y Z K c d                                 (2.10)

It is important to remark that any ( , , )X Y Z  in the equivalence class (2.10) can be used as a 

representative of a given projective point. 

In this case, there is only one element that can be represented with 0Z  , which is the 

point at infinity O. Also, there is only one element in (2.10) that can be represented with 

1Z  , corresponding to the affine coordinates representative. The latter can be obtained as 

follows:

                                                            ( / , / ,1)c dX Z Y Z                                                   (2.11)

By exploiting relation (2.10), several coordinate systems (or combinations of coordinate 

systems) have been explored to yield inversion-free doubling/addition formulae with lower

costs. The reader is referred to [CMO98,CPQ01] for further details.

In the present thesis, we work with Jacobian coordinates, a special case of projective 

coordinates that has yielded very efficient point doubling and addition formulae for ECC 

over prime fields [Elm06,HMV04]. 
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Jacobian coordinates representation is obtained by fixing c = 2 and d = 3 in (2.10). Thus, 

the equivalence class for Jacobian coordinates is as follows:

                                              2 3 *( : : ) {( , , ) : }X Y Z X Y Z K                                       (2.12)

By replacing 2/x X Z  and 3/y Y Z , and clearing denominators in formulae (2.8) and 

(2.9), corresponding to point addition and doubling in affine coordinates, respectively, one 

transforms affine coordinates formulae into Jacobian coordinates.

In the specific case of addition, representing one of the points in Jacobian and the other in 

affine coordinates has yielded the most efficient addition formula, which is known as mixed 

addition in affine-Jacobian coordinates [CMO98].  

In the following, we introduce the (traditional) inversion-free point formulae, which can 

later be used for comparison purposes with the new composite operations presented in 

Chapter 3, and the fast point operations presented in Chapter 4. 

It is important to note that in the case of doubling it has been suggested to fix the 

parameter a (see equation 2.2) to 3 for efficiency purposes. In fact, most curves 

recommended by public-key standards [IEEE] use a 3, which has been shown to not 

impose significant restrictions to the cryptosystem [BJ03].

Thus, in the rest of this work we will refer as special case when a 3, and general case

when such parameter is not fixed and can be any value in the field.

Also, note that we apply such optimization to tripling to reduce its computing cost. 

Point doubling in Jacobian coordinates

Let P (X1 , Y1 , Z1) be a point in Jacobian coordinates on the elliptic curve E. The point 

doubling 2P (X3,Y3,Z3) can be computed by the next traditional formula:

2
3 2X    ,   4

3 3 18Y X Y    , 3 1 12Z Y Z                                      (2.13)
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Where: 2 4
1 13X aZ  

2
1 14X Y              

Thus, the cost of a doubling is 4M + 6S. As previously discussed, we can consider the 

efficient case of a 3 without much loss of generality. In that special case,  is more 

efficiently computed as follows:

                                                  2 4 2 2
1 1 1 1 1 13 3X aZ X Z X Z                                       (2.14) 

By using factorization (2.14) the cost of the doubling is reduced to 4M + 4S.

Also, it is important to note that, in the general case, it is possible to reduce the cost when 

computing repeated doublings. The idea is to avoid intermediate operations during 

computation of the term 4
3aZ  in  by computing it as   4 4

1 116Y aZ  using terms from the 

previous doubling. Two squarings are saved for each extra doubling, giving a total cost of 

4wM + 2(2w + 1)S to compute w consecutive doublings.

(General) Point addition in Jacobian coordinates

Let P (X1,Y1,Z1) and Q (X2,Y2,Z2) be points in Jacobian coordinates on the elliptic curve 

E. The point addition PQ (X3,Y3,Z3) can be computed with the next formula:

2 3 2 2
3 2 12X Z X     ,  2 2 3 3

3 2 1 3 2 1Y Z X X Z Y     , 3 1 2Z Z Z         (2.15)

Where: 3 3
1 2 2 1Z Y Z Y  

2 2
1 2 2 1Z X Z X  

Given formula (2.15), the cost of the general addition is 12M + 4S.

Mixed addition in affine-Jacobian coordinates

Let P (X1 , Y1 , Z1) and Q (x2 , y2) be two points in Jacobian and affine coordinates,
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respectively, on the elliptic curve E. The mixed addition P Q (X3 ,Y3 ,Z3) is traditionally 

obtained as follows:

2 3 2
3 12X X     ,          2 3

3 1 3 1Y X X Y     , 3 1Z Z                              (2.16)

Where: 3
1 2 1Z Y Y  

2
1 2 1Z X X       

With (2.16), the cost of a mixed addition is fixed in 8M + 3S.

Point tripling in Jacobian coordinates

[DIM05] introduced a fast tripling formula that costs 10M + 6S. Let P (X1,Y1,Z1) be a point 

in Jacobian coordinates on the elliptic curve E. The point tripling 3P (X3 , Y3 , Z3) can be 

computed with the following:

 2 2
3 1 18X Y X     ,     3

3 1 4 2Y Y           , 3 1Z Z                 (2.17)

Where:  

4
18Y 

2 4
1 13X aZ  

2 2
1 112X Y  

[DIM05] proposed to accelerate the computation by avoiding intermediate operations 

during computation of the term aZ4 when repeated triplings are to be computed. This idea is 

based on a similar approach given by [CMO98] with their modified Jacobian coordinates.

Formula by [DIM05] to compute w consecutive triplings costs (11w  1)M + (4w + 2)S. 

However, it is straightforward to note that applying another well-known technique (fixing a

3) actually gives a better performance. Thus, by computing  using the factorization 

technique given in (2.14), we reduce the cost of the tripling to 10M + 4S, and the cost of w

consecutive triplings to only 10wM + 4wS.
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Table 2.2 summarizes computing costs of traditional operations using Jacobian (or affine-

Jacobian, in the case of addition) coordinates. These costs are used through this work as a 

reference point to calculate the performance improvement achieved by our new formulae.  

Point operation General case a 3

Doubling 4M + 6S 4M + 4S

w-doubling 4wM + 2(2w + 1)S 4wM + 4wS

Mixed addition 8M + 3S -

Tripling [DIM05] 10M + 6S 10M + 4S

w-tripling [DIM05] (11w  1)M + (4w + 2)S 10wM + 4wS

Table 2.2.  Costs of traditional point operations in Jacobian coordinates

NOTE: for the remainder of this work, we use the following notation to specify the 

computing time (or computing cost) to perform point operations: A (point addition, P+Q), D 

(point doubling, 2P) and T (point tripling, 3P). Costs of composite operations such as those 

introduced in Chapter 3 use the following notation: DA (point doubling-addition, 2P+Q), 

TA (point tripling-addition, 3P+Q), Q (point quintupling, 5P), S (point septupling, 7P), E 

(11P) and TH (13P).

2.3.3 Level 1: Scalar Arithmetic

This mathematical level deals with the efficient computation of dP using point operations 

introduced in the previous section.

A plethora of methods to efficiently compute the scalar multiplication can be found in the 

literature. In the remainder of this chapter, we succinctly describe the most popular ones 

based on their efficiency in terms of speed and/or advantageous memory requirements. 

Refer to [Gor97,HMV04] for an extensive survey in the topic.
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In the remainder of this section, for an n-bit scalar multiplication dP (where n is the 

bitlength of the prime p corresponding to the prime field p ), we assume that P is of order 

h.q (q prime and h  q) and 2logn q  (i.e., p  q) [HMV04]. If d is a scalar randomly 

chosen in the range [1, q 1], then the average length of d is l  n – 1. We refer as density or 

Hamming weight to the number of non-zero elements in a given integer representation. In 

particular, for scalar multiplication, the latter is directly translated to the number of required 

point additions to compute dP using such representation.  

Binary method

This is the traditional scalar multiplication based on the binary expansion of the scalar d

using {0,1}. Given a binary representation of d, the scalar multiplication can be computed 

by scanning the bits of d from left to right, as shown in Algorithm 2.1 [HMV04]. 

Algorithm 2.1  Left-to-right binary method for scalar multiplication
INPUT: 1 0 2( ,..., ) , ( )l pd d d P E  

OUTPUT: dP

    1.  Q O

    2.  For 1i l   downto 0 do

         2.1.  2Q Q

         2.2.  If 1id   then Q Q P 

    3.  Return (Q)

The average number of doublings and additions using Algorithm 2.1 is l  n – 1 and l/2 

n/2, respectively, as d tends to infinity. Thus the cost of the binary method is approximately 

as follows:

                                                            ( 1)D A
2
nn                                                        (2.18)
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Example 2.2.2   Let d = 12632 and P a point on the elliptic curve E. Given the binary 

expansion of d:

 13 12 8 6 4 3
212632 2 2 2 2 2 2 (11000101011000)      

 The scalar multiplication denoted by [12632]P using Algorithm 2.1 would be as follows:

      3 2 2 4[12632] 2 2 2 2 2 2P P P P P P P         

Non-Adjacent Form (NAF) method

The density of the binary expansion can be effectively reduced with a signed representation 

that uses elements in the set {-1,0,1}. 

Among different signed representations, NAF is a canonical representation with the 

fewest number of non-zero digits for any scalar d. The NAF representation of d, denoted by 

NAF(d), contains at most one non-zero digit among any two successive digits.  Moreover, 

the length of NAF(d) is at most one more bit than its binary representation.   

Algorithm 2.2 computes the NAF of a scalar d if w is fixed to two. Similarly, Algorithm 

2.3 uses NAF for scalar multiplication when w = 2 [HMV04].

Algorithm 2.2  Computing the wNAF (NAF) of a positive integer

INPUT: window w (w = 2 for NAF), scalar d

OUTPUT: NAFw(d)

    1.  i = 0

    2.  While d ≥ 1 do

         2.1.  If d is odd, then mods 2 ,w
i id d d d d  

         2.2.  Else 0id 

         2.3.  d = / 2d ,  i = i + 1

    3.  Return 1 1 0 NAF( , , , )
wid d d 
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Algorithm 2.3  wNAF (NAF) method for scalar multiplication
INPUT: Window w (w = 2 for NAF), scalar 1 1 0 NAF( , , , ) , ( )

wl pd d d d P E  

OUTPUT: dP

    1.  Compute Pi  iP for  11, 3, 5, , (2 1)wi  

    2.  Q O

    3.  For 1i l   downto 0 do

         3.1.  2Q Q

         3.2.  If 0id  , then:

                    If 0id  , then 
idQ Q P 

                    Else 
idQ Q P 

    4.  Return (Q)

Function mods in Algorithm 2.2 represents the next computation (for NAF 2w  ):

  
 

If  mod 2 2 / 2, then:

mod 2 2      

Else,

mod 2

w w

w w
i

w
i

d

d d

d d

 


 


 

      (2.19)

For random scalars d of average bitlength l, the expected number of doublings and 

additions using Algorithm 2.3 (w = 2) is approximately (n – 1) and n/3, respectively. Thus 

the cost of the NAF method is:

                                                            ( 1)D A
3
nn                                                        (2.20)

Example 2.2.3   Let d = 12632 and P a point on the elliptic curve E. Given the NAF 

expansion of d:

 14 12 9 7 5 3
NAF12632 2 2 2 2 2 2 (10 10010 10 10 1000)          

 The scalar multiplication using Algorithm 2.3 would be computed as follows:
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      2 2 2 2 3 2[12632] 2 2 2 2 2 2P P P P P P P         

The cost of the previous computation is 14D + 5A, which follows (2.20) and contains the 

fewest number of additions of any scalar multiplication with d = 12632 on radix 2 when pre-

computations are not allowed.

If we consider point operation costs as given by Table 2.2 (special case with a 3), the 

previous scalar multiplication would cost 14(4M + 4S) + 5(8M + 3S) = 96M + 71S. If in 

addition we consider 1S  0.8M, then such estimate represents a cost of 153M.

Window-w Non-Adjacent Form (wNAF) method

If there is available memory, one can make use of pre-computations to reduce the computing 

time for scalar multiplication. 

In such case, wNAF is the natural expansion of NAF. It basically exploits the availability 

of pre-computed values to “insert” windows of width w, which permits the consecutive 

execution of several doublings and, thus, reduces the density of the expansion. In 

consequence, the wNAF representation of d, denoted by NAFw(d), contains at most one non-

zero digit among any w successive digits. 

Algorithm 2.2 computes the wNAF representation of a scalar d when w > 2. Similarly, 

Algorithm 2.3 uses wNAF for scalar multiplication if w > 2. It can be directly observed from 

these algorithms that wNAF is simply a generalization of NAF to any window value, and 

that NAF is the only variant in such generalization that does not require pre-computations. 

NOTE: in this work, we refer as pre-computed points to non-trivial points (i.e., excluding 

{0,1}) that are required to be computed and stored in memory before computation of the 

scalar multiplication itself. 

The average density of non-zero digits of wNAF for a window of width w is 1
1w , and 

the number of required pre-computed points, 2(2 1)w  . Thus the cost of the wNAF method 

is approximately:
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                                                         ( 1)D A
1

n
n

w
     

                                                 (2.21)

Example 2.2.4   Let d = 12632 and P a point on the elliptic curve E. For w  3, the NAF3

expansion of d is:

  
3

12 9 6 3
NAF12632 3 2 2 3 2 3 2 300100 3003000        

 The scalar multiplication using Algorithm 2.3 (w  3) would be computed as follows:

     3 3 3 3[12632] 2 2 2 2 3 3 3P P P P P       

Comparing with example 2.2.3, the cost of the scalar multiplication has been reduced to 

only 12D + 3A, which follows (2.21) and contains the fewest number of additions of any 

scalar multiplication with d = 12632 on radix 2 using the set of pre-computations {0, ±1, 

±3}.

Double Base (DB) scalar multiplication

[DIM05] proposed to represent scalar d using mixed powers of 2 and 3, as follows:

                                                              
1

2 3i i

m
b c

i
i

d d


                                                      (2.22)

Where m is the length of the expansion, di is the sign, i.e., di {-1,1}, and bi and ci form 

decreasing sequences max 1 2 0mb b b b      and max 1 2 0mc c c c     , respectively.

This representation is highly sparse and, consequently, it would permit to reduce the 

Hamming weight of the expansion for the scalar d. Moreover, with the introduction of 

efficient tripling formulae [DIM05,DIK06], the scalar multiplication would greatly benefit 

from expansions using ternary bases.  

Later, [DI06] extended this approach, called Extended DB, to applications that can afford 

pre-computations. In this case, di in (2.22) is allowed to have any value from a set of pre-

computed digits Di, where the elements are prime numbers other than 3. For instance, Di = 
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{±1, ±5, ±7, ±11}.

Computing short expansions using {2 3 }-i ib c terms has been defined as a difficult problem 

on its own. [DIM05] proposed to solve that problem by establishing “efficient” maximum 

bounds bmax and cmax for the powers of two and three, respectively, and then executing an 

exhaustive search for closest terms 2 3i ib c (Algorithm 2.4). 

A more detailed analysis of the disadvantages of the previous approach is presented in 

Chapter 7.

  

Algorithm 2.4  “Greedy” algorithm for conversion to DB

INPUT: scalar d; bmax , cmax > 0

OUTPUT: the sequence (si, bi, ci), where 0 < i < m ; m is the length of the DB expansion  

    1.  s  1

    2.  While d > 0 do

         2.1.  define z  2 3b c , the best approximation of d with max0 b b   and max0 c c 

         2.2.  print (s, b, c)

         2.3  maxb b , maxc c

         2.4  If  dz , then s s

         2.5  d d z 

Example 2.2.5   Let d = 12632 and P a point on the elliptic curve E. The DB expansion of d

is:

 4 6 2 5 212632 2 3 2 3 2    

 The scalar multiplication would be computed as follows:

   2 5 2[12632] 2 3 2 3P P P P       

The cost of the scalar multiplication is fixed in 6T + 4D + 2A, which contains fewer 
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additions (reduced non-zero density) than NAF in Example 2.2.3. 

By considering point operation costs given in Table 2.2 (special case with a 3), the 

previous scalar multiplication would cost 86M + 58S. If 1S  0.8M, then such estimate 

represents a cost of only 132M, which is an improvement in comparison to NAF (Example 

2.2.3).

Probably, the most important finding about this representation is given by Theorem 2.2.1 

from [DJM98] that shows the sublinear nature of expansions using mixed powers of 2 and 3.

Theorem 2.2.1 Every positive integer d can be represented as the sum of at most 
log

log log

d

d
 
 
 

 {2 3 }-b c terms.

Radix-r Non-Adjacent Form (rNAF) method

Recently, [TYW04] generalized the binary NAF representation of numbers to any radix r. 

This particular NAF representation is called radix-r NAF (rNAF) and presents the minimal 

density for a given radix-based NAF representation, although at the extra cost of pre-

computations.

Using the radix-r representation, a scalar d is represented as follows:

                                                                
1

0

l
i

i
i

d d r




                                                         (2.23)

Where:   0, 1,..., 1id r     is the ith digit of the radix-r NAF representation of d.

   1 0,...,ld d d  is the radix-r representation of d.

    l is the digit length of the radix-r representation of d.

It has been shown by [TYW04] that the density of the rNAF representation of a number is 

given by: 

                                                                    1

2 1

r

r




,                                                             (2.24)
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with a requirement of   2 1

2

r r   pre-computed points. 

The windowed version of this representation, called wrNAF, was also introduced in the 

same work, and it is a generalization of the well-known window-w NAF to any radix r. 

Thus, the density of the wrNAF is as follows:

                                                                
 

1

1 1

r

w r


 

,                                                          (2.25)

with a requirement of 
1 2

2

w wr r    pre-computed points.

We must point out that a similar representation was previously given by [JY02], called 

gNAF (generalized NAF), in which fewer pre-computed points are required but the achieved 

density is higher. More precisely, one requires  2r   pre-computed points with a density of  
1

1

r

r




 for the gNAF representation of a number.
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Chapter 3

Efficient Point Arithmetic over Prime 

Fields via Composite Operations

As explained in Chapter 2, ECC scalar multiplications traditionally exploit the binary 

expansion of numbers. This is mainly due to two reasons: binary is a natural way to express 

numbers on computers, and its expansion is directly translated into computations using the 

simplest and elementary ECC point operations, namely point doubling and addition. 

However, recent developments in the field have shown that it is possible to use more 

complex operations to accelerate the scalar multiplication [CJL+06,DIM05,DIK06]. 

Examples of those operations are tripling (3P, denoted by T) or quadrupling (4P) of a point, 

unified doubling-addition (2P+Q, denoted by DA), unified tripling-addition (3P+Q, denoted 

by TA), among others. Since, these new operations are inherently based on basic point 

doubling and addition, we refer to them as composite operations.   

In the present chapter, we first detail most important efforts in the literature to yield 

efficient composite operations over prime fields. Then, we introduce our faster composite 

operations and generalize them to operations of the forms dP+Q and dP. Following, we give 

example applications where these new operations can be efficiently used to accelerate ECC 
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computations. In particular, we show how to accelerate the pre-computation of points in 

window-based scalar multiplications, and then the computation of the scalar multiplication 

itself. 

   

3.1 Previous Work

Recently, special effort has been put in developing efficient composite operations, which 

ultimately are expected to speed-up the scalar multiplication. This has a strong fundament:

introducing bases different than two in the expansion of the scalar reduces the number of 

required terms and, consequently (if the required composite operations are efficient enough), 

reduces the overall computing cost. 

Let’s examine the following example to illustrate the latter: 

                                       17 15 12 10 8 6 3101062 2 2 2 2 2 2 2 2        ,

is the traditional NAF expansion using base 2. Then, a scalar multiplication using this 

expansion for the scalar d will require seventeen doublings and seven additions. If instead of 

2 we use base 3, we obtain the following: 

       11 9 7 5 3101062 3 4 3 3 2 3 3 1       

The previous expansion is denoted by 3NAF, and evidently contains fewer terms than the 

traditional binary NAF. In fact, it only requires eleven triplings and five additions if one 

computes the scalar multiplication in such a way. Therefore, if the point tripling is made 

efficient enough, we can potentially accelerate the scalar multiplication by using a ternary 

expansion. The reader must note that we are not including pre-computations in the previous 

analysis to simplify our explanation.    

The previous example highlights the importance of finding efficient composite operations. 

Further reductions in the length of the expansion are expected if higher order composite 
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operations are included as in the generalized NAF (gNAF) [JY02] or radix-r NAF (rNAF) 

[TYW04] (see Section 2.3.3), or if one makes use of combination of different bases as in the 

ternary/binary approach [CJL+06] or the double-base number system (DBNS) [DIM05].

In such direction, [ELM03] developed formulae for doubling-addition (DA), tripling and 

tripling-addition (TA) in affine coordinates using the trick of replacing the point doubling by 

an addition (in this particular coordinate system point addition is slightly cheaper than 

doubling; see Section 2.3.2). For instance, 2P+Q is proposed to be computed as (P+Q) + P. 

Later, [CJL+06] improved these formulae by using the Montgomery’s method to trade 

inversions for some cheaper multiplications. They extended the technique to yield 

quadrupling and quadrupling-addition formulae. The disadvantage of both works is that 

formulae for composite operations contain inversions, which are particularly expensive over 

prime fields. We pointed out in Chapter 2 that in the specific case of prime fields, it is 

recommended to get rid of these highly expensive field operations. 

In [DIM05], the authors derived the first point tripling in projective (Jacobian) 

coordinates, making practical expansions with base 3 (and consequently, with multiples of 

3) over prime fields when using standard curves. In fact, based on this finding, they 

proposed the double-base number system for the expansion of the scalar d, which contains 

terms of the form 2 3a b .  

We could not find in the current literature efficient formulae for other composite 

operations such as quintupling, septupling, doubling-addition (using free-inversion 

coordinates), and others, on standard curves over prime fields, which would be very 

attractive to implement expansions with reduced terms. 

In the following, we propose, to our knowledge, the first two generic strategies to derive 

efficient composite operations of the form dP+Q and dP for such case. 
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3.2 Composite Operations dP + Q

Our strategy to yield efficient composite operations of the form dP+Q consists in replacing 

doubling operations by additions. Even though addition is generally more costly than 

doubling (in inversion-free coordinates), the overall cost is reduced because of use of highly

efficient addition formulae with identical z-coordinate [Mel06], which is described in the 

following:

Let P (X1,Y1,Z) and Q (X2 ,Y2,Z) be two points with identical z-coordinate in Jacobian 

coordinates on the elliptic curve E. The addition P Q (X3 , Y3 ,Z3) can be obtained using 

formulae (2.15) as follows:

     2 3 23 3 2 2 2 2 2
3 2 1 2 1 1 2 12X Z Y Z Y Z X Z X Z X Z X Z X     

     2 3 2 6
2 1 2 1 1 2 12Y Y X X X X X Z       

      2 33 3 2 2 2 3 2 2
3 2 1 1 2 1 3 1 2 1Y Z Y Z Y Z X Z X Z X X Z Y Z X Z X     

      2 3 9
2 1 1 2 1 3 1 2 1Y Y X X X X Y X X Z      

 

   2 2 2 3
3 2 1 2 1Z Z Z X Z X Z X X Z     

Because 3 6 9 *, ,Z Z Z K , it can be easily noticed that the terms in brackets are also 

representatives of the equivalence class for Jacobian coordinates corresponding to the point 

(X3,Y3,Z3) (see Chapter 2, Section 2.3.2). Hence, the previous formulae are equivalent to the 

following:

     2 3 2

3 2 1 2 1 1 2 12X Y Y X X X X X     

      2 3

3 2 1 1 2 1 3 1 2 1Y Y Y X X X X Y X X     

 3 2 1Z Z X X                          (3.1)
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These new addition formulae with identical z-coordinate only cost 5M + 2S, which 

represents a significant reduction in comparison with 8M + 3S corresponding to the 

traditional addition with mixed affine-Jacobian coordinates (2.16). Sadly, it is not possible to 

directly replace traditional additions with this more efficient special operation since, 

evidently, it is expected that additions are computed over operands with different z-

coordinate during the scalar multiplication. 

[Mel06] applied his formulae to the context of scalar multiplication with star addition 

chains, where the particular sequence of operations allows the substitution of each

traditional addition by the new special operation (3.1). However, we noticed that the new 

addition can in fact be applied to a wider context with traditional scalar multiplication 

algorithms. In the following, we develop faster composite operations by exploiting the 

advantages of this special addition with identical z-coordinate for Elliptic Curve 

Cryptosystems using generic scalar multiplications over prime fields. 

3.2.1 Improved Doubling-Addition (DA) operation

2P+Q is a recurrent operation in efficient scalar multiplications (see Chapter 2, Section 

2.3.3). We propose to compute it as (P+Q) + P. We will show that, following this approach, 

the first addition in parenthesis can be computed with a traditional mixed addition (2.16), 

and the second operation, with the special addition with identical z-coordinate (3.1).

First, we have the mixed affine-Jacobian addition P+Q = (X1,Y1,Z1) + (X2,Y2) = (X3,Y3,Z3), 

which is computed via formulae (2.16):

2 3 2
3 12X X     ,          2 3

3 1 3 1Y X X Y     , 3 1Z Z                               (3.2)

Where: 3
1 2 1Z Y Y  

2
1 2 1Z X X  

Then, to apply the special addition for the second operation, we need (P+Q) and P to have 
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the same z-coordinate. For this purpose, we follow the next procedure:

1st Choose an efficient equivalent point  ' ' '
1 1 1, ,X Y Z for P from the equivalence class for 

Jacobian coordinates (2.12), s.t. '
1 3Z Z to comply the requirement of identical z-coordinate. 

The latter can be achieved by fixing 2
1 2 1Z X X    to have the following:

          2 3' ' ' 2 2 2
1 1 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1, , , , , ,X Y Z X Z X X Y Z X X Z Z X X X Y Z                    (3.3)

 '
1 3Z Z Z 

Now we can apply the special addition since  ' ' '
1 1 1, ,X Y Z , which is equivalent to the 

original point  1 1 1, ,P X Y Z , has the same z-coordinate as  3 3 3, ,X Y Z . Most importantly, 

the equivalent point  ' ' '
1 1 1, ,X Y Z does not introduce any extra cost because it is already 

computed in the first addition (see (3.2)). 

2nd Use formulae (3.1), corresponding to addition with identical z-coordinate, to compute 

     ' ' '
3 3 3 1 1 1 4 4 4( ) , , , , , ,P Q P X Y Z X Y Z X Y Z     , as follows:

     2 3 2' ' ' '
4 3 1 3 1 1 3 12X Y Y X X X X X               

      2 3' ' ' ' '
4 3 1 1 3 1 4 1 3 1Y Y Y X X X X Y X X     

 '4 3 1Z Z X X           (3.4)

In overall, because the proposed DA operation involves one mixed and one special 

addition, the cost is fixed in (8M + 3S) + (5M + 2S) = 13M + 5S. In contrast, a traditional 

doubling (fixed a 3, formulae (2.13)) followed by a mixed addition operation costs: (4M

+ 4S) + (8M + 3S) = 12M + 7S.

 the proposed DA operation trades one multiplication for two squarings.

Furthermore, because our DA does not involve a traditional doubling, the same 

aforementioned cost is achieved when the parameter a (equation (2.2)) is randomly chosen. 
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In contrast, a general doubling (2.13) followed by a mixed addition operation costs: (4M + 

6S) + (8M + 3S) = 12M + 9S.

 the proposed DA trades one multiplication for four squarings.

Unified Doubling-Addition (DA) operation

We can reduce further the cost of the proposed DA operation in terms of field additions by 

unifying the two point additions (i.e., mixed and special additions) into the following unified 

DA formulae:

2 3 ' 2
4 12X X     ,          ' 2 ' 3

4 1 4 1Y X X Y     , '
4 1Z Z                               (3.5)

Where:  2' 2
1 1 1 2 1X X Z X X 

 3' 2
1 1 1 2 1Y Y Z X X 

 ' 2
1 1 1 2 1Z Z Z X X 

     2 3 2' 3 2 2
3 1 1 2 1 1 2 1 1 1 2 13X X Z Y Y Z X X X Z X X        

   3' 3 2
3 1 1 2 1 1 1 2 12Y Y Z Y Y Y Z X X       

Notice that, by avoiding the intermediate computation of X3, Y3 and Z3 from the first point 

addition (3.2), we can directly compute '
3 1X X    and '

3 1Y Y    and save two field 

additions.

The total cost is then fixed in 13M + 5S + 12A, which is superior to the traditional 

execution consisting of a doubling followed by a mixed addition: 12M + 7S +16A if a 3, 

and 12M + 9S +15A if a is randomly chosen (see Section 2.3.2).

3.2.2 Improved Tripling-Addition (TA) operation

Similarly to DA, 3P+Q is proposed to be computed as (P+Q) + P + P. We first follow the 
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procedure given for DA to have 2P+Q with a cost of 13M + 5S using one mixed addition 

and one special addition. The result is expressed as follows (3.4):

     ' ' '
3 3 3 1 1 1 4 4 4( ) , , , , , ,P Q P X Y Z X Y Z X Y Z     :

     2 3 2' ' ' '
4 3 1 3 1 1 3 12X Y Y X X X X X                           

      2 3' ' ' ' '
4 3 1 1 3 1 4 1 3 1Y Y Y X X X X Y X X     

 '4 3 1Z Z X X           (3.6)

Similarly to DA, values for  ' ' '
1 1 1, ,X Y Z  are computed according to (3.2) and (3.3).

Then, to apply the special addition given by (3.1) for the last operation, we require (P+Q)

+ P and P to have the same z-coordinate. Similarly to the procedure given in Section 3.2.1, 

we follow the next steps:

1st Choose an efficient equivalent point  " " "
1 1 1, ,X Y Z for P from the equivalence class for 

Jacobian coordinates (2.12), s.t. "
1 4Z Z to comply the requirement of identical z-coordinate. 

The latter can be achieved by fixing '
3 1X X    to have the following:

          2 3" " " ' ' ' ' ' ' ' ' '
1 1 1 1 3 1 1 3 1 1 3 1 1 1 1, , , , , ,X Y Z X X X Y X X Z X X X Y Z                               (3.7)

 "
1 4Z Z Z 

Now we can use the special addition for the last addition operation since  " " "
1 1 1, ,X Y Z , 

which is equivalent to the modified point  ' ' '
1 1 1, ,X Y Z , has the same z-coordinate as 

 4 4 4, ,X Y Z . Most importantly, computation of the equivalent point  " " "
1 1 1, ,X Y Z does not 

introduce any extra cost because it is already given internally by (3.6).

2nd Use formulae (3.1), corresponding to addition with identical z-coordinate, to compute 

     " " "
4 4 4 1 1 1 5 5 5(( ) ) , , , , , ,P Q P P X Y Z X Y Z X Y Z      .
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In overall, because the proposed TA operation involves one mixed and two special 

additions, the cost is fixed in (8M + 3S) + 2(5M + 2S) = 18M + 7S. This is similar to the cost 

achieved by a traditional tripling (formulae 2.17, fixed a 3) followed by a mixed 

addition: (10M + 4S) + (8M + 3S) = 18M + 7S. We will show later that our TA is in fact 

slightly superior when considering field additions in the cost estimate. 

Moreover, because our approach does not involve a traditional doubling, the same 

aforementioned cost is achieved when the parameter a is randomly chosen. In contrast, a 

traditional tripling [DIM05] followed by a mixed addition operation costs: (10M + 6S) + 

(8M + 3S) = 18M + 9S. 

 the proposed TA saves two squarings.

Unified Tripling-Addition (TA) operation

We can reduce further the cost of the proposed TA operation in terms of field additions by 

unifying the point additions (i.e., mixed and special additions) into the following unified TA 

formulae:

2 3 " 2
5 12X X     ,          " 2 " 3

5 1 5 1Y X X Y     , "
5 1Z Z                               (3.8)

Where: " 2 3 ' 2
4 1 13X X X       

" ' 3
4 1 12Y Y Y      

" ' 2
1 1X X  , " ' 3

1 1Y Y  , " '
1 1Z Z 

 2' 2
1 1 1 2 1X X Z X X 

 3' 2
1 1 1 2 1Y Y Z X X 

 ' 2
1 1 1 2 1Z Z Z X X 

     2 3 2' 3 2 2
3 1 1 2 1 1 2 1 1 1 2 13X X Z Y Y Z X X X Z X X        

   3' 3 2
3 1 1 2 1 1 1 2 12Y Y Z Y Y Y Z X X       

Notice that, by avoiding intermediate computations of the first two point additions, we can 
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directly compute "
4 1X X   , "

4 1Y Y   , '
3 1X X    and '

3 1Y Y    and save three field 

additions.

The total cost is then fixed in 18M + 7S + 17A, which is superior to the traditional 

execution consisting of a tripling followed by a mixed addition: 18M + 7S + 21A if a 3

(special case), and 18M + 9S + 20A if a is randomly chosen (general case). See formulas 

2.16 and 2.17 for cost details

3.2.3 Generalization to Composite Operations dP + Q

The approach presented in previous sections can be generalized as follows: 

                                                 dP + Q = (P+Q) + P + P + …                                            (3.9)

Where only the first addition in parenthesis is computed with a traditional mixed addition 

(2.16). Every extra addition out of the term in parenthesis can be computed with a special 

addition with identical z-coordinate (3.1).

Note that the latter is possible because P always has an equivalent point with the same z-

coordinate as the resultant point of the precedent computation. For instance, in the case of 

TA from Section 3.2.2, "
1 4Z Z  if we fix the new equivalent of point P as 

          2 3" " " ' ' ' ' ' ' ' ' '
1 1 1 1 3 1 1 3 1 1 3 1 1 1 1, , , , , ,X Y Z X X X Y X X Z X X X Y Z      (see (3.7)). 

We observe that every extra addition adjusts to the next generic formulae: 

            2 2 2 1 1 1 3 3 3(2 ) , , , , , ,j j j
j j j j j j

j terms

P Q P P P X Y Z X Y Z X Y Z             :

          2 3 2

3 2 1 2 1 1 2 12j j j j
j j j jX Y Y X X X X X                            

             2 3

3 2 1 1 2 1 3 1 2 1
j j j j j

j j j j jY Y Y X X X X Y X X         

    3 1 2 1
j j

j jZ Z X X          (3.10)
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Where       1 1 1, ,j j jX Y Z  denotes the equivalent point of P for the current addition. 

In (3.10), we can see that it is true that one always gets an equivalent point for P by fixing:

                      2 3
1 1 1

1 1 1 1 2 1 1 2 1 1 2 1, , , ,j j j j j j j j j
j j jX Y Z X X X Y X X Z X X  
      , which is 

equivalent to       1 1 1, ,j j jX Y Z  according to (2.12), and has identical z-coordinate as (3.10). 

The cost of generalization (3.9) is given by 1A + (d 1)A’, where d  , d ≥ 2, A 

denotes the cost of the traditional mixed addition and A’ denotes the cost of the special

addition with identical z-coordinate (i.e., 5M + 2S).  

Thus, the cost of the general composite operation in (3.9) is given by:

                                                (8M + 3S) + (d 1)(5M + 2S)        (3.11)

It is important to remark that the previous generalization is efficient for d = 2, 3

(composite operations DA and TA) and prime numbers  3. If we continue adding a point P

at a time for even values of d, then the high efficiency of the special addition is cancelled by 

the increased number of operations to be performed.

For the latter, we propose a DA-based approach to yield efficient composite formulae by

exploiting the high efficiency of the already improved DA. Thus, for d = 4 and 6, we 

propose to compute dP+Q as follows:

 4P+Q = (2P+Q) + 2P, which involves a point doubling followed by a DA operation.

 6P+Q = (3P+Q) + 3P, which involves a point tripling followed by DA.  

Notice that proposed computations follow the same structure of the new DA from Section 

3.2.1, with the difference that these operations first require some pre-computation on point P

(doubling or tripling) to afterwards compute the composite DA operation. 
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3.2.4 Performance comparison

Cost estimates using generalization (3.9), the proposed DA-based approach and the 

traditional formulae for different composite operations of form dP+Q are summarized in 

Table 3.1. Since we could not find in the literature any effort to accelerate composite 

operations of the form dP+Q in the case of projective (Jacobian) coordinates over prime 

fields, for the traditional case composite operations are computed by using basic point 

operations (i.e., doubling, tripling and addition) in the most efficient way. Thus, 2P+Q is 

computed by a doubling followed by a mixed addition; 3P+Q, by a tripling followed by a 

mixed addition; 4P+Q, by two consecutive doublings and a mixed addition; 5Q+P, by two 

doublings followed by general and mixed additions; and 6P+Q, by one doubling, one 

tripling and one mixed addition. Costs for those basic operations were given in Table 2.2 for 

the general (random a) and special (a 3) cases. Note that the traditional approach has 

been slightly improved for the general case by saving some operations during computation 

of   repeated doublings (see w-doubling in Table 2.2). 

Method     2P+Q      3P+Q       4P+Q       5P+Q       6P+Q

Generalization (3.9)   13M + 5S   18M + 7S     23M + 9S    28M + 11S    33M + 13S

Using proposed DA - -
17M + 9S  (a)

   17M + 11S
 29M +13S  (a)

   29M + 15S
 22M +11S (a)

   23M + 11S

Traditional
12M + 7S  

(a)

   12M + 9S
18M + 7S  

(a)

   18M + 9S
16M +11S (a)

   16M + 13S
28M +15S  (a)

   28M + 17S
22M +11S  

(a)

   22M + 15S
(a) Parameter a in the doubling formulae is fixed (a 3). 

Table 3.1.  Performance of proposed composite operations of form dP+Q                              
in comparison with traditional formulae 

As mentioned before, when d  2 and 5, our generalization (3.9) reduces costs in 

comparison with the traditional formulae by trading one multiplication for up to six

squarings in comparison with a traditional approach. When d  3, generalization (3.9) is 

superior since it performs better in the general case. On the other hand, for d = 4 and 6, the 

improved DA can be efficiently used to reduce costs by trading one multiplication for up to
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two squarings.

3.3 Composite Operations dP

3.3.1 Improved Tripling (T) operation

3P is proposed to be computed as (2P)+P. In this case, we will show how the special 

addition with identical z-coordinate (3.1) can be used instead of a general addition operation 

to reduce costs.

First, we compute the point doubling 2P = 2(X1,Y1,Z1) =  (X2,Y2,Z2), which is computed via 

formulae (2.13): 

    2
2 2 2

2 1 1 1 1 1 13 2 4X X Z X Z X Y             

    2 2 2 4
2 1 1 1 1 1 1 2 13 4 8Y X Z X Z X Y X Y      

2 1 12Z Y Z        (3.12)

Then, to apply the special addition for the second operation, we require 2P and P to have 

the same z-coordinate. For this purpose, we follow the next procedure:

1st Choose an efficient equivalent point  ' ' '
1 1 1, ,X Y Z  for P from the equivalence class for 

Jacobian coordinates (2.12), s.t. '
1 2Z Z  to comply the requirement of identical z-coordinate. 

The latter can be achieved by fixing 12Y   to have the following:

          ' ' ' 2 3
1 1 1 1 1 1 1 1 1 1 1 1, , 4 , 8 , 2 , ,X Y Z X Y Y Y Z Y X Y Z 

 '
1 2Z Z Z 

Now we can apply the special addition since  ' ' '
1 1 1, ,X Y Z , which is equivalent to the 
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original point  1 1 1, ,P X Y Z , has the same z-coordinate as  2 2 2, ,X Y Z . Most importantly, 

computation of the equivalent point  ' ' '
1 1 1, ,X Y Z does not introduce any extra cost because it 

has already been computed by the first addition (see (3.12)). 

2nd Use formulae (3.1), corresponding to addition with identical z-coordinate, to compute 

     ' ' '
2 2 2 1 1 1 3 3 3(2 ) , , , , , ,P P X Y Z X Y Z X Y Z    , as follows:

     2 3 2' ' '
3 1 2 1 2 2 1 22X Y Y X X X X X             

      2 3' ' '
3 1 2 2 1 2 3 2 1 2Y Y Y X X X X Y X X     

 '
3 1 2Z Z X X            (3.13)

In overall, because the proposed tripling operation involves one doubling and one special 

addition, the cost is (4M + 4S) + (5M + 2S) = 9M + 6S, which is one multiplication cheaper 

than the tripling proposed by [DIM05]. However, in Chapter 2 (Section 2.3.2), we modified 

such operation for the special case a 3, reducing the cost of the tripling to 10M + 4S, 

which is faster than the proposed tripling. Moreover, by efficiently executing formulae 

(2.17), we have proposed in Appendix A a new algorithm for the computation of the point 

tripling. The overall cost of our algorithm is only 9M + 5S, which makes it the most efficient 

for the execution of point tripling. 

Nevertheless, the presented approach will be used in the following section to derive 

efficient point quintupling (5P) and septupling (7P) operations.

3.3.2 Generalization to Composite Operations dP

The approach described for the improved tripling can be generalized for any odd positive 

integer d ≥ 3 (for efficiency reasons, d would be also prime), as follows: 

                                                   dP = (2P + P) + 2P + 2P + …      (3.14)
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Where each addition can be computed with a special addition with identical z-coordinate

(3.1).

Note that the latter is possible because 2P always has an equivalent point with the same z-

coordinate as the result of the current computation. For instance, for the case of quintupling 

(5P), the addition following the tripling operation from the previous section would be 

   3 3 3 2 2 2(3 ) 2 , , , ,P P X Y Z X Y Z   . If we fix '
1 2X X    in (2.12), point 

 2 2 22 , ,P X Y Z  would be equivalent to       2 3' ' '
2 1 2 2 1 2 2 1 2, ,X X X Y X X Z X X   , 

which has the same z-coordinate as  3 3 3, ,X Y Z  in formulae (3.13) and, thus, allows us to 

use the special addition (3.1). Again, computing the equivalent point for 2P does not 

introduce any extra cost since all the required computations are internally computed in the 

previous addition (see (3.13)). We can repeat the same procedure for extra additions with 

2P, and yield 7P, 9P, 11P, and so on. 

The cost of generalization (3.14) is given by 1D + 
1

2

d  
 
 

A’, where d ≥ 3 is efficiently an 

odd positive prime, D denotes the cost of the traditional doubling and A’ denotes the cost of 

the new addition with identical z-coordinate.  

Thus, the cost of the general composite operation of the form dP is given by the 

following:

                                                          D + 
1

2

d  
 
 

(5M + 2S)        (3.15)

Where D = 4M + 4S when considering special case a 3. Otherwise, D = 4M + 6S

(formulae (2.13)).

Let us estimate the costs of point quintupling (5P), septupling (7P) and eleventupling 

(11P) and compare them with costs using traditional operations.

By using (3.15), we can estimate the cost of the quintupling (d = 5) as (4M + 6S) + 2(5M

+ 2S) = 14M + 10S, if a is randomly chosen. If a 3, the cost of the new quintupling is 
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reduced to (4M + 4S) + 2(5M + 2S) = 14M + 8S.

In contrast, traditional quintupling computed as (22P + P) with random a costs: (8M + 

10S) + (12M + 4S) = 20M + 14S. If a 3, the cost would be 2(4M + 4S) + (12M + 4S) = 

20M + 12S.   

 the proposed quintupling introduces a significant reduction of 6M + 4S for the mentioned 

cases.

For the case of septupling (d = 7), the cost is fixed in (4M + 6S) + 3(5M + 2S) = 19M + 

12S, if a is randomly chosen. If a 3, the cost of the new septupling is reduced to (4M + 

4S) + 3(5M + 2S) = 19M + 10S.

In contrast, traditional septupling computed as 2(3P) + P with random a costs: (4M + 6S)

+ (10M + 6S) + (12M + 4S) = 26M + 16S. If a 3, the cost would be (4M + 4S) + (10M + 

4S) + (12M + 4S) = 26M + 12S.   

 the proposed septupling introduces significant reductions of 7M + 4S and 7M + 2S for the 

mentioned cases, respectively.

For the case of eleventupling (d = 11), the cost is fixed in (4M + 6S) + 5(5M + 2S) = 29M

+ 16S, if a is randomly chosen. If a 3, the cost of the new septupling is reduced to (4M + 

4S) + 5(5M + 2S) = 29M + 14S.

In contrast, traditional eleventupling computed as 22(3P)  P with random a costs: (8M + 

10S) + (10M + 6S) + (12M + 4S) = 30M + 20S. If a 3, the cost would be 2(4M + 4S) + 

(10M + 4S) + (12M + 4S) = 30M + 16S.   

 the proposed eleventupling introduces reductions of 1M + 4S and 1M + 2S for the 

mentioned cases, respectively.
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Combined approach for higher order composite operations dP

We remark that the previous generalization (3.14) is efficient for d = 5, 7, 11 (quintupling,

septupling and eleventupling). For computations with d greater than those values, we 

propose a combined approach using the already efficient point tripling, quintupling and

septupling operations. Moreover, we can nicely exploit an additional advantage of the 

presented approach: higher order composite operations internally compute lower composite 

operations. For instance, when computing the tripling of a point, one has the doubling for 

free. Similarly, when computing the quintupling of a point, one also obtains the doubling 

and tripling of such point, and so on. 

Computation of higher order composite operations is described in the following (where d

is an odd prime). We only show for the special case a 3 (the general case easily follows). 

Also notice that for some computations involving triplings, the cost can be reduced further 

by applying the efficient tripling algorithm detailed in Appendix A.

 13P = 2(5P) + 3P, which requires one doubling, one quintupling and one general 

addition  30M + 16S. We can slightly reduce this cost by using the efficient

tripling (Appendix A) to compute 13P as 22(3P) + P 29M + 17S.

 17P = 24P + P  28M + 20S (scalars close to powers of two are evidently more 

efficient when only computed with doublings).

 19P = 2(32P) + P 34M + 18S by using the efficient tripling given in Appendix A.

And so on.

Faster composite operation 5P+Q using 5P

In Section 3.2.3, we presented efficient 5P+Q using generalization dP+Q (3.9). We can

improve that result in the efficient case a 3 by simply combining generalization dP (3.14) 

and traditional general additions.  
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Thus, by using our efficient quintupling followed by a general addition we obtain 5P+Q

with only 26M + 12S for the special case (a 3).  This is even superior to our already 

improved 5P+Q from Section 3.2.3 (28M + 11S; see Table 3.1). 

3.3.3 Performance comparison

Cost estimates of composite operations of form dP using generalization (3.14) are 

summarized in Table 3.2. Our best results are compared with traditional formulae. 

With exception of tripling [DIM05], we could not find in the literature composite 

operations of the form dP in projective (Jacobian) coordinates over prime fields. Thus, for 

comparisons purposes, each “traditional” composite operation has been computed by using 

basic point operations (i.e., doubling, tripling and addition) in the most efficient way. 5P is 

computed by two consecutive doublings and a mixed addition; 7P, by one doubling, one 

tripling and one addition; and 11P by two doublings, one tripling and one addition. Costs for 

the traditional basic operations were given in Chapter 2, Table 2.2, for the general (a

random) and special (a 3) cases. 

Also, note that the traditional approach has been slightly improved for the general case by 

saving some operations during computation of repeated doublings (see Table 2.2).

In our case, we show cost of the tripling when computed with the efficient tripling 

algorithm in Appendix A. Quintupling, septupling and eleventupling were obtained from 

generalization (3.14). 
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This work Previous workComposite 
Operation general a = -3 general a 3

Tripling      9M + 7S            9M + 5S    10M + 6S           10M + 4S

Quintupling      14M + 10S        14M + 8S     20M + 14S         20M + 12S

Septupling    19M + 12S        19M + 10S    26M + 16S         26M + 12S

Eleventupling    29M + 16S       29M + 14S    30M + 20S         30M + 16S

Table 3.2.  Cost performance of proposed composite operations of form dP                           
in comparison with traditional formulae 

After comparing costs given in Table 3.2, we can conclude that our composite operations 

outperform previous formulae in both the general and special cases. As one can see, the 

improvement is especially significant for quintupling and septupling, which will allow us to 

efficiently implement new multibase algorithms for the scalar multiplication in Chapter 7.   

In the following section, we focus on some applications where our composite operations 

dP+Q and dP can be efficiently applied. 

3.4 Applications

In the present chapter, we have introduced efficient composite operations for ECC standard 

curves over prime fields by exploiting the special addition with identical z-coordinate 

introduced by [Mel06]. We explore three potential applications where these operations and 

the applied methodology can be nicely exploited: 

1. For computation of pre-computed points, which are widely used in sliding window 

and window-w NAF scalar multiplications, 

2. to speed-up existent scalar multiplications and,

3. to yield faster scalar multiplications using multiple bases.
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In the following, we discuss the first two applications. The third one is extensively 

discussed in Chapter 7 with the introduction of new multibase scalar multiplications.

3.4.1 Computation of pre-computed points

Pre-computed points are extensively used to accelerate the scalar multiplication in 

applications where extra memory is available. Well-known methods in such category are 

window-w NAF and sliding window methods [HMV04]. Since these methods require more 

memory to store pre-computed points, constrained devices cannot normally afford the extra 

requirement. The problem is increased if those pre-computed points have to be computed 

only once at the start-up and then kept in memory for any required number of scalar 

multiplications. This is done to avoid the computation of the pre-computed table every time 

there is an execution of the scalar multiplication. In such case, there is a speed-up in the 

execution of the main operation, but the occupied memory is permanently unavailable to 

other internal operations. 

A possible solution to the previous problem is to speed-up the execution of the pre-

computed points as much as possible and, thus, makes its inclusion feasible at every 

execution of the scalar multiplication. In this way, extra memory would only be required 

during such operation and then released for other applications.

In the following, we apply the techniques introduced in this chapter to the pre-

computation of points for the window-w NAF and the sliding window methods.

Window-w NAF (wNAF) and sliding window method

wNAF and sliding window methods rely on the pre-computation of points to reduce the 

Hamming weight of the binary expansion of the scalar d, and thus, reduce the cost during 

the scalar multiplication (see Chapter 2, Section 2.3.3). In particular, for wNAF one requires

to build the next table [HMV04]:
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                                                             11,3,5,..., 2 1w                                                    (3.16)

And for the sliding window method:

                                                   1,3,5,..., 2 2 1 3 1
ww   

 
                                      (3.17)

We propose to compute the table by applying generalization (3.14). The only difference 

with our approach to derive composite operations (Section 3.3.2) is that in this case point P

is assumed to be originally in affine coordinates. Thus, the first doubling to compute 2P

should be in affine coordinates too. 

By applying the mixed coordinates approach proposed in [CMO98], we can efficiently 

compute such first doubling in affine coordinates and yield the result in Jacobian 

coordinates, as follows:

 22 2
2 1 1 13 8X x a x y   ,    2 2 4

2 1 1 1 2 13 4 8Y x a x y X y    , 2 12Z y        (3.18)

Where the input and result are 1 1( , )P x y  and 2 2 22 ( , , )P X Y Z , respectively.

Formula (3.18) is easily derived from (2.9) by applying (2.12) with 12y  , and it has a 

computing cost of only 2M  4S. 

Then, the first addition (i.e., 3P2PP) can be computed with a traditional mixed addition 

with Jacobian-affine coordinates (2.16):

     2 3 23 2 2
3 2 1 2 2 1 2 2 2 1 22X Z Y Y Z X X X Z X X     

      2 33 2 2
3 2 1 2 2 2 1 2 3 2 2 1 2Y Z Y Y X Z X X X Y Z X X     

 2
3 2 2 1 2Z Z Z X X         (3.19)

Note that we can apply the special addition with identical z-coordinate (3.1) to compute 

(3P2P) by choosing the following representative for 2P from (2.12) with 2
2 1 2Z X X   : 
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                          2 3' ' ' 2 2 2
2 2 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2, , , , , ,X Y Z X Z X X Y Z X X Z Z X X X Y Z     

It is straightforward to note that, similarly to generalization (3.14), every extra addition 

can be computed with the special addition (3.1).  

Finally, every point in the table has to be converted back to affine coordinates since this 

would permit to use the efficient mixed addition (2.16) during the scalar multiplication. This 

can be achieved by means of (2.11) for Jacobian coordinates: 

                                                             2 3( / , / ,1)X Z Y Z                                                    (3.20)

Using (3.20) naively to convert back all points in the table to affine coordinates would 

require several expensive inversions. We can use the method due to Montgomery, called 

simultaneous inversion [HMV04], to replace inversions by only one inversion and some 

extra multiplications. 

A pseudocode for Montgomery’s method is given in the following:  

1st Compute 1
1 2( )nR Z Z Z     , where 1 2, , , nZ Z Z  are z-coordinates of n points to be 

converted to affine coordinates.

2nd For j  1 to n do: 1

1

n

j i

i
i j

Z R Z




  .  

The previous algorithm requires only one inversion and (3n – 3) multiplications.  

Once 1
jZ   is computed for each point using Montgomery’s method, x- and y-coordinates 

are easily derived by using (3.20) with a cost of 3M1S per point.  

To summarize, the cost of the described approach would involve one doubling (3.18), one 

mixed addition,  3
2

L   special additions, one inversion,   13 3
2

L    multiplications and 

 1(3 1 )
2

LM S  . Note that  1
2

L   is the number of points in pre-computed tables (3.16) 

and (3.17), where L denotes the last point.   
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In the case of wNAF, the overall cost can be expressed by:

                                               2 21 (11 2 9) (3 2 2)w wI M S                                        (3.21)

Now, let’s compare our approach with previous methods in the literature. 

A naïve approach to compute pre-computed points in (3.16) and (3.17) would require one 

doubling and  1
2

L   additions in affine coordinates. For wNAF, this is equivalent to 1D + 
2(2 1)w  A, where D and A are costs of point operations in affine coordinates (see (2.8) and 

(2.9)). 

[CMO98] proposed a methodology (later revisited by [Elm06]) to compute the pre-

computed table for wNAF by applying the Montgomery’s method. Their approach is, to our 

knowledge, the fastest in the literature, and requires a cost given by:

                                    2 2( 1) (5 2 2 12) (2 2 5)w ww I w M w S                                 (3.22)

In Table 3.3, we show costs for wNAF using the different methods for w  3, 4, 5 and 6. 

Estimates to the right of operation costs consider 1S = 0.8M and 1I = 30M. 

As it has been previously discussed, inversions over prime fields are highly expensive. In 

particular, for efficient implementations it is recommended to use special forms for the 

prime p such as those recommended by NIST [NIST] or those known as Mersenne primes 

[Sol99]. In such case, the cost ratio I/M is generally greater than 30 

[HMV04,BHL+01,Ava04] and justifies to replace inversions as much as possible.
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wNAF This work Naïve [CMO98] [Elm06]

w  3 1I + 13M + 8S 49M 2I + 4M + 3S 66M 2I + 4M + 3S 66M

w  4 1I + 35M + 14S 76M 4I + 8M + 5S 132M 3I + 16M + 7S 112M

w  5 1I + 79M + 26S 130M 8I + 16M + 9S 263M 4I + 38M + 13S 168M

w  6 1I + 167M + 50S 237M 16I + 32M + 17S 526M 5I + 80M + 23S 248M

Table 3.3.  Performance of proposed approach and previous methods                                     
to compute pre-computed points for wNAF 

As we can see in Table 3.3, our approach is superior to previous methods in all cases 

when using wNAF. In the most efficient case, improvement over best previous effort 

surpasses 30%. Similar results are observed for sliding window method.

3.4.2 Speeding-up existent scalar multiplications

Composite doubling-addition (DA) operation is a very common operation in most well-

known scalar multiplication algorithms, where the binary representation of the scalar is 

efficiently scanned from left-to-right. Hence, the computation consists of successive 

doublings with intermittent additions that happen when a non-zero element is found. The 

number of additions, and consequently, the number of DAs in the expansion, tightly depends 

on the Hamming weight of the scalar. 

Similarly, in simultaneous scalar multiplications of the form dP + lQ, where P, Q are 

points on the elliptic curve and d, l scalars, several doublings are executed before an addition 

with a term extracted from a pre-computed table is computed. For more details about 

simultaneous scalar multiplication (or multiple point multiplication), the reader is referred to 

[HMV04].

Thus, the introduced DA (Section 3.2.1) can be effectively used to accelerate the scalar 

multiplication by replacing every doubling followed by an addition. As mentioned, the 

improvement tightly depends on the Hamming weight (or joint Hamming weight in the case 
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of the simultaneous scalar multiplication) since it determines the number of 

doubling/addition pairs that can be replaced for our composite operation.

Table 3.4 [HMV04] gives theoretical estimates for the density using some of the most 

common methods, and the corresponding savings that are achieved by using the proposed 

DA. 

Method w
Pre-computed 

points
additions savings

NAF 1 0 0.3333n 32M

Shamir’s trick 1 2 0.75n 72M

Shamir’s trick with JSF - 3 0.50n 48M

Table 3.4.  Savings introduced by using the proposed DA operation                                      
for different scalar multiplications (n  160bits, 1S = 0.8M) 

Savings in Table 3.4 are estimated by multiplying the average number of additions 

expected in a given scalar multiplication method with the savings achieved when trading one 

doubling/addition pair for the proposed DA (2S–1M=0.6M per DA; see Table 3.1).

Evidently, the improvement is proportional to the density of a particular method, and 

hence, more efficient when pre-computation is restricted as happens in memory-constrained 

implementations.
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Chapter 4

Fast and Flexible Point Arithmetic over 

Prime Fields

In Chapter 3, we proposed to accelerate ECC computations by devising efficient composite 

operations. In the present chapter, we introduce an alternative methodology for accelerating 

the elliptic curve point formulae over prime fields. 

Our innovative technique uses the substitution of multiplication with squaring and other 

cheaper operations, by exploiting the fact that field squaring is generally less costly than 

multiplication. By applying this substitution to traditional formulae, we obtain faster point 

operations in unprotected sequential implementations. 

Moreover, we apply the technique to efficient composite operations introduced in the 

previous chapter to achieve further optimization.

Previous work presented in [Ber06] makes use of a direct algebraic substitution to replace 

one “even” field multiplication (i.e., a multiplication accompanied by a multiple of two such 

as 2ab) by one squaring and three field additions/subtractions in doubling and general 

addition formulae. However, our technique first efficiently modifies current formulae for a 
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specific point operation in such a way that allows maximum gain through the mentioned 

algebraic substitution, which is applied right after. 

It is important to note that it is widely accepted the fact that one squaring is less 

computationally expensive than one multiplication in software platforms such as Pentium, 

SPARC, ARM and many others. In general, most implementations report 

1 0.6 0.8S M M   [BHL+01,GAS+05,LH00,GG03,Ava04]. In particular, some 

implementations using special primes and OEFs (Optimal Extension Fields) have reported 

S/M ratios as low as 0.6 – 0.67 [Ber,GPW+04,Woo01]. 

In the following, we first introduce our innovative methodology, and then apply it to the 

improvement of traditional and composite operations. The chapter finishes with a discussion 

about the cost reductions that were achieved.

4.1 Flexible Methodology for Replacing Multiplications 

by Cheaper Operations

The next algebraic substitution holds for elements in a given prime field:

                                                    2 2 21

2
ab a b a b                                                    (4.1)

The first observation is that if we apply (4.1) to traditional formulae given in Chapter 2, 

one field multiplication would be replaced by three squarings, three addition/subtractions 

and one division by two. Consequently, a direct replacement is inefficient, since we are 

considering 1S = 0.8M or 1S = 0.6M. However, we will show that redundancy in the ECC 

point arithmetic formulae over prime fields avoids the necessity of computing two out of the 

three squarings, reducing the total cost to one squaring, three addition/subtractions and one

division by two. At this point, this trade would be advantageous, recalling the fact that field 

addition, subtraction and division by two are negligible in comparison to field multiplication 
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and squaring over large prime fields.

We still have to decide how to divide a given number by two. A possible solution is to 

transform the division by two to its inverse 2-1mod p and then multiply the result (or 

compute several additions, depending on its value). However, because it is assumed that we 

are working with a big prime p for the underlying field, the inverse 2-1mod p would be a 

very large number, and consequently, require too many additions, or at most a whole field 

multiplication. 

To solve this problem more efficiently, we propose to choose another representative from 

the projective equivalence class (see Chapter 2, Section 2.3.2) that inserts multiples of two 

into the formulae. 

The equivalence class that contains the Jacobian coordinates (X ,Y ,Z) is given by (2.12). 

Thus, by defining   2 in (2.12), we get an equivalent representative for the point (X,Y ,Z)

of form 3 2(2 , 2 ,2 )X Y Z , which efficiently inserts multiples of two into the formulae. 

The latter would permit the transformation of the original algebraic substitution (4.1) to 

the next form for an “even” field multiplication, eliminating the division by two:     

                                                            2 2 22ab a b a b                                                (4.2)

Our flexible methodology can be summarized in two steps:

1st Modify, if necessary, the point formulae by inserting multiples of two via selection of the 

following representative of the equivalence class for Jacobian coordinates: 

                                                       2 3( , , ) (2 ,2 , 2 )X Y Z X Y Z                                           (4.3)

2nd Replace inserted or existent “even” field multiplications by applying the algebraic 

substitution given in (4.2), depending on the requirements of the targeted application.
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The high flexibility of this methodology permits to efficiently adapt the point formulae to 

each application in such a way that the maximum cost reduction is achieved.                                 

In particular, we will show that substitutions in step 2 of our methodology are closely 

related to the targeted application. For instance, in unprotected sequential operations, we 

must replace one “even” multiplication by only one squaring so that the cost (and number of 

operations) is kept to the minimum possible, whereas in parallel implementations (see 

Chapter 6), in some cases we can replace one “even” multiplication by up to two squarings 

to take advantage of the multiple processing units, and this way, reduce the cost further.

4.1.1 Fast Point Formulae for Traditional Operations

In this section, we apply the methodology introduced in the previous section to derive fast 

formulae for basic ECC point operations. As explained previously, to achieve maximum 

gain in a sequential software-based implementation, we should replace one multiplication 

for only one squaring.

Fast point doubling

Observing (2.13), we can easily detect two multiplications that can be directly replaced by 

squarings using the algebraic substitution (4.2): 3 1 12Z Y Z  and 2
1 14X Y  . We do not have 

to worry about divisions by two because these two terms already contain multiples of two:

 2 2 2
3 1 1 1 1 1 12Z Y Z Y Z Y Z    

 22 2 2 4
1 1 1 1 1 14 2X Y X Y X Y        

Note that each of the previous multiplications is replaced by only one squaring and some 

extra additions, since the rest of the squarings ( 2
1Y , 2

1Z , 2
1X  and 4

1Y ) are already computed in 

the doubling formulae. No other multiplication can be efficiently replaced by squarings 
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because it would add more than one squaring to the formula.

The revised doubling formula is as follows:

2
3 2X    ,   4

3 3 18Y X Y    ,  2 2 2
3 1 1 1 1Z Y Z Y Z            (4.4)

Where: 2 4
1 13X aZ  

 22 2 4
1 1 1 12 X Y X Y       

      

Given (4.4), the cost of a doubling is reduced from 4M + 6S to 2M + 8S, trading two field 

squarings for two multiplications.

If we fix a 3, there is a computing reduction by applying the factorization technique in 

(2.14). Note that computation of 2
1X  is avoided, and consequently, computing 

 22 2 4
1 1 1 12 X Y X Y       

 is not an improvement anymore since one multiplication 

would be replaced by two squarings instead of only one.

The doubling formula for the special case a 3 is as follows:

2
3 2X    ,   4

3 3 18Y X Y    ,  2 2 2
3 1 1 1 1Z Y Z Y Z             (4.5)

Where:   2 2
1 13 X Z X Z   

2
1 14X Y                    

And the cost of a doubling is reduced from 4M + 4S to 3M + 5S.

Further improvement can be achieved for implementations where squaring is relatively 

cheap in comparison with multiplication (i.e., 1S = 0.6M). In this case, considering a sparse 

(sparse meaning very low Hamming weight), (4.4) is the most efficient doubling formula 

with a cost of only 1M + 8S, given that cost of a multiplication by a constant can be 

considered negligible [Ber,Ber06]. This is even more efficient than the case a 3, and less 

restrictive in the choice of the parameter a. 
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Fast point addition

Observing (2.15), we can quickly detect one multiplication that can be replaced by one 

squaring using the algebraic substitution (4.1): 1 2Z Z  in 3Z . However, this term lacks a 

multiple of two to avoid the division by two. To solve this problem, we follow the 

methodology given in Section 4.1. Thus, the formulae are first transformed as follows:

2 3 2 2
3 2 14 8X Z X     ,  2 2 3 3

3 2 1 3 2 14 8Y Z X X Z Y     , 3 1 22Z Z Z             (4.6)

Where:  3 3
1 2 2 12 Z Y Z Y  

2 2
1 2 2 1Z X Z X  

In this modified formulae, the term 1 2Z Z  has been replaced by 1 22Z Z  allowing the 

computation:  2 2 2
1 2 1 2 1 22Z Z Z Z Z Z    . Note that one multiplication is being replaced by 

only one squaring and some extra additions, since the rest of squarings ( 2
1Z  and 2

2Z ) is

already computed in the addition formula. Again, no other multiplication can be efficiently 

replaced by squaring because it would add more than one squaring to the formula.

The revised addition formula is as follows:

2 3 2 2
3 2 14 8X Z X     ,  2 2 3 3

3 2 1 3 2 1Y Z X X Z Y     ,     3Z                         (4.7)

Where:  3 3
1 2 2 12 Z Y Z Y  

2 2
1 2 2 1Z X Z X  

 2 2 2
1 2 1 2Z Z Z Z    

Given (4.7), the cost of an addition is reduced to 11M + 5S, trading one multiplication for 

one squaring in the traditional formula.

Fast mixed addition

Following the methodology given for the general point addition, we can derive a more 
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efficient mixed addition formula by trading multiplications by squarings. In this case, the 

revised formula is as follows:   

2 3 2
3 14 8X X     ,      2 3

3 1 3 14 8Y X X Y     ,     2 2 2
3 1 1Z Z Z            (4.8)

Where:  3
1 2 12 Z Y Y  

2
1 2 1Z X X                                       

It is important to note that the term 3 12Z Z   (from (4.6), with Z2 1) has been replaced 

by  2 2 2
3 1 1Z Z Z     , reducing the cost of the mixed addition to 7M + 4S.

4.1.2 Fast Point Formulae for Composite Operations

In the following, we reduce the computing time to perform the new composite operations 

presented in Chapter 3. These improvements highlight the potential of combining introduced 

methodologies to obtain highly optimized point operations. 

Fast point tripling

Substituting squarings for multiplications gives the greatest reduction in costs in the tripling 

formula, given the rich redundancy found in this operation. Observing (2.17), we can 

quickly detect up to three multiplications that can be replaced by squarings using the 

algebraic substitution (4.1): 3 1Z Z  ,   and 2
1 112X Y . To insert the necessary 

multiples of two to the two former terms, we first apply step 1 of our flexible methodology 

to formula (2.17):

 2 2
3 1 116 2 2 4X Y X     ,             3

3 18 2 2 4 2Y Y           ,       3 12Z Z 

Where: 2 2 

4
12 16Y 
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2 4
1 13X aZ  

2 2
1 112X Y  

Now we can apply the algebraic replacement (4.2) as follows:

 2 2
3 1 116 2 2 4X Y X                                                                                                 (4.9)

    3
3 18 2 2 4 2Y Y          

 2 2 2
3 1 1Z Z Z              

Where:  2 2 22       

4
12 16Y 

2 4
1 13X aZ  

 22 2 4 2
1 1 1 16 X Y X Y        

  

Thus, the cost of a tripling has been efficiently reduced from 10M + 6S to 6M + 10S. 

A more efficient result is achieved by fixing a as a sparse number. In that case, the cost is 

further reduced to 5M + 10S.  

Again, for the case when a 3, there is an additional reduction if we compute  using 

the factorization technique given in (2.14). Note that computation of 2
1X  is avoided, and 

consequently, computing   22 2 2 2 4 2
1 1 1 1 1 112 6X Y X Y X Y           

 is not an 

improvement anymore since one multiplication would be replaced by two squarings instead 

of only one.

Thus, the revised tripling formulae when a 3 is as follows:

 2 2
3 1 116 2 2 4X Y X            (4.10)

    3
3 18 2 2 4 2Y Y          
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 2 2 2
3 1 1Z Z Z              

Where:  2 2 22       

4
12 16Y  ,   2 23 X Z X Z   

2 2
1 112X Y           

In this case, the cost of the tripling is reduced further to 7M + 7S. Note that this formulae 

is even more efficient than the tripling algorithm proposed in Appendix A (9M + 5S), since 

it trades two expensive field multiplications for two squarings.

Fast point composite operations

In Chapter 3, Section 3.3.2, we introduced generalization (3.14) to yield composite 

operations of the form dP. We notice that this generalization consists of one traditional 

doubling followed by several special additions (3.1). Therefore, we can speed-up the internal 

doubling with our methodology, as shown in Section 4.1.1, and trade two multiplications for 

two squarings in the general case, and one multiplication for one squaring in the efficient 

case a 3. It is important to note that there is no multiplication that can be efficiently 

replaced by squaring in the special addition with identical z-coordinate (3.1).

Thus, the cost formula (3.15) for composite operations of the form dP keeps the same, 

with the difference that D (cost of a doubling) is adjusted to D = 3M + 5S when considering 

a 3 (formulae (4.5)). Otherwise, D = 2M + 8S (formulae (4.4)).

Applying these modifications to (3.15), the new cost for point quintupling, septupling and 

eleventupling are estimated as follows:

 Cost of the quintupling is reduced from 14M + 8S (Table 3.2) to 13M + 9S when a

3, and from 14M + 10S to 12M + 12S, when a is randomly chosen.

 Cost of the septupling is reduced from 19M + 10S (Table 3.2) to 18M + 11S when a

3, and from 19M + 12S to 17M + 14S, when a is randomly chosen.



Chapter 4.  Fast and Flexible Point Arithmetic over Prime Fields                                         65

 Cost of the eleventupling is reduced from 29M + 14S (Table 3.2) to 28M + 15S when 

a 3, and from 29M + 16S to 27M + 18S, when a is randomly chosen.

4.2 Performance Comparison

Tables 4.1 and 4.2 summarize our achievements with the new methodology of replacing 

multiplications for squarings. We distinguish three cases: when a has any possible value 

(first column, general case), when a is defined as sparse (second column) and for the special 

case a  3 (third column). Costs for traditional operations are taken from Tables 2.1 and 

3.2. Where applicable, costs of “traditional” composite operations are estimated using 

approach detailed in Chapter 3, Section 3.3.3.  

As shown in those tables, our formulae replace expensive multiplications by squarings. In 

some highly efficient cases, such as the proposed fast tripling (Table 4.2), we replace up to 

four squarings with four multiplications in the original formulae given by [DIM05]. 

Operation general case a sparse a 3

Fast doubling 2M + 8S 1M + 8S 3M + 5S

Traditional doubling 4M + 6S 3M + 6S 4M + 4S

Fast addition 11M + 5S - -

Traditional addition (2.15) 12M + 4S - -

Fast mixed addition 7M + 4S - -

Traditional mixed addition 8M + 3S - -

Table 4.1.  Cost of proposed Fast Point Operations in comparison with traditional formulae
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Operation general case a sparse a 3

Fast tripling 6M + 10S 5M + 10S 7M + 7S

Revised tripling (App. A) 9M + 7S 8M + 7S 9M + 5S

Tripling [DIM05] 10M + 6S - 10M + 4S

Fast w-tripling (6w)M + (10w)S (5w)M + (10w)S (7w)M + (7w)S

w-tripling [DIM05]                               (11w1)M + 
(4w+2)S

- -

Fast quintupling 12M + 12S - 13M + 9S

Quintupling (Table 3.2) 14M + 10S - 14M + 8S

Traditional quintupling 20M + 14S - 20M + 12S

Fast septupling 17M + 14S - 18M + 11S

Septupling (Table 3.2)                               19M + 12S - 19M + 10S

Traditional septupling 26M + 16S - 26M + 12S

Fast eleventupling 27M + 18S - 28M + 15S

Eleventupling (Table 3.2)                            29M + 16S - 29M + 14S

Traditional eleventupling 30M + 20S - 30M + 16S

  w = number of repeated triplings.

Table 4.2.  Costs of Fast Composite Operations in comparison with traditional formulae 

Proposed formulae are shown to be more efficient than traditional formulae in all cases, 

assuming that squaring is cheaper than multiplication. However, we remark that the 

improvement is more significant in applications where squarings are relatively very cheap in 

comparison with multiplications (i.e., 1S = 0.6M). 

Also, we must point out that defining a sparse in doublings and triplings does not 

represent the most efficient case in the traditional operations. However, in our fast point 

formulae, a sparse yields the most efficient implementation in cases where squarings are 

relatively cheap. For instance, considering a sparse in our fast doubling and tripling 

operations is more efficient than the general case or when a 3, if 1S = 0.6M. 
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In addition, [DIM05] proposed a repeated tripling formula that efficiently trades one

multiplication for two squarings at every repeated tripling. However, we can see from Table 

4.2 that our fast tripling, without extra modifications needed, is more efficient if consecutive 

triplings are to be computed. For instance, if 1S = 0.8M, [DIM05] needs (14.2w+0.6) field 

multiplications, whereas our formula only requires (14w) field multiplications. If 1S = 0.6M, 

the advantage of our formula is further increased. Furthermore, the reader must note that 

more efficient repeated triplings can be computed when our formula fixes a sparse or a 3.  
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Chapter 5

SSCA-Protected Point Arithmetic using 

Side-Channel Atomicity

In the two previous chapters we introduced innovative methodologies to accelerate ECC 

computations via composite operations and by replacing multiplications for cheaper 

operations. In the present chapter, we focus on optimizing SSCA-protected formulae for 

ECC over prime fields on top of developed formulae. 

Since introduced by [CCJ04], side-channel atomicity has been the preferred technique to 

protect implementations against Simple Side-Channel Attacks (SSCA), mainly because of 

its inexpensive overhead cost when compared against previous techniques. However, atomic 

blocks as originally proposed for curves over prime fields have two disadvantages that avoid 

further reduction in their computing time: parameter a is not fixed to an efficient value (i.e., 

a  3), and structure of the atomic block is not optimal. 

First, we will tackle the first problem, and propose, to our knowledge, the first atomic 

formulae that fix a  3 to achieve reduced costs. Then, we will accelerate the formulae by 

introducing two new atomic structures that minimize the number of required field operations 

per block. For the latter, our improvement will be shown to be two-fold: on one side, we 
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reduce further the cost of the atomic formulae by minimizing the number of required field 

additions and introducing for first time the use of squarings, which are generally cheaper 

than multiplications; and, on the other side, we potentially increase the security offered by 

atomicity by distinguishing squarings from multiplications.

We end the chapter with a discussion of the significant increment in performance that is 

achieved using the new atomic formulae for the computation of the scalar multiplication.

5.1 Side-Channel Attacks

Side-channel information, such as power dissipation and electromagnetic emission, leaked 

by real-world devices has been shown to be highly useful for guessing private keys and 

effectively breaking the otherwise mathematically-strong ECC cryptosystem 

[Koc96,KJJ99,Ava05]. 

There are two main strategies to these attacks: simple (SSCA) and differential (DSCA) 

side-channel attacks. In this work, we focus in SSCA, which is based on the analysis of a 

single execution trace of a scalar multiplication to guess the secret key by revealing the 

sequence in the execution of point operations. 

Extensive research has been carried out to yield effective countermeasures to deal with 

SSCA. Among them, we could mention indistinguishable operations via dummy 

instructions, scalar multiplication with a fixed sequence of group operations (e.g., Coron’s 

countermeasure double-and-add-always method [Cor99]), unified addition and doubling 

formulae (e.g., the Jacobi and Hessian forms [LS01,BJ02,Sma01]) and side-channel 

atomicity [CCJ04]. 

The two first methods are in general highly expensive and quite susceptible to fault 

attacks. Using unified addition and doubling formulae has the drawback of being expensive 

and/or relying on special curves that are different from the standard curve (2.2). A highly 



Chapter 5.  SSCA-Protected Point Arithmetic using Side-Channel Atomicity                      70

efficient variation of the scalar multiplication with a fixed sequence of group operations is 

based on the Montgomery Ladder [FGK+02,IT02b,IT05]. However, similarly to the unified 

operation approach, the most efficient version of the Montgomery Ladder also relies on a 

non-standardized curve form, namely the Montgomery curve. 

Side-channel atomicity, proposed in [CCJ04], dissolves point operations into small 

homogenous blocks, known as atomic blocks, which cannot be distinguished from one 

another through simple side-channel analysis because each one contains the same pattern of 

basic field operations. Furthermore, atomic blocks are made sufficiently small to make this 

approach inexpensive. [CCJ04] proposed the M-A-N-A (field multiplication, addition, 

negation, addition) structure to build SSCA-protected doubling and general addition 

formulae over prime fields. [Mis06] and [DIM05] optimized the addition case by 

introducing the atomic formulae for mixed addition. Authors in [DIM05] also developed the 

atomic tripling formulae. 

However, traditional M-A-N-A structure has two main drawbacks: parameter a in elliptic 

curve (2.2) is not fixed to , and the number of blocks per atomic block is not optimal. In 

that sense, M-A-N-A-based formulae with a 3 and new atomic structures M-N-A-M-N-A-

A and S-N-A-M-N-A-A are introduced to tackle both problems. 

In addition, one potential drawback in the traditional M-A-N-A structure is that it relies on 

the assumption that field multiplication and squaring are indistinguishable from each other. 

In software implementations, timing and power consumption have been shown to be quite 

different for squarings and multiplications, making these operations directly distinguishable 

through power analysis [GAS+05,GG03]. The next attack can be conceived in such a case: 

by observing only one electromagnetic (EM) or power trace, an attacker may be able to 

detect which portions of the scalar multiplication are in fact executing a squaring. With that 

knowledge, he/she can now gain access to the point doubling/addition sequence (and, 

consequently to the secret key), given that the atomic addition has far more multiplications 

than squarings and its pattern of squaring/multiplications is very different from the pattern 

for the atomic doubling. 
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Hardware platforms (or implementations with an ECC co-processor) can be thought to be 

invulnerable to such attack because one hardware multiplier executes both field squaring 

and multiplication. However, reported attacks have shown that in fact multiplying two 

identical numbers (as happens during squaring in a modular hardware multiplier) can behave 

differently than multiplying two different numbers. For instance, research presented in 

[WT01] shows how Montgomery multipliers can be effectively attacked to distinguish 

multiplications from squarings by exploiting the difference in the occurrence of one 

conditional subtraction for those operations. This, or other not so evident vulnerabilities in a 

hardware multiplier, can be exploited by clever attackers to distinguish the field operations 

mentioned. Also, [Wal01] proposed a high-order DPA attack to defeat an RSA 

implementation by distinguishing multiplications with pre-computed points from squarings 

and multiplications with random numbers through power analysis. This work suggests that, 

similarly, power traces of multiplications with random numbers can be distinguished from 

power traces of squarings. 

The previous conclusions can be directly applied to ECC cryptosystems, and exploited to 

implement the attack described previously. Although more research is required to assess 

effectiveness of these and related attacks in hardware implementations, the smart developer 

would take into account some precautions when implementing side-channel atomicity.          

In the last part of the present chapter (Section 5.4), we exploit the flexibility given by our 

technique of replacing multiplications by squarings to propose a more efficient atomic 

structure (S-N-A-M-N-A-A) that effectively takes into account squarings in its formulation.  

The latter makes our atomic structure not only faster but also invulnerable to attacks that 

exploit distinctions between multiplications and squarings, as the one described in this 

section. 

This way, new atomic formulae for point doubling, mixed addition and tripling have been 

developed and shown to be considerably faster than previous efforts. The increase in speed 

comes from the fact that squarings are generally less expensive than multiplications and 

because our methodology, in combination with the improved atomic structure S-N-A-M-N-
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A-A, permits us to pack more field operations in one atomic block.

5.2 Improved Atomic Formulae for Traditional 

Doubling and Tripling Operations

[CCJ04] introduced the concept of atomicity to protect public-key cryptosystems against 

simple side-channel attacks. They proposed atomic doublings and additions built with ten

and sixteen M-A-N-A atomic blocks, respectively. Thus, a doubling costs 10M + 20A, and an 

addition, 16M + 32A. [Mis06] presented an improved atomic operation for the case of mixed 

addition. The number of atomic blocks for addition was reduced to eleven, with a total cost 

of 11M + 22A. Later, [DIM05] presented a fast tripling formula with sixteen atomic blocks

using the same atomic structure, with a total cost of 16M + 32A.

We have derived the atomic doubling for the case a 3 using formulae (2.13). Appendix 

B1 shows the new efficient SSCA-protected doubling. The number of blocks is reduced 

from ten to eight, which gives a total cost of 8M + 16A.

Similarly, we have derived the efficient case with a 3 for the point tripling using the 

improved algorithm detailed in Appendix A. The required number of blocks is reduced from 

sixteen to only fourteen blocks, which gives a total cost of 14M + 28A. The details of the 

SSCA-protected tripling are shown in Appendix B9.

5.3 Enhanced Atomic Structure

5.3.1 Atomic Formulae for Traditional Operations

By a careful analysis of previously improved atomic point operations, we can notice that 
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doubling and tripling have an even number of blocks, which would potentially allow 

dividing each atomic block to approximately the half. Most importantly, the number of 

necessary dummy additions to complete the atomic formulae (see Appendices B1, B3 and 

B9) using M-A-N-A structure is relatively high. Hence, if we divide each block we could 

potentially reduce the number of required additions. 

The only obstacle to the latter is that atomic addition has an odd number of blocks 

(eleven). Dividing this operation to the half would forcedly increase the number of field 

multiplications. Nevertheless, point additions are scarce in efficient scalar multiplications, 

and the significant reduction in the number of field additions would balance such increment 

in field multiplications.

We propose the next structure to further improve atomic formulae by reducing the number 

of required field additions: M-N-A-M-N-A-A (Multiplication-Negation-Addition-

Multiplication-Negation-Addition-Addition). 

Details of the new atomic formulae using this efficient structure are given in Appendices 

B2, B4 and B10. Atomic point doubling, tripling and addition have been derived from 

formulas (2.13), (2.16) and (2.17), respectively. With this structure, the number of blocks for 

doubling, tripling and addition has been reduced to four, seven and six, respectively, which 

gives the following costs (note that M-N-A-M-N-A-A structure contains 2M + 3A per block):

 Doubling: 4 blocks   (2M + 3A)  8M + 12A.

 Tripling:   7 blocks   (2M + 3A)  14M + 21A.

 Addition: 6 blocks   (2M + 3A) 12M + 18A.

5.3.2 Atomic Formulae for Composite Operations

In Section 3.2.1, we introduced a highly efficient doubling-addition (DA) operation by 
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taking advantage of the special addition with identical z-coordinate (3.1). If we protect this 

new composite operation against SSCA by applying atomicity, we should expect reduced 

costs in comparison with a consecutive execution of traditional atomic doubling followed by 

addition. 

As a direct consequence of performance analysis in Section 3.4.2, improvement of such 

composite operation in its SSCA-protected version would lead to a reduction in computing 

costs directly proportional to the Hamming weight of the scalar multiplication being used. 

Similarly, in the present case the gain obtained from using this composite operation is 

maximized for high density values, making this technique very useful for applications with 

constrained resources where scalar multiplications cannot typically make use of pre-

computations.

Following generalization (3.9) for the case 2P+Q, DA consists of a mixed addition 

followed by a special addition with identical z-coordinate. Hence, by executing atomic 

formulae in Appendix B4 (corresponding to atomic mixed addition) followed by formulae in 

Appendix B6 (corresponding to atomic special addition), we achieve an SSCA-protected 

DA operation using the proposed M-N-A-M-N-A-A structure. Similarly, by unifying 

formulae in Appendices B3 and B5, we achieve the analogue for M-A-N-A. 

It is important to note that availability of dummy operations in the last block of the atomic 

mixed addition can be efficiently used by field operations from the special addition to 

reduce one atomic block. Thus, first block (1) of the atomic special addition can be 

completely integrated with blocks 6 or 11 for M-N-A-M-N-A-A and M-A-N-A cases, 

respectively. See Appendices B5 and B6 for more details.

Thus, the costs for the atomic DA are given by:

 M-N-A-M-N-A-A structure: 9 blocks   (2M + 3A)  18M + 27A.

 M-A-N-A structure: 18 blocks   (1M + 2A)  18M + 36A.
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The previous results should be compared with the combined cost of one atomic doubling 

and one atomic addition. In the traditional M-A-N-A case, the cost of a doubling followed by 

an addition is 21M + 42A; with the improved atomic operations from Section 5.1, the cost is 

only 19M + 38A; and with the new M-N-A-M-N-A-A structure the cost is reduced further to 

20M + 30A (Section 5.2.1). 

Given the previous results, we can conclude that the new atomic DA introduces a 

significant reduction, especially in the case of the new M-N-A-M-N-A-A structure. 

Also note that improvement is even more significant for applications that consider the 

general case (i.e., a is not fixed to 3), since the new DA does not depend on parameter a

and, consequently, its cost keeps the same. In such case, the comparison is limited to only 

the traditional M-A-N-A, and the reduction is fixed in 3M + 15A (best case with M-N-A-M-

N-A-A structure). 

Composite operations dP

Similarly to the atomic DA, the tripling of a point is obtained by performing a doubling 

followed by a special addition (3.1). By unifying the atomic doubling operations given in 

Appendices B1 and B2 with the corresponding atomic formulae for the special addition 

(Appendices B5 and B6), we achieve atomic formulae for the tripling introduced in Section 

3.3.1. The costs for the atomic tripling are fixed in 16M + 24A and 15M + 30A for M-N-A-

M-N-A-A and M-A-N-A structures, respectively, and the details shown in Appendices B8 and 

B7. 

However, we have already introduced highly efficient atomic formulae for tripling with 

costs of 14M + 21A and 14M + 28A for the same atomic structures (see Section 5.1 and 

5.2.1, and Appendices B9 and B10). 

Nevertheless, the atomic tripling can be used to derive efficient atomic formulae for 

quintuplings and septuplings, which is detailed in the following paragraphs. 
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Following generalization (3.14), the quintupling of a point consists of a tripling (2P + P) 

followed by a special addition (3.1) with 2P. Thus, by unifying atomic tripling formulae 

from Appendices B7 and B8 (for M-A-N-A and M-N-A-M-N-A-A structures, respectively) 

with corresponding formulae in Appendices B5 and B6 for the special addition, we obtain 

the atomic quintupling. Note that, similarly to the atomic DA, the special addition can be 

reduced in one atomic block for each case by integrating its first atomic block with the last 

atomic block of the tripling, as shown in Appendices B7 and B8 for each structure.

Atomic formulae for higher composite operations can be derived similarly to the 

quintupling by simply following generalization (3.14). Thus, for the septupling is only 

necessary to add one special addition (3.1) with 2P. Details are shown in Appendices B7 and 

B8 for each structure.

The total cost for an atomic operation of the form dP, where d ≥ 5 is an odd prime, is 

given by the following cost formulas:

M-N-A-M-N-A-A structure: ' '1 3T A A
4 4a a b

d d           
        

M-A-N-A structure:   '3T A
2a a

d                                                                                    (5.1)

Where Ta denotes the cost of an atomic tripling using generalization (3.14), i.e., 16M + 

24A and 15M + 30A for M-N-A-M-N-A-A and M-A-N-A structures, respectively. 'Ab  denotes 

the cost of an atomic special addition, and 'Aa denotes the cost of an atomic special addition

reduced in one atomic block. The last reduction is possible due to the fact that every extra 

addition can save one atomic block by integrating its first atomic block with the last block of 

the precedent operation for the M-A-N-A structure (see Appendix B5). For the M-N-A-M-N-

A-A structure, such reduction can be achieved every two operations (see Appendix B6 for 

details). Thus, the effective costs of the atomic special addition are fixed to: 'Ab = 8M + 

12A, and 'Aa  = 6M + 9A or 7M + 14A for M-N-A-M-N-A-A and M-A-N-A structures, 

respectively. 
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Using (5.1), the costs for the atomic quintupling are given by:

 M-N-A-M-N-A-A structure: (16M + 24A) + (6M + 9A)  22M + 33A.

 M-A-N-A structure: (15M + 30A) + (7M + 14A)  22M + 44A.

And for the atomic septupling:

 M-N-A-M-N-A-A structure: (16M + 24A) + (6M + 9A) + (8M + 12A) 30M + 45A.

 M-A-N-A structure: (15M + 30A) + 2(7M + 14A)  29M + 58A.

Table 5.1 summarizes costs of introduced composite operations and compares them with 

traditional atomic formulae. Since, to our knowledge, this is the first effort to develop 

atomic formulae for higher order operations such as quintupling, septupling, and so on, 

“traditional” composite operations shown in the table are built by using the best atomic 

doubling, tripling and addition formulae existent in the current literature (see Tables 5.2 and 

5.3, previous work). For instance, the cost of a “traditional” quintupling is estimated as 5P = 

22P + P (two doublings and one general addition).  

As we can see, new atomic formulae are significantly more efficient than a traditional 

implementation. Let the ratio A/M be 0.05 for a very efficient implementation as the one 

presented by [Ber]. Our atomic formulae (best case, M-N-A-M-N-A-A structure) reduce 

computing costs in 40%, 30% and 17% for atomic quintupling, septupling and 

eleventupling, respectively. 
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Method Previous work  This work  1   This work  2

Quintupling 36M + 72A 22M + 44A 22M + 33A

Septupling 42M + 84A 29M + 58A 30M + 45A

Eleventupling 52M + 104A 43M + 86A 44M + 66A

    1: using M-A-N-A structure.
    2: using M-N-A-M-N-A-A structure.

Table 5.1.  Performance of new atomic composite operations using M-A-N-A and                
M-N-A-M-N-A-A structures, in comparison with traditional atomic formulae

5.4 New Highly-Secure Atomic Structure with Squarings

As previously pointed out, atomic blocks were originally M-A-N-A (Multiplication-

Addition-Negation-Addition)–based structures for the case of point operations over prime 

fields [CCJ04]. For efficiency purposes, squarings and multiplications are considered side-

channel equivalent [CCJ04,DIM05,Mis06], and consequently the atomic block efficiency 

heavily depends on cost of field multiplication. 

The general assumption is that multiplication and squaring are indistinguishable from a 

side-channel analysis point of view. However, that is not the case in most efficient software 

implementations, where squaring is less expensive and obviously distinguishable from 

multiplication. Thus, an efficient atomic block should consider squaring in its structure. 

With previous formulae (traditional operations, Chapter 2; composite operations, Chapter 3) 

such consideration would have been very inefficient and expensive. However, the flexible 

methodology presented in Chapter 4 permits to modify the point formulae in such a way that

allows us to easily balance the number of squarings and multiplications and, thus, to 

efficiently introduce squarings into the formulation. 

In the remainder of this chapter, we present an innovative atomic structure based on S-N-

A-M-N-A-A (Squaring-Negation-Addition-Multiplication-Negation-Addition-Addition) for 

the addition, doubling and tripling operations. We remark that this new structure is more 

efficient and truly protects against simple side-channel attacks because it takes into account 
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differences between field squarings and multiplications. Note that this structure only differs 

in the first field operation in comparison with the M-N-A-M-N-A-A structure presented in 

Section 5.3. Consequently, it also gains in efficiency by reducing the number of dummy 

operations required for field additions. 

In the next paragraphs, we detail our methodology to derive atomic formulae with the new 

atomic structure, first for the case of scalar multiplication using only radix 2 for the scalar 

expansion, and then for the case of expansions including ternary bases. 

Case with binary bases

The first step to achieving cheaper atomic blocks that include squarings and multiplications

for a given point operation is to try to balance the number of each of these field operations in 

such point operations. 

In the traditional point doubling formula, we observe that the number of multiplications 

and squarings is already balanced with the minimum number of operations when 

considering a 3 (formulae (2.13)):  4M + 4S. Thus, working with the aforementioned 

atomic structure (S-N-A-M-N-A-A), four atomic blocks are sufficient to accommodate the 

balanced doubling formula as each atomic block contains one field multiplication and one

field squaring. Therefore, the cost of the atomic doubling is 4M + 4S. The details are shown 

in Appendix C1.

For the case of mixed addition, we have the fast formula (4.8) whose cost is 7M + 4S. We

first need to balance the number of multiplications and squarings to achieve an efficient

atomic structure. That can be achieved if one multiplication is replaced by two squarings as 

follows:  23 3 6 2
1 2 1 2 1 22Z Y Z Y Z Y    , with the term 2

2Y pre-computed. 

Thus, the balanced formula is as follows:

2 3 2
3 14 8X X     ,      2 3

3 1 3 14 8Y X X Y     ,      2 2 2
3 1 1Z Z Z           (5.2)
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Where:  23 6 2
1 2 1 2 12Z Y Z Y Y     

2
1 2 1Z X X                   

The cost for this formulae is now 6M + 6S, containing the minimum possible number of 

operations when the number of field multiplications and squarings is equivalent. The cost of 

the atomic addition is fixed at 6M + 6S, as only six atomic blocks are required to 

accommodate formulae (5.2). Details of the new atomic addition are shown in Appendix C2.

Case with ternary bases

Scalar multiplications that take advantage of ternary bases to accelerate computations 

[CJL+06,DIM05] require tripling of a point beside doubling and addition. Given the number 

of field additions found in the tripling formulae (2.17) or (4.10), it is not possible to 

accommodate this operation with the optimal number of atomic blocks using the proposed S-

N-A-M-N-A-A structure. Thus, an additional field addition per atomic block has been added

to the previous atomic structure to permit high efficiency: S-N-A-A-M-N-A-A. In this way, 

we can accommodate the tripling formula without requiring extra multiplications or 

squarings, resulting in the cheapest atomic implementation known to date. 

In the following paragraphs, we will present the modified atomic operations for scalar 

multiplications that require triplings, doublings and additions, as is the case of the double-

base chains [DIM05] or the new multibase algorithms presented in Chapter 7.

In the case of the tripling operation, the optimal balance between multiplications and 

squarings can be found in formula (4.10), when a 3, with a cost of 7M + 7S. Then, seven

atomic blocks would be required to accommodate all these operations. However, because of 

the tripling structure and the internal dependences between field operations, one extra 

atomic block is necessary to accommodate the whole formula. Thus, eight atomic blocks are 

required in total for the tripling operation. If repeated triplings are computed, it is possible to 

reduce the cost to (7w+1)M + (7w+1)S, where w is the number of repeated triplings, by 

merging the last block of the current tripling with the first atomic block of the following 
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tripling, saving one field multiplication and one field squaring at every additional tripling 

operation. Details of the atomic tripling and atomic repeated tripling are presented in

Appendix C3.

In addition, point doubling and addition operations must be modified according to the new 

atomic structure to make them suitable for scalar multiplications that include triplings in 

their computation. Basically, four and six extra additions has to be added to the previous (S-

N-A-M-N-A-A)-based atomic doubling and mixed addition, as detailed in Appendices C1 

and C2. 

5.5 Performance comparison

In this section, we discuss the reduction in terms of computing costs achieved by the 

improved atomic doubling and tripling with fixed a 3, the new atomic formulae for DA 

and the innovative atomic structures for the computation of the scalar multiplication. For all 

cases, M-A-N-A-based formulae are compared against the performance offered by the new 

M-N-A-M-N-A-A and S-N-A-M-N-A-A structures. 

Table 5.2 summarizes performance of revised formulae when only point addition and 

doubling are used, as is the case for the traditional binary NAF and sliding window scalar 

multiplications. For the case where ternary bases are included into the computation of the 

scalar multiplication, Table 5.3 summarizes our results.
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Method Previous work  This work  (1,a)  This work (2,a)  This work  (3,a)

Doubling [CCJ04] 10M + 20A 8M + 16A    8M + 12A 4M + 4S + 12A

w-doubling [DIM05]
(8w + 2)M + 
2(8w + 2)A

8wM + 16wA 8wM + 12wA
4wM + 4wS + 

12wA

Mix. addition [Mis06] 11M + 22A -    12M + 18A 6M + 6S + 18A

Table 5.2.  Performance of proposed atomic operations using M-A-N-A, M-N-A-M-N-A-A
and S-N-A-M-N-A-A structures, in comparison with traditional atomic operations

Method Previous work  This work (1,a) This work (2,a)  This work  (3,a)

Doubling [CCJ04] 10M + 20A 8M + 16A 8M + 12A 4M + 4S + 16A

w-doubling [DIM05]
(8w + 2)M + 
2(8w + 2)A

8wM + 16wA 8wM + 12wA 4wM + 4wS + 6wA

Mix. addition [Mis06] 11M + 22A - 12M + 18A 6M + 6S + 24A

Tripling [DIM05] 16M + 32A 14M + 28A 14M + 21A 8M + 8S + 32A

w-tripling [DIM05]
(15w + 1)M + 
2(15w + 1)A

14wM + 8wA 14wM + 21wA
(7w + 1)M + (7w + 
1)S + (28w + 4)A

(a) Parameter a is fixed (a 3). 
(1) Improved atomic doubling and tripling operations with M-A-N-A structure.
(2) Improved atomic operations with M-N-A-M-N-A-A structure.
(3) Improved atomic operations with S-N-A-M-N-A-A-A structure.
w = number of repeated doublings or triplings.

Table 5.3. Cost of new atomic operations with M-A-N-A, M-N-A-M-N-A-A                         
and S-N-A-M-N-A-A-A structures for scalar multiplications based on ternary bases in 

comparison with previous atomic operations with M-A-N-A atomic structure

As we can see in both tables, our atomic operations based on new structures are more 

efficient in all cases when compared against previous atomic operations using M-A-N-A, 

including cases where some savings can be achieved by successive execution of doublings 

or triplings [DIM05]. Regarding the latter, although our operations do not introduce any 

extra saving by repeated execution (with exception of our atomic w-tripling for S-N-A-M-N-

A-A-A), they still present a superior performance than previous efforts.

Also, it can be seen that point doubling and addition using the new S-N-A-M-N-A-A
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structure achieve the lowest cost by minimizing the number of required field additions and 

replacing multiplications by squarings. Remarkably, we also observe that even in 

applications where squarings are considered as costly as multiplications (i.e., 1S = 1M; if the 

same hardware multiplier is used to perform multiplication and squaring), our S-N-A-M-N-

A-A-based atomic doubling and repeated doubling present a reduction of at least two field 

multiplications and four field additions in comparison to traditional formulae. In the case of 

triplings, the cost would be equivalent (16M + 32A), but when repeated triplings are 

computed, again our approach is superior, reducing the required number of multiplications 

and additions from (15w+1)M+(30w+2)A to (14w+2)M+ (28w+4)A, which means an overall 

reduction of (w1) field multiplications and 2(w1) field additions.  

For the case including ternary bases, M-N-A-M-N-A-A structure offers the fastest tripling 

and the minimal number of field additions in all operations, highlighting the potential 

efficiency of this structure for multibase scalar multiplications using radix 3. In this case, 

point addition is still one multiplication more expensive than the traditional formulae. 

However, we expect that such disadvantage is minimized due to the scarcely occurrence of 

these operations during efficient scalar multiplications.

In the following, we compare performance when using scalar multiplications based on 

radix 2 (i.e., only using point doubling and addition). Performance achieved by scalar 

multiplications that use higher order composite operations are discussed in Chapter 7 with 

the introduction of multibase algorithms, which take advantage of the efficiency of those 

operations.

To have a more precise idea of the improvement that can be achieved with our three sets 

of atomic operations, and to determine which of these offers the best results, we compare 

performance when using a traditional scalar multiplication with NAF method and scalar d of 

length n  160 bits. We already pointed out that NAF has a density of non-zero terms of 

approximately 1/3 (Section 2.3.3). Thus, for a 160-bit NAF scalar multiplication, one

approximately requires 159D + 53A using (2.20). 

The number of required operations when using our three sets of point operations and the 
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traditional approach are detailed in Table 5.4 for cases where a hardware multiplier executes 

both multiplications and squarings (and consequently, 1S = 1M) and the general case for 

software implementations (1S = 0.8M). On the bottom of the table, we specify the ratio field 

addition/field multiplication for which our two first sets (1) and (2) offer equivalent 

performance.

Method Cost (1S = 1M) Cost (1S = 0.8M)

Traditional atomic operations 2173M + 4346A 2173M + 4346A

This work  (1) 1855M + 3710A 1855M + 3710A

This work  (2) 1908M + 2862A 1908M + 2862A

This work  (3) 1908M + 2862A 1717M + 2862A

A/M between (1) and (2) 0.063 0.063
              (1) Using improved atomic operations with M-A-N-A structure.
              (2) Using improved atomic operations with M-N-A-M-N-A-A structure.
              (3) Using improved atomic operations with S-N-A-M-N-A-A structure.

Table 5.4.  Performance of proposed atomic operations using M-A-N-A, M-N-A-M-N-A-A
and S-N-A-M-N-A-A structures, in comparison with traditional atomic operations                   

(NAF method, n = 160 bits)

As it can be seen in Table 5.4, our atomic operations perform significantly better than the 

traditional operations. In particular, for the case 1S = 0.8M, S-N-A-M-N-A-A-based formulae 

achieve the highest performance in terms of computing cost. 

For the case 1S = 1M, the relative ratio A/M would ultimately decide if set (1) or sets (2)

and (3) offer the lowest cost. The break point between the first and the other two sets of 

proposed atomic operations for 160-bit NAF is given by the relative value 1A = 0.063M. 

Specifically, improved M-A-N-A offers the highest performance if 1A < 0.063M in a given 

implementation. But if 1A > 0.063M, the new M-N-A-M-N-A-A and S-N-A-M-N-A-A

structures represent the best options.

Let the ratio A/M be 0.05 for a very efficient implementation as the one presented by 
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[Ber,Ber06]. Then, the improved M-A-N-A and the new M-N-A-M-N-A-A structure present a 

reduction of 14.6% and 14.2% in comparison with a NAF scalar multiplication using 

previous atomic operations based on M-A-N-A. On the other hand, if 1S = 0.8M, the new S-

N-A-M-N-A-A structure presents a significant reduction of about 22.2%. More dramatic 

improvement is expected on applications where 1S  0.6M.

Using the proposed DA operation 

In Chapter 3, Section 3.2.1, we introduced a faster composite DA operation with a cost of 

only 13M + 5S. Previously, we showed that this composite operation can be protected against 

SSCA using atomicity, yielding the fastest atomic implementation using a unified 

doubling/addition formulae. Table 5.5 summarizes the costs of the improved DA, and 

compares it with the traditional execution of a doubling followed by an addition.

Method Cost

Traditional atomic Doubling/Addition      21M + 42A

Proposed atomic DA  (1)      18M + 36A

Proposed atomic DA  (2)      18M + 27A

                             (1) Using M-A-N-A structure.
                             (2) Using M-N-A-M-N-A-A structure.

Table 5.5.  Performance of proposed atomic DA using M-A-N-A and M-N-A-M-N-A-A
structures, in comparison with approach using traditional atomic operations

To determine which structure is more convenient for the proposed DA, we compare 

performance using the NAF method. For a 160-bit NAF scalar multiplication (see (2.20)), 

we approximately require 159D + 53A = (15953)D + 53DA = 106D + 53DA. The operation 

counting when using the proposed DA for both atomic structures and the traditional 

approach are detailed in Table 5.6. The cost of the doubling corresponding to each atomic 

structure for the proposed DA case has been taken from Table 5.2. 
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Also, we show previous results (from Table 5.4) obtained with our basic atomic 

operations for both atomic structures. 

Method Cost

Traditional atomic operations 2173M + 4346A

With proposed atomic DA  (1) 1802M + 3604A

With proposed atomic DA  (2) 1802M + 2703A

Using basic atomic operations  (1) 1855M + 3710A

Using basic atomic operations  (2) 1908M + 2862A

                                (1) Using M-A-N-A structure.
                                 (2) Using M-N-A-M-N-A-A structure.

Table 5.6.  Performance of proposed atomic DA using M-A-N-A and M-N-A-M-N-A-A
structures, in comparison with the traditional approach (NAF method, n = 160 bits)

As expected, the efficient atomic DA has significantly reduced the cost of the scalar 

multiplication. In particular, using the new M-N-A-M-N-A-A structure yields the highest 

performance since the disadvantage of having a slower addition has been cancelled by the 

composite DA operation, which is more efficient in this structure than with the traditional 

M-A-N-A. 

For comparison purposes, let the ratio A/M be 0.05. Then, the improved scalar 

multiplication using DA with M-A-N-A and M-N-A-M-N-A-A structures present a reduction 

of 17.1% and 19%, respectively, in comparison with a NAF scalar multiplication using 

previous atomic operations based on M-A-N-A.

Previous conclusions hold for 1S = 1M. However, notice that for case 1S = 0.8M, S-N-A-

M-N-A-A-based approach with a estimated cost of 1717M + 2862A (see Table 5.4) offers the 

lowest computing cost, beside increased protection when differences between squarings and 

multiplications are a security concern. 
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Chapter 6

Efficient Parallel Point Arithmetic

In recent years a new paradigm has arisen in the design concept with the appearance of 

multiprocessor/parallel architectures, which can execute several operations simultaneously. 

This topic is becoming increasingly important since single processor design is reaching its 

limits in terms of clock frequency. Among several parallel architectures, Single-Instruction 

Multiple-Data (SIMD) has become highly attractive since it generally avoids the higher 

hardware complexity needed in parallel architectures such as superscalar computers by 

leaving to the programmer the task of parallelizing the program execution. Hence, we can 

already find SIMD-based schemes in many popular processors such as Pentium, SPARC and 

PowerPC.    

In the previous chapter, we showed how to take advantage of the flexibility offered by our 

methodology of replacing multiplications to include squarings into the atomic formulae. In 

the present chapter, we take advantage of such methodology but this time with the objective 

of deriving faster ECC formulae for parallel architectures such as SIMD. 

Similarly to other systems, ECC can be adapted to parallel architectures at different 

mathematical levels (see Section 2.3). In this work, we focus our efforts to parallelize ECC 

formulae at the point arithmetic level.
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The organization of this chapter is as follows. First, we describe most important efforts in 

the literature to derive efficient parallel point formulae. Then, we present our new parallel 

formulae that exploit the flexibility of methodology given in Chapter 4 and a new highly-

efficient coordinate system. Thus, unprotected point operations with three and four

simultaneous operations are developed for SIMD-based architectures where SSCA attacks 

are not a concern. Following, we propose a parallel architecture based on SSCA-protected 

operations that compute two operations simultaneously and is protected by using our highly-

secure atomic structure (Chapter 5, Section 5.4). We end with performance analysis of our 

formulae for both scenarios: SSCA-protected and unprotected.  

6.1 Previous Work

Several efforts appeared during the last few years to parallelize ECC point formulae. 

[AHK+01] and [IT02] introduced efficient parallel point operations targeting SIMD-based 

processors. 

In [IT02], authors presented formulae for 2-processor architectures. However, its parallel 

doubling is not the most efficient since it only considers the general doubling case (the 

constant a is not fixed; see formula (2.13)). 

[AHK+01] introduced modified Jacobian coordinates (X,Y,Z,Z2) to develop fast parallel 

formulae for platforms that can execute two and three operations simultaneously. Its parallel 

formulae are, to our knowledge, the fastest. 

However, the limitation of the previous works is that they rely on traditional point 

operation formulae, which are restricted to a fixed number of squarings and multiplications

(Chapter 2). The methodology introduced in Chapter 4 will be shown to allow higher 

flexibility to develop superior parallel operations that are more flexibly adaptable to 

multiprocessor or parallel execution. In this regard, we propose faster parallel formulae for 

multiprocessor platforms that are able to execute three and four operations in parallel. 
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On the other hand, we have investigated SSCA-protected implementations for parallel 

architectures. In [FGK+02] and [IT02b], authors presented efficient parallel schemes on 

generic curves over prime fields using the Montgomery Ladder, which is intrinsically 

protected against SSCA because every iteration in the main loop involves one doubling and 

one addition. An advantage of this method is that formulae involve computation with the x-

coordinate only. In particular, reference [FGK+02] presented a more attractive scheme since 

it parallelizes doublings and additions at the field operation level, whereas [IT02b] 

parallelizes at the point operation level in every iteration of the main loop. The latter has the 

limitation that the cost of every iteration is determined by the most costly point operation, 

namely addition.

Later, reference [IT05] improved the previous proposals and introduced a unified 

Doubling-Addition formula for the Montgomery Ladder method. The composite formula 

was then efficiently parallelized. 

In [Mis06], the authors proposed a pipelined approach for generic curves over prime fields 

using the standard point arithmetic. In this scheme, each point operation is protected against 

SSCA using atomicity, and the atomic block execution is done through a pipeline, where up 

to two atomic blocks can be computed simultaneously. Because a pipelined atomic operation 

can begin its execution before the previous atomic operation is complete, the total 

throughput is significantly reduced to a few atomic blocks. 

In this work, we propose a faster 2-processor SSCA-protected scheme that introduces 

further cost reductions by using the innovative atomic structure with squarings: S-N-A-M-N-

A-A (Chapter 5, Section 5.4). As previously explained, our atomic structure not only offers 

true protection against SSCA by distinguishing multiplications from squarings, but also 

allows us to pack more field operations in each block. 
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6.2 Unprotected Parallel Point Arithmetic

In this case, we will show that our methodology of replacing multiplications (Chapter 4) 

permits to flexibly modify point doubling, addition and tripling formulae to make them more 

efficient when implemented in a parallel architecture such as SIMD. In the following, we 

will present formulae to compute three and four operations in parallel. It is important to note 

that in the 4-processor case, one multiplication can be replaced by up to two squarings since 

more computing resources are available, and the introduction of squarings would permit to 

reduce the costs further.

Also, a new coordinate system that takes advantage of the inserted squarings and, thus, 

minimizes computing time in parallel implementations is introduced: 
2 2 3 4( , , , , , / )X Y Z X Z Z Z . The fourth coordinate 2X  will be required for doublings and 

triplings, and the sixth coordinate will be 3Z  if the current operation is an addition, or 4Z  if

the current operation is a doubling or tripling.

6.2.1 Three-processor formulae

Parallel Point Doubling

For the parallel doubling operation using a 3-processor architecture, we use the fast formula 

(4.4), considering a 3 for efficiency purposes. However, we do not use the factorization 

technique given in (2.14) with the objective of taking advantage of the new coordinate 

system which already includes 2X  and 4Z as pre-computed terms. This will be shown to 

reduce the overall cost.

The parallel doubling formula is shown in Table 6.1. Only squarings and multiplications 

are shown. For a detailed description the reader is referred to Appendix D1.  
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Doubling:    2 2 4 2 2 3 4
1 1 1 1 1 1 3 3 3 3 3 3 32( , , , , , ) ( , , , , , / )X Y Z X Z Z X Y Z X Z Z Z

Operation Processor1 Processor2 Processor3

1. Squaring 2  2

1 1Y Z 2
1Y

2. Squaring 4
1Y 2

3Z  22
1 1X Y

3. Multiplication 2
3X  3X       3 4

3 3/Z Z    (a)

                   (a) 3
3Z if next operation is a point addition, or 4

3Z  if next operation is a doubling or tripling.

Table 6.1.  Three-Processor Point Doubling

The total cost of the parallel doubling is 1M + 2S + 11A. This cost is reduced by one 

addition to 1M + 2S + 10A if repeated doublings are being computed or the following

operation is a tripling. This reduction is possible because the last 3-parallel operations of the 

doubling can be merged with the first 3-parallel operations of the following doubling or 

tripling. 

Parallel Point Addition

For the parallel addition formula, we consider the efficient case with mixed coordinates 

given by the fast addition formula (4.8). 

The parallel addition formula is shown in Table 6.2, with a cost of 3M + 2S + 8A. This 

cost is reduced by one addition to 3M + 2S + 7A if a doubling or tripling is computed right 

after the addition. Similarly to the 3-processor doubling, the last 3-parallel operations of the 

addition can be merged with the first 3-parallel operations to the following doubling or 

tripling. Again, only squarings and multiplications are shown in Table 6.2, but a detailed 

description is presented in Appendix D2.
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Addition:    2 3 2 2 4
1 1 1 1 1 2 2 3 3 3 3 3 3( , , , , ) ( , ) ( , , , , , )X Y Z Z Z X Y X Y Z X Z Z 

Operation Processor1 Processor2 Processor3

1. Multiplication 3
1 2Z Y 2

1 2Z X *

2. Squaring 2  2

1Z  2

3. Multiplication 2
14X  2 34 4    12 Y 

4. Squaring 2
3X * 2

3Z

4. Multiplication 2 3
1 14 2 8Y Y     2

1 34X X   4
3Z

Table 6.2.  Three-Processor Point Addition

Parallel Point Tripling

For the parallel tripling operation, we consider formula (4.9) with a 3. The parallel 

tripling formula is shown in Table 6.3, and similarly to the doubling case, a is defined as 

sparse with a fixed value of 3 but the factorization technique in (2.14) is not applied to 

achieve maximal utilization of the introduced coordinate system. A detailed description of 

this parallel computation can be found in Appendix D3. The total cost of the parallel tripling 

is 3M + 3S + 14A. 

Tripling:    2 2 4 2 2 3 4
1 1 1 1 1 1 3 3 3 3 3 3 33( , , , , , ) ( , , , , , / )X Y Z X Z Z X Y Z X Z Z Z

Operation Processor1 Processor2 Processor3

1. Squaring 2 2
1Y 2

1Y

2. Squaring 4
1Y  22

1 1X Y 4
14Y

3. Squaring  2   2

1Z  2

4. Multiplication 2
14X   2 2

1 14 16Y Y 2
3Z

5. Multiplication  2
116 2 2Y       2 2 4 2C D        2 3   

6. Multiplication 2
3X  3

3 18Y Y C D            3 4
3 3/Z Z      (a)

  (a) 3
3Z if next operation is a point addition, or 4

3Z  if next operation is a doubling or tripling.

Table 6.3.  Three-Processor Point Tripling
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6.2.2 Four-processor formulae

Parallel Point Doubling

For the parallel doubling using a 4-processor architecture and, similarly to the case of three 

processors, we use formula (4.4) with a 3 and avoid factorization technique (2.14). 

However, this time we can maximize processor utilization by replacing additional 

multiplications by two squarings. As it was discussed previously, in a sequential architecture 

this would lead to higher costs. However, we will show that this strategy leads to further 

computing time reduction in 4-processor architectures since not all processors are being 

used all the time and extra squarings can be accommodated by inactive processors. 

Before proceeding, we have to modify the fast doubling formula (4.4) to make it suitable 

for more squaring-for-multiplication replacements. The revised formula would be as follows 

if we apply the strategy given in Chapter 4:   

2
3 4 8X    ,           4

3 3 12 4 64Y X Y    ,  2 2 2
3 1 1 1 12Z Y Z Y Z                (6.1)

Where: 2 4
1 13X aZ  

 22 2 4
1 1 1 14 8 X Y X Y       

 32 4 X    is computed as    2 22
3 34 4X X        .   

We must notice that, although the number of squarings (and the cost for the sequential 

implementation) has been increased in (6.1), in a 4-processor architecture this leads to 

higher processor utilization and reduced or nil number of multiplications. The parallel 

doubling formula is shown in Table 6.4, with a total cost of 3S + 13A. Only squarings and 

multiplications are shown, but a complete description is presented in Appendix D4. If the 

following operation is an addition, then the cost is slightly increased to 1M + 2S + 13A, 

because we need to compute 3
3Z  in the third step, Processor 4. 

Additionally, the cost is reduced by two field additions to 3S + 11A if repeated doublings 

are performed or the following operation is a tripling, because the last two 4-parallel field 
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operations can be merged with the first two 4-parallel operations of the following doubling 

or tripling.

Doubling:    2 2 4 2 2 3 4
1 1 1 1 1 1 3 3 3 3 3 3 32( , , , , , ) ( , , , , , / )X Y Z X Z Z X Y Z X Z Z Z

Operation Processor1 Processor2 Processor3 Processor4

1. Squaring 2  2

1 1Y Z 2
1Y *

2. Squaring * 2
3Z  22

1 14 X Y 4
14Y

3. Squaring/Multiplication 2
3X     3 4

3 3/Z Z     (a)  2

34 X    2

34 X 

(a) 3
3Z if next operation is a point addition, or 4

3Z  if next operation is a doubling or tripling.

Table 6.4.  Four-Processor Point Doubling

Parallel Point Addition

We use the fast mixed addition given by (4.8). Following the strategy previously applied to 

the doubling formula, we modify (4.8) as follows:

2 3 2
3 14 4 8X X     ,      2 3

3 1 3 12 4 8Y X X Y     ,    2 2 2
3 1 1Z Z Z         (6.2)

Where: 3
1 2 1Z Y Y  

2
1 2 1Z X X  

12Y  is computed as  2 2 2
1 1Y Y    .

 2
1 32 4X X    is computed as    2 22 2 2

1 3 1 34 4X X X X        .

Again, the number of squarings has been increased, but the extra squarings can be easily 

computed by inactive processors, and thus, costly multiplications are avoided as much as 

possible. 

The parallel addition formula is presented in Table 6.5, where only squarings and 

multiplications are shown. For a detailed description the reader is referred to Appendix D5. 

The total cost of the parallel addition is 2M + 2S + 9A. If the following operation is a 
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doubling or tripling, the cost is reduced by two additions to 2M + 2S + 7A. 

Addition:    2 3 2 2 4
1 1 1 1 1 2 2 3 3 3 3 3 3( , , , , ) ( , ) ( , , , , , )X Y Z Z Z X Y X Y Z X Z Z 

Operation Processor1 Processor2 Processor3 Processor4

1. Multiplication 3
1 2Z Y 2

1 2Z X
2

1Y *

2. Squaring 2  2

1Z   2

1Y  2

3. Multiplication 2 32 2 4    2
3Z 2

12 4Y  
2 2

1 12 2 4X X  

4. Squaring 2
3X 4

3Z  22
1 34X X   22

1 34X X  

Table 6.5.  Four-Processor Mixed Addition

Parallel Point Tripling

In the case of the tripling, this operation can be implemented with the fast formula given by 

(4.9), fixing a 3. We again follow the strategy applied to doubling and addition and show 

that in this case the replacement of all multiplications by squarings leads to higher

performance.

Formula (4.9) is modified as follows:

 2 2
3 1 116 2 2 4X Y X     ,         3 14Y Y  ,  2 2 2

3 1 1Z Z Z                      (6.3)

Where:  2 2 22       

4
12 16Y 

2 4
1 13X aZ                

 22 2 4 2
1 1 1 16 X Y X Y        

    32 2 2 4 2 2        

The next multiplications are computed as follows:

 22 2 2 4
1 1 14 2X X X        
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 23 2 2 42       

     2 22 2 4
1 1 116 2 2 8 2 2 64 2 2Y Y Y           

 2 2 2
1 1 14 4 16Y Y Y     

      2 222 2 2 4 2 4 2 2 4 2              

The parallel tripling formula has a total cost of 6S + 17A. Only squarings and 

multiplications are shown in Table 6.6, but a detailed description can be found in Appendix 

D6. If the operation following a tripling is an addition, the cost is slightly increased to 1M + 

5S + 17A. On the other hand, the cost is reduced by two additions to 6S + 15A if repeated

triplings are performed or the following operation is a doubling.

 Tripling:    2 2 4 2 2 3 4
1 1 1 1 1 1 3 3 3 3 3 3 33( , , , , , ) ( , , , , , / )X Y Z X Z Z X Y Z X Z Z Z

Operation Processor1 Processor2 Processor3 Processor4

1. Squaring 2 2
1Y 2

14Y *

2. Squaring 4
14Y  22

1 14 X Y 4
1Y  22

1 1X Y

3. Squaring 2  2

1Z   2  24

4. Squaring  22
1X  4  22   2

2 2 

5. Squaring  2
2 2  2

3Z  2
4 2   22

18 2 2Y   

6. Squaring/Multiplication 2
3X    3 4

3 3/Z Z    (a)  2

14Y  2

(a) 3
3Z if next operation is a point addition, or 4

3Z  if next operation is a doubling or tripling.  

Table 6.6.  Four-Processor Point Tripling

6.2.3 Performance comparison

Table 6.7 summarizes the cost of the parallel point operations presented for the cases where

three and four operations are executed simultaneously on a SIMD-based architecture. 

Results are compared to previous proposals given by [AHK+01] and [IT02]. The most 
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efficient scenario was given by [AHK+01], which developed cheaper 3-processor SIMD 

doubling and mixed addition operations using the modified coordinate system 2( , , , )X Y Z Z . 

Similarly to our case, they used a 3 for the doubling formula, without applying the 

factorization technique in (2.14). However, our flexible methodology has allowed further 

cost reductions by replacing some costly multiplications for squarings. This permits to 

reduce doublings to 1M  2S in the case of 3-parallel operations, in comparison to the cost 

of 2M  1S for the doubling given by [AHK+01]. 

For instance, for an n-bit NAF scalar multiplication, with an approximate cost of (n  1) 

doublings and (n3) additions, [AHK+01] would require roughly 3.3nM + 1nS, whereas our 

formulae requires 2nM  2.6nS. When 1S = 0.8M, there are no significant differences 

between both formulae (about 661 field multiplications each, if n  160). However, for the 

case 1S = 0.6M, [AHK+01] costs 627M, and ours only 574M. 

In comparison to costs using traditional sequential formulae (Chapter 2, Table 2.2): 

1954M (if 1S  0.8M) and 1731M (if 1S  0.6M), we get computing time reductions of about 

66% and 67%, respectively. In comparison to our fast sequential formulae presented in 

Chapter 4 (Table 4.1): 1657M (if 1S  0.8M) and 1455M (if 1S  0.6M), we get computing

time reductions of about 60% and 61%, respectively. 

For the tripling, we have proposed, to our knowledge, the first approach for a parallel 

implementation. On a 3-processor SIMD scheme, the proposed tripling performs more than 

two times faster. For instance, if 1S  0.8M, the traditional tripling costs 13.2M, and our fast 

tripling in a sequential fashion, 12.6M (see Table 4.2). By contrast, the proposed 3-processor 

tripling only costs 5.4M. 
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Work Doubling Mixed Addition Tripling

This work: 4 processors 3S / 1M + 2S 2M + 2S 6S / 1M + 5S

This work: 3 processors 1M + 2S 3M + 2S 3M + 3S

[AHK+01] : 3 processors 2M + 1S 4M -

[AHK+01] : 2 processors 2M + 3S 5M + 1S -

[IT02] : 2 processors 2M + 3S 4M + 2S -

Fast sequential (Ch. 4) 3M + 5S 7M + 4S 7M + 7S

Traditional sequential (Ch. 2) 4M + 6S 8M + 3S 10M + 4S

Table 6.7.  Comparison of different parallel and sequential point operations

Furthermore, our methodology makes point operations suitable for architectures that 

compute four operations simultaneously. We further reduce our 3-parallel formulae, which 

are the most efficient to our knowledge, to achieve faster 4-parallel formulae by trading one

squaring for one multiplication in the case of doubling, reducing one field multiplication in 

the case of mixed addition, and trading three squarings for three multiplications in the case 

of tripling. 

For comparison purposes, if we consider a 160-bit NAF scalar multiplication, our 4-

processor formulae would require approximately 584M (if 1S = 0.8M) and 478M (if 1S = 

0.6M). That means reductions of about 11% and 17% for each case, respectively, in 

comparison with the 3-processor implementation. In comparison to the traditional sequential 

approach (Chapter 2), we obtain reductions of about 70% and 72% for each case, 

respectively, which mean that the 4-processor scheme is more than three times faster than 

the traditional sequential implementation.

On a 4-processor scheme, the proposed tripling formula performs almost three times 

faster. For instance, if 1S = 0.8M, the proposed 4-processor tripling costs in most cases 6S 

4.8M, whereas the traditional tripling costs 13.2M, and our fast tripling in a sequential 

fashion, 12.6M (see Table 4.2).
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6.3 Parallel SSCA-protected Point Arithmetic

Operations presented in the previous section are oriented to achieve the maximum speed-up 

on SIMD-based implementations when side-channel attacks are not a problem. In the 

present section, we propose a scheme with 2-processor point operations protected against 

simple-side-channel attacks. Again, atomicity has been used to achieve the required level of 

security. 

We have investigated dependencies among field operations in each point operation, and 

concluded that architectures that are designed for executing two operations simultaneously 

are more efficiently exploited if squarings are also considered in the formulae. 

In Chapter 5, our highly flexible methodology of replacing multiplications for squarings 

has already been applied to yield improved formulae that permit the efficient introduction of 

squarings into the atomic block structure. Thus, our scheme arranges two field operations in 

parallel at each step, following the atomic structure given by S-N-A-A-M-N-A-A (introduced 

in Section 5.4), which has been found to efficiently accommodate all the point operations in

2-processor architectures.

In the following, we call a block a parallel atomic block, if it is able to execute two

operations in parallel and follows the aforementioned atomic structure to protect against 

SSCA. 

In the next paragraphs, we describe each parallel point operation. For each formula, the 

order of execution has been carefully arranged to yield the cheapest possible atomic point 

operations.

As explained in Chapter 5, to achieve minimum costs, we require formulae with a 

balanced number of field multiplications and squarings. For the case of doubling, the 

traditional formula given by (2.13), with a 3, is already balanced with a cost of 4M + 4S. 

Thus, we only require 2 parallel atomic blocks, as each of these is capable of executing two 

field multiplications and two field squarings. The cost of the 2-parallel atomic doubling is 
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fixed in 2M + 2S + 8A. Details of this operation are shown in Appendix E1. 

For the case of mixed addition, in Section 6.1, Chapter 6, we derived the balanced formula 

(5.2) with a cost of 6M + 6S. We use this formula to obtain our 2-parallel atomic addition

with only 4 parallel atomic blocks. Thus, the total cost of the 2-parallel addition is given by 

4M + 4S + 16A. Details of this formula are shown in Appendix E2. 

Similarly, in Section 4.1.2, Chapter 4, we presented a balanced tripling formula given by 

(4.10) with a cost of 7M + 7S. Using this formula, we derive a 2-parallel tripling protected 

against SSCA with 5 parallel atomic blocks and a cost of 5M + 5S + 20A. Details of the 2-

parallel protected tripling are shown in Appendix E3.

In Table 6.8, we show a sample execution of consecutive tripling, doubling and addition 

operations in our proposed 2-parallel SSCA-protected scheme, where one point operation is 

executed in parallel at a time. We denote the parallel atomic block x executed by processor y

by x,y. Thus, five, two and four parallel atomic blocks are required to complete a tripling, a 

doubling and an addition, respectively. 
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Time Processor1 Processor2

t  

t + 1 1,1 (c) 1,2 (c)

t + 2 2,1 (c) 2,2 (c)

t + 3 3,1 (c) 3,2 (c)

t + 4 4,1 (c) 4,2 (c)

t + 5 5,1 (c) 5,2 (c)

t + 6 1,1 (b) 1,2 (b)

t + 7 2,1 (b) 2,2 (b)

t + 8 1,1 (a) 1,2 (a)

t + 9 2,1 (a) 2,2 (a)

t + 10 3,1 (a) 3,2 (a)

t + 11 4,1 (a) 4,2 (a)

t + 12  

                                                  (a) Atomic point addition,  
                                                  (b) Atomic point doubling, 
                                                  (c) Atomic point tripling.

Table 6.8.  Parallel execution of ECC point operations in the proposed                                  
2-parallel SSCA-protected scheme

6.3.1 Performance comparison

Several efficient efforts to protect parallel implementations against SSCA can be found in 

the literature. 

In [FGK+02] and [IT02b], authors presented efficient parallel SSCA-protected schemes

using the Montgomery Ladder method over prime fields. In general, for an n-bit scalar 

multiplication dP, the Montgomery ladder method requires (n  ) iterations. [FGK+02] 

presented a parallel doubling and addition execution with a cost of ten field multiplications. 

Thus, the scalar multiplication would cost 10(n 1)M. If n  160 bits, then the total cost is 

1590M, with 9.9M per bit. 

On the other hand, the method given by [IT02b] fixes the cost of every iteration to one
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point addition. Doubling and addition formulae in [IT02b] cost 6M + 3S and 8M + 2S, 

respectively. Since one extra doubling is required to complete the scalar multiplication, the 

cost of the scalar multiplication using the Montgomery Ladder would be one doubling and

(n  1) additions, which is equivalent to (6M + 3S) + (n  1)(8M + 2S). If we consider 1S 

0.8M, the total cost is fixed in 1535M, with 9.6M per bit. 

Later, [IT05] improved proposals by [FGK+02] and [IT02b] and proposed a unified 

Doubling-Addition formula for the Montgomery Ladder. The composite formula was 

efficiently parallelized with a cost of 7M + 2S. Thus, a scalar multiplication would cost (n 

1)(7M + 2S) = 1367M, with 8.5M per bit. 

In [Mis06], the authors proposed a pipelined approach for generic curves over prime fields 

using the standard point arithmetic. The pipeline scheme was protected against SSCA using 

atomicity. Because a pipelined atomic operation can begin its execution before the previous 

atomic operation is complete, the total throughput is reduced to only six atomic blocks. In 

this work, each atomic block had the traditional M-A-N-A structure. Since the cost using the 

NAF method is (n  1) doublings and (n3) additions (according to 2.20), the pipelined 

method costs 10  6(n  n3  2) atomic blocks [Mis06], which is equivalent to 1278 atomic 

blocks when n  160. If we consider each atomic block equivalent to 1.1M (each atomic 

block contains one multiplication and two additions, where 1A = 0.05M [Ber]), then the cost 

using the NAF method is fixed in 1406M, with 8.8M per bit. 

In contrast, our proposed parallel SSCA-protected scheme introduces further cost 

reductions by including squarings in the atomic structure, and hence, efficiently reduces the 

number of required atomic blocks. As it was shown in previous sections, our atomic 

structure not only offers true protection against SSCA by distinguishing multiplications from 

squarings, but also allows us to pack more field operations per block. Furthermore, our 

parallel approach is showing to be superior to the pipelined one in [Mis06]. The pipeline 

reduces the throughput to six atomic blocks by beginning each point operation as soon as 

possible, with a maximum of two processes being computed simultaneously. Hence, the 

main obstacle to achieve cheaper execution is given by inter-operation dependencies 



Chapter 6.  Efficient Parallel Point Arithmetic                                                                     103

(dependencies found between consecutive point operations). By contrast, our approach 

parallelizes field operations inside each point operation, and hence, cost of the atomic 

formulae is mainly defined by intra-operation dependencies (dependencies inside each point 

operation). We have carefully analyzed both kinds of dependency, and concluded that inter-

operation dependencies in the point arithmetic over prime fields are more restrictive than 

intra-operation dependencies. Thus, even though throughput is effectively reduced to six 

atomic blocks (about six field multiplications) in [Mis06], with the parallel approach we 

have doublings and additions that are executed with only 2M + 2S and 4M + 4S, 

respectively. The reader must note that doublings are more frequently required in efficient 

scalar multiplication methods, and hence, our method would be superior even in the case 

1 1S M , making our approach not only more secure but also faster in hardware 

implementations where a hardware multiplier executes both multiplications and squarings. 

The next comparison holds for implementations where squarings are cheaper than 

multiplications, as is generally the case in software platforms. In a 160-bit NAF scalar 

multiplication, our scheme costs 2(n  1) atomic blocks and 4(n3) atomic blocks, since 

doublings and additions require two and four parallel atomic blocks, respectively. 

Consequently, our parallel approach requires 531 parallel atomic blocks. If we consider the 

cost of each parallel atomic block to be 2M (each parallel atomic block costs one 

multiplication, one squaring and four additions, where 1S  0.8M and 1A  0.05M [Ber]), 

then the total cost using the NAF method would be 1062M, with 6.6M per bit. Thus, our 

approach introduces computing time reductions of approximately 33%, 31% and 22% in 

comparison with the Montgomery Ladder methods proposed by [FGK+02], [IT02b] and 

[IT05], respectively. The reader must note that field additions have not been included in the 

cost estimates for the previous Montgomery Ladder methods. Consequently, cost reductions 

of our approach in comparison with those methods are even greater than estimated values.  

In comparison with the pipelined scheme presented by [Mis06], our parallel approach 

introduces a significant reduction of approximately 24%.
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Work Cost

Proposed 2-parallel scheme (NAF method) 1062M

Pipelined [Mis06] (NAF method) 1406M

[IT05] (Montgomery ladder)  (a) 1367M

[IT02b] (Montgomery ladder)  (a) 1535M

[FGK+02] (Montgomery ladder)  (a) 1590M

S-N-A-M-N-A-A-based sequential (Table 5.4, Ch. 5, NAF method) 1860M

Traditional sequential (Table 5.4, Ch. 5, NAF method) 2390M

          (a) Field additions are not included in the cost.

Table 6.9.  Comparison of performance of parallel SSCA-protected methods with n = 160 
(1S  0.8M and 1A  0.05M)

Table 6.9 compares performance of previous parallel SSCA-protected methods with the 

proposed 2-parallel SSCA-protected scheme. For comparison purposes, sequential atomic 

methods are also presented. Our parallel approach introduces a speed-up of about 56% and 

43% in comparison to the traditional and new S-N-A-M-N-A-A-based (Chapter 5, Section 

5.4) atomic implementations, respectively. 

Again, the speed-up of our method would be even more significant if 1S  0.6M.   
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Chapter 7

New Multibase Scalar Multiplication

In Chapter 3, we introduced new formulae for composite operations such as quintupling, 

septupling and others. We also showed how these operations can be cleverly exploited to 

speed-up ECC computations. 

In the present chapter, new scalar multiplication methods are developed on top of those 

new operations by allowing an extended set of bases. Our methodology works with a new 

multibase NAF-like representation for the scalar d. Moreover, we propose efficient 

algorithms that convert any positive integer to such multibase representation and define their 

theoretical performance in terms of length and Hamming weight. 

In the remainder of this chapter, we first discuss previous efforts to accelerate the scalar 

multiplication by using more than one radix in the scalar expansion. Then, three new 

multibase representations are introduced with their corresponding scalar multiplication 

algorithms. We end the chapter with extensive tests that follow the theoretical estimates and 

confirm the superiority of our scalar multiplications in comparison to any previous method 

in the current literature.  
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7.1 Previous Work

Since [DIM05] introduced the idea of using mixed powers of two and three to shorten the 

scalar expansion for the ECC scalar multiplication, many works investigating and expanding 

this idea have appeared during recent years. The specific representation using bases two and 

three as presented by [DIM05], and its scalar multiplication, are referred in this work as DB 

and DB scalar multiplication, respectively (see Chapter 2, Section 2.3.3).

One notable area where these ideas are producing interesting results is in ECC scalar 

multiplication on Koblitz curves [AS06,ADD+06], where new scalar multiplication methods 

are sublinear with a complexity of less than
log

log log

d

d
 
 
 

 additions.

On standard ECC curves over prime and binary fields, the use of double bases has been 

already shown to reduce the computing cost of established methods as NAF and wNAF 

[DIM05,DI06]. However, DB has some shortcomings in such scenario. 

First, conversion of any scalar d to DB can be relatively slow since it is based on an 

exhaustive search of all possible combinations of powers of two and three (see “Greedy” 

Algorithm 2.4). Some speed-up can be injected by applying a smart search, such as the 

method proposed in [DI06] using lexicographic-ordered tables. However, this method 

requires extra memory to store such tables, which can be prohibitive for some constrained 

environments. Refer to Table 1 in [DI06] for precise amounts of extra memory that would 

be required. Notice that if one stores only part of the pre-computed data, then some delays 

could be potentially introduced during DB conversions.   

Second, the efficiency of DB scalar multiplication heavily depends on the maximum 

bounds bmax , cmax (see Algorithm 2.4). Heuristic approximations have been proposed to 

estimate the values that would yield short expansions [DIM05]. However, in ECC scalar 

multiplication, the density of non-zero terms (i.e., the number of additions) is not the only 

parameter to take into account to achieve cheaper computations. In fact, since an additional 

point operation (namely tripling) is included in the expansion, a balanced number of 

doublings, triplings and additions should be considered to reach an optimal computing cost. 
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The complexity of this estimate is greatly increased if one needs to consider settings with 

different cost ratios among point operations.

Finally, there is no theoretical bound for the length or density of the expansion. This fact 

increases the difficulty to find optimal values for bmax , cmax in the DB scalar multiplication.  

In this work, we expand the idea of using only two bases to any efficient number of bases, 

and propose a multibase NAF-like representation that overcomes all the previous problems 

found in DB. This is, to our knowledge, the first effort in the area to apply a multibase 

representation of the scalar d to reduce ECC computing costs. Also, we show that our 

methods are sublinear with complexity of approximately 
log

log log

d

d
 
 
 

 point additions.  

As it has been through all this work, we focus on applying proposed methods to ECC over 

prime fields using standard curves (2.2). However, it is important to note that proposed 

representations are generic and can be applied to other areas, or specifically, to any 

cryptosystem based on exponentiation or scalar multiplication. For the latter, the only 

requisite is to have efficient formulae to compute operations with radices  2.  

7.2 New Multibase Scalar Multiplication Methods

In the following, we introduce our multibase scalar multiplications based on new NAF-like 

representations that use an extended number of bases. 

7.2.1 Multibase Non-Adjacent Form (mbNAF)

We propose the next signed multibase representation for the scalar d to construct the scalar 

multiplication:

                                                           ( )

1 1

ji

Jm
c

i j
i j

d d a
 

                                                         (7.1)

Where: bases a1 ≠ a2 ≠ … ≠ aJ are positive prime integers.
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m is the length of the expansion.

di are signed digits from a given set Di.

( )i jc are monotonically decreasing exponents, s.t. 1 2( ) ( ) ( ) 0mj j jc c c    , 

for each j from 1 to J.

The last condition guarantees that an expansion of the form (7.1) is efficiently executed by 

a scalar multiplication scanning the digits from left-to-right. 

It is important to note that there is no restriction in the selection or number of bases. These 

parameters are determined according to a specific application. In our case, for ECC on 

standard curves over prime fields, we will show that efficiently for most of the cases: J ≤ 4, 

with a1  2, a2  3, a3  5, a4  7.

Notice that signed multibase representation as presented in (7.1) is not unique. In fact, the 

“Greedy” algorithm by [DIM05] gives an expansion for the scalar d with similar conditions,

although in their case they restrict the number of bases to two, namely J  2, with a1  2, a2

 3.

We now define a multibase NAF-like representation that is unique for every positive 

integer. Although it does not yield in all cases a canonical representation (representations 

with minimal number of terms using more than one radix are not necessarily efficient for 

scalar multiplication in all cases), it makes conversion to multibase a trivial task, and 

guarantees a short expansion for scalar multiplication.  

Definition 7.1 Given a set of bases   {a1,a2,…,aJ}, where +
ja   are positive primes for 

1 j J  , a multibase non-adjacent form (mbNAF) of a positive integer d, denoted by 
        1 2 1a a aa

1 2 1, , , ,mm
m md d d d

  , where m is the length of the expansion,  a i
id  is the ith digit and the 

superscript a i A  denotes the base associated to the respective digit, has the following 

properties: 
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 Every positive integer d has a unique mbNAF representation for a given set of bases 

.

 No consecutive digits are non-zero. 

    2
1 1

1 1 1

1 1
2 2

1 , 2 , ,0, 1, 2, , \i i
a a

a a ad D                , for 1 ≤ i ≤ m.

 The leftmost non-zero digit is positive, i.e., dm  0. 

It is important to note that for the set of bases  = {2}, the previous definition is identical 

to the traditional binary NAF. 

According to the previous definition, the set of pre-computed digits Di works solely on 

base a1, called the main base, to guarantee a minimal number of pre-computations.

We propose Algorithm 7.1 to efficiently convert any positive integer to mbNAF

representation. Notice that the proposed algorithm is a generalization of the traditional NAF 

to multibase digit representations.
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Algorithm 7.1  Computing the mbNAF of a positive integer

INPUT: scalar d, bases   {a1,a2,…,aJ}, where +
ja   are primes for 1 j J 

OUTPUT: the   2 1(a ) (a )
1 2 2 1, ,..., NAF( ) = (..., , )Ja a a d d d

    1.  i = 0

    2.  While d  0 do

         2.1.  If 1mod 0d a   or 2mod 0d a   or … or mod 0jd a  , then 0id 

         2.2.  Else:

                  2.2.1  2
1modsid d a            

                  2.2.2  id d d 

         2.3  

                  2.3.1  If 1mod 0d a  , then  1
1/ , a

i id d a d d 

                  2.3.2  elseif 2mod 0d a  , then  2
2/ , a

i id d a d d 

                   

                  2.3.J  elseif mod 0Jd a  , then  / , Ja
J i id d a d d 

         2.4  i  i  1 

    3.  Return 2 1(a ) (a )
2 1(..., , )d d

Function mods in Algorithm 7.1 represents the next computation:

  
 

If  mod / 2, then:

mod      

Else,

mod

2 2
1 1

2 2
i 1 1

2
i 1

d a a

d d a a

d d a


  


 

         (7.2)

Algorithm 7.1 approximates every computation to the closest number divisible by the 

square of the main base, namely a1. Thus, two consecutive operations by a1 are guaranteed 

before the next addition. In this sense, it closely follows the expansion given by rNAF 

[TYW04]. The analogy is quite interesting since our main base a1 acts as the radix r, using a 

similar construction for the table of pre-computed points. However, the non-zero density of

the expansion is further reduced in our case as the number of bases is increased since the
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algorithm searches for extra divisions by the remainder bases. Consequently, the non-zero 

density decreases with the number and size of the bases.

[TYW04] showed that the non-zero density for a radix-r using rNAF is given by (2.24). 

Consequently, our approach’s density is asymptotically given by:

                                                                1

1

1

2 1

a
D

a





,                                                          (7.3)

with regards to the length of the base a1, and requires
  

1 1
2 1

2

a a 
 pre-computed points 

without considering {0, 1}. The reader is referred to [TYW04] for a mathematical proof.

It is important to note that if a1  2, no extra pre-computed points are required in 

comparison with the binary or binary NAF representation, where the point at infinity and P

should be stored.

Also, a1  2 is expected to yield the most efficient scalar multiplication in terms of speed 

on EC-based standard curves, where point doubling is highly efficient in comparison with 

other operations (see Table 2.2). However, in new EC-based cryptosystems of characteristic 

3 or pairing-based cryptosystems where triplings (or other composite operations) are highly 

efficient, it is expected to achieve better results with a1  2.

7.2.2 Window-w Multibase Non-Adjacent Form (wmbNAF)

Similarly to NAF, it is possible to reduce further the density of the expansion of the 

proposed mbNAF by allowing additions by an extended set of pre-computed digits Di. 

In the following, we define the window-w Non-Adjacent Form for multibase 

representations (wmbNAF). 

Definition 7.2 Given a set of bases   {a1,a2,…,aJ}, where +
ja   are positive primes for 

1 j J  , the window-w multibase non-adjacent form (wmbNAF) of a positive integer d
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using window of width w ≥ 2, denoted by         1 2 1a a aa
1 2 1, , , ,mm

m md d d d
  , where m is the length of 

the expansion,  a i
id  is the ith digit and the superscript a i A  denotes the base associated to 

the respective digit, has the following properties: 

 Every positive integer d has a unique wmbNAF representation for a given set of 

bases  and window w.

 w adjacent digits contain at most one non-zero digit. 

    1
1 1

1 1 1
1 1

2 2
0, 1, 2, , \ 1 , 2 , ,

w w

i i
a ad D a a a

                , for 1 ≤ i ≤ m.

 The leftmost non-zero digit is positive, i.e., dm  0. 

Notice that for the set of bases  = {2}, the previous definition is identical to the 

traditional binary wNAF (see Chapter 2, Section 2.2.3). 

Similarly to mbNAF, the set of pre-computed digits Di are derived from the main base a1, 

limiting the required number of pre-computations.

We propose Algorithm 7.2 to efficiently convert the scalar d to wmbNAF representation. 

Again, note that the proposed algorithm is a generalization of the traditional wNAF to 

multibase digit representations.
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Algorithm 7.2  Computing the wmbNAF of a positive integer

INPUT: scalar d, bases   {a1,a2,…,aJ}, where +
ja   are primes for 1 j J  ,

              window 2w  , where w 
OUTPUT: the   2 1(a ) (a )

1 2 2 1, ,..., NAF ( ) = (..., , )J wa a a d d d

    1.  i = 0

    2.  While d  0 do

         2.1.  If 1mod 0d a   or 2mod 0d a   or … or mod 0jd a  , then 0id 

         2.2.  Else:

                  2.2.1  1mods w
id d a            

                  2.2.2  id d d 

         2.3  

                  2.3.1  If 1mod 0d a  , then  1
1/ , a

i id d a d d 

                  2.3.2  elseif 2mod 0d a  , then  2
2/ , a

i id d a d d 

                   

                  2.3.J  elseif mod 0Jd a  , then  / , Ja
J i id d a d d 

         2.4  i  i  1 

    3.  Return 2 1(a ) (a )
2 1(..., , )d d

Function mods in Algorithm 7.2 is a generalization of function (7.2) to any window w:

 
If  mod / 2, then:

mod      

Else,

mod

w w
1 1

w w
i 1 1

w
i 1

d a a

d d a a

d d a


  


 

         (7.4)

As we can see, similarly to relation between wNAF and NAF, wmbNAF is equivalent to 

mbNAF if we fix w  2.  Thus, Algorithm 7.2 defines windows of size w (only for the main 

base a1) to which it approximates every computation. In this way, w consecutive operations 

by a1 are guaranteed before the next addition. As happens with mbNAF, the non-zero 

density of the expansion closely follows that of wrNAF [TYW04], which is the windowed 

version of rNAF (see Section 2.3.3, Chapter 2). Again, our method’s density is further 
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reduced as the number of bases is increased since the algorithm searches for extra divisions 

by the remainder bases. Consequently, the non-zero density also decreases with the number 

and size of the bases.

[TYW04] showed that the non-zero density for wrNAF is given by (2.25). Consequently, 

our approach’s density is asymptotically given by the following:

                                                           
 

1

1

1

1 1

a
D

w a




 
,                                                         (7.5)

with regards to the length of the base a1, and requires 
1

1 1 2

2

w wa a  
 pre-computed points 

without considering {0, 1}. For further details, the reader is referred to [TYW04].

7.2.3 Extended Window–w Multibase Non-Adjacent Form (extended 

wmbNAF)

In proposed mbNAF and wmbNAF, we have restricted the internal approximation to 

numbers divisible by the base a1, which has been refereed as main base. However, curve-

based cryptosystems other than ECC on standard curves offer different cost ratios among 

their point operations. To exploit efficiency of those composite operations, we can extend 

the proposed multibase representations by allowing internal approximations to numbers 

based on combinations of radices. 

Definition 7.3 Given a set of bases   {a1,a2,…,aJ}, where +
ja   are positive primes for 

1 j J  , the extended multibase non-adjacent form (extended mbNAF) of a positive 

integer d using window set   {w1, w2, …, wJ}, where exponents wj are positive integers ≥ 

0 for all j from 1 to J, is denoted by         1 2 1a a aa
1 2 1, , , ,mm

m md d d d
  , where m is the length of the 

expansion,  a i
id  is the ith digit and the superscript a i A  denotes the base associated to the 

respective digit. The extended mbNAF has the following properties: 

 Every positive integer d has a unique extended mbNAF representation for a given set 

of bases  and windows .
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 There is at most one non-zero digit among (w1  w2  …  wJ) adjacent digits. 

  1

2
0, 1, 2, , \i i

a
d D

        
 

1 1 1 2 2 2
1 2

1 1 1

2 2 2
1 , 2 , , 1 , 2 , , 1 , 2 , ,, , , J J J

J

a a a

a a a
a a a a a a a a a

  
        
     
           

    , 

for 1 ≤ i ≤ m.

 The leftmost non-zero digit is positive, i.e., dm  0. 

We propose Algorithm 7.3 to efficiently convert the scalar d to extended wmbNAF 

representation. 

Algorithm 7.3  Computing the extended wmbNAF of a positive integer

INPUT: scalar d, bases   {a1,a2,…,aJ}, where +
ja   are primes for 1 j J  ;

              1 2
1 2

Jww w
Ja a a a  , using window set  {w1,w2,…,wJ}, where 0jw                                                                                

              for1 j J    

OUTPUT: the    
2 1

1 2

(a ) (a )
1 2 , , , 2 1, ,..., NAF ( ) = (..., , )

JJ w w wa a a d d d

    1.  i = 0

    2.  While d  0 do

         2.1.  If 1mod 0d a   or 2mod 0d a   or … or mod 0jd a  , then 0id 

         2.2.  Else:

                  2.2.1  modsid d a            

                  2.2.2  id d d 

         2.3  

                  2.3.1  If 1mod 0d a  , then  1
1/ , a

i id d a d d 

                  2.3.2  elseif 2mod 0d a  , then  2
2/ , a

i id d a d d 

                   

                  2.3.J  elseif mod 0Jd a  , then  / , Ja
J i id d a d d 

         2.4  i  i  1 

    3.  Return 2 1(a ) (a )
2 1(..., , )d d
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Function mods in Algorithm 7.3 involves the next computation:

 
If  mod / 2, then:

mod      

Else,

mod

i

i

d a a

d d a a

d d a


  


 

         (7.6)

Algorithm 7.3 guarantees that there is at most one non-zero digit among (w1  w2  … 

wJ) successive digits.

In contrast to Algorithm 7.2, this algorithm establishes windows for different bases 

instead of limiting the window to only base a1. Thus, every computation is approximated to 

a global value a, which we refer to as global base, guarantying a given number of operations 

per radix before the next addition happens.

Notice that wmbNAF is in fact a particular case of the extended wmbNAF when the set of 

windows is limited to solely the main base, i.e.,  {w1}, where 1 2w  .

This extended representation is ideal for settings where more than one point operation is 

efficient. Moreover, its flexibility to define different window sizes for different bases allows 

determining windows according to specific cost ratios between point operations. For 

instance, for multibase representations using bases  {2,3} on cryptosystems that have 

highly efficient tripling, it is more beneficial to use a relatively bigger window w2 for the 

base 3, in comparison to window w1 for base 2.

Extended wmbNAF requires the next set of pre-computed points:

 1

2
0, 1, 2, , \i

a
d

       
 

              1 1 1 2 2 2
1 2

1 1 1

2 2 2
1 , 2 , , 1 , 2 , , 1 , 2 , ,, , , J J J

J

a a a

a a a
a a a a a a a a a

  
        
     
           

                           

The previous table requires 1
2

a
 

   points for the first term without including {0,1}. Then, 
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we have to discard multiples of each base in the respective range, as indicated by the second 

term of the expression. We have 
2

j

a

a

 
 
 

 points for each j from 0 to J. However, some 

multiples are shared between different bases. If we fix the number of bases to three, we 

obtain an expression as the following to compute the number of required pre computed 

points:

                            
1 2 3 1 2 1 2 3

1 ( 2)
2 2 2 2 2 2

a a a a a a
n

a a a a a a a a

                                  
              (7.7)

Notice that expression (7.7) only requires bases aj that are present in the global base a. In 

other words, a given base aj is not used in computation of (7.7) if wj  0.

Algorithm 7.3 searches for the closest number divisible by the window established by the 

global base a. Therefore, our approach’s density is determined by every base in the global 

base a. In fact, the number of additions  # A  in the expansion is given by:

                                                               # A #
j ja aD O  ,                                             (7.8)

for any base aj found in the global base a (i.e., wj  0 for a given j). 
jaD  and  #

jaO

represent density and number of operations associated to a given base aj, respectively.

By expanding previous cases to this setting with several bases, density 
jaD satisfies the 

following expression:

                                                          
1

1 1j

j
a

j j

a
D

w a




 
                                                   (7.9) 

This is also similar to rNAF [TYW04]. However, our approach gains further reduction in 

terms of density due to the use of several bases with flexible windows that introduce 

successive point doublings, triplings or others before the next addition.                                                                                                                
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Multibase Scalar Multiplication

Following, we propose a generic multibase scalar multiplication for our three studied NAF-

like expansions: mbNAF, wmbNAF and extended wmbNAF.

Algorithm 7.4  Extended wmbNAF (mbNAF or wmbNAF) method for scalar
multiplication

INPUT: set  {w1,w2,…,wJ}, where 0jw   (w1 = 2 , wj = 0 for mbNAF, and w1  2, wj = 0

             for wmbNAF; j  1), scalar 1 2 1(a ) (a ) (a )
1 2 1( ,..., , )l

ld d d d
  from Alg. 7.1, 7.2 or 7.3, 

            ( )pP E 

OUTPUT: dP

    1.  Compute Pi  iP for ii D  (see Definitions 7.1, 7.2 or 7.3)

    2.  Q O

    3.  For 1i l   downto 0 do

         3.1.  ( )iQ a Q

         3.2.  If (a ) 0i
id  , then:

                    If (a ) 0i
id  , then (a )i

id
Q Q P 

                    Else (a )i
id

Q Q P 

    4.  Return (Q)

In Algorithm 7.4,  a i
id  is the ith digit and the superscript a i A (set of bases) denotes the 

base associated to the respective digit. Thus, operation ( )iQ a Q  in 3.1 is any point 

operation with exception of addition (i.e., doubling, tripling, quintupling, and so on). In 3.2, 

point addition is performed when a non-zero element is found in the multibase expansion. 

The operation is performed with a pre-computed point Pi according to Definitions 7.1, 7.2 

and 7.3, corresponding to mbNAF, wmbNAF and extended wmbNAF, respectively. 

In the following section, we detail our extensive tests to determine the efficiency of this 

new multibase scalar multiplication in comparison with previous efforts.
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7.3 Testing Results

In this section, we compare performance of our new multibase scalar multiplications with 

other relevant methods. On top of that, we demonstrate the further reduction in terms of 

computing costs that can be achieved by using the efficient composite operations introduced 

in Chapter 3 and the new fast point formulae presented in Chapter 4. 

Performance is evaluated for two possible scenarios: unprotected implementations when 

SSCA is not a concern, and SSCA-protected implementations using side-channel atomicity 

as developed in Chapter 5.

In the following, we detail our methodology to compare the various scalar multiplication 

methods.

7.3.1 Methodology

The focus of this section is to determine the fastest algorithms to compute scalar 

multiplication in two cases: when pre-computations are and are not allowed; and for the two 

aforementioned scenarios with regards to protection against SSCA. 

As it has been common practice through this work, we consider that computing costs of 

point and scalar arithmetic are independent of the field arithmetic to be used. In general, the 

previous assumption is valid since different optimizations in the finite field can be generally 

applied to upper arithmetic layers. 

Under that assumption, the cost of a given scalar multiplication method only depends on 

the number of point operations (and their corresponding cost in terms of field operations), 

which allows us to greatly simplify comparisons. 

Thus, we first determine the expansions for a random number di using the various 

methods to be compared, and then count the number of point operations that would be
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required to execute the scalar multiplication diP in each case. After counting operations for 

thousands of random numbers, we average the results for each method and compare one 

another. To simplify comparisons, costs are ultimately expressed in terms of field 

multiplications.

To estimate costs in terms of field multiplications in the case of unprotected 

implementations, the following general assumptions hold: 

 1S  0.8M.

 Cost of field addition and subtraction are negligible in comparison to field 

multiplication and squaring, and they are not counted in the cost estimate.

 Cost of field divisions and multiplications by small constants are comparable to the 

cost of field addition, and consequently, they are not included in the cost estimate.

To estimate costs in terms of field multiplications for the case of SSCA-protected 

implementations, the following general assumptions hold: 

 There are two possible cases: 1S = 0.8M or 1S  1M. The latter corresponds to 

implementations where a hardware multiplier executes both multiplication and 

squaring.

 1A  0.05M.

Notice for the last assumption that, although cost of field additions is very low in 

comparison with other operations, our methodology using atomicity significantly reduces 

the required number of such operations. If one considers a scalar multiplication where 

thousands of those addition operations are required, then it is relevant to include them in the 

operation counting.

7.3.2 Comparison

All algorithms have been implemented in Matlab 7r14 using the extended symbolic math 
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toolbox to take advantage of the Maple kernel for computation with large variable-precision 

numbers. Algorithms have been run for 10000 different random numbers with maximum 

bitlength n  160 bits. 

The next algorithms have been implemented:

 Algorithm 2.2 for the case w  2 and w  2, corresponding to NAF and wNAF, 

respectively. 

 Algorithm 2.4 corresponding to the “Greedy” algorithm for conversion to DB.

 Algorithms 7.1, 7.2 and 7.3, corresponding to mbNAF, wmbNAF and extended 

wmbNAF, respectively.

In the following, we discuss cost performance of implemented algorithms, first in the 

unprotected case and then in the SSCA-protected scenario.

Unprotected Implementations 

We have investigated performance of our multibase scalar multiplication methods for the 

next cases: {2,3}, {2,3,5}, {2,3,5,7}, {2,3,5,7,11} and {2,3,5,7,11,13}, with 

windows 2 ≤ w ≤ 6. For the extended wmbNAF, we also consider window w  {0,1}. 

Table 7.1 details the number of point operations required by introduced multibase 

methods in comparison with NAF. 
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Method Point operation cost

NAF 158.67D + 52.77A

(2,3)NAF 113.50D + 28.41T + 37.67A

(2,3,5)NAF 96.69D + 24.30T + 10.07Q + 31.98A

(2,3,5,7)NAF 86.80D + 21.90T + 9.05Q + 5.71S + 28.68A

(2,3,5,7,11)NAF 81.07D + 20.39T + 8.45Q + 5.40S + 3.00E + 26.77A

(2,3,5,7,11,13)NAF 76.58D + 19.24T + 8.05Q + 5.16S + 2.83E + 2.31TH + 25.23A

Table 7.1.  Computing costs in terms of point operations for mbNAF scalar multiplications    
in comparison with NAF

It can be seen in Table 7.1 that non-zero density (i.e., number of point additions) strictly 

decreases with the number of bases, highlighting the potential reduction introduced by 

multibase methods. In fact, we can observe the sublinear nature of multibase expansions, 

which exhibits densities even below 
log

log log

d

d

 
 
 

 additions in some cases (satisfying Theorem 

2.2.1, Chapter 2), in contrast to linearity in (log d) observed for NAF. Also, it is interesting 

to observe that multibase expansions satisfy the theoretical bound given by (7.3) with 

regards to density.

Nevertheless, the decrement in density rapidly slows down for expansions using high 

number of bases. Ultimately, in ECC scalar multiplications, efficiency of the composite 

operation for a specific base will “decide” if it is beneficial to include it into the expansion 

of the scalar. 

To evaluate costs of studied multibase expansions, we followed the next considerations.

For point addition, we consider the efficient case of mixed addition with affine-Jacobian 

coordinates (2.16). In the case of point operations of the form dP (d ≥ 2), cost estimates are 

only considered for the special case when parameter a in equation (2.2) is fixed to 3. The 

general case easily follows, and should show slightly worse performance for all cases. 

Three cases are considered for standard curves over prime fields (2.2): 
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 Using traditional operations (“Traditional” case). Costs for point doubling, addition 

and tripling are taken from Table 2.2. Since there are no previous proposals for 

quintupling and septupling, they are built by using elementary point operations as 

described in Section 3.3.3. Costs for those operations are taken from Table 3.2 

(previous work). 

 Using fast point operations as detailed in Tables 4.1 and 4.2 (“Fast” case). They 

reflect improved formulae using our methodology of replacing multiplications for 

squarings in the case of doubling and tripling (Chapter 4). In the case of higher order 

operations, those tables reflect improvements achieved by applying the previous 

methodology to new composite operations introduced in Chapter 3. 

 Using new composite operation DA (“Fast using DA” case) introduced in Section 

3.2.1, and following approach given in Section 3.4.2. In this case, the only difference 

with the “Fast” case is that every doubling followed by an addition is replaced by a 

DA operation to achieve further cost reductions. 

Figures 7.1 and 7.2 shows the way different non-windowed and windowed scalar 

multiplication methods, respectively, are improved with the previous techniques. 
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Figure 7.1.  Improvement of performance of scalar multiplications                                   
using proposed techniques
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Figure 7.2.  Improvement of performance of window-based scalar multiplications (w  3) 
using new techniques
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We can see in Tables 7.2 and 7.3 that fast formulae from Chapter 4 in combination with 

composite operations from Chapter 3 give an important speed-up. In particular, composite 

operation DA is found to further reduce costs. 

Also, notice that our techniques give the most significant reduction to multibase methods 

using {2,3,5} and {2,3,5,7}. This is due to the high efficiency of new quintupling and 

septupling operations, which have made bases 5 and 7 practical for scalar expansions. 

Figure 7.3 details performance of our new mbNAF methods using bases {2,3}, 

{2,3,5} and {2,3,5,7}, and compares them against NAF and DB. It can be seen that 

all our methods outperform previous scalar multiplications. In particular, (2,3,5)NAF and 

(2,3,5,7)NAF offer comparable performance with reductions of 10.9% and 4.9% in 

comparison with traditional NAF and DB, respectively. Thus, we can state that those two 

algorithms are the fastest to compute scalar multiplications on standard curves over prime 

fields without pre-computations. 

Figure 7.3.  Comparison of performance of mbNAF methods                                                   
with NAF and DB scalar multiplications
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Figure 7.4.  Comparison of performance of wmbNAF methods                                                   
with wNAF for w  3, 4, 5 and 6

Similarly, in Figure 7.4 we show performance of our wmbNAF methods using bases 

{2,3}, {2,3,5} and {2,3,5,7} for cases w  3, 4, 5 and 6, and compare them against

wNAF. We see that (2,3,5)NAF3 surpasses NAF3 in 5.8%. (2,3)NAF4 reduces computation 

time of NAF4 in about 4.7%. And (2,3)NAF5 and (2,3)NAF6 present reductions of 3.7% and 

3.4% in comparison to NAF5 and NAF6, respectively.  

To our knowledge, for the case of scalar multiplication with pre-computations, wmbNAF 

shows superior performance that any other method in the literature. 

 Additionally, we wanted to analyze the cost achieved by other families of curves where 

composite operations are efficiently computed. As an example, we analyze the computing 

costs for the special ECC curves presented by [DIK06]. In such scenario, costs of doubling, 

tripling and addition are 5M + 4S, 6M + 6S and 8M + 3S, respectively. 
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Given the efficiency of tripling and its particular ration T/D, it can be expected to achieve 

the highest performance with our extended wmbNAF as this method allows flexibly fixing 

window sizes for every base.  

Table 7.2 details performance results of our tests, and compare them with results using 

DB, ternary/binary approach [CJL+06] and rNAF [TYW04] (see Section 2.3.3) as detailed 

by [DIK06].

Method Points Cost

NAF  (a) 0 1818M

DB  (a) 0 1562M

DB  (b) 0 1643M

Ternary/binary [CJL+06]  (b) 0 1541M

This work: (2,3)NAF1,1 0 1541M

NAF3  
(a) 1 1676M

This work: (2,3)NAF2,1 1 1487M

3NAF2  
(b) 2 1507M

This work: (2,3)NAF1,2 2 1413M

6NAF2  
(b) 5 1457M

This work: (2,3)NAF1,2 5 1387M

3NAF3  
(b) 8 1392M

This work: (2,3)NAF1,3 8 1337M

                           (a) Costs estimated in this work.
                           (b) Costs as estimated by [DIK06] with special parameters.

Table 7.2.  Comparison of wmbNAF method with different scalar multiplications using 
special curves [DIK06] (n  160 bits, 1S = 0.8M)

As we can see in the table above, extended wmbNAF achieves the highest performance 

among all methods including NAF, wNAF, DB and rNAF. Only in the case without pre-
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computations the ternary/binary approach shows equivalent performance. 

It is interesting to note that in most cases, our method achieves the lowest cost using 

windows relatively larger for radix 3 than for radix 2. As was previously discussed, this is 

due to the efficiency of the tripling in this particular curve. 

In the following, we summarize the main observations derived from our tests. For 

complete results of previous and other cases for our multibase methods, the reader is 

referred to Appendix F1. 

 Among methods with no pre-computed points on standard curves, mbNAF using 

bases {2,3,5} and {2,3,5,7} presents the lowest cost. It introduces an 

improvement of about 10.9% in comparison with the traditional NAF.

 wmbNAF with w  3, 4, 5 and 6 offers the best performance in terms of computing 

costs among methods requiring {1,3,7,15} pre-computed points on standard curves. 

In this case, using bases {2,3} and {2,3,5} offer comparable performance. 

Notice that, on standard curves using pre-computations, wmbNAF is superior to 

extended wmbNAF in every case and requires fewer pre-computed points. 

 New composite operations (namely tripling, quintupling and septupling) presented in 

this work have reduced significantly cost of multibase methods including radices 3, 5 

and 7, in comparison with multibase scalar multiplications using traditional 

operations. 

 Fast formulae exploiting new composite DA reduces further the computing costs for 

NAF and multibase NAF methods.

 In the case of special curves [DIK06] with no pre-computations, extended wmbNAF 

using bases {2,3} have permitted a reduction of about 15.2% in comparison to 

traditional NAF.

 Extended wmbNAF using bases {2,3} offers the best performance in terms of 
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computing costs among methods requiring {1,2,5,8} pre-computed points on special 

curves. Most importantly, extended wmbNAF on special curves shows superior 

performance than any method on standard curves when requiring {2,5,8} pre-

computed points. If one compares extended wmbNAF with the previous number of 

pre-computed points against best cases for wmbNAF on standard curves using 

{3,7,15} pre-computed points, performance is comparable and the latter requires 

extra memory in each case.      

Protected Implementations

We have studied six possible cases for implementation of SSCA-protected scalar 

multiplications: 

 Point operations with traditional M-A-N-A structure. 

 Improved M-A-N-A-based formulae (Sections 5.2 and 5.3.2). 

 New M-N-A-M-N-A-A-based formulae (Section 5.3). 

 Improved M-A-N-A-based formulae using atomic DA operation (Section 5.3.2). 

 M-N-A-M-N-A-A-based formulae using atomic DA (Section 5.3.2).

 New S-N-A-M-N-A-A-based formulae (Section 5.4).

We have investigated performance of SSCA-protected multibase scalar multiplication 

methods for the next cases: {2,3}, {2,3,5} and {2,3,5,7}, with windows 2 ≤ w ≤ 6. 

For the extended wmbNAF, window w can be also {0,1}. 

From our tests, we concluded that M-N-A-M-N-A-A-based formulae using atomic DA 

achieves the highest performance when assuming 1S = 1M. In that case, Figure 7.5 and 

Figure 7.6 compare our best implementation case using mbNAF and wmbNAF, respectively, 

with bases {2,3}, {2,3,5} and {2,3,5,7}. 
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On the other hand, S-N-A-M-N-A-A-based formulae shows the lowest cost for 

implementations with ratio S/M = 0.8. In particular for this case, wNAF is further optimized 

and performs better than any other scalar multiplication method. 

Complete details of our tests can be found in Appendix F2. 

Figure 7.5.  Comparison of performance of mbNAF with NAF                                             
and DB scalar multiplications protected against SSCA
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Figure 7.6.  Comparison of performance of SSCA-protected wmbNAF and                    
wNAF methods for w  3, 4, 5 and 6 

We can see in Table 7.5 that (2,3,5)NAF offers the best performance for a protected 

implementation without pre-computations. It presents a reduction in terms of computing 

time of 25.3% and 14.2% in comparison with NAF and DB, respectively. Also, in Table 7.6 

we observe that (2,3,5)NAF3 surpasses NAF3 in 21.9%, and that (2,3,5)NAF4 improves 

NAF4 in 21.3%. Finally, (2,3)NAF5 and (2,3)NAF6 are the fastest for windows w = 5 and 6, 

and show reductions of 20.7% and 20.8%, respectively.

In conclusion, we can state that mbNAF and wmbNAF are the fastest methods for the 

scalar multiplication with protection against SSCA.
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Chapter 8

Conclusions

8.1 Concluding Remarks

Scalar multiplication is the central and most time-consuming operation in curve-based 

cryptosystems such as ECC and HECC. In this work, we have tackled the problem of 

optimizing such operation on ECC standard curves over prime fields mainly in terms of 

speed. In such sense, we have proposed two innovative methodologies: optimization through 

utilization of composite operations, and reduction of computing costs by replacing field 

multiplications for squarings. 

In the first case, new composite operations of the form dP and dP+Q have been developed 

and shown to be superior to previous efforts. In particular new doubling addition (DA), 

quintupling (Q) and septupling (S) operations are shown to introduce significant savings in 

the computation of traditional or simultaneous scalar multiplication methods, and in the 

computation of pre-computed points in window-based approaches.

For the second case, we showed the way our methodology can be used to accelerate 

traditional formulae. In particular, this technique was shown to greatly improve performance 

of SSCA-protected and parallel/multiprocessor implementations. Performance comparison 
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with other methods indicated that our SSCA-protected implementations, which use 

innovative atomic structures, are not only faster but also more secure since they include 

squarings into the formulation, making them invulnerable to potential attacks that could 

exploit differences between field multiplications and squarings. For SIMD-like 

architectures, we developed ECC parallel formulae capable of executing three and four

operations simultaneously. When compared against previous efforts to parallelize formulae 

at the point arithmetic level, our approaches showed reduction in computing times for all 

cases. Also, a new SSCA-protected scheme capable of executing two field operations in 

parallel was developed. In this scenario, our scheme was shown to be faster than best 

previous methods using Montgomery ladder or pipelining techniques. 

Most remarkably, our substitution technique was applied to already efficient composite 

operations such as quintupling and septupling to further improve performance. 

It is important to note that our methodology is generic and can be applied to any other 

curve-based cryptosystem working over prime fields.

Finally, by exploiting efficiency of new composite operations, we developed three new 

methods for the scalar multiplication based on multiple bases, which are sublinear in terms 

of Hamming weight. Our approach was made practical with the introduction of NAF-like 

algorithms that convert any integer to multibase, solving a previous problem found in the 

literature with double-base methods. In this sense, our conversion algorithms are efficient 

and do not consume extra memory. Most importantly, they can be applied to other areas of 

cryptography such as ECC over binary fields, HECC and pairing-based cryptosystems. As 

an example, we demonstrated performance improvement by using our multibase methods in 

the case of special curves developed by [DIK06]. 

Extensive tests with thousands of random numbers using 0, 1, 3, 7, 15 pre-computations 

indicate that our methods are superior to previous methods such as NAF, DB and wNAF for 

windowed and non-windowed scenarios. For instance, mbNAF using bases {2,3,5} or 

{2,3,5,7} were found to be the fastest when pre-computations are not allowed, introducing 

an improvement of 10.9% in comparison with NAF; and wmbNAF using w = 3 and bases 
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{2,3,5} was similarly shown to be the fastest when using one pre-computed point. For the 

latter, the savings are about 5.8%. On the other hand, extended mbNAF has shown high 

efficiency in settings where triplings are particularly efficient. For instance, for special 

curves [DIK06], extended wmbNAF achieves the lowest computing costs for 0, 1, 2, 5, 8 

pre-computations. Furthermore, in the case of 2, 5 and 8 pre-computations extended 

wmbNAF over special curves surpasses performance of the best method over standard 

curves.

Greater improvements were found with our methods in SSCA-protected implementations 

using atomicity. In such case, mbNAF using bases {2,3,5} was also found to be the fastest 

with an improvement of 25.3% in comparison with the traditional NAF. On the other hand, 

in window-based approaches wmbNAF gave the highest performance with reductions of up 

to 21.9% in comparison with wNAF.  

In conclusion, we can state that we have the most efficient scalar multiplication methods 

in terms of both speed and memory usage.

8.2 Future Work

Several research opportunities can be derived from this work. 

We mainly concentrated efforts on optimizing the ECC scalar multiplication on standard 

curves over prime fields. Future work can be focused on applying introduced techniques to 

the optimization of point formulae on curves other than the standard ones. Of special interest 

would be to apply the substitution of multiplication for squarings to HECC formulae and to 

operations on special curves such as those proposed by [DIK06]. 

New multibase scalar multiplication methods can also be subject of further research. If 

more efficient high-order composite operations are developed, then it would greatly improve 

performance of our methods and/or justify the use of other bases beside the ones found 
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efficient in this work. Also, efficient composite operations on other cryptosystems would 

make increasingly interesting the use of these multibase methods on those settings. We did 

not explore in detail implementations of those cryptosystems where some efficient 

composite already exist. Further work could also focus in this topic. 

Finally, we theoretically showed performance improvements at the point arithmetic level 

and confirmed findings with testing of thousands of random scalars and the evaluation of 

their expansions for the various representation methods. A complete hardware and/or 

software implementation would be highly useful to demonstrate in practice superiority of the 

multibase scalar multiplication using the new methodologies exposed in this work.  



136

APPENDICES

A: OPTIMIZED ALGORITHM FOR POINT TRIPLING

Algorithm A:  Optimized Point Tripling (Jacobian Coordinates), 2 3:E y x ax b  
INPUT: point 1 1 1( , , )P X Y Z  on ( )pE  , T1 X1, T2 Y1, T3 Z1  

OUTPUT: point 3 3 33 ( , , )P X Y Z

    1.  If P = O, then return (O)

    2.  2
4 3T T                                                                        2

1{ }Z

    3.  If a 3, then:

           3.1  5 1 4T T T                                                          2
1 1{ }X Z

           3.2  4 1 4T T T                                                          2
1 1{ }X Z

           3.3  4 4 5T T T                                                          2 2
1 1 1 1{( )( )}X Z X Z 

           3.4  4 43T T                                                              2 2
1 1 1 1{ 3( )( )}X Z X Z   

    4.  Else:

           4.1  2
4 4T T                                                               4

1{ }Z

           4.2  2
5 1T T                                                               2

1{ }X   

           4.3  5 53T T                                                              2
1{3 }X

           4.4  4 4T a T                                                            4
1{ }aZ

           4.5  4 4 5T T T                                                          2 4
1 1{ 3 }X aZ  

    5.  2
5 4T T                                                                        2{ }

    6.  2
6 2T T                                                                        2

1{ }Y

    7.  7 612T T                                                                     2
1{12 }Y

    8.  7 1 7T T T                                                                    2
1 1{12 }X Y

    9.  7 7 5T T T                                                                   2 2
1 1{ 12 }X Y  

  10.  3 3 7T T T                                                                    3 1{ }Z Z 

  11.  4 4 7T T T                                                                   { } 

  12.  2
5 6T T                                                                        4

1{ }Y

  13.  5 58T T                                                                       4
1{ 8 }Y 
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  14.  4 5 4T T T                                                                    { } 

  15.  2
8 7T T                                                                         2{ }

  16.  1 1 8T T T                                                                     2
1{ }X 

  17.  6 68T T                                                                        2
1{8 }Y

  18.  6 4 6T T T                                                                    2
1{8 ( )}Y  

  19.  1 1 6T T T                                                                    2 2
1 1{8 ( ) }Y X        

  20.  5 4 5T T T                                                                   {2 } 

  21.  4 4 5T T T                                                                  {( )(2 )}    

  22.  4 44T T                                                                       {4( )(2 )}    

  23.  5 7 8T T T                                                                    3{ }

  24.  4 4 5T T T                                                                   3{4( )(2 ) }      

  25.  2 2 4T T T                                                                   
3

2 1{ [4( )(2 ) ]}Y Y        

  26.  Return 1 2 3 3 3 3( , , ) ( , , )T T T X Y Z

This algorithm to compute the tripling of a point costs only 9M + 5S + 12A and 9M + 7S + 

11A for the special (a 3) and general case, respectively. As stated previously, we consider 

field multiplications by small constants and additions approximately equivalent, and their 

cost negligible in comparison with squaring and multiplication.  
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B1: ATOMIC POINT DOUBLING                                                                                                    

(M-A-N-A-BASED)

   Input: P (X1 , Y1 , Z1) 
   Output: 2P (X3 , Y3 , Z3)   

   T1 X1, T2 Y1, T3 Z1  
1 2 3 4

2

4 3
T T                     2

1
Z

5 4 5
T T T          .A B    2

5 2
T T                2

1
Y

3 2 3
T T T               

3
Z

5 1 4
T T T   2

1 1
A X Z 

4 5 5
T T T       2 .A B

2 2 2
T T T          

1
2Y

2 5 5
T T T            2

1
4Y

4 4
T T                 2

1
Z *   * *

4 1 4
T T T   2

1 1
B X Z 

4 4 5
T T T            

5 5 5
T T T         2

1
2Y   *

5 6 7 8

2 1 2
T T T                   2

6 4
T T               2 2

5 5
T T              4

1
4Y   

2 2 4
T T T    

3
X                  

1 2 2
T T T                2

1 1 6
T T T           

3
X

5 5 5
T T T          4

1
8Y

5 5
T T              4

1
8Y     

1 1
T T                   2   * 6 1

T T             
3

X
2 2 5

T T T               
3

Y

* * 2 2 6
T T T     

3
X    *

For the remainder of this work, “*” represents a dummy field operation that depends on the 

step it is placed. For instance, the three “*” in the third step of the upper half of the table 

represent dummy negations. “i” represents the ith atomic block. In a sequential 

implementation, atomic blocks are executed one at a time according to positions i in the 

formulae. 
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B2: ATOMIC POINT DOUBLING                                                                                              

(M-N-A-M-N-A-A-BASED)

   Input: P (X1 , Y1 , Z1)  
   Output: 2P (X3 , Y3 , Z3)         

  T1 X1, T2 Y1, T3 Z1  
1 2 3 4

2

4 3
T T                    2

1
Z

5 4 5
T T T          .A B    2

5 4
T T                2 2

2 2
T T                  4

1
4Y

*   * * 5 1
T T                 

3
X

5 1 4
T T T   2

1 1
A X Z 

4 5 5
T T T      2 .A B    

6 2 2
T T T         2

1
4Y

5 5 6
T T T         

3
X 

2

6 2
T T                     2

1
Y

3 2 3
T T T            

3
Z

6 1 6
T T T             

5 4 5
T T T    

3
X  

4 4
T T                  2

1
Z   *              1 6

T T              
2 2

T T                4

1
4Y

2 2 2
T T T               

1
2Y

4 4 5
T T T            

1 1 1
T T T         2

2 2 2
T T T            4

1
8Y

4 1 4
T T T   2

1 1
B X Z 

2 6 6
T T T         2

1
2Y

1 1 5
T T T           

3
X

2 2 4
T T T               

3
Y
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B3: ATOMIC MIXED ADDITION                                                                                               

(M-A-N-A-BASED)

   Input: P (X1 , Y1 , Z1) and Q (X2 , Y2)   
   Output: ' '

3 3 3 1 1( , , , , )P Q X Y Z X Y 

   T1 X1, T2 Y1, T3 Z1, Tx X2, Ty Y2  
1 2 3 4

2

4 3
T T               2

1
Z

5 4x
T T T             2

1 2
Z X 2

6 5
T T                   2A    

7 1 6
T T T           '1X

*   *   * 8 1 1
T T T         '12X               

* 6 1
T T                   

1
X   *       *

  * 5 5 6
T T T   2

1 2 1
A Z X X    *   *    

5 6 7 8

9 5 6
T T T           3A

4 3 4
T T T                3

1
Z     

4 4y
T T T             3

1 2
Z Y 2

10 4
T T              2B

8 8 9
T T T   3 '

1
2A X *   *   *

  * * 10 2
T T                 

1
Y

8 8
T T   3 '

1
2A X 

  * * 4 4 10
T T T     3

1 2 1
B Z Y Y 

1 6 8
T T T          

3
X

9 10 11

8 2 9
T T T            '1

Y
6 6 10

T T T    '

1 3
B X X

3 3 5
T T T                

3
Z

*   *   *

6 1
T T              

3
X

9 8
T T                 '1

Y
4 7

T T            '1X (a)     

6 6 7
T T T   '

1 3
X X

2 6 9
T T T               

3
Y

4 1 4
T T T       '3 1

X X (a)    

(a)  Field operations in 10 and 11 if a special addition follows.
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B4: ATOMIC MIXED ADDITION                                                                                              

(M-N-A-M-N-A-A-BASED)

   Input: P (X1 , Y1 , Z1) and Q (X2 , Y2)   
   Output: ' '

3 3 3 1 1( , , , , )P Q X Y Z X Y 

   T1 X1, T2 Y1, T3 Z1, Tx X2, Ty Y2  
1 2 3 4

2

4 3
T T                      2

1
Z 2

6 5
T T               2A    

9 5 6
T T T           3A

4 4y
T T T               3

1 2
Z Y

  *   *   * 10 2
T T                   

1
Y

  * *     8 8 9
T T T   3 '

1
2A X

4 4 10
T T T   3

1 2 1
B Z Y Y 

5 4x
T T T              2

1 2
Z X

7 1 6
T T T           '1X

4 3 4
T T T           3

1
Z     2

10 4
T T                    2B

6 1
T T                    

1
X *              * 8 8

T T           3 '

1
2A X 

5 5 6
T T T   2

1 2 1
A Z X X 

8 1 1
T T T         '12X   * 1 6 8

T T T                 
3

X

  * *      *   *

5 6

8 2 9
T T T                   '1

Y
3 3 5

T T T            
3

Z

6 1
T T                   

3
X

4 7
T T       '1X (a)

6 6 7
T T T          '

1 3
X X

4 1 4
T T T   '3 1

X X (a)     

6 6 10
T T T    '

1 3
B X X 2

5 4
T T          2A (a)  

9 8
T T                    '1

Y
6 8

T T        '1
Y (a)

2 6 9
T T T                  

3
Y

6 2 6
T T T         B (a)

* *    
(a)  Field operations in 6 if a special addition follows.



142

B5: ATOMIC SPECIAL ADDITION WITH IDENTICAL Z-COORDINATE                                  

(M-A-N-A-BASED)

   Input: P (X1 , Y1 , Z) and Q (X2 , Y2 , Z)   
   Output: 3 3 3( , , )P Q X Y Z 
   
   T1 X1, T2 Y1, T3 Z, T7 X2, T8 Y2

1 2 3 4
  *                    2

5 4
T T                   2A

7 5 7
T T T          ' 2

1
X A    

5 4 5
T T T             3A

  *   * 9 7 7
T T T          ' 2

1
2X A

9 5 9
T T T   3 ' 2

1
2A X A              

4 7
T T                '1X

6 8
T T                 '1

Y   *       *

4 1 4
T T T   '2 1

A X X       
6 2 6

T T T      '2 1
B Y Y    *   *    

5 6 7 8
2

1 6
T T                  2B

2 5 8
T T T            ' 3

1
Y A

5 5 6
T T T            .B C

3 3 4
T T T            

3
Z

  *   *   *   *

9 9
T T   3 ' 2

1
2A X A 

5 1
T T                

3
X

2 2
T T            ' 3

1
Y A   *

1 1 9
T T T                

3
X

5 5 7
T T T   ' 2

1 3
C X A X 

2 2 5
T T T               

3
Y   *

Atomic DA using M-A-N-A can be built by consecutive execution of formulas in 

Appendices B3 (mixed addition) and B5 (special addition). In this case, 11  from the 

former can be merged with 1  from the latter as indicated by operations in (a) (see 11  in 

Appendix B3). Thus, the cost of atomic DA is reduced to only 18 atomic blocks.
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B6: ATOMIC SPECIAL ADDITION WITH IDENTICAL Z-COORDINATE                                 

(M-N-A-M-N-A-A-BASED)

   Input: P (X1 , Y1 , Z) and Q (X2 , Y2 , Z)   
   Output: 3 3 3( , , )P Q X Y Z 

   T1 X1, T2 Y1, T3 Z, T7 X2, T8 Y2  
1 2 3 4

  *                    7 5 7
T T T         ' 2

1
X A    2

1 6
T T                   2B

5 5 6
T T T           .B C

4 7
T T                '1X   * 9 9

T T     3 ' 2

1
2A X A 

2 2
T T           ' 3

1
Y A

4 1 4
T T T   '2 1

A X X       
9 7 7

T T T         ' 2

1
2X A      

1 1 9
T T T                 

3
X

2 2 5
T T T               

3
Y

2

5 4
T T                  2A

5 4 5
T T T             3A

2 5 8
T T T            ' 3

1
Y A

3 3 4
T T T            

3
Z

6 8
T T                '1

Y   *              5 1
T T                

3
X   *

6 2 6
T T T   '2 1

B Y Y 
9 5 9

T T T   3 ' 2

1
2A X A

5 5 7
T T T   ' 2

1 3
C X A X    *

  *   *      *   *

Atomic DA using M-N-A-M-N-A-A can be built by consecutive execution of formulas in 

Appendices B4 (mixed addition) and B6 (special addition). In this case, 6  from the former 

can be merged with 1  from the latter as indicated by operations in (a) (see 6  in Appendix 

B4). Thus, the cost of atomic DA is reduced to only 9 atomic blocks.
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B7: ATOMIC POINT TRIPLING                                                                                                  

(M-A-N-A-BASED)
   
   Input: P (X1 , Y1 , Z1)     
   Output: 3P (X3 , Y3 , Z3 , X2 , Y2)    

    T1 X1, T2 Y1, T3 Z1  
1 2 3 4

2

4 3
T T               2

1
Z

3 2 3
T T T               '1Z

4 4 5
T T T         .A B 2

2 2
T T                2

1
Y

3 3 3
T T T            

1
2Z

4 1 4
T T T   2

1 1
A X Z 

5 4 4
T T T         2 .A B

4 4 5
T T T     3 .C A B

5 4
T T             2

1
Z   *   *   *

  * 5 1 5
T T T   2

1 1
B X Z    * 2 2 2

T T T          2

1
2Y

5 6 7 8
2

5 4
T T              2C

6 1 2
T T T            '1X 2

2 2
T T            4

1
4Y

4 1 4
T T T          .C D

1 1 1
T T T         

1
2X   * 7 1 5

T T T              
2

X   *

  * 1 6
T T             '1X

1 7
T T             

2
X

2 2
T T            4

1
4Y

  * 1 1 1
T T T        '12X

1 1 6
T T T   '

1 2
D X X 

2 2 2
T T T          '1

Y

9 10 11 12
2

5 1
T T               2D

6 5 6
T T T   ' 2

1
F X D

5 1 5
T T T          3D 2

10 4
T T               2E

8 2 4
T T T              

2
Y   * 1 6 6

T T T             2F
1 1 10

T T T             
3

X

  * 9 1
T T                 D

1 1
T T              2F

10 1
T T             

3
X

4 2 8
T T T   '2 1

E Y Y    * 1 1 5
T T T     3 2D F    *

13 14 15

5 2 5
T T T        ' 3

1
Y D

2 2 4
T T T    3

E F X
3 3 9

T T T             
3

Z

2 6 10
T T T      

3
F X   *   *

  * 5 5
T T           ' 3

1
Y D

4 7
T T         

2
X (a)

  * 2 2 5
T T T               

3
Y

4 1 4
T T T   

3 2
X X  (a)     

  (a) Field operations in 15 if follows a special addition.

Atomic quintupling using M-A-N-A can be built by consecutive execution of formulas in 

Appendices B7 (tripling) and B5 (special addition). In this case, 15  from the former can be 

merged with 1  from the latter as indicated by operations in (a). Thus, the cost of atomic 

quintupling is reduced to only 22 atomic blocks.



145

Similarly, atomic septupling (and higher order operations) can be built by executing extra 

additions from Appendix B5 (special addition). In every case, operations in 1  (see 

Appendix B5) can be merged with the last atomic block of the precedent operation. Thus, 

the cost of the atomic septupling is reduced to 29 atomic blocks.
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B8: ATOMIC POINT TRIPLING                                                                                                

(M-N-A-M-N-A-A-BASED)

   Input: P (X1 , Y1 , Z1)    
   Output: 3P (X3 , Y3 , Z3 , X2 , Y2)    

   T1 X1, T2 Y1, T3 Z1  
1 2 3 4

2

4 3
T T                  2

1
Z

4 4 5
T T T          .A B 2

5 4
T T                2C 2

2 2
T T              4

1
4Y

  *   *   * 1 7
T T             

2
X

3 3 3
T T T               

1
2Z

5 4 4
T T T          2 .A B

1 1 1
T T T           

1
2X

1 1 6
T T T   '

1 2
D X X 

3 2 3
T T T               '1Z 2

2 2
T T                2

1
Y

6 1 2
T T T           '1X

4 1 4
T T T          .C D

5 4
T T                2

1
Z   * 1 6

T T            '1X
2 2

T T            4

1
4Y

4 1 4
T T T   2

1 1
A X Z 

4 4 5
T T T     3 .C A B

1 1 1
T T T       '12X

2 2 2
T T T          '1

Y

5 1 5
T T T   2

1 1
B X Z 

2 2 2
T T T          2

1
2Y

7 1 5
T T T             

2
X

8 2 4
T T T              

2
Y

5 6 7 8
2

5 1
T T                  2D

5 1 5
T T T          3D

5 2 5
T T T         ' 3

1
Y D

3 3 9
T T T            

3
Z

  *   * 10 1
T T             

3
X

4 7
T T         

2
X (a)

4 2 8
T T T   '2 1

E Y Y 
1 6 6

T T T             2F
2 6 10

T T T       
3

F X
4 1 4

T T T   
3 2

X X  (a)     

6 5 6
T T T   ' 2

1
F X D 2

10 4
T T               2E      

2 2 4
T T T    3

E F X 2

5 4
T T            2A (a)  

9 1
T T                 D

1 1
T T              2F

5 5
T T          ' 3

1
Y D

6 8
T T         2Y (a)

  * 1 1 5
T T T     3 2D F 

2 2 5
T T T              

3
Y

6 2 6
T T T           B (a)

  * 1 1 10
T T T             

3
X   *   *    

  (a) Field operations in 8 if follows a special addition.
  

Atomic quintupling using M-N-A-M-N-A-A can be built by consecutive execution of 

formulas in Appendices B8 (tripling) and B6 (special addition). In this case, 8  from the 

former can be merged with 1  from the latter as indicated by operations in (a). Thus, the 

cost of atomic quintupling is reduced to only 11 atomic blocks.

Similarly, atomic septupling (and higher order operations) can be built by executing extra 

additions from Appendix B6 (special addition). It is important to note that every two point 

operations, operations in 1  (see Appendix B6) can be merged with the last atomic block of 

the precedent operation. Thus, cost of the atomic septupling is fixed to 15 atomic blocks.
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B9: OPTIMIZED ATOMIC POINT TRIPLING                                                                                

(M-A-N-A-BASED)

   Input: P (X1 , Y1 , Z1)    
   Output: 3P (X3 , Y3 , Z3)    

  T1 X1, T2 Y1, T3 Z1  
1 2 3 4

2

4 3
T T                  2

1
Z 2

6 2
T T                  2

1
Y

7 1 9
T T T        2

1 1
4X Y        

4 4 5
T T T           .A B        

  * 6 6 6
T T T             2

1
2Y

4 1 4
T T T      2

1 1
A X Z 

5 4 4
T T T           2 .A B

5 4
T T                2

1
Z   *   *          *

5 1 5
T T T   2

1 1
B X Z 

9 6 6
T T T              2

1
4Y   * 5 4 5

T T T      3 .A B     

5 6 7 8
2

4 5
T T                  2 2

6 6
T T              4

1
4Y

5 5 9
T T T                

3 3 7
T T T               

3
Z

8 7 7
T T T           2

1 1
8X Y

7 7 8
T T T       2

1 1
12X Y

6 6 6
T T T                

5 6 5
T T T             

  * 4 4
T T              2

5 5
T T                    *

  * 7 4 7
T T T                  * 6 6 5

T T T   2C   

9 10 11 12
2

4 7
T T                  2

9 5 9
T T T       2

1
8Y  

1 1 4
T T T           2

1
X 

4 4 7
T T T             3

9 9 9
T T T              2

1
8Y   * 5 5 5

T T T               4D   *

  * 5 5
T T     D      * 4 4

T T                3

  * 5 5 5
T T T               2D

1 1 9
T T T               

3
X   * 

13 14

6 6 5
T T T         4 .C D

2 2 6
T T T              

3
Y

6 6 4
T T T     34 .C D    *

  *   *

  *   *
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B10: OPTIMIZED ATOMIC POINT TRIPLING                                                                                 

(M-N-A-M-N-A-A-BASED)

   Input: P (X1 , Y1 , Z1)    
   Output: 3P (X3 , Y3 , Z3)    

   T1 X1, T2 Y1, T3 Z1

1 2 3 4
2

4 3
T T                   2

1
Z

7 1 9
T T T         2

1 1
4X Y        2

4 5
T T                 2

5 5 9
T T T                             

5 4
T T                 2

1
Z   *   * 5 5

T T                

5 1 5
T T T   2

1 1
B X Z 

4 1 4
T T T       2

1 1
A X Z          

8 7 7
T T T       2

1 1
8X Y

6 6 6
T T T               

2

6 2
T T                   2

1
Y

4 4 5
T T T            .A B        2

6 6
T T              4

1
4Y

3 3 7
T T T             

3
Z

  *   * 4 4
T T              2   *

6 6 6
T T T              2

1
2Y

5 4 4
T T T            2 .A B

7 7 8
T T T       2

1 1
12X Y

5 6 5
T T T            

9 6 6
T T T               2

1
4Y

5 4 5
T T T       3 .A B     

7 4 7
T T T              

6 6 5
T T T   2C   

5 6 7
2

4 7
T T                   2

1 1 4
T T T            2

1
X 

6 6 5
T T T         4 .C D

  *   * 6 6 4
T T T   34 .C D 

9 9 9
T T T               2

1
8Y

1 1 9
T T T                

3
X

2 2 6
T T T              

3
Y

9 5 9
T T T    2

1
8Y  

4 4 7
T T T               3   *

5 5
T T        D   

4 4
T T                3   *

5 5 5
T T T                2D   *   *

5 5 5
T T T                4D   *   *



149

C1: ATOMIC POINT DOUBLING                                                                                                 

(S-N-A-M-N-A-A  OR  S-N-A-A-M-N-A-A)

   Input: P (X1 , Y1 , Z1)    
   Output: 2P (X3 , Y3 , Z3)    

   T1 X1, T2 Y1, T3 Z1

1 2 3 4
2

4 3
T T                     2

1
Z 2

2 2
T T                 2

1
Y 2

1 4
T T              2 2

2 2
T T                 4

1
4Y

  *   *   * 2 2
T T               4

1
4Y

5 1 4
T T T   2

1 1
A X Z 

2 2 2
T T T          2

1
2Y

5 5 5
T T T      

1
2X

5 1 5
T T T         

3
X 

  *                              (a)   *                          (a)   *                       (a)   *                            (a)

3 2 3
T T T               

1 1
Y Z

4 4 5
T T T           .A B

5 2 5
T T T          

5 4 5
T T T    

3
X 

4 4
T T                  2

1
Z

5 1
T T              

1
X   * 5 5

T T       
3

X  

4 1 4
T T T   2

1 1
B X Z 

4 4 4
T T T         2 .A B

1 1 5
T T T     2 

2 2 2
T T T           4

1
8Y

3 3 3
T T T                 

3
Z

4 4 4
T T T             

1 1 5
T T T          

3
X

2 2 5
T T T               

3
Y

 (a) Dummy field additions are added for the case of the scalar multiplication using ternary bases.

When the previous formula is used as a sequential SSCA-protected atomic point doubling 

for traditional scalar multiplications that only involve doublings and additions in their 

execution, the step with dummy operations in (a) is not considered. Thus, we have the 

atomic structure: S-N-A-M-N-A-A. 

Dummy field additions are added in (a) to make this formula suitable for scalar 

multiplications that involve tripling, doubling and addition, as is the case of multibase scalar 

multiplication with bases  = {2,3}. Thus, we have the atomic structure: S-N-A-A-M-N-A-A.     
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C2: ATOMIC POINT ADDITION                                                                                                     

(S-N-A-M-N-A-A  OR  S-N-A-A-M-N-A-A)

   Input: P (X1 , Y1 , Z1) and Q (X2 , Y2)   
   Output: 3 3 3( , , )P Q X Y Z 

   T1 X1, T2 Y1, T3 Z1, Tx X2, Ty Y2, and 2
2Y  is pre-computed  

1 2 3
2

4 3
T T                        2

1
Z 2

1 5
T T                         2 2

4 4
T T                       2A

  *   *   *

2 2 2
T T T                   

1
2Y

8 1 4
T T T             2 2

1
Z  2

4 4 2
T T Y           2 2

2
A Y

  *                                 (a)   *                                 (a)   *                                (a)

5 4 x
T T T                2

1 2
Z X

3 3 4
T T T                    3

1
Z

6 1 6
T T T            2

1
2X 

6 1
T T                      

1
X   *            2 2

T T                    
1

2Y

5 5 6
T T T                     

4 3 y
T T T        3

1 2
A Z Y 

6 6 6
T T T           2

1
4X 

7 3 5
T T T               

1
Z 

1 1 1
T T T                   22

4 2 4
T T T   2 2

2 1
2A Y Y 

4 5 6
2

3 3
T T                         6

1
Z 2

5 4
T T                         2 2

7 7
T T               2

1
Z 

3 3
T T                      6

1
Z

1 1
T T                     34

8 8
T T             2 2

1
Z  

4 3 4
T T T                     

5 1 5
T T T           2 34 

3 7 8
T T T                   

3
Z

  *                                 (a)   *                                 (a)   *                                (a)

1 1 5
T T T                   32

2 1 2
T T T                 3

1
8Y 

5 4 5
T T T    2

3 1
4X X 

  *                 2 2
T T                  3

1
8Y 

5 5
T T    2

1 3
4X X  

1 1 1
T T T                   34

1 3 5
T T T                    

3
X

2 2 5
T T T                   

3
Y

3 6 6
T T T             2

1
8X 

5 1 6
T T T        2

3 1
4X X    *           

 (a) Dummy field additions are added for the case of scalar multiplication using ternary bases.

Similarly to Appendix C1, dummy field additions are added in (a) to make this formula 

suitable for scalar multiplications that involve tripling, doubling and addition, as is the case 

of multibase scalar multiplication with bases  = {2,3}. 



151

C3: ATOMIC POINT TRIPLING                                                                                                  

(S-N-A-A-M-N-A-A-BASED)

   Input: P (X1 , Y1 , Z1)    
   Output: 3P (X3 , Y3 , Z3)    

   T1 X1, T2 Y1, T3 Z1

1 2 3 4
2

4 3
T T                  2

1
Z 2

7 2
T T                 2

1
4Y 2

6 5
T T                   2 2

9 8
T T                      2

5 4
T T                2

1
Z   * 3 3

T T                
1

Z
8 8

T T                      

5 1 5
T T T   2

1 1
B X Z    * 8 7 7

T T T            2

1
8Y

6 6 9
T T T          2 2 

6 1 4
T T T   2

1 1
A X Z    *            8 7 8

T T T           2

1
12Y

5 5 8
T T T              

  *               5 5 6
T T T             .A B

8 1 8
T T T        2

1 1
12X Y

8 8 9
T T T                 3

  *                        *              8 8
T T         2

1 1
12X Y   *                        

2 2 2
T T T             

1
2Y

5 5 5
T T T           2 .A B

8 6 8
T T T             

4 4 9
T T T          2 2

1
Z 

  *             5 5 5
T T T                

3 3 8
T T T       

1
Z  

1 1 1
T T T                

1
2X

5 6 7 8
2

5 5
T T           2  2

7 7
T T                  2 2

3 3
T T          2

1
Z  2

4 3
T T                2

3
Z   (a)

6 6
T T         2 2  

5 5
T T               2

5 5
T T   2 2E   

5 4
T T              2

3
Z (a)

5 5 6
T T T             2

5 5 7
T T T     2 2C   

3 3 4
T T T              

3
Z

5 1 5
T T T   2

3 3
B X Z  (a)

1 1 1
T T T            

1
4X

6 6 6
T T T           2

1
16Y   *                      6 1 4

T T T   2

3 3
A X Z  (a)

1 1 9
T T T         2

1
4X 

6 5 6
T T T         2

1
16Y C

5 5 7
T T T            .D E

2 2 8
T T T                  

3
Y

  *                 4 4
T T         2 2

1
Z  

8 8
T T                3   *     

2 2 2
T T T             

1
4Y

7 5 7
T T T     4 2D   

8 5 8
T T T     3.D E                  

2 2 2
T T T           

3
2Y (a)     

6 7 7
T T T            2

1
8Y

1 1 6
T T T              

3
X

2 2 2
T T T             

1
8Y     *        

  (a) Field operations in 8 that correspond to the first atomic block of the following tripling.

Every tripling right after another tripling saves one atomic block by merging its first atomic 

block with the last atomic block of the previous tripling. Hence, field operations (a) in 8 

are executed when repeated triplings are computed. Otherwise, dummy operations are 

executed in (a).  
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D1: THREE-PROCESSOR DOUBLING

Doubling:    
2 2 4 2 2 3 4

1 1 1 1 1 1 3 3 3 3 3 3 3
2( , , , , , ) ( , , , , , / )X Y Z X Z Z X Y Z X Z Z Z

T1  X1, T2  Y1, T3  Z1, T4  2

1
X , T5  2

1
Z , T6 4

1
Z

Processor1 Processor2 Processor3
1.

7 4 4
T T T                     2

1
2X   * 8 6 6

T T T                         4

1
2Z

2.
7 4 7

T T T                  2

1
3X   * 6 6 8

T T T                         4

1
3Z

3.
7 6 7

T T T                        
3 2 3

T T T                 
1 1

Y Z    *

4. 2

6 7
T T                           2 2

3 3
T T                 2

1 1
Y Z 2

2 2
T T                               2

1
Y

5.   * 5 2 5
T T T               2 2

1 1
Y Z

1 1 2
T T T                     2

1 1
X Y

6.   * 3 3 5
T T T                      

3
Z    *

7. 2

2 2
T T                           4

1
Y 2

5 3
T T                          2

3
Z 2

1 1
T T                     22

1 1
X Y

8. 
4 2 4

T T T               2 4

1 1
X Y

10 2 2
T T T                   4

1
2Y

1 1 1
T T T               22

1 1
2 X Y

9.
4 4 4

T T T          2 4

1 1
2 X Y

10 10 10
T T T                  4

1
4Y

2 1 1
T T T               22

1 1
4 X Y

10.
8 4 4

T T T         2 4

1 1
4 X Y

10 10 10
T T T                  4

1
8Y

1 1 2
T T T               22

1 1
6 X Y

11. 
4 4 8

T T T         2 4

1 1
6 X Y

2 1 6
T T T    22 2

1 1
6 X Y  

9 2 8
T T T                           2

12. 
1 6 9

T T T                     
3

X
2 2 4

T T T                
3

X     *

13. 2

4 1
T T                         2

3
X

2 2 7
T T T           

3
X  

6 3 5
T T T   3

3
Z 2

6 5
T T  4

3
Z (a)

14. 
7 4 4

T T T            2

3
2X    (b)

2 2 10
T T T                      

3
Y

8 6 6
T T T                   4

3
2Z   (b)

   (a) 3
3Z if next operation is a point addition, or 4

3Z  if next operation is a doubling or tripling.

   (b) Field additions from the first step of a following doubling or tripling.

If a doubling or tripling (Appendix D3) comes right after a doubling, field additions from 

the first step of the following doubling or tripling can be merged with the last step of the 

doubling formulae, saving one field addition. 

The previous formula requires 1M + 2S + 11A and 10 variables. If there are memory 

constraints, then we could replace steps from 8 to 14 by the block given below, to have a

slightly more costly formula with 1M + 2S + 12A but with a memory requirement of only 8 

variables:
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8. 
4 2 4

T T T              2 4

1 1
X Y   *   *

  9. 
4 1 4

T T T    22 2 4

1 1 1 1
X Y X Y     *   *

10. 
4 4 4

T T T                     
2 2 2

T T T                    4

1
2Y   *

11. 
1 4 4

T T T                    2
2 2 2

T T T                    4

1
4Y   *

12. 
1 6 1

T T T                    
3

X
2 2 2

T T T                    4

1
8Y   *

13.   * 8 4 1
T T T                

3
X    *

14. 2

4 1
T T                       2

3
X

7 7 8
T T T           

3
X  

6 3 5
T T T   3

3
Z 2

6 5
T T  4

3
Z (a)

15. 
7 4 4

T T T          2

3
2X   (b)

2 7 2
T T T                      

3
Y

8 6 6
T T T                      4

3
2Z (b)

 (a) 3
3Z  if next operation is a point addition, or 4

3Z  if next operation is a doubling or tripling.

 (b) Field additions from the first step of a following doubling or tripling.
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D2: THREE-PROCESSOR ADDITION

Mixed Addition :    
2 3 2 2 4

1 1 1 1 1 2 2 3 3 3 3 3 3
( , , , , ) ( , ) ( , , , , , )X Y Z Z Z X Y X Y Z X Z Z 

T1  X1, T2  Y1, T3  Z1, T5  2

1
Z , T6  3

1
Z , Tx X2, Ty Y2  

Processor1 Processor2 Processor3
1.

8 8 y
T T T               3

1 2
Z Y

7 5 x
T T T                     2

1 2
Z X   *                         

2.
8 8 2

T T T           3

1 2 1
Z Y Y            

7 7 1
T T T                             *                         

3.
8 8 8

T T T                        
3 3 7

T T T                    
1

Z    *

4. 2

6 8
T T                       2         2

3 3
T T                     2

1
Z  2

4 7
T T                                2    

5.
1 1 1

T T T                 
1

2X
9 7 7

T T T                        2
5 4 5

T T T                     2 2

1
Z        

6.
1 1 1

T T T                  
1

4X                             
7 9 9

T T T                        4
3 3 5

T T T                            
3

Z         

7.
5 1 4

T T T              2

1
4X 

7 4 7
T T T                       34

9 2 9
T T T                         

1
2Y     

8.
1 5 5

T T T              2

1
8X      

6 6 7
T T T                2 34              

9 9 9
T T T                         

1
4Y         

9.
1 6 1

T T T                   
3

X   *         7 4 4
T T T                          22

10.   *                    2 5 1
T T T            2

1 3
4X X                      *                                  

11. 2

4 1
T T                    2

3
X   *                   2

5 3
T T                                2

3
Z

12.
9 7 9

T T T             3

1
8Y 

2 2 8
T T T        2

1 3
4X X           2

6 5
T T                                4

3
Z

13. 
7 4 4

T T T        2

3
2X   (a)

2 2 9
T T T                         

3
Y

8 6 6
T T T                    4

3
2Z   (a)

(a) Field additions from the first step of a following doubling or tripling.

If a doubling (Appendix D1) or tripling (Appendix D3) comes right after an addition, field 

additions from the first step of the following doubling or tripling can be merged with the last 

step of the addition formulae, saving one field addition. 
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D3: THREE-PROCESSOR TRIPLING

Tripling :    
2 2 4 2 2 3 4

1 1 1 1 1 1 3 3 3 3 3 3 3
3( , , , , , ) ( , , , , , / )X Y Z X Z Z X Y Z X Z Z Z

T1  X1, T2  Y1, T3  Z1, T4  2

1
X , T5  2

1
Z , T6 4

1
Z

Processor1 Processor2 Processor3
1.

7 4 4
T T T               2

1
2X   * 8 6 6

T T T                         4

1
2Z

2.
7 4 7

T T T                 2

1
3X   * 6 6 8

T T T                         4

1
3Z

3.
7 7 6

T T T                       *                       *

4. 2

6 7
T T                       2 2

8 2
T T                             2

1
Y                 2

10 2
T T                              2

1
Y

5.   * 9 1 8
T T T                  2

1 1
X Y

10 10 10
T T T                       2

1
2Y

6. 2

8 8
T T                       4

1
Y 2

9 9
T T            22

1 1
X YA  2

10 10
T T                            4

1
4Y

7.
8 8 4

T T T            2 4

1 1
X Y   *                                10 10 10

T T T                       4

1
8Y

8.
8 9 8

T T T   2 4

1 1
B A X Y     *                       10 10 10

T T T                        2

9.
8 8 8

T T T                   2B   *                       *           

10.
9 8 8

T T T                  4B
1 1 1

T T T                        
1

2X
4 8 6

T T T                    22B 

11.
8 4 9

T T T                   
1 1 1

T T T                        
1

4X
2 2 2

T T T                          
1

2Y

12.
7 7 8

T T T              
3 3 8

T T T                    
1

Z 
2 2 2

T T T                          
1

4Y

13. 2

7 7
T T              2  2

3 3
T T                     2

1
Z  2

4 8
T T                               2

14.
6 4 6

T T T           2 2    *                          5 4 5
T T T                   2 2

1
Z 

15.
7 7 6

T T T                 2
9 10 10

T T T                       4
3 3 5

T T T                           
3

Z

16.
10 10 7

T T T   2 2C   
9 9 7

T T T           4 2D      *

17.
1 1 4

T T T             2

1
4X  2

6 2
T T                          2

1
16Y 2

5 3
T T                               2

3
Z

18.
6 6 10

T T T           2

1
16Y C

9 9 10
T T T                      .C D

8 4 8
T T T                           3

19.
1 1 6

T T T                  
3

X
9 8 9

T T T             3.C D  
2 2 2

T T T                          
1

8Y

20. 2

4 1
T T                     2

3
X

2 2 9
T T T                          

3
Y

6 3 5
T T T   3

3
Z 2

6 5
T T  4

3
Z (a)

(a) 3
3Z  if next operation is a point addition, or 4

3Z  if next operation is a doubling or tripling.
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D4: FOUR-PROCESSOR DOUBLING

Doubling:    
2 2 4 2 2 3 4

1 1 1 1 1 1 3 3 3 3 3 3 3
2( , , , , , ) ( , , , , , / )X Y Z X Z Z X Y Z X Z Z Z

T1  X1, T2  Y1, T3  Z1, T4  2

1
X , T5  2

1
Z , T6 4

1
Z

Processor1 Processor2 Processor3 Processor4

7 4 4
T T T           2

1
2X

8 6 6
T T T                    4

1
2Z    *   *                   

4 4 7
T T T            2

1
3X

6 6 8
T T T                    4

1
3Z    *   *                   

4 4 6
T T T               

3 2 3
T T T                 

1 1
Y Z

7 7 7
T T T            2

1
4X   *

2

6 4
T T                  2 2

3 3
T T            2

1 1
A Y Z  2

2 2
T T                   2

1
Y   *                           

    * 5 2 5
T T T         2 2

1 1
B Y Z 

8 2 2
T T T             2

1
2Y

1 1 1
T T T             

1
2X

    * 3 3 5
T T T                  A B

1 1 8
T T T     2

1 1
2 2X Y   *

2 6 6
T T T            22

3 3 3
T T T                      

3
Z         

7 7 7
T T T            2

1
8X   *        

    *     2

5 3
T T                          2

3
Z   2

1 1
T T   22

1 1
4C X Y  2

8 8
T T                4

1
4Y

2 2 7
T T T   2 2

1
2 8X   *      1 1 1

T T T               2C
8 8 8

T T T             4

1
8Y

2 2 2
T T T   2 2

1
4 16X   *        1 1 8

T T T       4

1
2 8C Y

9 8 8
T T T           4

1
16Y

8 1 1
T T T   4

1
4 16C Y  * 7 1 7

T T T              4   
9 9 9

T T T           4

1
32Y     

1 2 8
T T T              

3
X  *      4 4 7

T T T     4D   
9 9 9

T T T           4

1
64Y

    *                 9 6 9
T T T      2 4

1
64G Y 

2 4 1
T T T         

3
D X

7 7 1
T T T   

3
4F X 

2

4 1
T T                 2

3
X

6 3 5
T T T   3

3
Z 2

6 5
T T  4

3
Z (a) 2

2 2
T T   2

3
E D X  2

10 7
T T                  2F    

7 4 4
T T T     2

3
2X (b)

8 6 6
T T T              4

3
2Z   (b)

9 9 10
T T T        2F G   *

4 4 7
T T T     2

3
3X (b)

6 6 8
T T T              4

3
3Z   (b)

2 2 9
T T T               

3
Y   *

(a) 3
3Z if next operation is a point addition, or 4

3Z  if next operation is a doubling or tripling.

(b) Field additions from the first two steps of a following doubling or tripling.

If a doubling or tripling (Appendix D6) comes right after a doubling, field additions from 

the first two steps of the following doubling or tripling can be merged with the last two steps 

of the doubling formulae, saving two field additions.
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D5: FOUR-PROCESSOR ADDITION

Mixed Addition :    
2 3 2 2 4

1 1 1 1 1 2 2 3 3 3 3 3 3
( , , , , ) ( , ) ( , , , , , )X Y Z Z Z X Y X Y Z X Z Z 

T1  X1, T2  Y1, T3  Z1, T5  2

1
Z , T6  3

1
Z , Tx X2, Ty Y2  

Processor1 Processor2 Processor3 Processor4

6 6 y
T T T           3

1 2
Z Y

7 5 x
T T T     2

1 2
Z X 2

4 2
T T                 2

1
Y   *

6 6 2
T T T              

7 7 1
T T T             *   *

  * 3 3 7
T T T   

1
Z 

2 2 7
T T T        

1
Y 

1 1 1
T T T                    

1
2X

2

10 6
T T                 2 2

3 3
T T   2

1
Z  2

2 2
T T         2

1
Y  2

9 7
T T                         2

8 10 10
T T T          22

5 5 9
T T T   2 2

1
Z 

4 4 9
T T T      2 2

1
Y 

7 7 7
T T T                     2

8 8 8
T T T            24

3 3 5
T T T         

3
Z

2 2 4
T T T          

1
2Y 

9 9 9
T T T                   22

7 7 9
T T T              34 2

5 3
T T             2

3
Z           

2 2 9
T T T           3

1
4Y       

4 1 9
T T T                   2

1
4X 

1 8 7
T T T   2 34 4    *  2 2 2

T T T         3

1
8Y 

9 4 4
T T T                2

1
8X 

1 1 9
T T T             

3
X   *      2 2 10

T T T     2 3

1
8Y 

6 4 6
T T T       2

1
4A X  

  *                   * 10 4 1
T T T   2

1 3
4X X 

9 6 1
T T T                 

3
A X

2

4 1
T T                 2

3
X 2

6 5
T T              4

3
Z 2

10 10
T T   22

1 3
4X X  2

9 9
T T           2

3
B A X 

7 4 4
T T T      2

3
2X (a)

8 6 6
T T T   4

3
2Z (a)   * 9 9 10

T T T    22

1 3
4B X X 

4 4 7
T T T      2

3
3X (a)

6 6 8
T T T   4

3
3Z (a)   *              2 9 2

T T T                      
3

Y
(a) Field additions from the first two steps of a following doubling or tripling

If a doubling (Appendix D4) or tripling (Appendix D6) comes right after an addition, field 

additions from the first two steps of the following doubling or tripling can be merged with 

the last two steps of the addition formulae, saving two field additions.
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D6: FOUR-PROCESSOR TRIPLING

Tripling :    
2 2 4 2 2 3 4

1 1 1 1 1 1 3 3 3 3 3 3 3
3( , , , , , ) ( , , , , , / )X Y Z X Z Z X Y Z X Z Z Z

T1  X1, T2  Y1, T3  Z1, T4  2

1
X , T5  2

1
Z , T6 4

1
Z

Processor1 Processor2 Processor3 Processor4

7 4 4
T T T        2

1
2X

8 6 6
T T T                    4

1
2Z   *   *                   

4 4 7
T T T        2

1
3X

6 6 8
T T T                    4

1
3Z   *   *                   

6 4 6
T T T               *           14 2 2

T T T              
1

2Y   *
2

8 6
T T               2 2

2 2
T T                          2

1
Y 2

9 14
T T                  2

1
4Y   *                           

10 2 2
T T T        2

1
2Y

11 1 2
T T T         2

1 1
A X Y 

9 9 9
T T T              2

1
8Y   *              

4 4 4
T T T        2

1
6X

12 11 11
T T T                    2A     *    *

2

10 10
T T            4

1
4Y 2

12 12
T T                        24A                           2

2 2
T T                    4

1
Y 2

11 11
T T                   2A

13 8 10
T T T   4 2

1
4Y 

12 12 4
T T T         2 2

1
4 6A X                          

2 2 2
T T T            4

1
2Y

11 11 11
T T T            22A

13 2 13
T T T     4 2

1
6Y 

12 11 12
T T T         2 2

1
6 6A X       

14 14 14
T T T             

1
4Y

10 10 10
T T T            4

1
8Y   

13 12 13
T T T             *          *       10 10 10

T T T             2

8 8 10
T T T   22    

3 3 13
T T T                

1
Z 

6 6 13
T T T                     

12 10 10
T T T             4                    

2

2 13
T T               2 2

3 3
T T                 2

1
Z  2

6 6
T T       2

B    2

11 10
T T                 24

13 2 13
T T T   2 

5 2 5
T T T               2 2

1
Z 

6 6 2
T T T          2B 

10 8 10
T T T       24 

1 1 2
T T T   2

1
E X  

3 3 5
T T T                      

3
Z

8 8 6
T T T        2 2C   

10 10 6
T T T     4 2D   

2

1 1
T T               2E 2

6 2
T T                          4 2

13 13
T T       22H    2

5 8
T T                   2C

1 1 6
T T T   2 4F E  

2 2 6
T T T        2 4G   

11 11 13
T T T     24K H 

12 12 12
T T T          4

1
64Y

1 1 1
T T T           2F

2 2 11
T T T           L K G 

12 5 12
T T T        2 4

1
64C Y

13 8 9
T T T        2

1
8Y C

2

11 8
T T              2C 2

5 3
T T                          2

3
Z 2

10 10
T T                   2D 2

13 13
T T     22

1
8I Y C 

1 1 7
T T T      2

1
4X 

11 10 11
T T T         2 2J C D      

14 2 14
T T T     

1
4M Y L    

13 13 12
T T T   2 4

1
64I C Y             

1 1 13
T T T          

3
X

9 9 9
T T T                   2

1
16Y

7 14 11
T T T      N M J         

2 2 11
T T T       L J 

2

4 1
T T              2

3
X

6 3 5
T T T   3

3
Z 2

6 5
T T  4

3
Z (a) 2

11 7
T T                   2N 2

2 2
T T                   2

7 4 4
T T T   2

3
2X (b)

8 6 6
T T T              4

3
2Z   (b)

9 11 9
T T T        2 2

1
16N Y   *

4 4 7
T T T   2

3
3X (b)

6 6 8
T T T              4

3
3Z   (b)

2 9 2
T T T                 

3
Y   *

(a) 3
3Z if next operation is a point addition, or 4

3Z  if next operation is a doubling or tripling.

(b) Field additions from the first two steps of a following doubling or tripling.
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If a doubling (Appendix D4) or tripling comes right after a tripling, field additions from the 

first two steps of the following doubling or tripling can be merged with the last two steps of 

the tripling formulae, saving two field additions.
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E1: TWO-PARALLEL SSCA-PROTECTED DOUBLING

   Input: P (X1 , Y1 , Z1)    
   Output: 2P (X3 , Y3 , Z3)    

   T1 X1, T2 Y1, T3 Z1   
1 2

Processor1 Processor2 Processor1 Processor2
2

4 3
T T                    2

1
Z 2

5 2
T T              2

1
Y 2

6 4
T T                   2 2

5 5
T T               4

1
4Y

6 4
T T                 2

1
Z   *   * 5 5

T T            4

1
4Y

4 1 4
T T T   2

1 1
A X Z 

5 5 5
T T T        2

1
2Y

1 1 6
T T T              

3
X

5 5 5
T T T         4

1
8Y

6 1 6
T T T   2

1 1
B X Z 

7 1 1
T T T        

1
2X

6 1 7
T T T        

3
X 

2 2 2
T T T           

1
2Y

4 4 6
T T T              .A B

7 5 7
T T T           

6 4 6
T T T    

3
X 

3 2 3
T T T             

3
Z

  *                 7 7
T T             

6 6
T T       

3
X     *   

4 4 4
T T T            2 .A B

1 7 7
T T T       2

2 5 6
T T T              

3
Y   *        

4 4 4
T T T                    *                           *             

For Appendices E1, E2 and E3, two processing units execute in parallel one parallel atomic 

block at a time (1, 2, 3, and so on). Each parallel atomic block has the atomic structure: 

S-N-A-A-M-N-A-A to protect against simple side-channel attacks.
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E2: TWO-PARALLEL SSCA-PROTECTED ADDITION

   Input: P (X1 , Y1 , Z1) and Q (X2 , Y2 )    
   Output: P  Q (X3 , Y3 , Z3)   

   T1 X1, T2 Y1, T3 Z1, Tx X2, Ty Y2

1 2
Processor1 Processor2 Processor1 Processor2

2

4 3
T T                   2

1
Z 2

5 y
T T               2

2
Y 2

8 7
T T                     2 2

3 3
T T         2

1
Z 

  *   * 8 8
T T                  2

4 4
T T               2

1
Z

  *                    *            1 1 1
T T T               

1
2X

4 4 8
T T T   2 2

1
Z  

  *   * 1 1 1
T T T               

1
4X

3 3 4
T T T             

3
Z

6 3 4
T T T             3

1
Z

7 4 x
T T T      2

1 2
Z X

4 1 8
T T T   2

1
4A X  

7 7 8
T T T           3

  *                8 1
T T            

1
X   *                         *                 

  *                   7 7 8
T T T           

1 4 4
T T T   2

1
8B X  

7 7 7
T T T         32      

  *             3 3 7
T T T     

1
Z 

8 6 y
T T T          3

1 2
Z Y

7 7 7
T T T         34

3 4
Processor1 Processor2 Processor1 Processor2

2

6 6
T T                    6

1
Z 2

8 8
T T     23

1 2
Z Y                   2

5 6
T T                     2   *

  *             *                  *   *

6 5 6
T T T     6 2

1 2
C Z Y 

2 2 2
T T T         

1
2Y

1 1 5
T T T                

3
X   *

6 2 6
T T T         

1
2C Y   * 4 1 4

T T T          
3

X A   *

  *            2 2 7
T T T   3

1
8Y 

4 4 6
T T T    

3
X A    *

6 6
T T           

1
2C Y    *     4 4

T T         
3

A X     *

6 8 6
T T T                

1 1 7
T T T     34 B 

2 2 4
T T T                

3
Y   *

  *    *             *   *
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E3: TWO-PARALLEL SSCA-PROTECTED TRIPLING

   Input: P (X1 , Y1 , Z1)                                Output: 3P (X3 , Y3 , Z3)    
   T1 X1, T2 Y1, T3 Z1   

1 2
Processor1 Processor2 Processor1 Processor2

2

4 3
T T                  2

1
Z 2

5 2
T T               2

1
Y 2

5 5
T T                    2 2

6 4
T T                  2

6 4
T T                2

1
Z   *   *                  6 6

T T               2

4 1 4
T T T   2

1 1
A X Z 

5 5 5
T T T        2

1
2Y            

2 2 2
T T T               

1
2Y

7 6 7
T T T              

6 1 6
T T T   2

1 1
B X Z 

5 5 5
T T T        2

1
4Y

4 4 7
T T T                *            

4 4 6
T T T             .A B

7 1 5
T T T     2

1 1
4X Y   *   *         

  *                   *                  *                          *                 

4 4 4
T T T          2 .A B

6 7 7
T T T     2

1 1
8X Y

2 2 2
T T T               

1
4Y   *            

4 4 4
T T T               

7 6 7
T T T   2

1 1
12X Y   *          *       

3 4
Processor1 Processor2 Processor1 Processor2
2

4 4
T T           2  2

8 7
T T               2                   2

7 7
T T            2

1
Z  2

3 3
T T                  2

1
Z

  *           8 8
T T            2

6 6
T T                  2

3 3
T T               2

1
Z

1 1 1
T T T             

1
2X

6 6 8
T T T   2 2  

6 5 6
T T T     2 2C   

3 3 8
T T T   2 2

1
Z  

1 1 1
T T T             

1
4X

6 4 6
T T T         2

5 5 6
T T T   4 2D         

3 3 7
T T T             

3
Z

1 1 8
T T T        2

1
4X 

4 7 8
T T T        3

5 5 6
T T T              .C D   *

1 1
T T             2

1
4X    *     5 5

T T                .C D   *

  *                 7 3 7
T T T     

1
Z 

5 4 5
T T T     3.C D     *

  *    *             *   *

5
Processor1 Processor2
2

4 2
T T                2

1
16Y   *

  * 2 2 2
T T T         

1
8Y

  *            *
  *           *

4 4 6
T T T         2

1
16Y C

2 2 5
T T T           

3
Y

  *         *

1 1 4
T T T              

3
X             *

  *   *
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F1: TEST RESULTS FOR UNPROTECTED IMPLEMENTATIONS

Standard curves (2.2)
Method

Poin
ts Traditional Fast

Fast using 
DA

Special 
curves 

[DIK06]

NAF 0 1691.26M 1648.97M 1638.42M 1818.19M

 (2,3)NAF 0 1583.91M 1536.63M 1529.10M 1606.53M

 (2,3,5)NAF 0 1647.68M 1512.68M 1506.29M -

 (2,3,5,7)NAF 0 1683.59M 1512.04M 1506.30M -

 (2,3)NAF1,1 0 1583.91M 1536.63M 1529.10M 1541.00M

 (2,3,5)NAF1,1,0 0 1667.89M 1533.21M 1527.01M -

NAF3 1 1549.48M 1509.95M 1502.06M 1676.08M

 (2,3)NAF3 1 1523.23M 1480.92M 1474.05M 1602.14M

 (2,3,5)NAF3 1 1589.00M 1465.26M 1459.35M -

 (2,3,5,7)NAF3 1 1627.23M 1468.87M 1463.52M -

 (2,3)NAF2,1 1 1522.38M 1472.40M 1466.55M 1487.11M

 (2,3,5)NAF2,1,0 1 1559.04M 1469.55M 1464.08M -

 (2,3)NAF1,2 2 1528.91M 1473.36M 1468.10M 1412.96M

 (2,3)NAF0,2 2 1649.68M 1586.96M 1582.29M 1463.42M

 (2,3,5)NAF1,2,0 2 1569.78M 1469.11M 1464.24M -

NAF4 3 1462.99M 1425.14M 1418.86M 1589.21M

 (2,3)NAF4 3 1441.27M 1400.07M 1394.74M 1512.03M

 (2,3,5)NAF4 3 1492.90M 1423.67M 1395.49M -

 (2,3,5,7)NAF4 3 1511.16M 1442.64M 1405.78M -

 (2,3)NAF3,1 3 1457.42M 1410.45M 1405.55M 1447.42M

 (2,3,5)NAF3,1,0 3 1505.10M 1410.68M 1406.15M -

 (2,3,5)NAF1,1,1 3 1765.70M 1479.58M 1475.28M -

 (2,3)NAF2,2 5 1468.65M 1416.67M 1412.18M 1387.49M

 (2,3,5)NAF2,2,0 5 1514.34M 1414.66M 1410.54M -
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NAF5 7 1404.61M 1367.92M 1362.69M 1530.50M

 (2,3)NAF5 7 1397.00M 1357.65M 1353.00M 1482.04M

 (2,3,5)NAF5 7 1445.12M 1360.15M 1355.86M -

 (2,3,5,7)NAF5 7 1482.62M 1371.53M 1367.50M -

 (2,3)NAF4,1 7 1409.92M 1365.15M 1360.92M 1418.07M

 (2,3,5)NAF4,1,0 7 1459.32M 1366.78M 1362.89M -

(2,3,5)NAF2,1,1 7 1685.17M 1430.20M 1426.36M -

 (2,3)NAF1,3 8 1477.40M 1421.24M 1417.11M 1336.61M

 (2,3)NAF0,3 8 1526.92M 1467.34M 1461.96M 1350.39M

 (2,3,5)NAF1,3,0 8 1517.43M 1419.41M 1415.57M -

 (2,3,5)NAF0,3,0 8 1567.43M 1461.63M 1456.69M -

 (2,3)NAF3,2 11 1422.24M 1372.98M 1369.07M 1367.29M

 (2,3,5)NAF3,2,0 11 1462.75M 1374.89M 1371.23M -

NAF6 15 1361.86M 1326.01M 1321.55M 1487.38M

 (2,3)NAF6 15 1357.80M 1319.37M 1315.38M 1444.40M

 (2,3,5)NAF6 15 1405.65M 1324.39M 1320.69M -

 (2,3,5,7)NAF6 15 1439.06M 1335.21M 1331.719M -

This table details the results of tests with 10000 160-bit scalars chosen randomly. We 

compare NAF and wNAF with proposed mbNAF, wmbNAF and extended wmbNAF 

assuming 1S = 0.8M for two cases: standard curves (2.2) and special curves [DIK06]. We 

fairly classify scalar multiplications according to the number of required pre-computations, 

which (for the case of our multibase methods) has been determined by using (7.3), (7.5) and 

(7.7) and confirmed by test results.  

In the case of standard curves, it can be noticed the improvement when applying the 

methodology of replacing multiplications for squarings (“Fast” case) and when using new 

DA operation on top of the latter (“Fast using DA” case). 
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F2: TEST RESULTS FOR SSCA-PROTECTED IMPLEMENTATIONS

Method Points
Traditional 
M-A-N-A

(1) (2)
(1) with 

DA
(2) with 

DA
(3)

1S = 0.8M

NAF 0 2383.91M 2034.84M 2045.33M 1976.79M 1931.87M 1855.07M

 (2,3)NAF 0 2204.23M 1892.04M 1889.53M 1850.60M 1808.54M 1814.52M

 (2,3,5)NAF 0 2277.11M 1855.82M 1848.02M 1820.64M 1779.26M -

 (2,3,5,7)NAF 0 2309.60M 1849.43M 1844.38M 1817.88M 1782.71M -

 (2,3)NAF1,1 0 2188.78M 1909.75M 1905.07M 1870.14M 1827.64M 1880.61M

 (2,3,5)NAF1,1,0 0 2258.11M 1873.31M 1864.06M 1839.20M 1797.40M -

 NAF3 1 2217.85M 1869.71M 1869.61M 1826.34M 1784.83M 1695.70M

 (2,3)NAF3 1 2163.34M 1831.12M 1826.45M 1793.32M 1752.56M 1725.21M

 (2,3,5)NAF3 1 2234.27M 1804.59M 1795.38M 1772.04M 1731.77M -

 (2,3,5,7)NAF3 1 2267.87M 1803.24M 1796.66M 1773.80M 1739.11M -

 (2,3)NAF2,1 1 2101.81M 1810.46M 1800.74M 1778.30M 1737.89M 1763.37M

 (2,3,5)NAF2,1,0 1 2146.81M 1804.09M 1792.49M 1774.00M 1733.68M -

 (2,3)NAF1,2 2 2066.64M 1804.15M 1791.42M 1775.22M 1734.88M 1798.55M

 (2,3)NAF0,2 2 2172.13M 1932.84M 1925.52M 1907.13M 1875.28M 1961.98M

 (2,3,5)NAF1,2,0 2 2119.73M 1796.13M 1781.48M 1769.36M 1729.15M -

 NAF4 3 2115.99M 1768.88M 1762.48M 1734.30M 1694.88M 1598.53M

 (2,3)NAF4 3 2062.09M 1734.16M 1723.39M 1704.85M 1666.10M 1633.47M

 (2,3,5)NAF4 3 2119.82M 1729.74M 1716.64M 1702.91M 1664.20M -

 (2,3,5,7)NAF4 3 2154.31M 1737.93M 1726.84M 1712.67M 1677.47M -

 (2,3)NAF3,1 3 2038.35M 1739.06M 1725.91M 1712.09M 1673.17M 1679.77M

 (2,3,5)NAF3,1,0 3 2095.23M 1735.50M 1720.40M 1710.59M 1671.72M -

 (2,3,5)NAF1,1,1 3 2381.06M 1797.98M 1780.20M 1774.37M 1734.04M -

 (2,3)NAF2,2 5 2013.68M 1739.87M 1724.48M 1715.15M 1676.17M 1717.12M

 (2,3,5)NAF2,2 5 2071.12M 1734.08M 1716.86M 1711.38M 1672.49M -

 NAF5 7 2046.99M 1700.79M 1690.21M 1672.06M 1634.06M 1532.98M
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 (2,3)NAF5 7 2017.57M 1685.04M 1671.70M 1659.50M 1621.79M 1577.50M

 (2,3,5)NAF5 7 2070.81M 1683.65M 1668.45M 1660.04M 1622.31M -

 (2,3,5,7)NAF5 7 2107.49M 1693.22M 1680.14M 1671.08M 1636.87M -

 (2,3)NAF4,1 7 1991.55M 1686.78M 1671.18M 1663.52M 1625.71M 1618.76M

 (2,3,5)NAF4,1,0 7 2049.33M 1684.67M 1667.29M 1663.27M 1625.46M -

 (2,3,5)NAF2,1,1 7 2296.73M 1743.39M 1724.00M 1722.69M 1683.54M -

 (2,3)NAF1,3 8 1992.20M 1739.77M 1722.47M 1717.01M 1677.99M 1747.66M

 (2,3)NAF0,3 8 2032.05M 1791.37M 1775.90M 1765.55M 1725.43M 1817.02M

 (2,3,5)NAF1,3,0 8 2044.69M 1734.97M 1716.19M 1713.84M 1674.89M -

 (2,3)NAF3,2 11 1972.35M 1690.23M 1672.85M 1668.70M 1630.78M 1654.60M

 (2,3,5)NAF3,2,0 11 2022.04M 1689.61M 1670.89M 1669.46M 1631.52M -

NAF6 15 1996.04M 1650.85M 1637.33M 1626.30M 1589.34M 1485.02M

 (2,3)NAF6 15 1971.49M 1639.53M 1623.71M 1617.59M 1580.83M 1531.75M

 (2,3,5)NAF6 15 2024.64M 1641.41M 1624.03M 1621.03M 1584.19M -

 (2,3,5,7)NAF6 15 2057.36M 1650.82M 1635.45M 1631.53M 1597.77M -

This table details results from tests with 10000 160-bit scalars chosen randomly and 

protected against SSCA using atomicity. We compare NAF and wNAF with proposed 

mbNAF, wmbNAF and extended wmbNAF when using standard curves. 

Six cases are considered for standard curves over prime fields (2.2): 

 Using point operations with traditional M-A-N-A structure (“Traditional M-A-N-A” 

case). Costs for point doubling, addition and tripling are taken from Table 5.3. Since 

there are no previous proposals for quintupling and septupling, they are built by 

using elementary point operations as described in Section 5.3.1. Costs for those 

operations are taken from Table 5.1 (previous work). 

 Using improved M-A-N-A-based formulae as detailed in Sections 5.2 and 5.3.2 (“(1)” 

case). Costs of atomic doubling, tripling and addition are taken from Table 5.3. Table 

5.1 shows computing costs for quintupling and septupling. 
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 Using new M-N-A-M-N-A-A-based formulae introduced in Section 5.3 (“(2)” case). 

Similarly, costs for atomic doubling, tripling and addition are taken from Table 5.3, 

and costs of septupling and quintupling from Table 5.1. 

 Similar to the second case, but this time every doubling followed by an addition is 

replaced by an efficient M-A-N-A-based atomic DA operation presented in Section 

5.3.2, following approach discussed in Section 3.4.2. 

 Similar to the third case, but this time every doubling followed by an addition is 

replaced by an M-N-A-M-N-A-A-based atomic DA (see Section 5.3.2), following 

approach discussed in Section 3.4.2. 

 Using new S-N-A-M-N-A-A-based formulae introduced in Section 5.4 (“(3)” case). 

Costs for atomic doubling, tripling and addition are taken from Table 5.3.

For most cases, we assume 1S = 1M, with exception of the last column corresponding to 

S-N-A-M-N-A-A-based formulae, which show the lowest computing costs for applications 

with ratio S/M = 0.8. 

Similarly to Appendix F1, we fairly classify scalar multiplications according to the 

number of required pre-computations, which has been determined by using (7.3), (7.5) and 

(7.7) and confirmed with test results.  
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